KR20210079722A - Alloyed got dip galvannealed steel sheet and method of manufacturing the same - Google Patents

Alloyed got dip galvannealed steel sheet and method of manufacturing the same Download PDF

Info

Publication number
KR20210079722A
KR20210079722A KR1020190171801A KR20190171801A KR20210079722A KR 20210079722 A KR20210079722 A KR 20210079722A KR 1020190171801 A KR1020190171801 A KR 1020190171801A KR 20190171801 A KR20190171801 A KR 20190171801A KR 20210079722 A KR20210079722 A KR 20210079722A
Authority
KR
South Korea
Prior art keywords
steel sheet
hot
phase
layer
dip galvanized
Prior art date
Application number
KR1020190171801A
Other languages
Korean (ko)
Inventor
김윤겸
고향진
이강노
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Priority to KR1020190171801A priority Critical patent/KR20210079722A/en
Publication of KR20210079722A publication Critical patent/KR20210079722A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/50Controlling or regulating the coating processes
    • C23C2/52Controlling or regulating the coating processes with means for measuring or sensing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates

Abstract

The present invention is to provide an alloyed hot-dip galvannealed (GA) steel sheet and a method of manufacturing the same, which can improve the plating delamination of an alloyed hot-dip galvannealed (GA) steel sheet and secure press workability as well. A method of manufacturing an alloyed hot-dip galvannealed (GA) steel sheet according to an aspect of the present invention includes the steps of preparing a steel sheet having a predetermined alloy composition, heating and cracking the steel sheet, immersing the cracked steel sheet in a hot-dip galvanizing bath of 450 to 560°C to form a hot-dip galvannealed layer in which less than 10 wt% of the gamma (Γ) phase, 60 to 80 wt% of the delta (σ) phase, and 10 to 30 wt% of the zeta (ζ) phase with respect to the entire plating layer are sequentially disposed from the surface of the steel sheet, and performing the alloying heat treatment on the steel sheet at a temperature of 460 to 520℃.

Description

합금화 용융아연도금강판 및 그 제조방법{ALLOYED GOT DIP GALVANNEALED STEEL SHEET AND METHOD OF MANUFACTURING THE SAME}ALLOYED GOT DIP GALVANNEALED STEEL SHEET AND METHOD OF MANUFACTURING THE SAME

본 발명은 강판 및 그 제조방법에 관한 것으로, 보다 상세하게는 자동차 부품에 적합한 가공성 및 내도금박리성이 우수한 합금화 용융아연도금 강판 및 그 제조방법에 관한 것이다.The present invention relates to a steel sheet and a method for manufacturing the same, and more particularly, to an alloyed hot-dip galvanized steel sheet having excellent workability and plating peelability suitable for automobile parts and a method for manufacturing the same.

자동차 산업은 경쟁이 심화됨에 따라 자동차 품질에 대한 고급화, 다양화 요구가 높아지고 있으며, 강화되고 있는 안전 및 환경규제에 대한 법규를 만족시키기 위해 강판의 강도를 증가시키고 무게를 줄여 연비 효율을 향상시키기 위한 노력을 계속하고 있다. 최근 철강업계 및 자동차 업계가 관심을 가지고 연구하는 분야는 고강도, 경량화에 집중되고 있으며, 자동차 디자인이 복잡해지고 소비자의 욕구가 다양화됨에 따라 고강도이면서 가공성과 성형성이 우수한 강을 요구하고 있다.As competition intensifies in the automobile industry, the demand for luxury and diversification of automobile quality is increasing, and in order to satisfy the stricter safety and environmental regulations, it is necessary to increase the strength of the steel sheet and reduce the weight to improve fuel efficiency. Efforts continue. Recently, the steel industry and the automobile industry are interested in and research is focused on high strength and light weight. As automobile designs become more complex and consumers' desires diversify, high strength steel with excellent processability and formability is required.

일반적으로, 자동차에 사용되는 강판은 자동차의 수명연장을 위해 내식성을 향상시킬 필요가 있고 이를 위해 용융도금강판이 사용되고 있다. 용융도금강판은 내식성이 우수하여 건축자재, 구조물, 가전제품 및 자동차 차체 등에 널리 사용된다. 현재 가장 많이 사용되고 있는 용융도금강판은 용융아연도금 강판(GI 강판)과 합금화 용융아연도금강판(GA 강판)이며, 특히 GI 강판은 소지강판에 용융아연도금을 한 강판으로서, 도금이 용이하고 내식성이 우수하여 자동차 자체의 소재로 많이 사용되고 있다.In general, steel sheets used in automobiles need to improve corrosion resistance in order to extend the life of the automobile, and for this purpose, hot-dip galvanized steel sheets are used. Hot-dip galvanized steel sheet has excellent corrosion resistance and is widely used in building materials, structures, home appliances and automobile bodies. The hot-dip galvanized steel sheets currently most used are hot-dip galvanized steel sheets (GI steel sheets) and alloyed hot-dip galvanized steel sheets (GA steel sheets). It is excellent and is widely used as a material for automobiles themselves.

이에 관련된 기술로는 대한민국 공개특허공보 제2019-0178955호(2019.07.03 공개, 표면품질 및 도금밀착성이 우수한 고강도 용융아연도금강판 및 그 제조방법)가 있다.As a technology related thereto, there is Korean Patent Laid-Open Publication No. 2019-0178955 (published on July 3, 2019, high-strength hot-dip galvanized steel sheet with excellent surface quality and plating adhesion and a manufacturing method thereof).

본 발명이 해결하고자 하는 과제는, 합금화 용융아연도금(GA) 강판의 도금박리 현상을 개선하는 동시에 프레스 가공성을 확보하는 합금화 용융아연도금(GA) 강판 및 그 제조방법을 제공하는 데 있다.An object of the present invention is to provide an alloyed hot-dip galvanized (GA) steel sheet and a method for manufacturing the same, which improve the plating peeling phenomenon of the alloyed hot-dip galvanized (GA) steel sheet and secure press workability.

본 발명의 일 관점에 따른 합금화 용융아연도금(GA) 강판은 소정의 합금 조성을 갖는 강판; 및 상기 강판 위에 형성된 용융아연도금층을 포함하고, 상기 용융아연도금층은, 상기 강판 표면으로부터 전체 도금층에 대해 10중량% 미만의 감마(Γ) 상, 60~80중량%의 델타(σ) 상, 및 10~30중량%의 제타(ζ) 상이 순차적으로 배치된 것을 특징으로 한다.An alloyed hot-dip galvanized (GA) steel sheet according to an aspect of the present invention includes a steel sheet having a predetermined alloy composition; and a hot-dip galvanized layer formed on the steel sheet, wherein the hot-dip galvanized layer comprises less than 10% by weight of a gamma (Γ) phase, 60 to 80% by weight of a delta (σ) phase, with respect to the entire plating layer from the surface of the steel sheet, and It is characterized in that 10 to 30% by weight of the zeta (ζ) phase is sequentially arranged.

