KR20210076658A - Wear resistant steel havinh high hardness and excellent low-temperature impact toughness and method for manufacturing thereof - Google Patents

Wear resistant steel havinh high hardness and excellent low-temperature impact toughness and method for manufacturing thereof Download PDF

Info

Publication number
KR20210076658A
KR20210076658A KR1020190168076A KR20190168076A KR20210076658A KR 20210076658 A KR20210076658 A KR 20210076658A KR 1020190168076 A KR1020190168076 A KR 1020190168076A KR 20190168076 A KR20190168076 A KR 20190168076A KR 20210076658 A KR20210076658 A KR 20210076658A
Authority
KR
South Korea
Prior art keywords
less
steel
resistant steel
wear
impact toughness
Prior art date
Application number
KR1020190168076A
Other languages
Korean (ko)
Other versions
KR102314432B1 (en
Inventor
유장용
유승호
조현관
배무종
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020190168076A priority Critical patent/KR102314432B1/en
Priority to US17/783,910 priority patent/US20230002872A1/en
Priority to CN202080081443.1A priority patent/CN114729435A/en
Priority to JP2022536590A priority patent/JP7471417B2/en
Priority to PCT/KR2020/017372 priority patent/WO2021125621A1/en
Publication of KR20210076658A publication Critical patent/KR20210076658A/en
Application granted granted Critical
Publication of KR102314432B1 publication Critical patent/KR102314432B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/36Ferrous alloys, e.g. steel alloys containing chromium with more than 1.7% by weight of carbon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

The present invention provides wear-resistant steel with high hardness and high impact toughness at low temperatures along with wear-resistance, and a manufacturing method thereof. The present invention comprises: 0.25-0.5 wt% of carbon (C); 1.0-1.6 wt% of silicon (Si); 0.6-1.6 wt% of manganese (Mn), 0.05 wt% or less (excluding 0) of phosphorus (P); 0.02 wt% or less (excluding 0) of sulfur (S); 0.07 wt% or less (excluding 0) of aluminum (Al); 0.5-1.5 wt% of chromium (Cr); 0.0005-0.004 wt% of calcium (Ca); 0.006 wt% or less of nitrogen (N); and the balance Fe and other avoidable impurities.

Description

저온 충격인성이 우수한 고경도 내마모강 및 이의 제조방법 {WEAR RESISTANT STEEL HAVINH HIGH HARDNESS AND EXCELLENT LOW-TEMPERATURE IMPACT TOUGHNESS AND METHOD FOR MANUFACTURING THEREOF}High hardness wear-resistant steel with excellent low-temperature impact toughness and manufacturing method thereof {WEAR RESISTANT STEEL HAVINH HIGH HARDNESS AND EXCELLENT LOW-TEMPERATURE IMPACT TOUGHNESS AND METHOD FOR MANUFACTURING THEREOF}

본 발명은 건설기계 등에 적합한 소재에 관한 것으로서, 보다 상세하게는 저온 충격인성이 우수하고, 고경도를 가지는 내마모강 및 이의 제조방법에 관한 것이다.The present invention relates to a material suitable for construction machinery, and more particularly, to abrasion-resistant steel having excellent low-temperature impact toughness and high hardness, and a method for manufacturing the same.

불도저, 파워셔블 등의 산업기계, 크러셔나 슈트 등의 광산설비, 대형 덤프트럭 등에 대한 경량화와 함께 고성능화가 요구됨에 따라 마모를 받는 부위에는 내마모강이 사용되고 있다.Abrasion-resistant steel is used in areas subject to wear as high performance is required along with weight reduction for industrial machines such as bulldozers and power shovels, mining facilities such as crushers and chutes, and large dump trucks.

특히, 이러한 부위의 내용년수를 연장시키기 위하여, 여기에 사용되는 내마모강은 점차 고경도화 경향을 보이는데, 고경도화에 따른 균열 발생과 같은 결함의 우려로 고인성이 함께 요구되고 있다. In particular, in order to extend the service life of these parts, the wear-resistant steel used here shows a tendency to gradually increase in hardness, and high toughness is required together with the concern of defects such as cracks due to the increase in hardness.

한편, 인성이 우수한 고경도 내마모강은 방탄강으로도 널리 사용되고 있다.On the other hand, high hardness wear-resistant steel with excellent toughness is widely used as bulletproof steel.

현재, 산업기계나 건설기계 등에 사용되는 내마모강에 대해 다음과 같은 기술들이 제안된 바 있다.Currently, the following technologies have been proposed for wear-resistant steel used in industrial machines or construction machines.

특허문헌 1은 강 중에 C, Mn, Si과 더불어 일정량 이상의 Cr, Ti, B 등을 함유하는 강판에 대해 압연을 행한 후 직접 소입하여 브리넬 경도 500 이하의 강을 제조할 수 있다고 개시하고 있다.Patent Document 1 discloses that steel having a Brinell hardness of 500 or less can be produced by directly quenching a steel sheet containing C, Mn, and Si in addition to a certain amount or more of Cr, Ti, B, etc. in the steel after rolling.

특허문헌 2는 강 중에 C, Si, Mn과 더불어 일정량의 Ti, B 등을 함유하고, H의 함량을 제한한 강판에 대해 재가열 소입시 냉각종료온도를 300℃ 이하로 제한하여 건전성이 우수한 브리넬 경도 450 이하의 강을 제조함을 개시하고 있다.Patent Document 2 contains a certain amount of Ti, B, etc. in addition to C, Si, and Mn in steel, and limits the cooling termination temperature to 300° C. or less when reheating and quenching for a steel sheet with a limited H content, thus providing excellent soundness Brinell hardness It is disclosed to manufacture steels of 450 or less.

특허문헌 3에서는 C, Si, Mn 외에 Cr과 Mo, B을 첨가한 강판을 재가열 소입하여 브리넬 경도 500급의 강을 제조함을 개시하고 있다.Patent Document 3 discloses that a steel sheet containing Cr, Mo, and B in addition to C, Si, and Mn is reheated and quenched to produce a steel having a Brinell hardness of 500.

또한, 특허문헌 4는 강 중에 C, Si, Mn과 더불어 Cr, Mo, Ti, Nb, B 등의 함량을 제한하면서, 필요에 따라 Cu, Ni, V, Ca 등을 추가로 함유하는 강을 열간압연한 후 100℃ 이하로 냉각하고, 연속해서 템퍼링 처리하는 공정을 통해 저온인성이 우수한 브리넬 경도 500급의 강을 제조할 수 있다고 개시하고 있다.In addition, Patent Document 4, while limiting the content of Cr, Mo, Ti, Nb, B, etc. in addition to C, Si, Mn in the steel, if necessary, a steel containing additional Cu, Ni, V, Ca, etc. It is disclosed that, after rolling, it is cooled to 100° C. or less, and through a process of continuously tempering, it is possible to manufacture a 500 grade steel with excellent low-temperature toughness.

뿐만 아니라, 특허문헌 5에서는 상대적으로 낮은 함량의 C와 높은 함량의 Si과 기타 원소들을 적절하게 함유하는 강에 대해 조질처리함으로써 내충격성 및 내마모성이 함께 확보된 고탄성 고강도의 특수용도강을 개시하고 있다.In addition, Patent Document 5 discloses a special-purpose steel with high elasticity and high strength in which impact resistance and wear resistance are secured together by tempering steel appropriately containing a relatively low content of C and a high content of Si and other elements.