상기 용융아연도금층은 합금화도는 7~11중량%인 것이 바람직하다.The degree of alloying of the hot-dip galvanized layer is preferably 7 to 11% by weight.

상기 용융아연도금층의 표면에 배치된 인산염계 코팅층을 더 포함할 수 있다.It may further include a phosphate-based coating layer disposed on the surface of the hot-dip galvanizing layer.

본 발명의 일 관점에 따른 합금화 용융아연도금(GA) 강판의 제조방법은, (a) 소정의 합금 조성을 갖는 강판을 준비하는 단계; (b) 상기 강판을 가열 및 균열하는 단계; (c) 상기 균열된 강판을 450~560℃의 용융아연 도금욕에 침지하여, 상기 강판의 표면으로부터 전체 도금층에 대해 10중량% 미만의 감마(Γ) 상, 60~80중량%의 델타(σ) 상, 및 10~30중량%의 제타(ζ) 상이 순차적으로 배치되는 용융아연도금층을 형성하는 단계; 및 (d) 상기 강판을 460~520℃의 온도에서 합금화 열처리하는 단계를 포함하는 것을 특징으로 한다.According to an aspect of the present invention, there is provided a method for manufacturing an alloyed hot-dip galvanized (GA) steel sheet, comprising the steps of: (a) preparing a steel sheet having a predetermined alloy composition; (b) heating and cracking the steel sheet; (c) immersing the cracked steel sheet in a hot-dip galvanizing bath at 450 to 560 ° C., from the surface of the steel sheet to a gamma (Γ) phase of less than 10 wt%, and a delta (σ) of 60 to 80 wt% with respect to the entire plating layer ) phase, and forming a hot-dip galvanizing layer in which 10 to 30 wt% of a zeta (ζ) phase is sequentially disposed; And (d) characterized in that it comprises the step of alloying heat treatment at a temperature of 460 ~ 520 ℃ the steel sheet.

상기 (c) 단계에서, 상기 도금욕의 알루미늄(Al) 농도는 0.13 ~ 0.14중량%로 제어하는 것이 바람직하다.In step (c), the aluminum (Al) concentration of the plating bath is preferably controlled to 0.13 to 0.14 wt%.

상기 (c) 단계에서, 상기 용융아연도금층의 합금화도가 7~11중량%가 되도록 하는 것이 바람직하다.In step (c), the degree of alloying of the hot-dip galvanized layer is preferably 7 to 11 wt%.

상기 (d) 단계 후에, 상기 용융아연도금층의 표면에 인산염계 코팅층을 형성하는 단계를 더 포함할 수 있다.After the step (d), the method may further include forming a phosphate-based coating layer on the surface of the hot-dip galvanizing layer.

본 발명에 따르면, 도금층 내 합금상 분율을 제타(ζ) 상: 10 ~ 30중량% 및 감마(Γ) 상: 10중량% 미만으로 제어함으로써 우수한 가공성 및 내도금성을 동시에 확보할 수 있다.According to the present invention, excellent workability and plating resistance can be secured at the same time by controlling the alloy phase fraction in the plating layer to be zeta (ζ) phase: 10 to 30 wt% and gamma (Γ) phase: less than 10 wt%.

도 1은 아연도금 강판의 도금층에서의 합금상을 도식화하여 나타낸 모식도이다.
도 2는 기존의 GA 강판과 본 발명의 구체예에 따른 GA 강판에 합금상 분율을 비교하여 나타낸 도면이다.
1 is a schematic view schematically showing an alloy phase in a plating layer of a galvanized steel sheet.
2 is a view showing a comparison of the alloy phase fraction in the conventional GA steel sheet and the GA steel sheet according to an embodiment of the present invention.

이하, 첨부한 도면을 참고하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명을 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 본 명세서에서 설명하는 실시예들에 한정되지 않는다. 본 명세서 전체를 통하여 동일 또는 유사한 구성 요소에 대해서는 동일한 도면 부호를 붙였다. 또한, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings so that those of ordinary skill in the art to which the present invention pertains can easily practice it. The present invention may be embodied in several different forms, and is not limited to the embodiments described herein. The same reference numerals are assigned to the same or similar components throughout this specification. In addition, detailed descriptions of well-known functions and configurations that may unnecessarily obscure the gist of the present invention will be omitted.

합금화 용융아연도금(Galvanneled: GA) 강판은 일반 용융아연도금 강판보다 용접성, 도장 밀착성, 도장후 내식성등이 우수하여 건자재용, 가전용, 자동차용 강판 등으로 널리 사용되고 있다. GA 강판은 소지 강판에 아연(Zn)을 용융 도금시킨 후 열처리를 통하여 도금층 중의 Fe-Zn 합금상을 형성시켜 제조한다. 보다 구체적으로, 1차적으로 소지 강판을 용융아연 도금하여 아연도금을 형성하고, 연속적으로 약 460 ~ 520℃의 온도 범위에서 강판을 재가열하여, 철(Fe)과 아연(Zn)의 상호 확산 작용을 통해 도금층 내에 제타(ζ), 델타(δ), 감마(Γ) 상 등의 Fe-Zn계 금속간 화합물을 형성시켜 GA 강판을 제조한다.Galvanneled (GA) steel sheet is widely used as steel sheet for construction materials, home appliances, and automobiles because it has superior weldability, paint adhesion, and corrosion resistance after painting compared to general hot-dip galvanized steel sheet. GA steel sheet is manufactured by hot-dip plating zinc (Zn) on a base steel sheet and then forming an Fe-Zn alloy phase in the plating layer through heat treatment. More specifically, the primary steel sheet is hot-dip galvanized to form galvanizing, and the steel sheet is continuously reheated in a temperature range of about 460 to 520° C. to prevent the mutual diffusion of iron (Fe) and zinc (Zn). A GA steel sheet is manufactured by forming Fe-Zn-based intermetallic compounds such as zeta (ζ), delta (δ), and gamma (Γ) phases in the plating layer.

이러한 GA 강판의 품질은 도금층 내 합금상의 구성과 밀접한 관계를 가지고 있는 것으로 알려져 있다. GA 도금층 내 각 합금상의 특성을 살펴보면, 소지철과의 계면에 존재하는 감마(Γ) 상의 경우 프레스 가공시 응력 집중부로, 소재 균열 개시점으로 작용하여 가공성을 악화시키며, 파우더링 도금박리를 발생시키는 주요 요인으로 알려져 있다. 감마(Γ) 상의 상층에 존재하는 델타(δ) 상은 감마(Γ) 상에 비해 가공성이 우수하며 마찰계수 또한 낮다. 그리고, 제일 상층에 존재하는 제타(ζ) 상의 경우 마찰계수가 높아 프레스 가공성을 악화시키며, 플레이킹 도금박리를 발생시킨다. 하지만 연질 제타(ζ) 상의 외부 응력 흡수 및 분산 효과에 따라 파우더링 도금박리에는 유리한 것으로 알려져 있다. It is known that the quality of such GA steel sheet has a close relationship with the composition of the alloy phase in the plating layer. Looking at the characteristics of each alloy phase in the GA plating layer, in the case of the gamma (Γ) phase that exists at the interface with the base iron, it acts as a stress concentration part during press working and acts as a crack initiation point of the material, worsening workability, and causing powdering plating peeling. known to be a major factor. The delta (δ) phase existing in the upper layer of the gamma (Γ) phase has superior processability and a low coefficient of friction compared to the gamma (Γ) phase. And, in the case of the zeta (ζ) phase present in the uppermost layer, the friction coefficient is high, which deteriorates press workability and causes flaking plating peeling. However, it is known to be advantageous for powdering plating and peeling according to the effect of absorbing and dispersing external stress in the soft zeta (ζ) phase.