그런데, 특허문헌 1과 2는 실 환경에서 요구되는 경도 수준을 만족하지 못하며, 특허문헌 3은 경도 수준은 만족하나 인성이 열위한 단점이 있으며, 특허문헌 4는 고가 원소를 다량 함유하는 바, 경제적으로 불리하여 적용에 한계가 있다. 특허문헌 5의 경우에는 저온 인성의 확보가 곤란하며, 여전히 제조원가가 높다는 단점이 있다.However, Patent Documents 1 and 2 do not satisfy the hardness level required in the real environment, Patent Document 3 satisfies the hardness level but has a disadvantage in terms of poor toughness, and Patent Document 4 contains a large amount of expensive elements, which is economical. Therefore, there is a limit to its application. In the case of Patent Document 5, it is difficult to secure low-temperature toughness, and there is a disadvantage that the manufacturing cost is still high.

이에 따라, 고가 원소들을 다량으로 함유하지 않으면서, 경제적인 방법을 통해 내마모성과 더불어 저온 인성이 우수한 내마모강의 개발이 요구되고 있는 실정이다.Accordingly, there is a demand for the development of wear-resistant steel having excellent low-temperature toughness as well as wear resistance through an economical method without containing a large amount of expensive elements.

일본 공개특허공보 1988-083225 B2Japanese Laid-Open Patent Publication No. 1988-083225 B2 일본 공개특허공보 1989-010564 B2Japanese Laid-Open Patent Publication No. 1989-010564 B2 일본 공개특허공보 1989-021846 B2Japanese Laid-Open Patent Publication No. 1989-021846 B2 일본 공개특허공보 1996-041535Japanese Laid-Open Patent Publication No. 1996-041535 대한민국 등록공보 10-0619841Republic of Korea Registration Publication 10-0619841

본 발명의 일 측면은, 내마모성과 더불어 저온에서 고충격인성을 가지며, 고경도를 갖는 내마모강 및 이를 제조하는 방법을 제공하고자 하는 것이다.One aspect of the present invention is to provide a wear-resistant steel having high hardness and high impact toughness at a low temperature along with abrasion resistance and a method for manufacturing the same.

본 발명의 과제는 상술한 내용에 한정하지 않는다. 본 발명의 과제는 본 명세서의 내용 전반으로부터 이해될 수 있을 것이며, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 부가적인 과제를 이해하는데 아무런 어려움이 없을 것이다. The subject of this invention is not limited to the above-mentioned content. The subject of the present invention will be understood from the overall content of the present specification, and those of ordinary skill in the art to which the present invention pertains will have no difficulty in understanding the additional subject of the present invention.

본 발명의 일 측면은, 중량%로, 탄소(C): 0.25~0.50%, 실리콘(Si): 1.0~1.6%, 망간(Mn): 0.6~1.6%, 인(P): 0.05% 이하(0%는 제외), 황(S): 0.02% 이하(0%는 제외), 알루미늄(Al): 0.07% 이하(0%는 제외), 크롬(Cr): 0.5~1.5%, 칼슘(Ca): 0.0005~0.004%, 질소(N): 0.006% 이하, 잔부 Fe 및 기타 불가피한 불순물을 포함하고, 미세조직으로 마르텐사이트 및 베이나이트 복합조직과 면적분율 2.5~10%로 잔류 오스테나이트 상을 포함하는 저온 충격인성이 우수한 고경도 내마모강을 제공한다.One aspect of the present invention, by weight, carbon (C): 0.25 to 0.50%, silicon (Si): 1.0 to 1.6%, manganese (Mn): 0.6 to 1.6%, phosphorus (P): 0.05% or less ( Except for 0%), Sulfur (S): 0.02% or less (excluding 0%), Aluminum (Al): 0.07% or less (excluding 0%), Chromium (Cr): 0.5 to 1.5%, Calcium (Ca) : 0.0005 ~ 0.004%, nitrogen (N): 0.006% or less, the remainder contains Fe and other unavoidable impurities, and contains martensite and bainite complex structures as microstructures and retained austenite phases with an area fraction of 2.5 to 10%. Provides high hardness wear-resistant steel with excellent low-temperature impact toughness.

본 발명의 다른 일 측면은, 상술한 합금조성을 가지는 강 슬라브를 준비하는 단계; 상기 강 슬라브를 1050~1250℃의 온도범위에서 가열하는 단계; 상기 가열된 강 슬라브를 950~1150℃의 온도범위에서 조압연하는 단계; 상기 조압연 후 850~950℃의 온도범위에서 마무리 열간압연하여 열연강판을 제조하는 단계; 및 상기 열연강판을 25℃/s 이상의 냉각속도로 200~400℃까지 냉각한 후 공냉하는 단계를 포함하는 저온 충격인성이 우수한 고경도 내마모강의 제조방법을 제공한다.Another aspect of the present invention comprises the steps of preparing a steel slab having the above-described alloy composition; heating the steel slab in a temperature range of 1050 to 1250 °C; rough rolling the heated steel slab in a temperature range of 950 to 1150 °C; manufacturing a hot-rolled steel sheet by finishing hot rolling in a temperature range of 850 to 950° C. after the rough rolling; and cooling the hot-rolled steel sheet to 200 to 400° C. at a cooling rate of 25° C./s or more, followed by air cooling.

본 발명에 의하면, 고경도를 가지면서, 저온 인성이 우수한 내마모강을 제공할 수 있다.ADVANTAGE OF THE INVENTION According to this invention, the wear-resistant steel excellent in low-temperature toughness while having high hardness can be provided.

특히, 본 발명은 합금조성 및 제조조건의 최적화로부터 추가적인 열처리를 행하지 않고서도 목표 수준의 물성을 가지는 내마모강을 제공할 수 있는 바, 경제적으로도 유리한 효과가 있다.In particular, the present invention can provide a wear-resistant steel having a target level of physical properties without additional heat treatment from the optimization of the alloy composition and manufacturing conditions, and thus has an economically advantageous effect.

도 1은 본 발명의 일 실시예에 따른 발명강의 미세조직을 광학현미경으로 관찰한 사진을 나타낸 것이다.
도 2는 본 발명의 일 실시예에 따른 발명강의 미세조직을 전자주사현미경(a) 및 EBSD(b)로 측정한 사진을 나타낸 것이다.
도 3은 본 발명의 일 실시예에 따른 비교강의 미세조직을 광학현미경으로 관찰한 사진을 나타낸 것이다.
도 4는 본 발명의 일 실시예에 따른 비교강의 미세조직을 전자주사현미경(a) 및 EBSD(b)로 측정한 사진을 나타낸 것이다.
1 shows a photograph of the microstructure of the invention steel according to an embodiment of the present invention observed with an optical microscope.
2 is a photograph showing the microstructure of the inventive steel according to an embodiment of the present invention measured with a scanning electron microscope (a) and EBSD (b).
3 shows a photograph of the microstructure of a comparative steel according to an embodiment of the present invention observed with an optical microscope.
4 is a photograph showing the microstructure of the comparative steel according to an embodiment of the present invention measured with a scanning electron microscope (a) and EBSD (b).

본 발명자들은 건설 기계 등에 적합하게 적용할 수 있는 소재로서, 핵심적으로 요구되는 물성인 내마모성의 확보가 가능하면서, 강도 및 인성 등의 물성이 우수한 강재를 제공하기 위하여 깊이 연구하였다.The present inventors have studied deeply in order to provide a steel material that is suitable for construction machinery and the like, and has excellent physical properties such as strength and toughness, while ensuring abrasion resistance, which is a core required physical property.

특히, 경제적으로 유리한 방법을 통해 강재의 내마모성을 향상시키고자 하였으며, 그에 따라 본 발명을 제공하기에 이르렀다.In particular, it was intended to improve the abrasion resistance of steel materials through an economically advantageous method, and thus the present invention was provided.