따라서, 통상적으로 GA 강판의 경우, 프레스 가공성 확보와 도금박리(파우더링, 플레이킹) 현상을 개선하기 위해 도금층 내 제타(ζ) 상 및 감마(Γ) 상의 성장을 억제하고 델타(δ) 상 위주의 합금상으로 구성된 GA 강판을 제공하고 있다. 최근에는, GA 강판에 대한 인산염계 윤활피막코팅 적용을 통해 표면 마찰계수가 크게 저감되었으며, 이에 따라 GA 품질 최적화를 위한 도금층 내 합금상 구성에 대한 재정립이 필요한 상황이다.Therefore, in general, in the case of GA steel sheet, in order to secure press workability and improve plating peeling (powdering, flaking) phenomenon, the growth of zeta (ζ) and gamma (Γ) phases in the plating layer are suppressed, and the delta (δ) phase is dominant. GA steel sheet composed of an alloy phase of Recently, the surface friction coefficient has been greatly reduced through the application of a phosphate-based lubricating film coating to the GA steel sheet, and accordingly, it is necessary to re-establish the composition of the alloy phase in the plating layer for GA quality optimization.

본 발명은 GA 강판의 도금층 내 철(Fe)-아연(Zn) 합금상의 각 분율을 적절히 조절함으로써, GA 강판의 단점으로 알려진 도금박리 현상을 개선하는 동시에 프레스 가공성을 확보할 수 있다. 이를 통해 GA 강판의 파우더링(powdering), 플레이킹(flaking), 가공 크랙(Crack) 등의 문제를 개선할 수 있다.According to the present invention, by appropriately adjusting each fraction of an iron (Fe)-zinc (Zn) alloy phase in the plating layer of the GA steel sheet, it is possible to improve the plating peeling phenomenon, which is known as a disadvantage of the GA steel sheet, and secure press workability. Through this, problems such as powdering, flaking, and processing cracks of the GA steel sheet can be improved.

본 발명의 일 구체예에 따르면, 자동차의 내판 또는 외판으로 사용되는 합금화 용융아연도금(GA) 강판으로서, 도금층을 구성하고 있는 합금상은 제타(ζ) 상: 10 ~ 30중량%, 델타(δ)상: 60 ~ 80중량%, 감마(Γ) 상: 10중량% 미만으로 이루어진다. 또한, 제타(ζ) 상의 분율이 증가함에 따라 마찰력이 증가하는 것을 방지하기 위하여, 상기 GA 강판의 표면에는 인산염계 윤활피막 코팅이 적용되는 것이 바람직하다.According to one embodiment of the present invention, as an alloyed hot-dip galvanized (GA) steel sheet used as an inner or outer plate of a vehicle, the alloy phase constituting the plating layer is zeta (ζ) phase: 10 to 30 wt%, delta (δ) Phase: 60 to 80% by weight, gamma (Γ) phase: consists of less than 10% by weight. In addition, in order to prevent an increase in frictional force as the fraction of the zeta (ζ) phase increases, it is preferable that a phosphate-based lubricating film coating is applied to the surface of the GA steel sheet.

본 발명의 GA 강판에 있어서, 제타(ζ) 상의 분율이 10 ~ 30중량%를 만족할 때 가공성과 내도금 박리성을 동시에 확보할 수 있다. 제타(ζ) 상의 분율이 전체 도금층의 10중량% 미만인 경우 도금층 내 제타(ζ) 상에 의한 응력 흡수 및 분산 효과가 줄어들어 파우더링 및 플레이킹 도금박리가 증가하게 된다. 반대로, 제타(ζ) 상의 분율이 전체 도금층의 30중량%를 초과할 경우 내도금박리성은 줄어들지만, 표면 마찰계수 증가에 따라 가공성이 악화된다. 따라서, 본 발명의 바람직한 구체예에 따르면, 도금층 내 합금상 분율을 제타(ζ) 상: 10 ~ 30중량% 및 감마(Γ) 상: 10중량% 미만으로 제어할 경우 우수한 가공성 및 내도금성을 동시에 확보할 수 있다.In the GA steel sheet of the present invention, when the fraction of the zeta (ζ) phase satisfies 10 to 30 wt%, it is possible to simultaneously secure workability and plating resistance. When the fraction of the zeta (ζ) phase is less than 10% by weight of the total plating layer, the effect of absorbing and dispersing stress due to the zeta (ζ) phase in the plating layer is reduced, and thus powdering and flaking plating peeling increase. Conversely, when the fraction of the zeta (ζ) phase exceeds 30% by weight of the total plating layer, the plating peel resistance decreases, but the workability deteriorates as the surface friction coefficient increases. Therefore, according to a preferred embodiment of the present invention, when the alloy phase fraction in the plating layer is controlled to zeta (ζ) phase: 10 to 30 wt% and gamma (Γ) phase: less than 10 wt%, excellent workability and plating resistance at the same time can be obtained

도 1은 아연도금 강판의 도금층에서의 합금상을 도식화하여 나타낸 모식도이고, 도 2는 기존의 GA 강판과 본 발명의 구체예에 따른 GA 강판에 합금상 분율을 비교하여 나타낸 도면이다.1 is a schematic view schematically showing an alloy phase in a plating layer of a galvanized steel sheet, and FIG. 2 is a view showing a comparison of the alloy phase fraction in a conventional GA steel sheet and a GA steel sheet according to an embodiment of the present invention.

도 1을 참조하면, (B)는 일반적인 용융아연도금(GI) 강판의 도금층 구조를 나타낸 것으로 Fe 층과 Ze-Fe 합금층으로 이루어진 것을 볼 수 있다. (A)는 기존의 합금화 용융아연도금(GA) 강판의 도금층 구조를 나타낸 것으로, Fe층-감마층(Zn-Fe)-델타층(Zn-Fe)-제타층(Zn-Fe)으로 구성된 것을 볼 수 있다. 그리고, (C)는 본 발명의 개선된 구조를 갖는 합금화 용융아연도금(GA) 강판의 도금층 구조를 나타낸 것으로, Fe층-감마층(Zn-Fe)-델타층(Zn-Fe)-제타층(Zn-Fe)으로 구성되나, 도 2의 비교 도면에서와 같이, 우측(E)에 제시된 본 발명의 GA 강판의 경우 좌측의 (D)에 제시된 기존의 GA 강판에 비해 델타(δ) 상은 얇아지고 제타(ζ) 상의 두께가 훨씬 두꺼워진 것을 볼 수 있다.Referring to FIG. 1, (B) shows the structure of the plating layer of a general hot-dip galvanized (GI) steel sheet, and it can be seen that it is composed of an Fe layer and a Ze-Fe alloy layer. (A) shows the structure of the plating layer of a conventional alloyed hot-dip galvanized (GA) steel sheet, consisting of an Fe layer-gamma layer (Zn-Fe)-delta layer (Zn-Fe)-zeta layer (Zn-Fe). can see. And, (C) shows the plating layer structure of the alloyed hot-dip galvanized (GA) steel sheet having the improved structure of the present invention, Fe layer-gamma layer (Zn-Fe)-delta layer (Zn-Fe)-zeta layer Although composed of (Zn-Fe), as in the comparative drawing of FIG. 2 , in the case of the GA steel sheet of the present invention shown in the right (E), the delta (δ) phase is thinner than in the conventional GA steel sheet shown in (D) on the left. It can be seen that the thickness of the zeta (ζ) phase has become much thicker.

한편, 합금화 용융아연도금(GA) 강판의 표면 품질(가공성, 파우더링성, 도장성, 내식성)은 또한 도금층 내 합금화도와 밀접한 관계를 가지고 있는 것으로 알려져 있다. 합금화도가 낮으면 제타(ζ) 상이 다량으로 생성되고 감마(Γ) 상의 생성이 억제된다. 그 결과 제타(ζ) 상이 두꺼워지고 감마(Γ) 상이 얇아진다. 한편, 합금화도가 높은 경우 감마(Γ) 상이 다량으로 생성되고 제타(ζ) 상의 생성은 억제된다. 그 결과, 감마(Γ) 상은 두터워지고 제타(ζ) 상은 얇아진다. 합금화도가 높은 경우, 감마(Γ) 상은 소지층과의 계면에 두텁게 성장하기 때문에 합금 강판의 프레스 성형시 발생하는 파우더링의 원인이 된다. On the other hand, it is known that the surface quality (workability, powdering property, paintability, corrosion resistance) of an alloyed hot-dip galvanized (GA) steel sheet has a close relationship with the degree of alloying in the plating layer. When the alloying degree is low, a large amount of the zeta (ζ) phase is generated and the generation of the gamma (Γ) phase is suppressed. As a result, the zeta (ζ) phase becomes thick and the gamma (Γ) phase becomes thin. On the other hand, when the alloying degree is high, the gamma (Γ) phase is generated in a large amount and the generation of the zeta (ζ) phase is suppressed. As a result, the gamma (Γ) phase becomes thick and the zeta (ζ) phase becomes thin. When the alloying degree is high, since the gamma (Γ) phase grows thickly at the interface with the base layer, it causes powdering that occurs during press forming of the alloy steel sheet.

이러한 내용을 고려할 때, 본 발명에서 제시하는 바람직한 합금화도는 7 ~ 11중량%이다. 합금화도는 도금층 내의 철(Fe)의 함량을 중량%로 나타낸 것으로, 합금화도는 합금화 처리 시의 합금화 온도 등에 따라 결정된다. 합금화도가 11중량%를 초과할 경우 감마(Γ) 상 성장에 따른 파우더링 및 플레이킹 도금박리가 증가하며, 합금화도가 7중량% 미만의 경우 도금층 내 에타(η) 상이 잔존하여, 마찰계수 증가에 따라 성형성이 악화되고 미합금화에 따라 표면 외관 품질이 나빠지는 문젝 있다. 따라서, 본 발명의 GA 강판은 7 ~ 11중량%의 합금화도를 가지고, 상술한 합금상 분율을 가질 경우 우수한 가공성 및 내도금박리성을 확보할 수 있다.Considering these contents, the preferred degree of alloying presented in the present invention is 7 to 11% by weight. The degree of alloying indicates the content of iron (Fe) in the plating layer in weight %, and the degree of alloying is determined according to the alloying temperature during the alloying treatment. When the alloying degree exceeds 11 wt%, powdering and flaking plating peeling according to gamma (Γ) phase growth increases, and when the alloying degree is less than 7 wt%, the eta (η) phase remains in the plating layer, and the friction coefficient There is a problem that the formability deteriorates as the increase increases, and the quality of the surface appearance deteriorates due to non-alloying. Therefore, the GA steel sheet of the present invention has an alloying degree of 7 to 11% by weight, and when it has the above-mentioned alloy phase fraction, excellent workability and plating peelability can be secured.

이하, 본 발명의 다른 일측면인 도금성이 우수한 초고강도 용융아연도금강판의 제조방법에 대하여 상세히 설명한다.Hereinafter, another aspect of the present invention, a method for manufacturing an ultra-high strength hot-dip galvanized steel sheet excellent in plating property will be described in detail.

본 발명의 다른 일 측면인 도금성이 우수한 초고강도 용융아연도금강판의 제조방법은, 소지강판을 준비하는 단계, 상기 소지강판을 부피비로 수소와 잔부 질소 및 불가피한 불순물을 포함하는 분위기 가스하에서 가열하는 단계, 상기 가열된 강판을 균열하는 단계, 및 상기 균열된 강판을 450~560℃의 용융아연도금욕에 침지하여 도금하는 단계를 포함하고, 상기 소지강판은 열간압연, 권취 및 냉각을 행하여 제조되고, 상기 냉각은 이슬점 온도 -20~20℃인 서냉 박스에서 0.05~4.0℃/초의 냉각속도로 냉각하는 단계를 포함한다.Another aspect of the present invention, a method for manufacturing an ultra-high strength hot-dip galvanized steel sheet excellent in plating property, comprises the steps of preparing a base steel sheet, heating the base steel sheet in an atmospheric gas containing hydrogen and the remainder nitrogen and unavoidable impurities in a volume ratio. Step, cracking the heated steel sheet, and immersing the cracked steel sheet in a hot-dip galvanizing bath at 450 to 560 ° C. to plate the steel sheet, wherein the base steel sheet is manufactured by performing hot rolling, winding and cooling, and , the cooling comprises the step of cooling at a cooling rate of 0.05 ~ 4.0 ℃ / sec in a slow cooling box having a dew point temperature of -20 ~ 20 ℃.