이하, 본 발명에 대하여 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 일 측면에 따른 고경도 내마모강은 중량%로, 탄소(C): 0.25~0.50%, 실리콘(Si): 1.0~1.6%, 망간(Mn): 0.6~1.6%, 인(P): 0.05% 이하(0%는 제외), 황(S): 0.02% 이하(0%는 제외), 알루미늄(Al): 0.07% 이하(0%는 제외), 크롬(Cr): 0.5~1.5%, 칼슘(Ca): 0.0005~0.004%, 질소(N): 0.006% 이하를 포함할 수 있다.High hardness wear-resistant steel according to an aspect of the present invention, by weight%, carbon (C): 0.25 to 0.50%, silicon (Si): 1.0 to 1.6%, manganese (Mn): 0.6 to 1.6%, phosphorus (P) ): 0.05% or less (excluding 0%), Sulfur (S): 0.02% or less (excluding 0%), Aluminum (Al): 0.07% or less (excluding 0%), Chromium (Cr): 0.5 to 1.5 %, calcium (Ca): 0.0005 to 0.004%, nitrogen (N): 0.006% or less.

이하에서는, 본 발명에서 제공하는 내마모강의 합금조성을 위와 같이 제한하는 이유에 대하여 상세히 설명한다. Hereinafter, the reason for limiting the alloy composition of the wear-resistant steel provided in the present invention as above will be described in detail.

한편, 본 발명에서 특별히 언급하지 않는 한 각 원소의 함량은 중량을 기준으로 하며, 조직의 비율은 면적을 기준으로 한다.Meanwhile, unless otherwise specified in the present invention, the content of each element is based on the weight, and the ratio of the tissue is based on the area.

탄소(C): 0.25~0.50%Carbon (C): 0.25 to 0.50%

탄소(C)는 마르텐사이트 또는 베이나이트 상과 같은 저온 변태상을 가지는 강에서 강도와 경도를 향상시키는데에 효과적이며, 경화능 향상에 유효한 원소이다. 상술한 효과를 충분히 얻기 위해서는 0.25% 이상으로 C를 포함할 수 있으나, 그 함량이 0.50%를 초과하게 되면 강의 용접성 및 인성을 저해하는 문제가 있다.Carbon (C) is effective for improving strength and hardness in steel having a low-temperature transformation phase such as martensite or bainite phase, and is an effective element for improving hardenability. In order to sufficiently obtain the above-described effect, C may be included in an amount of 0.25% or more, but when the content exceeds 0.50%, there is a problem of inhibiting weldability and toughness of steel.

따라서, 상기 C는 0.25~0.50%로 포함할 수 있다.Accordingly, the C may be included in an amount of 0.25 to 0.50%.

실리콘(Si): 1.0~1.6%Silicon (Si): 1.0~1.6%

실리콘(Si)은 탈산효과와 더불어 고용강화에 따른 강도 향상에 유효하며, 일정량 이상의 C를 함유하는 고탄소강에서 세멘타이트와 같은 탄화물의 형성을 억제하여 잔류 오스테나이트의 생성을 촉진하는 원소이다.Silicon (Si) is effective for strength improvement due to solid solution strengthening along with deoxidation effect, and is an element that promotes the formation of retained austenite by suppressing the formation of carbides such as cementite in high carbon steel containing a certain amount of C or more.

특히, 상기 Si은 마르텐사이트와 베이나이트 등의 저온 변태상을 가지는 강에서 균질하게 분포된 잔류 오스테나이트는 강도 저하없이 충격인성의 향상에 기여하므로, 본 발명에 있어서 저온인성 확보에 유리한 원소이다.In particular, since the retained austenite homogeneously distributed in steel having a low-temperature transformation phase such as martensite and bainite contributes to the improvement of impact toughness without lowering strength, Si is an element advantageous for securing low-temperature toughness in the present invention.

상술한 효과를 충분히 얻기 위해서는 1.0% 이상으로 Si을 포함할 수 있으나, 그 함량이 1.6%를 초과하게 되면 용접성이 급격히 열화되는 문제가 있다.In order to sufficiently obtain the above-described effect, Si may be included in an amount of 1.0% or more, but when the content exceeds 1.6%, there is a problem in that weldability is rapidly deteriorated.

따라서, 상기 Si은 1.0~1.6%로 포함할 수 있으며, 보다 유리하게는 1.2% 이상으로 포함할 수 있다.Therefore, the Si may be included in an amount of 1.0 to 1.6%, and more advantageously, it may be included in an amount of 1.2% or more.

망간(Mn): 0.6~1.6%Manganese (Mn): 0.6~1.6%

망간(Mn)은 페라이트의 생성을 억제하고, Ar3 온도를 낮춤으로써 강의 소입성을 향상시켜 강도 및 인성을 높이는데 유리한 원소이다.Manganese (Mn) is an advantageous element for suppressing the formation of ferrite and improving the hardenability of steel by lowering the Ar3 temperature to increase strength and toughness.

본 발명에서 목표 수준의 경도를 얻기 위해서는 상기 Mn을 0.6% 이상으로 함유할 수 있으나, 그 함량이 1.6%를 초과하게 되면 용접성이 저하되고, 중심편석이 조장되어 강 중심부 물성이 저하되는 문제가 있다.In the present invention, in order to obtain a target level of hardness, Mn may be contained in an amount of 0.6% or more, but when the content exceeds 1.6%, weldability is deteriorated, and central segregation is promoted, so that there is a problem in that the properties of the steel core are reduced. .

따라서, 상기 Mn은 0.6~1.6%로 포함할 수 있다.Accordingly, the Mn may be included in an amount of 0.6 to 1.6%.

인(P): 0.05% 이하(0%는 제외)Phosphorus (P): 0.05% or less (excluding 0%)

인(P)은 강 중 불가피하게 함유되는 원소이면서, 강의 인성을 저해하는 원소이다. 이에, 상기 P은 그 함량을 가능한 낮추는 것이 바람직하다. Phosphorus (P) is an element that is unavoidably contained in steel and inhibits the toughness of steel. Accordingly, the P content is preferably as low as possible.

본 발명에서는 상기 P을 최대 0.05%로 함유하더라도 강의 물성에 큰 영향이 없는 바, 상기 P의 함량을 0.05% 이하로 제한할 수 있다. 보다 유리하게는 0.03% 이하로 제한할 수 있으며, 다만 불가피하게 함유되는 수준을 고려하여 0%는 제외할 수 있다.In the present invention, even if the content of P is up to 0.05%, there is no significant effect on the physical properties of the steel, so the content of P can be limited to 0.05% or less. More advantageously, it may be limited to 0.03% or less, but 0% may be excluded in consideration of the unavoidable content level.

황(S): 0.02% 이하(0%는 제외)Sulfur (S): 0.02% or less (excluding 0%)

황(S)은 강 중에서 Mn과 결합하여 MnS 개재물을 형성함으로써, 강의 인성을 저해하는 원소이다. 이에, 상기 S은 그 함량을 가능한 낮추는 것이 바람직하다.Sulfur (S) is an element that inhibits the toughness of steel by bonding with Mn in steel to form MnS inclusions. Accordingly, it is preferable to lower the content of S as much as possible.

본 발명에서는 상기 S을 최대 0.02%로 함유하더라도 강의 물성에 큰 영향이 없는 바, 상기 S의 함량을 0.02% 이하로 제한할 수 있다. 보다 유리하게는 0.01% 이하로 제한할 수 있으며, 다만 불가피하게 함유되는 수준을 고려하여 0%는 제외할 수 있다.In the present invention, even if the S content is at most 0.02%, there is no significant effect on the physical properties of the steel, so the S content can be limited to 0.02% or less. More advantageously, it may be limited to 0.01% or less, but 0% may be excluded in consideration of the unavoidably contained level.

알루미늄(Al): 0.07% 이하(0%는 제외)Aluminum (Al): 0.07% or less (excluding 0%)

알루미늄(Al)은 강의 탈산제로서 용강 중에 산소 함량을 낮추는데 효과적인 원소이다. 이러한 Al의 함량이 0.07%를 초과하게 되면 강의 청정성이 저해되는 문제가 있다.Aluminum (Al) is an effective element for lowering the oxygen content in molten steel as a deoxidizer of steel. When the content of Al exceeds 0.07%, there is a problem that the cleanliness of the steel is impaired.