먼저, 본 발명에서 사용 가능한 소지강판으로는 반드시 이에 제한하는 것은 아니나, 일 예로서, 중량%로, 실리콘(Si): 0.5~2.5%, 망간(Mn): 1.0~10.0%, 알루미늄(Al): 0.5~2.5%, 잔부 철(Fe) 및 기타 불가피한 불순물을 포함하되, 상기 Si, Mn 및 Al 중 2종 이상의 성분합이 1~15%을 만족하는 조성을 가지는 것을 들 수 있다. 이러한 조성의 강판은 강판의 강도는 향상시킬 수 있으나, 통상의 방법으로 도금할 경우 미도금의 문제가 심각하게 되는 강판이므로, 본 발명의 효과가 더욱 유리하게 나타날 수 있다.First, the base steel sheet usable in the present invention is not necessarily limited thereto, but as an example, in weight %, silicon (Si): 0.5 to 2.5%, manganese (Mn): 1.0 to 10.0%, aluminum (Al) : 0.5 to 2.5%, including the remainder iron (Fe) and other unavoidable impurities, and may have a composition in which the sum of two or more components among Si, Mn, and Al satisfies 1 to 15%. A steel sheet having such a composition can improve the strength of the steel sheet, but since it is a steel sheet in which the problem of non-plating becomes serious when plated by a conventional method, the effect of the present invention can be more advantageously exhibited.

상기 소지강판은 전술한 조성 및 성분범위를 만족하는 강을 열간 마무리 압연 행하고, 상기 열간마무리압연된 강판을 권취하는 것이 바람직하다. 상기 강판을 권취시 강판의 온도를 제어하는 바람직하다. 이와 같은 온도 제어는 외부 공기 중에 포함된 산소가 강판 내부로 침투하여 내부산화물 형성하는 구동력이 되어 산소의 플럭스에 영향을 미치는 역할을 한다. 본 발명의 일 예에 따르면, 의도하는 효과를 얻기 위해서 600 ~ 900℃로 권취온도를 제어하는 것이 바람직하다. 상기 권취온도가 600℃ 미만인 경우에는 강판 내부로 침투하려는 산소의 플럭스가 감소하여 내부 산화물의 깊이가 얕아지게 되며, 이는 후술하는 소둔과정에서 강중에 포함된 Si, Mn 및 Al 의 표면 농화를 효과적으로 억제하지 못하여 용융도금시 도금성의 열위를 초래하는 문제가 있다. 반면에, 900℃를 초과하는 경우에는 강판 내부로 침투하려는 산소의 플럭스가 증가하여 내부산화물의 깊이가 두꺼워지게 된다. 이와 같이 과도하게 내부산화물의 두께가 두꺼워지면 연신율이 목표하는 값에 이르지 못하여 굽힘 성형시 재질 열화된다.It is preferable that the base steel sheet is subjected to a hot finish rolling of steel satisfying the composition and component ranges described above, and the hot finish rolled steel sheet is wound. It is preferable to control the temperature of the steel sheet when winding the steel sheet. Such temperature control acts as a driving force for oxygen contained in external air to penetrate into the steel sheet to form internal oxides, thereby affecting the oxygen flux. According to an example of the present invention, it is preferable to control the coiling temperature to 600 ~ 900 ℃ in order to obtain the intended effect. When the coiling temperature is less than 600° C., the flux of oxygen to penetrate into the steel sheet decreases and the depth of the internal oxide becomes shallow, which effectively suppresses the surface concentration of Si, Mn and Al contained in the steel in the annealing process to be described later. Therefore, there is a problem of causing poor plating properties during hot-dip plating. On the other hand, when it exceeds 900° C., the flux of oxygen to penetrate into the steel sheet increases and the depth of the internal oxide becomes thick. When the thickness of the internal oxide becomes excessively thick as described above, the elongation does not reach a target value, and the material deteriorates during bending molding.

상기와 같이 권취된 강판을 이슬점 온도 -20~20℃인 서냉 박스에서 0.05~4.0℃/초의 냉각속도로 냉각하는 것이 바람직하다.It is preferable to cool the wound steel sheet as described above in a slow cooling box having a dew point temperature of -20 to 20° C. at a cooling rate of 0.05 to 4.0° C./sec.

상기와 같이 냉각된 강판에 선택적으로 냉간압연을 실시한 후 후속 공정을 실시할 수 있다. 상기와 같이 냉각된 강판을 우수한 인장강도 또는 연신율 등의 재질특성을 확보하기 위하여 열처리를 행하는 것이 바람직하다. 이때, 열처리는 750~850℃의 온도에서 행하는 것이 바람직하다. 상기 강판을 가열하는 온도가 750℃미만인 경우에는 결정 성장 및 회복 과정이 충분히 일어나지 않아 본 발명에서 요구하는 수준의 재질을 확보하는데 어려움이 있다. 반면에, 850℃를 초과하는 경우에는 소둔로 온도를 높이는데 사용되는 연료 및 에너지 소비가 늘어나며, 2차 재결정에 의해 강의 인장강도 또는 연신율 등이 우수한 재질의 강판을 확보할 수 없게 된다.After selectively performing cold rolling on the cooled steel sheet as described above, a subsequent process may be performed. It is preferable to heat-treat the cooled steel sheet as described above in order to secure excellent material properties such as tensile strength or elongation. At this time, the heat treatment is preferably performed at a temperature of 750 to 850 °C. When the temperature at which the steel sheet is heated is less than 750° C., the crystal growth and recovery process does not occur sufficiently, so it is difficult to secure a material at the level required in the present invention. On the other hand, when it exceeds 850°C, fuel and energy consumption used to increase the temperature of the annealing furnace increases, and it is impossible to secure a steel sheet having excellent tensile strength or elongation of the steel by secondary recrystallization.

상기와 같은 성분 조성을 가지며, 상기와 같은 제조방법으로 제조된 소지강판의 준비가 완료되면, 상기 소지강판을 수세 및 건조하는 전처리 과정을 거친 후 소둔 공정을 위해 소둔로 내에 인입하여 소둔 열처리를 실시할 수 있다.Having the component composition as described above, when the preparation of the base steel sheet manufactured by the manufacturing method as described above is completed, the base steel sheet is subjected to a pretreatment process of washing and drying with water, and then enters into the annealing furnace for the annealing process to perform annealing heat treatment. can

본 발명에서는 소둔 열처리시 소둔로 내부에 부피비로 3~20%의 수소와 잔부 질소 및 불가피한 불순물을 포함하는 분위기 가스하에서, 상기 소지강판을 700~850℃까지 가열하는 것이 바람직하다. 상기 가열시 환원분위기에서 행하는 것이 바람직하다. 보다 바람직하게는 부피비로, 3~20%의 수소와 잔부 질소 및 불가피한 불순물을 포함하여 가열을 행한다.In the present invention, it is preferable to heat the base steel sheet to 700 to 850° C. under an atmosphere gas containing 3 to 20% of hydrogen and the remainder nitrogen and unavoidable impurities in the annealing furnace at the time of annealing heat treatment in the present invention. The heating is preferably performed in a reducing atmosphere. More preferably, in a volume ratio, heating is performed including 3 to 20% of hydrogen, the remainder nitrogen, and unavoidable impurities.

상술한 조건을 만족하는 소둔로에서 소지강판을 700~850℃까지 가열을 행하는 것이 바람직하다. 상기 소지강판의 온도가 700℃미만인 경우에는 내부산화물이 Si, Mn 및 Al의 표면농화를 억제하기 위한 방지층 역할을 못하는 것이므로 결정 성장 및 회복 과정이 충분히 일어나지 않아 본 발명에서 요구되는 수준의 재질을 확보하기 어렵다. 반면에, 850℃를 초과하는 경우에는 소둔로 온도를 높이는데 사용되는 연료 및 에너지 소비가 늘어나며, 2차 재결정에 의해 강의 인장강도 또는 연신율 등이 우수한 재질의 강판을 확보할 수 없다. 보다 바람직하게는 750~820℃의 온도까지 가열을 행한다.It is preferable to heat the base steel sheet to 700 ~ 850 °C in an annealing furnace that satisfies the above conditions. When the temperature of the base steel sheet is less than 700 ℃, the internal oxide does not function as a prevention layer to suppress the surface thickening of Si, Mn and Al, so the crystal growth and recovery process does not occur sufficiently, so that the material of the level required in the present invention is secured hard to do On the other hand, when it exceeds 850° C., fuel and energy consumption used to increase the annealing furnace temperature increases, and it is impossible to secure a steel sheet having excellent tensile strength or elongation of the steel by secondary recrystallization. More preferably, it heats to the temperature of 750-820 degreeC.

상기 700~850℃로 가열된 소지강판을 균열하고, 상기 균열된 소지강판을 450~560℃의 용융아연 도금욕에 침지하여 도금을 행하는 것이 바람직하다. 상기 도금욕의 온도가 450℃미만인 경우에는 도금욕의 점도가 증가하여 강판을 감는 롤(roll)의 이동도가 감소되어 강판과 롤간의 미끄럼(slip)을 유발시켜 결함을 발생시키게 된다. 반면에, 도금욕의 온도가 560℃를 초과하는 경우에는 강판의 용해를 촉진시켜 Fe-Zn 화합물 형태의 드로스 발생을 가속화시켜 미도금이 발생한다. 또한, 상기 아연 도금욕은 0.13 ~ 0.14중량%의 알루미늄(Al) 및 잔부 아연(Zn) 및 기타 불가피한 불순물을 포함한다. 도금욕 내 Al 함량이 0.13중량% 미만일 경우에는 소지철과 도금층 계면에 형성되는 Fe-Al합금상의 형성이 억제되는 단점이 있으며, 0.14중량%를 초과하는 경우에는 도금층 내 Al 함량이 증가하여 용접성을 떨어뜨리는 문제가 있다. It is preferable to crack the base steel sheet heated to 700 ~ 850 ° C., and immerse the cracked base steel sheet in a hot-dip galvanizing bath of 450 to 560 ° C. to perform plating. When the temperature of the plating bath is less than 450° C., the viscosity of the plating bath increases and the mobility of a roll that winds the steel sheet decreases, thereby causing a slip between the steel sheet and the roll, thereby causing defects. On the other hand, when the temperature of the plating bath exceeds 560° C., the dissolution of the steel sheet is accelerated, thereby accelerating the generation of dross in the form of Fe—Zn compound, thereby causing non-plating. In addition, the zinc plating bath contains 0.13 to 0.14 wt % of aluminum (Al) and the remainder zinc (Zn) and other unavoidable impurities. When the Al content in the plating bath is less than 0.13% by weight, there is a disadvantage in that the formation of the Fe-Al alloy phase formed at the interface between the base iron and the plating layer is suppressed, and when it exceeds 0.14% by weight, the Al content in the plating layer increases and weldability is improved. There is a problem with dropping.

상기와 같이 도금을 행한 후에 460~520℃에서 합금화 열처리를 행하는 것이 바람직하다. 상기 합금화 열처리 온도가 460℃ 이상인 경우에 강판 표층에 형성된 Si, Mn 및 Al의 단독 또는 복합산화물층을 통과하여 아연 도금층 내에 충분히 Fe 함유량을 확보함으로써, 도금층이 탈락하는 파우더링 현상을 방지하는 효과가 있다. 상한은 특별히 한정될 필요는 없으나, 생산성을 고려하여 520℃로 제어하는 것이 바람직하다.After plating as described above, it is preferable to perform alloying heat treatment at 460 to 520°C. When the alloying heat treatment temperature is 460° C. or higher, the effect of preventing the powdering phenomenon in which the plating layer falls off by passing through the single or composite oxide layer of Si, Mn and Al formed on the surface layer of the steel sheet to ensure sufficient Fe content in the galvanized layer have. The upper limit does not need to be particularly limited, but it is preferable to control the temperature to 520° C. in consideration of productivity.

이하, 실시예를 통해 본 발명을 보다 상세하게 설명한다. 다만, 하기 실시예는 본 발명을 보다 상세히 설명하기 위한 예시일 뿐, 본 발명의 권리범위를 한정하지 않는다.Hereinafter, the present invention will be described in more detail through examples. However, the following examples are only examples for explaining the present invention in more detail, and do not limit the scope of the present invention.

실시예Example

중량%로, Si: 1.5%, Mn: 1.6% 및 Al: 0.4%로 상기 성분함량의 총합이 3.5중량%인 강판을 최종 마무리 열간압연하고, 하기 권취를 행한 후, 이슬점 온도 및 냉각속도를 가지는 서냉박스에서 상온까지 냉각하였다. 그 후, 상온에서 냉간압연을 행하여 소지강판을 제조하였다. 상기와 같이 제조된 소지강판의 표면을 청정하게 전처리하여 부피비로 15% 수소 및 잔부 질소 및 불가피한 불순물을 포함하는 환원분위기에서 균열온도까지 가열을 행한 후 60초동안 균열을 하였다. 그 후, 480℃의 온도로 강판을 냉각하고, 450℃의 용융아연 도금욕에 침지하여 도금을 행하여 하기 표 1에 나타난 바와 같은 용융아연도금강판을 제조하였다. 그 후, 상기 소지강판을 도금욕 중에 3초 동안 침지한 후 에어 와이핑(Air wipping)을 통해 표면에 입혀진 도금 부착량이 60g/㎡ 수준을 유지하도록 하였다.By weight %, Si: 1.5%, Mn: 1.6%, and Al: 0.4%, a final finish hot rolling of a steel sheet having a total content of 3.5% by weight, followed by winding, having a dew point temperature and a cooling rate It was cooled to room temperature in an annealing box. Thereafter, cold rolling was performed at room temperature to prepare a base steel sheet. The surface of the steel sheet prepared as described above was cleanly pretreated, heated to a cracking temperature in a reducing atmosphere containing 15% hydrogen by volume, the remainder nitrogen, and unavoidable impurities, and then cracked for 60 seconds. Thereafter, the steel sheet was cooled to a temperature of 480° C., and plated by immersion in a hot-dip galvanizing bath of 450° C. to prepare a hot-dip galvanized steel sheet as shown in Table 1 below. After that, the base steel sheet was immersed in the plating bath for 3 seconds, and then the amount of plating applied to the surface was maintained at a level of 60 g/m 2 through air wiping.