따라서, 상기 Al은 0.07% 이하로 포함할 수 있다. 다만, 상기 Al의 함량을 과도하게 낮추는 경우 제강공정시 부하가 발생하고, 제조비용의 상승을 초래하는 바, 이를 고려하여 0%는 제외할 수 있다.Accordingly, the Al may be included in an amount of 0.07% or less. However, when the content of Al is excessively lowered, a load is generated during the steelmaking process and the manufacturing cost is increased. Considering this, 0% may be excluded.

크롬(Cr): 0.5~1.5%Chromium (Cr): 0.5~1.5%

크롬(Cr)은 강의 소입성을 증가시켜 강도를 향상시키며, 강의 표면부 및 중심부 경도 확보에 유리하다. 이러한 Cr은 비교적 저가의 원소인 바, Cr을 활용하여 강의 고경도 및 고인성을 확보하기 위하여 0.5% 이상으로 포함할 수 있다. 다만, 그 함량이 1.5%를 초과하게 되면 강의 용접성이 열위하게 되는 문제가 있다.Chromium (Cr) improves the strength by increasing the hardenability of the steel, and is advantageous for securing the hardness of the surface and the center of the steel. Since Cr is a relatively inexpensive element, Cr may be included in an amount of 0.5% or more in order to secure high hardness and high toughness of steel by using Cr. However, when the content exceeds 1.5%, there is a problem in that the weldability of the steel is inferior.

따라서, 상기 Cr은 0.5~1.5%로 함유할 수 있으며, 보다 유리하게는 0.65% 이상으로 포함할 수 있다.Accordingly, the Cr may be contained in an amount of 0.5 to 1.5%, and more advantageously may be contained in an amount of 0.65% or more.

칼슘(Ca): 0.0005~0.004% Calcium (Ca): 0.0005~0.004%

칼슘(Ca)은 황(S)과의 결합력이 좋아 MnS 주변(둘레)에 CaS를 생성함으로써 MnS의 연신을 억제함으로써 압연 방향의 직각방향으로의 인성을 향상시키는데 유리하다. 또한, 상기 Ca의 첨가로 생성된 CaS는 다습한 외부 환경 하에서 부식 저항을 높이는 효과가 있다.Calcium (Ca) has good bonding strength with sulfur (S), so it is advantageous in improving toughness in a direction perpendicular to the rolling direction by inhibiting elongation of MnS by generating CaS around (perimeter) MnS. In addition, CaS generated by the addition of Ca has an effect of increasing corrosion resistance under a humid external environment.

상술한 효과를 충분히 얻기 위해서는 0.0005% 이상으로 Ca을 포함할 수 있으나, 그 함량이 0.004%를 초과하게 되면 제강조업시 노즐 막힘 등의 결함을 유발하는 문제가 있다.In order to sufficiently obtain the above-described effect, Ca may be included in an amount of 0.0005% or more, but when the content exceeds 0.004%, there is a problem of causing defects such as nozzle clogging during steelmaking.

따라서, 상기 Ca은 0.0005~0.004%로 포함할 수 있다.Accordingly, the Ca may be included in an amount of 0.0005 to 0.004%.

질소(N): 0.006% 이하Nitrogen (N): 0.006% or less

질소(N)는 강 중에 석출물을 형성하여 강의 강도를 향상시키는데에 유리하지만, 그 함량이 0.006%를 초과하게 되면 오히려 강의 인성이 저하되는 문제가 있다.Nitrogen (N) is advantageous for improving the strength of steel by forming precipitates in the steel, but when the content exceeds 0.006%, there is a problem in that the toughness of the steel is rather reduced.

본 발명에서는 상기 N를 함유하지 않더라도 강도를 확보하는데에 무리가 없는 바, 상기 N는 0.006% 이하로 함유할 수 있다. 다만, 불가피하게 함유되는 수준을 고려하여 0%는 제외할 수 있다.In the present invention, even if the N is not contained, there is no difficulty in securing strength, and the N may be contained in an amount of 0.006% or less. However, 0% may be excluded in consideration of the unavoidably contained level.

본 발명의 내마모강은 상술한 합금조성 이외에도, 목표로 하는 물성을 유리하게 확보하기 위한 목적에서 하기 원소들을 추가로 더 포함할 수 있다.In addition to the alloy composition described above, the wear-resistant steel of the present invention may further include the following elements for the purpose of advantageously securing target physical properties.

구체적으로, 상기 내마모강은 니켈(Ni), 몰리브덴(Mo), 티타늄(Ti), 보론(B) 및 바나듐(V) 중 1종 이상을 더 포함할 수 있다. Specifically, the wear-resistant steel may further include one or more of nickel (Ni), molybdenum (Mo), titanium (Ti), boron (B), and vanadium (V).

니켈(Ni): 0.01~0.5%Nickel (Ni): 0.01 to 0.5%

니켈(Ni)은 강의 강도와 인성을 동시에 향상시키는데에 유리한 원소로서, 이를 위해서는 0.01% 이상으로 Ni을 함유할 수 있다. 다만, 고가의 원소이므로, 그 함량이 0.5%를 초과하게 되면 제조원가가 크게 상승되는 문제가 있다.Nickel (Ni) is an element advantageous for simultaneously improving the strength and toughness of steel, and for this purpose, Ni may be contained in an amount of 0.01% or more. However, since it is an expensive element, when its content exceeds 0.5%, there is a problem in that the manufacturing cost is greatly increased.

따라서, 상기 Ni을 함유하는 경우, 0.01~0.5%로 포함할 수 있다.Therefore, when the Ni is contained, it may be included in an amount of 0.01 to 0.5%.

몰리브덴(Mo): 0.01~0.3%Molybdenum (Mo): 0.01~0.3%

몰리브덴(Mo)은 강의 소입성을 증가시키며, 특히 일정 이상의 두께를 가지는 후물재의 경도를 향상시키는데에 유리한 원소이다. 상술한 효과를 충분히 얻기 위해서는 0.01% 이상으로 포함할 수 있으나, 그 함량이 0.3%를 초과하게 되면 제조원가가 상승할 뿐만 아니라, 용접성이 열위하는 문제가 있다.Molybdenum (Mo) is an element advantageous for increasing the hardenability of steel and, in particular, improving the hardness of a thick material having a thickness greater than or equal to a certain level. In order to sufficiently obtain the above-described effect, it may be included in an amount of 0.01% or more, but when the content exceeds 0.3%, there is a problem that not only the manufacturing cost increases, but also the weldability is inferior.

따라서, 상기 Mo을 함유하는 경우, 0.01~0.3%로 함유할 수 있다.Therefore, when the Mo is contained, it may be contained in an amount of 0.01 to 0.3%.

티타늄(Ti): 0.005~0.025%Titanium (Ti): 0.005 to 0.025%

티타늄(Ti)은 강의 소입성을 향상시키는데에 유리한 원소인 B의 효과를 극대화하는데에 유리한 원소이다. 즉, 상기 Ti은 강 중 N와 결합하여 TiN을 석출시켜 고용 N의 함량을 저감시키면서, 이로부터 B의 BN 형성을 억제하여 고용 B를 증가시킴으로써 소입성 향상을 극대화할 수 있다.Titanium (Ti) is an element advantageous for maximizing the effect of B, which is an element advantageous for improving hardenability of steel. That is, the Ti is combined with N in the steel to precipitate TiN to reduce the content of solid solution N, and from this, the BN formation of B is suppressed to increase the solid solution B, thereby maximizing the hardenability improvement.

상술한 효과를 충분히 얻기 위해서는 0.005% 이상으로 Ti을 함유할 수 있으나, 그 함량이 0.025%를 초과하게 되면 조대한 TiN 석출물이 형성되어 강의 인성이 저하되는 문제가 있다.In order to sufficiently obtain the above-described effect, Ti may be contained in an amount of 0.005% or more, but when the content exceeds 0.025%, coarse TiN precipitates are formed, and there is a problem in that the toughness of the steel is lowered.

따라서, 상기 Ti을 함유하는 경우, 0.005~0.025%로 함유할 수 있다.Therefore, when the Ti is contained, it may be contained in an amount of 0.005 to 0.025%.

보론(B): 0.0002~0.005%Boron (B): 0.0002~0.005%

보론(B)은 소량의 첨가로도 강의 소입성을 유효하게 상승시켜 강도를 높이는데 유효한 원소이다. 이러한 효과를 충분히 얻기 위해서는 0.0002% 이상으로 B을 함유할 수 있다. 다만, 그 함량이 과도할 경우 오히려 강의 인성 및 용접성을 저해하는 문제가 있으므로, 그 함량을 0.005% 이하로 제한할 수 있다.Boron (B) is an effective element for increasing the strength by effectively increasing the hardenability of steel even with a small amount of addition. In order to sufficiently obtain such an effect, B may be contained in an amount of 0.0002% or more. However, if the content is excessive, there is a problem in that the toughness and weldability of the steel are rather impaired, so the content may be limited to 0.005% or less.

따라서, 상기 B을 함유하는 경우, 0.0002~0.005%로 포함할 수 있다. 보다 유리하게는 상기 B은 0.0040% 이하, 보다 더 유리하게는 0.0035% 이하, 더 나아가 0.0030% 이하로 함유할 수 있다.Therefore, when the B is contained, it may be included in an amount of 0.0002 to 0.005%. More advantageously, the B content may be 0.0040% or less, even more advantageously 0.0035% or less, and further 0.0030% or less.

바나듐(V): 0.2% 이하Vanadium (V): 0.2% or less

바나듐(V)은 열간압연 후 재가열시 VC 탄화물을 형성함으로써, 오스테나이트 결정립의 성장을 억제하고, 강의 소입성을 향상시켜 강도 및 인성을 확보하는데에 유리한 원소이다. 이러한 V은 상대적으로 고가의 원소인 바, 그 함량이 0.2%를 초과하게 되면 제조원가가 크게 상승되는 문제가 있다.Vanadium (V) forms VC carbide during reheating after hot rolling, thereby suppressing the growth of austenite grains and improving the hardenability of steel to secure strength and toughness. Since V is a relatively expensive element, when its content exceeds 0.2%, there is a problem in that the manufacturing cost is greatly increased.

따라서, 상기 V의 첨가시, 0.2% 이하로 함유할 수 있다.Therefore, when V is added, it may be contained in an amount of 0.2% or less.

본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다. The remaining component of the present invention is iron (Fe). However, since unintended impurities from raw materials or the surrounding environment may inevitably be mixed in the normal manufacturing process, this cannot be excluded. Since these impurities are known to anyone skilled in the art of manufacturing processes, all details thereof are not specifically mentioned in the present specification.

상술한 합금조성을 가지는 본 발명의 내마모강은 미세조직이 마르텐사이트와 베이나이트 상의 복합조직으로 구성될 수 있다.The wear-resistant steel of the present invention having the above-described alloy composition may have a microstructure composed of a composite structure of martensite and bainite phases.

구체적으로, 본 발명의 내마모강은 마르텐사이트와 베이나이트 상의 복합조직을 면적분율 90% 이상으로 포함할 수 있으며, 이들 상 분율이 90% 미만이면 목표 수준의 강도 및 경도의 확보가 어려워진다. 여기서, 상기 마르텐사이트와 베이나이트 상은 각각 템퍼드 마르텐사이트와 템퍼드 베이나이트 상을 포함할 수 있음을 밝혀둔다.Specifically, the wear-resistant steel of the present invention may include a composite structure of martensite and bainite phases in an area fraction of 90% or more, and if these phase fractions are less than 90%, it becomes difficult to secure the target level of strength and hardness. Here, it is noted that the martensite and bainite phases may include tempered martensite and tempered bainite phases, respectively.

본 발명의 내마모강은 상술한 복합조직의 평균 래스(lath) 크기가 0.3㎛ 이하인 것이 바람직하다. 상기 복합조직의 평균 래스(lath) 크기가 0.3㎛를 초과하게 되면 강의 인성이 저하되는 문제가 있다.The wear-resistant steel of the present invention preferably has an average lath size of 0.3 μm or less of the above-described composite structure. When the average lath size of the composite structure exceeds 0.3 μm, there is a problem in that the toughness of the steel is reduced.

본 발명의 내마모강은 상기 복합조직 외에 잔류 오스테나이트 상을 포함할 수 있으며, 이때 면적분율 2.5~10%로 함유할 수 있다. 상기 잔류 오스테나이트 상의 분율이 2.5% 미만이면 저온 충격인성이 열화되며, 반면 10%를 초과하게 되면 경도가 열화되는 문제가 있다.The wear-resistant steel of the present invention may include a retained austenite phase in addition to the composite structure, and in this case, it may be contained in an area fraction of 2.5 to 10%. When the fraction of the retained austenite phase is less than 2.5%, low-temperature impact toughness is deteriorated, whereas when it exceeds 10%, there is a problem in that hardness is deteriorated.

한편, 본 발명의 내마모강은 전체 두께에 걸쳐 상술한 조직 구성을 가짐을 밝혀둔다.On the other hand, it is revealed that the wear-resistant steel of the present invention has the above-described structure over the entire thickness.

상술한 합금조성과 더불어 제안한 미세조직을 가지는 본 발명의 내마모강은 5~40mm의 두께를 가질 수 있으며, 이러한 내마모강의 표면 경도가 460~540HB로 고경도이면서, -40℃에서의 충격 흡수 에너지가 17J 이상으로 저온 인성이 우수한 효과가 있다.The wear-resistant steel of the present invention having the proposed microstructure in addition to the alloy composition described above may have a thickness of 5 to 40 mm, and the surface hardness of this wear-resistant steel is 460 to 540 HB, which is high hardness, and shock absorption at -40 ° C. With an energy of 17J or more, it has an excellent low-temperature toughness.

여기서, 표면 경도란 상기 내마모강의 표면으로부터 두께 방향 2mm~5mm의 지점에서 측정된 경도 값을 의미한다.Here, the surface hardness means a hardness value measured at a point of 2 mm to 5 mm in the thickness direction from the surface of the wear-resistant steel.

이하, 본 발명의 다른 일 측면에 따른 고경도 내마모강을 제조하는 방법에 대하여 상세히 설명한다.Hereinafter, a method for manufacturing a high hardness wear-resistant steel according to another aspect of the present invention will be described in detail.

간략히 설명하면, 앞서 서술한 합금조성을 만족하는 강 슬라브를 준비한 다음, 상기 강 슬라브를 [가열 - 압연 - 냉각]의 공정을 거쳐 제조할 수 있다. 이하에서는 각 공정 조건에 대하여 상세히 설명한다.Briefly, after preparing a steel slab satisfying the alloy composition described above, the steel slab may be manufactured through a process of [heating-rolling-cooling]. Hereinafter, each process condition will be described in detail.

[강 슬라브 가열 공정][steel slab heating process]

먼저, 본 발명에서 제안하는 합금조성을 가지는 강 슬라브를 준비한 후 이를 1050~1250℃의 온도범위에서 가열할 수 있다.First, after preparing a steel slab having an alloy composition proposed in the present invention, it can be heated in a temperature range of 1050 to 1250 °C.