상기 도금공정을 마친 강판의 도금성을 평가하기 위해, 합금상 분율, 합금화도, 파우더링 등급, 플레이킹 등급 및 가공성 등급을 각각 측정하여 하기의 표 1에 나타내었다.In order to evaluate the plating property of the steel sheet after the plating process, the alloy phase fraction, alloying degree, powdering grade, flaking grade, and workability grade were respectively measured and shown in Table 1 below.

Figure pat00001
Figure pat00001

상기 합금상 분율은 XRD(X-Ray Diffraction) 측정을 통해 얻은 회절 패턴을 Rietveld 정량분석법을 이용하여 분석하였고, 도금량 및 합금화도는 습식분석법을 이용하여 분석하였다.The alloy phase fraction was analyzed using the Rietveld quantitative analysis method for the diffraction pattern obtained through XRD (X-Ray Diffraction) measurement, and the plating amount and the alloying degree were analyzed using the wet analysis method.

파우더링성은 V-Bending 실험으로 평가하였다(기준: 1등급(우수): 4.0mm 미만, 2등급(열위): 4.0mm 이상). V-Bending 실험은, 40 mmⅹ70mmx0.7mm 크기로시편을 가공하여, 자동 파우더링 비전 시험기를 사용하여 실시하였다. V-벤딩(Bending) 시험의 경우, 먼저 V금형(60o, 1R)을 이용하여 압하력 5톤으로 평가 시편을 벤딩한 후 다시 언벤딩하여 V-벤딩(Bending) 평가용 시편을 제작한다. 제작된 시편에 접착용 셀로판테이프를 부착한 뒤 다시 제거하여 테이프에 박리된 도금층의최대 폭을 측정하여 파우더링 도금박리를 평가하게 된다.Powdering property was evaluated by the V-bending experiment (standard: Grade 1 (excellent): less than 4.0 mm, Grade 2 (inferiority): 4.0 mm or more). The V-bending experiment was carried out using an automatic powdering vision tester by processing a specimen in a size of 40 mm×70mm×0.7mm. In the case of the V-bending test, first, the evaluation specimen is bent using a V-mold (60o, 1R) with a pressing force of 5 tons, and then unbent again to prepare a specimen for V-bending evaluation. After attaching an adhesive cellophane tape to the prepared specimen, it is removed again, and the maximum width of the plating layer peeled off the tape is measured to evaluate the powdering plating peeling.

플레이킹성은 HAT-비드(Bead) 실험으로 평가하였다(기준: 1등급(우수): 30 미만, 2등급(열위): 30 이상). 플레이킹성 평가에 사용되는 HAT 시험 방법은, 50mm ⅹ 245mm x 0.7mm의 크기로 시편을 가공하였으며, 자동 GA 강판 플레이킹 평가장비를 사용하여 실시하였다. HAT 시험의 경우, 금형내 시편을 위치시킨 후 클램프 조임력 3톤으로 평가 시편을 고정시킨뒤 펀치 스피드 300mm/s의 속도로 65mm 높이로 시편을성형한 후에 비드(Bead) 면을 통과한 부분에 접착용 셀로판테이프를 부착한 뒤 다시 제거하여 테이프에 박리된도금층의 농담을 측정하여 플레이킹 도금박리를 평가하게 된다. HAT 평가에 사용된 단위 hci는 스캔을 통해 농담 정도를 분석한 정량적 수치를 나타내며, 떨어져나온 파편의 양이 많을수록 큰 값을 가지게 된다.Flaking property was evaluated by HAT-bead experiment (standard: 1st grade (excellent): less than 30, 2nd (poor): 30 or more). The HAT test method used to evaluate the flaking property, the specimen was machined to a size of 50 mm × 245 mm × 0.7 mm, and was carried out using an automatic GA steel plate flaking evaluation equipment. In the case of HAT test, after placing the specimen in the mold, fixing the evaluation specimen with a clamping force of 3 tons, forming the specimen to a height of 65 mm at a punch speed of 300 mm/s, and attaching it to the part passing through the bead surface After attaching the cellophane tape for flaking, it is removed again and the thickness of the plating layer peeled off the tape is measured to evaluate the flaking plating peeling. The unit hci used for HAT evaluation represents a quantitative value analyzing the degree of shading through a scan, and it has a larger value as the amount of fragments that fall off increases.

그리고, 가공성은 LDH 실험으로 평가하였다(기준: 1등급(우수): 49.0mm 이상, 2등급(열위): 49.0 미만).And, the workability was evaluated by the LDH experiment (standard: Grade 1 (excellent): 49.0 mm or more, Grade 2 (inferiority): less than 49.0).

표 1을 참고하면, 도금층 내 제타(ζ) 상의 분율이 10 ~ 30중량%를 만족할 때, 파우더링 등급ㅂ, 플레이킹 등급 및 가공성 등급이 모두 1등급으로, 가공성과 내 도금박리성의 특성이 우수함을 알 수 있다. 제타(ζ)상이 10중량% 미만의 경우 파우더링 및 플레이킹 도금박리가 증가하며, 30중량%를 초과할 경우 내도금박리성은 우수하나 가공성이 악화된다. 따라서 도금층 내 제타(ζ) 상의 분율이 10 ~ 30중량%을 만족할 경우 우수한 프레스 가공성 및 내도금박리성을 확보할 수 있음을 확인할 수 있다.Referring to Table 1, when the fraction of the zeta (ζ) phase in the plating layer satisfies 10 to 30 wt%, the powdering grade f, the flaking grade, and the machinability grade are all grade 1, and the properties of workability and plating peeling resistance are excellent. can be known When the zeta (ζ) phase is less than 10% by weight, powdering and flaking plating peeling increases, and when it exceeds 30% by weight, the plating peeling resistance is excellent, but workability is deteriorated. Therefore, it can be confirmed that when the fraction of the zeta (ζ) phase in the plating layer satisfies 10 to 30% by weight, excellent press workability and plating peeling resistance can be secured.

이상에서는 본 발명의 실시예를 중심으로 설명하였지만, 당업자의 수준에서 다양한 변경이나 변형을 가할 수 있다. 이러한 변경과 변형이 본 발명의 범위를 벗어나지 않는 한 본 발명에 속한다고 할 수 있다. 따라서 본 발명의 권리범위는 이하에 기재되는 청구범위에 의해 판단되어야 할 것이다.Although the above description has been focused on the embodiments of the present invention, various changes or modifications may be made at the level of those skilled in the art. Such changes and modifications can be said to belong to the present invention without departing from the scope of the present invention. Accordingly, the scope of the present invention should be judged by the claims described below.