상기 가열시 온도가 1050℃ 미만이면 강의 변형저항이 커져 후속 압연 공정을 효과적으로 행할 수 없으며, 반면 그 온도가 1250℃를 초과하게 되면 오스테나이트 결정립이 조대해져 불균일한 조직이 형성될 우려가 있다.When the heating temperature is less than 1050 ℃, the deformation resistance of the steel becomes large and the subsequent rolling process cannot be effectively performed. On the other hand, when the temperature exceeds 1250 ℃, the austenite grains become coarse and there is a risk of forming a non-uniform structure.

따라서, 상기 강 슬라브의 가열은 1050~1250℃의 온도범위에서 행할 수 있다.Therefore, the heating of the steel slab can be performed in a temperature range of 1050 ~ 1250 ℃.

[압연 공정][Rolling process]

상기에 따라 가열된 강 슬라브를 압연할 수 있으며, 이때 조압연 및 마무리 열간압연의 공정을 거쳐 열연강판으로 제조할 수 있다.The heated steel slab can be rolled according to the above, and in this case, it can be manufactured into a hot-rolled steel sheet through the processes of rough rolling and finish hot rolling.

우선, 상기 가열된 강 슬라브를 950~1150℃의 온도범위에서 조압연하여 바(bar)로 제작한 후, 이를 850~950℃의 온도범위에 마무리 열간압연을 행할 수 있다.First, the heated steel slab is rough-rolled in a temperature range of 950 to 1150° C. to produce a bar, and then finish hot rolling can be performed in a temperature range of 850 to 950° C.

상기 조압연시 온도가 950℃ 미만이면 압연 하중이 증가하여 상대적으로 약압하 됨에 따라 슬라브 두께 방향 중심까지 변형이 충분히 전달되지 못하게 되며, 그 결과 공극과 같은 결함이 제거되지 않을 우려가 있다. 반면, 그 온도가 1150℃를 초과하게 되면 재결정 입도가 지나치게 조대해져 인성에 유해할 우려가 있다.When the rough rolling temperature is less than 950 ℃, as the rolling load is increased and relatively weak pressure is reduced, the deformation is not sufficiently transmitted to the center of the slab thickness direction, and as a result, there is a fear that defects such as voids may not be removed. On the other hand, when the temperature exceeds 1150° C., the recrystallized grain size becomes too coarse, which may be harmful to toughness.

상기 마무리 열간압연시 온도가 850℃ 미만이면 2상역 압연이 행해져 미세조직 중 페라이트가 생성될 우려가 있으며, 반면 그 온도가 950℃를 초과하게 되면 최종 조직의 입도가 조대해져 저온인성이 열위하게 되는 문제가 있다.If the temperature during the finish hot rolling is less than 850 ° C, two-phase rolling is performed and there is a fear that ferrite is generated in the microstructure, whereas when the temperature exceeds 950 ° C, the grain size of the final structure becomes coarse and the low-temperature toughness is inferior there is a problem.

[냉각 공정][Cooling process]

상술한 압연공정을 거쳐 제조된 열연강판을 일정 온도까지 수냉한 후 공냉할 수 있다. The hot-rolled steel sheet manufactured through the above-described rolling process may be water-cooled to a predetermined temperature and then air-cooled.

구체적으로, 본 발명은 열연강판의 냉각시 평균 냉각속도 25℃/s 이상의 냉각속도로 200~400℃의 온도범위까지 수냉을 행한 다음, 150℃ 이하로 공냉을 행할 수 있으며, 상기 공냉시 자가-템퍼링(self-tempering)이 발현되는 효과가 있다. 즉, 공냉시 마르텐사이트와 베이나이트 상의 템퍼링이 행해지며, 일정 분율로 잔류 오스테나이트 상이 형성됨에 의해 강의 인성 향상을 도모할 수 있다.Specifically, in the present invention, when cooling a hot-rolled steel sheet, water cooling is performed at an average cooling rate of 25°C/s or more to a temperature range of 200 to 400°C, and then air cooling can be performed to 150°C or less. There is an effect that tempering (self-tempering) is expressed. That is, the tempering of the martensite and bainite phases is performed during air cooling, and the retained austenite phase is formed in a certain fraction, thereby improving the toughness of steel.

상기 공냉은 상온까지 행하더라도 무방하다.The air cooling may be performed to room temperature.

한편, 상기 냉각은 Ar3 이상에서 개시할 수 있다. 여기서, Ar3는 합금성분계에 의존하며, 이는 통상의 기술자라면 누구라도 알 수 있는 사항임을 밝혀둔다.Meanwhile, the cooling may be initiated at Ar3 or higher. Here, Ar3 is dependent on the alloy composition system, which is clear to any person skilled in the art.

상기 수냉시의 냉각속도가 25℃/s 미만이면 냉각 중에 페라이트 상이 형성되거나 경질상(마르텐사이트+베이나이트)의 평균 래스(lath) 크기가 커져 고경도를 확보하기 곤란해진다. 상기 수냉시의 냉각속도의 상한에 대해서는 특별히 한정하지 아니하나, 냉각 설비를 고려하여 최대 100℃/s의 냉각속도로 행할 수 있음을 밝혀둔다.If the cooling rate during water cooling is less than 25° C./s, a ferrite phase is formed during cooling or the average lath size of the hard phase (martensite + bainite) increases, making it difficult to secure high hardness. The upper limit of the cooling rate during the water cooling is not particularly limited, but it is noted that the cooling rate can be performed at a maximum cooling rate of 100° C./s in consideration of the cooling equipment.

상기의 냉각속도로 냉각을 행함에 있어서, 냉각종료온도가 200℃ 미만이면 자가-템퍼링 효과가 적어 목표 수준의 인성을 확보하기 곤란해지며, 반면 그 온도가 400℃를 초과하게 되면 경질상(마르텐사이트+베이나이트)의 평균 래스(lath) 크기가 커져 강도 또는 인성 저하에 의해 목표 수준의 경도 또는 인성을 확보할 수 없게 된다.In performing cooling at the above cooling rate, if the cooling end temperature is less than 200 ° C, the self-tempering effect is small and it is difficult to secure the target level of toughness, whereas when the temperature exceeds 400 ° C, the hard phase (martene) The average lath size of site + bainite) increases, so that the target level of hardness or toughness cannot be secured due to a decrease in strength or toughness.

상술한 일련의 제조공정을 거쳐 얻어지는 열연강판은 두께 5~40mm 가지는 강재로서, 내마모성과 더불어 고경도 및 고인성의 특성을 가질 수 있다.The hot-rolled steel sheet obtained through the above-described series of manufacturing processes is a steel material having a thickness of 5 to 40 mm, and may have characteristics of high hardness and high toughness in addition to wear resistance.

특히, 본 발명에 의할 경우, 냉각 공정 중에 자가-템퍼링을 실현할 수 있는 바, 후속 템퍼링(tempering) 공정이 요구되지 아니하며, 이로부터 보다 경제적으로 내마모강을 제조하는 효과가 있다 할 것이다.In particular, in the case of the present invention, self-tempering can be realized during the cooling process, and a subsequent tempering process is not required, and it will be said that there is an effect of manufacturing abrasion-resistant steel more economically therefrom.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다. 다만, 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다. Hereinafter, the present invention will be described in more detail through examples. However, it is necessary to note that the following examples are only intended to illustrate the present invention in more detail and are not intended to limit the scope of the present invention. This is because the scope of the present invention is determined by the matters described in the claims and matters reasonably inferred therefrom.

(실시예)(Example)

하기 표 1의 합금조성을 가지는 강 슬라브를 준비한 후, 이를 하기 표 2에 나타낸 공정 조건에 따라 [가열 - 압연 - 냉각]을 행하여 각각의 열연강판을 제조하였다. 이때, 상기 냉각은 일정 온도까지 수냉을 행한 후 150℃ 이하로 공냉을 행하였다.After preparing a steel slab having an alloy composition shown in Table 1 below, it was subjected to [heat-rolling-cooling] according to the process conditions shown in Table 2 below to prepare each hot-rolled steel sheet. At this time, the cooling was performed by water cooling to a certain temperature and then air cooling to 150° C. or less.