Claims (7)

소정의 합금 조성을 갖는 강판; 및
상기 강판 위에 형성된 용융아연도금층을 포함하고,
상기 용융아연도금층은,
상기 강판의 표면으로부터 전체 도금층에 대해 10중량% 미만의 감마(Γ) 상, 60~80중량%의 델타(σ) 상, 및 10~30중량%의 제타(ζ) 상이 순차적으로 배치된 것을 특징으로 하는,
합금화 용융아연도금 강판.
a steel sheet having a predetermined alloy composition; and
A hot-dip galvanizing layer formed on the steel sheet,
The hot-dip galvanized layer,
From the surface of the steel sheet, less than 10% by weight of a gamma (Γ) phase, a delta (σ) phase of 60 to 80% by weight, and a zeta (ζ) phase of 10 to 30% by weight with respect to the entire plating layer are sequentially arranged to do,
Alloyed hot-dip galvanized steel sheet.
제1항에 있어서,
상기 용융아연도금층은 합금화도는 7~11중량%인 것을 특징으로 하는,
합금화 용융아연도금 강판.
According to claim 1,
The hot-dip galvanized layer is characterized in that the alloying degree is 7 to 11 wt%,
Alloyed hot-dip galvanized steel sheet.
제1항에 있어서,
상기 용융아연도금층의 표면에 배치된 인산염계 코팅층을 더 포함하는 것을 특징으로 하는,
합금화 용융아연도금 강판.
According to claim 1,
Characterized in that it further comprises a phosphate-based coating layer disposed on the surface of the hot-dip galvanizing layer,
Alloyed hot-dip galvanized steel sheet.
(a) 소정의 합금 조성을 갖는 강판을 준비하는 단계;
(b) 상기 강판을 가열 및 균열하는 단계;
(c) 상기 균열된 강판을 450~560℃의 용융아연 도금욕에 침지하여, 상기 강판의 표면으로부터 전체 도금층에 대해 10중량% 미만의 감마(Γ) 상, 60~80중량%의 델타(σ) 상, 및 10~30중량%의 제타(ζ) 상이 순차적으로 배치되는 용융아연도금층을 형성하는 단계; 및
(d) 상기 강판을 460~520℃의 온도에서 합금화 열처리하는 단계를 포함하는 것을 특징으로 하는,
합금화 용융아연도금 강판의 제조방법.
(a) preparing a steel sheet having a predetermined alloy composition;
(b) heating and cracking the steel sheet;
(c) immersing the cracked steel sheet in a hot-dip galvanizing bath at 450 to 560° C., from the surface of the steel sheet to a gamma (Γ) phase of less than 10% by weight, and a delta (σ) of 60 to 80% by weight with respect to the entire plating layer ) phase, and forming a hot-dip galvanizing layer in which 10 to 30 wt% of a zeta (ζ) phase is sequentially disposed; and
(d) characterized in that it comprises the step of alloying heat treatment at a temperature of 460 ~ 520 ℃ the steel sheet,
A method of manufacturing an alloyed hot-dip galvanized steel sheet.
제4항에 있어서,
상기 (c) 단계에서, 상기 도금욕의 알루미늄(Al) 농도는 0.13 ~ 0.14중량%로 제어하는 것을 특징으로 하는,
합금화 용융아연도금 강판의 제조방법.
5. The method of claim 4,
In the step (c), the aluminum (Al) concentration of the plating bath is characterized in that it is controlled to 0.13 ~ 0.14% by weight,
A method of manufacturing an alloyed hot-dip galvanized steel sheet.
제4항에 있어서,
상기 (c) 단계에서, 상기 용융아연도금층의 합금화도가 7~11중량%가 되도록 하는 것을 특징으로 하는,
합금화 용융아연도금 강판의 제조방법.
5. The method of claim 4,
In the step (c), characterized in that the alloying degree of the hot-dip galvanized layer is 7 to 11% by weight,
A method of manufacturing an alloyed hot-dip galvanized steel sheet.
제4항에 있어서,
상기 (d) 단계 후에,
상기 용융아연도금층의 표면에 인산염계 코팅층을 형성하는 단계를 더 포함하는 것을 특징으로 하는,
합금화 용융아연도금 강판의 제조방법.


5. The method of claim 4,
After step (d),
It characterized in that it further comprises the step of forming a phosphate-based coating layer on the surface of the hot-dip galvanizing layer,
A method of manufacturing an alloyed hot-dip galvanized steel sheet.


KR1020190171801A 2019-12-20 2019-12-20 Alloyed got dip galvannealed steel sheet and method of manufacturing the same KR20210079722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190171801A KR20210079722A (en) 2019-12-20 2019-12-20 Alloyed got dip galvannealed steel sheet and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190171801A KR20210079722A (en) 2019-12-20 2019-12-20 Alloyed got dip galvannealed steel sheet and method of manufacturing the same

Publications (1)

Publication Number Publication Date
KR20210079722A true KR20210079722A (en) 2021-06-30

Family

ID=76602051

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190171801A KR20210079722A (en) 2019-12-20 2019-12-20 Alloyed got dip galvannealed steel sheet and method of manufacturing the same

Country Status (1)

Country Link
KR (1) KR20210079722A (en)

Similar Documents

Publication Publication Date Title
US10053752B2 (en) Steel component provided with a metallic coating giving protection against corrosion
TWI451004B (en) Steel plate for hot pressing and method for manufacturing hot pressing component using the same
US11358369B2 (en) Plating steel sheet for hot press forming, forming member using same, and manufacturing method therefor
EP2520693B1 (en) Method for manufacturing a hot press-molded member
KR101719947B1 (en) Method for manufacturing high-strength galvannealed steel sheet
JP2012233249A (en) Steel sheet for hot pressing and method for producing hot press member using the same
JP4837604B2 (en) Alloy hot-dip galvanized steel sheet
TWI485014B (en) A method for manufacturing warm press materials
CN104769146A (en) Alloyed hot-dip galvanized steel sheet and method for manufacturing same
KR20150140346A (en) Galvannealed steel plate and method for manufacturing same
JP4555738B2 (en) Alloy hot-dip galvanized steel sheet
TWI521092B (en) Hot dip a1-zn plated steel sheet and method of manufacturing the same
JP4412037B2 (en) Manufacturing method of hot-dip Zn-Al alloy plated steel sheet
CN108929991A (en) A kind of hot-dip potassium steel and its manufacturing method
JPH06256903A (en) Galvannealed steel sheet excellent in press workability and plating peeling resistance
JP6028843B2 (en) Steel sheet for hot press and method for producing hot press member using the same
US20140377585A1 (en) High-manganese hot-rolled galvanized steel sheet and manufacturing method thereof
CN115109967B (en) Hot dip high-strength steel plate and preparation method thereof
US20230392226A1 (en) Hot-pressed member, steel sheet for hot pressing, and methods for producing the hot-pressed member and the steel sheet for hot pressing
KR20210079722A (en) Alloyed got dip galvannealed steel sheet and method of manufacturing the same
JPH04235265A (en) Manufacture of alloying galvannealed steel sheet excellent in press formability and powering resistance
JP4452126B2 (en) Steel plate for galvannealed alloy
JP6137002B2 (en) Method for producing hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet, hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP5245376B2 (en) Alloyed hot dip galvanized steel sheet using steel sheet for galvannealed alloy with excellent bake hardenability
JP4846550B2 (en) Steel plate for galvannealed alloy and galvannealed steel plate

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application