이후, 각각의 열연강판에 대해 미세조직과 기계적 물성을 측정하고, 그 결과를 하기 표 3에 나타내었다.Thereafter, the microstructure and mechanical properties were measured for each hot-rolled steel sheet, and the results are shown in Table 3 below.

각 열연강판의 미세조직은 임의의 크기로 시편을 절단하여 경면을 제작한 후 나이탈(Nital) 에칭액을 사용하여 부식시킨 다음, 광학현미경과 전자주사현미경(SEM)을 활용하여 두께 중심부인 1/2t 지점을 관찰하였다. 이때, 마르텐사이트 및 베이나이트 복합조직의 래스(lath) 크기는 전자후방산란회절(Electron Back-scattered Diffraction, EBSD) 분석을 이용하여 측정하였다.The microstructure of each hot-rolled steel sheet is cut to an arbitrary size to produce a mirror surface, corroded using a nital etchant, and then used an optical microscope and a scanning electron microscope (SEM) to create a 1/ The 2t point was observed. At this time, the lath size of the martensite and bainite composite structures was measured using electron back-scattered diffraction (EBSD) analysis.

또한, 각 열연강판의 경도 및 인성은 각각 브리넬 경도 시험기(하중 3000kgf, 10mm 텅스텐 압입구) 및 샤르피 충격시험기를 이용하여 측정하였다. 이때, 표면 경도는 열연판의 표면을 2mm 밀링 가공한 후 3회 측정한 값의 평균값을 사용하였으며, 샤르피 충격시험은 두께 방향 1/4t 지점에서 시편을 채취한 후 -40℃에서 3회 측정한 값의 평균값을 사용하였다.In addition, the hardness and toughness of each hot-rolled steel sheet were measured using a Brinell hardness tester (load 3000 kgf, 10 mm tungsten indentation hole) and a Charpy impact tester, respectively. At this time, for the surface hardness, the average value of the values measured three times after milling the surface of the hot-rolled sheet by 2 mm was used. For the Charpy impact test, a specimen was taken at 1/4t in the thickness direction and measured three times at -40°C. The average of the values was used.

강종steel grade 합금조성(중량%)Alloy composition (wt%) CC SiSi MnMn P*P* S*S* CrCr MoMo VV AlAl Ca*Ca* TiTi B*B* N*N* AA 0.250.25 1.351.35 1.011.01 110110 2020 0.710.71 00 00 0.0250.025 1313 00 00 3434 BB 0.300.30 1.351.35 1.001.00 100100 2020 0.700.70 00 00 0.0200.020 1010 00 00 4848 CC 0.350.35 1.351.35 0.750.75 100100 2020 0.690.69 00 00 0.0240.024 1111 00 00 3636 DD 0.450.45 1.401.40 0.680.68 120120 2020 0.700.70 00 00 0.0330.033 1515 00 00 4343 EE 0.450.45 1.401.40 0.690.69 9090 2020 0.700.70 00 0.1580.158 0.0340.034 1010 00 00 4141 FF 0.300.30 1.341.34 1.001.00 100100 2020 0.700.70 00 00 0.0380.038 1010 0.0150.015 00 3434 GG 0.300.30 1.351.35 1.021.02 110110 2020 0.700.70 00 00 0.0270.027 1010 0.0160.016 1515 3737 HH 0.210.21 1.341.34 1.021.02 110110 2020 0.710.71 00 00 0.0240.024 1212 00 00 4141 II 0.560.56 1.411.41 0.710.71 110110 2020 0.700.70 00 00 0.0300.030 1414 00 00 4141 JJ 0.260.26 0.300.30 1.201.20 8080 1010 0.250.25 0.250.25 00 0.0300.030 1010 0.0200.020 2020 4040 KK 0.380.38 0.320.32 1.101.10 8080 66 0.400.40 0.500.50 00 0.0300.030 1010 0.0190.019 2020 3737

(표 1에서 P*, S*, Ca*, B*, N*은 ppm으로 나타낸 것이다.)(In Table 1, P*, S*, Ca*, B*, and N* are expressed in ppm.)

강종steel grade 두께
(mm)
thickness
(mm)
가열
(℃)
heating
(℃)
압연rolled 냉각 (수냉)cooling (water cooling) 비고remark
조압연
(℃)
rough rolling
(℃)
마무리열간
압연(℃)
finish hot
Rolling (℃)
개시온도
(℃)
start temperature
(℃)
종료온도
(℃)
end temperature
(℃)
속도
(℃/s)
speed
(℃/s)
AA 1212 12001200 11501150 880880 790790 360360 3030 발명예 1Invention Example 1 BB 1212 12001200 11401140 860860 760760 300300 38.438.4 발명예 2Invention Example 2 BB 1212 12001200 11351135 860860 755755 360360 30.430.4 발명예 3Invention example 3 CC 1414 12001200 11001100 935935 780780 350350 4343 발명예 4Invention Example 4 DD 1212 12001200 11451145 860860 760760 310310 4545 발명예 5Invention Example 5 EE 1212 12001200 11201120 860860 760760 360360 5050 발명예 6Invention Example 6 FF 1212 12001200 11301130 880880 800800 270270 4848 발명예 7Invention Example 7 FF 1212 12001200 11201120 880880 800800 285285 6161 발명예 8Invention Example 8 GG 1212 12001200 11001100 880880 800800 219219 5858 발명예 9Invention Example 9 GG 1212 12001200 11301130 880880 800800 293293 6363 발명예 10Invention example 10 AA 1212 12001200 11351135 880880 790790 256256 2323 비교예 1Comparative Example 1 BB 2525 12001200 11001100 870870 790790 300300 1313 비교예 2Comparative Example 2 BB 2525 12001200 11201120 870870 790790 390390 2020 비교예 3Comparative Example 3 CC 1414 12001200 11001100 830830 720720 270270 5252 비교예 4Comparative Example 4 CC 1414 12001200 11101110 930930 780780 410410 4141 비교예 5Comparative Example 5 DD 1212 12001200 11251125 860860 760760 170170 6060 비교예 6Comparative Example 6 FF 1212 12001200 11201120 880880 800800 180180 6868 비교예 7Comparative Example 7 GG 1212 12001200 11301130 880880 800800 411411 5252 비교예 8Comparative Example 8 HH 1212 12001200 11401140 880880 790790 251251 4040 비교예 9Comparative Example 9 HH 1212 12001200 11301130 880880 790790 335335 3535 비교예 10Comparative Example 10 HH 1212 12001200 11501150 880880 790790 364364 4040 비교예 11Comparative Example 11 II 1212 12001200 11201120 870870 760760 295295 5252 비교예 12Comparative Example 12 II 1212 12001200 11101110 870870 760760 380380 3838 비교예 13Comparative Example 13 JJ 1212 12001200 11201120 880880 790790 269269 4848 비교예 14Comparative Example 14 KK 1212 12001200 11101110 880880 760760 300300 3838 비교예 15Comparative Example 15

(표 2에서 발명예들의 냉각 개시온도는 Ar3 이상이다.)(In Table 2, the cooling start temperature of the invention examples is Ar3 or higher.)

구분division 미세조직 (면적분율%)Microstructure (area fraction %) M+B 평균
lath 크기(㎛)
M+B average
lath size (㎛)
표면경도
(HB)
surface hardness
(HB)
충격인성
(J,@-40℃)
impact toughness
(J,@-40℃)
M+BM+B FF r-γr-γ 발명예 1Invention Example 1 97.597.5 00 2.52.5 0.290.29 481481 22.222.2 발명예 2Invention Example 2 9797 00 33 0.270.27 494494 30.230.2 발명예 3Invention example 3 92.592.5 00 7.57.5 0.280.28 477477 29.029.0 발명예 4Invention Example 4 9494 00 66 0.250.25 477477 22.722.7 발명예 5Invention Example 5 9797 00 33 0.280.28 535535 26.026.0 발명예 6Invention Example 6 97.297.2 00 2.82.8 0.260.26 485485 18.018.0 발명예 7Invention Example 7 96.896.8 00 3.23.2 0.200.20 496496 23.023.0 발명예 8Invention Example 8 96.296.2 00 3.83.8 0.190.19 481481 25.425.4 발명예 9Invention Example 9 96.996.9 00 3.13.1 0.160.16 533533 22.122.1 발명예 10Invention example 10 92.892.8 00 7.27.2 0.290.29 490490 28.428.4 비교예 1Comparative Example 1 9999 00 1One 0.180.18 492492 14.714.7 비교예 2Comparative Example 2 8585 13.213.2 1.81.8 0.380.38 366366 14.514.5 비교예 3Comparative Example 3 8888 1111 1One 0.400.40 444444 11.711.7 비교예 4Comparative Example 4 8686 1212 22 0.300.30 430430 10.110.1 비교예 5Comparative Example 5 8585 1313 22 0.480.48 406406 19.519.5 비교예 6Comparative Example 6 98.998.9 00 1.11.1 0.170.17 584584 4.44.4 비교예 7Comparative Example 7 9999 00 1One 0.170.17 558558 5.95.9 비교예 8Comparative Example 8 9393 5.55.5 1.51.5 0.370.37 456456 27.827.8 비교예 9Comparative Example 9 8686 1212 22 0.280.28 402402 12.712.7 비교예 10Comparative Example 10 8686 1111 33 0.290.29 409409 15.415.4 비교예 11Comparative Example 11 8181 1515 44 0.280.28 381381 16.716.7 비교예 12Comparative Example 12 9999 00 1One 0.140.14 569569 3.93.9 비교예 13Comparative Example 13 98.598.5 00 1.51.5 0.180.18 500500 8.58.5 비교예 14Comparative Example 14 9999 00 1One 0.190.19 497497 12.912.9 비교예 15Comparative Example 15 9999 00 1One 0.140.14 616616 5.85.8

(표 3에서 M은 마르텐사이트, B는 베이나이트, F는 페라이트, r-γ는 잔류 오스테나이트 상을 의미한다.)(In Table 3, M denotes martensite, B denotes bainite, F denotes ferrite, and r-γ denotes retained austenite phase.)

상기 표 1 내지 3에 나타낸 바와 같이, 본 발명에서 제안하는 합금조성 및 제조조건을 모두 만족하는 발명예 1 내지 10의 경우, 미세조직이 마르텐사이트+베이나이트와 함께 일정 분율로 잔류 오스테나이트 상이 포함함을 확인할 수 있다. 또한, 상기 마르텐사이트+베이나이트의 래스(lath) 크기가 모두 0.3㎛ 이하로 형성되었다. 이로부터, 상기 발명예 1 내지 10 모두 우수한 경도 및 저온 충격인성의 확보가 가능하였다.As shown in Tables 1 to 3, in the case of Inventive Examples 1 to 10, which satisfy both the alloy composition and the manufacturing conditions proposed in the present invention, the microstructure includes the retained austenite phase in a certain fraction along with martensite + bainite. can be checked. In addition, the lath size of the martensite + bainite was formed to be 0.3 μm or less. From this, it was possible to secure excellent hardness and low-temperature impact toughness in Inventive Examples 1 to 10.

반면, 본 발명에서 제안하는 합금조성은 만족하는 반면, 제조조건이 본 발명을 벗어나는 비교예 1 내지 8은 미세조직으로 페라이트 상의 형성 또는 마르텐사이트와 베이나이트 래스(lath) 크기가 조대하거나, 오스테나이트 상의 분율이 미비하여 고경도 및 저온 충격인성을 동시에 우수하게 확보하기 곤란하였다.On the other hand, while the alloy composition proposed in the present invention is satisfactory, Comparative Examples 1 to 8, in which the manufacturing conditions are outside the present invention, have microstructures of ferrite phases or large martensite and bainite laths, or austenite. It was difficult to secure excellent high hardness and low-temperature impact toughness at the same time because the fraction of the phase was insufficient.

한편, 비교예 9 내지 11은 강 중 C 함량이 불충분함에 따라, 소입성이 낮아 초석 페라이트 상이 과도하게 생성됨으로써 경도 및 인성이 크게 열위하였다. 또한, 비교예 12 및 13은 강 중 C 함량이 과도하게 높은 경우로서, 잔류 오스테나이트 상의 분율이 미비하여 경도의 확보는 가능한 반면, 저온 충격인성이 크게 열위하였다. 그리고, 강 중 Si 함량이 미비한 비교예 14 및 15는 경도의 확보는 가능한 반면, 잔류 오스테나이트 상이 충분히 형성되지 못하여 저온 충격인성이 열위하였다.On the other hand, Comparative Examples 9 to 11 were significantly inferior in hardness and toughness due to excessive generation of proeutectoid ferrite phase due to low hardenability due to insufficient C content in the steel. In Comparative Examples 12 and 13, the C content in the steel was excessively high, and the retained austenite phase fraction was insufficient to ensure hardness, but was significantly inferior in low-temperature impact toughness. In Comparative Examples 14 and 15, in which the Si content in the steel was insufficient, hardness could be secured, but the retained austenite phase was not sufficiently formed, so that the low-temperature impact toughness was inferior.

도 1 및 도 2는 발명예 5의 미세조직 사진을 나타낸 것이다.1 and 2 show microstructure photographs of Inventive Example 5.

이 중, 도 1은 광학현미경으로 관찰한 사진이고, 도 2는 주사전자현미경 및 EBSD로 관찰한 사진으로서, 기지조직으로 마르텐사이트 상과 베이나이트 상이 주 조직으로 형성됨을 확인할 수 있으며, 마르텐사이트와 베이나이트의 래스(lath) 경계에 잔류 오스테나이트 상이 미세하게 분포하고 있음을 알 수 있다.Of these, FIG. 1 is a photograph observed with an optical microscope, and FIG. 2 is a photograph observed with a scanning electron microscope and EBSD. It can be confirmed that the martensite phase and the bainite phase are formed as the main structures as the matrix structure, and martensite and It can be seen that the retained austenite phase is finely distributed at the lath boundary of bainite.

도 3 및 도 4는 비교예 6의 미세조직 사진을 나타낸 것이다.3 and 4 show microstructure photographs of Comparative Example 6.

이 중, 도 3은 광학현미경으로 관찰한 사진이고, 도 4는 주사전자현미경 및 EBSD로 관찰한 사진으로서, 기지조직으로 마르텐사이트 상과 베이나이트 상이 주로 형성되었으나, 잔류 오스테나이트 상이 매우 미비하게 형성된 것을 확인할 수 있다.Of these, FIG. 3 is a photograph observed with an optical microscope, and FIG. 4 is a photograph observed with a scanning electron microscope and EBSD. Martensite phase and bainite phase were mainly formed as a matrix structure, but the retained austenite phase was very insignificantly formed. that can be checked

Claims (10)

중량%로, 탄소(C): 0.25~0.50%, 실리콘(Si): 1.0~1.6%, 망간(Mn): 0.6~1.6%, 인(P): 0.05% 이하(0%는 제외), 황(S): 0.02% 이하(0%는 제외), 알루미늄(Al): 0.07% 이하(0%는 제외), 크롬(Cr): 0.5~1.5%, 칼슘(Ca): 0.0005~0.004%, 질소(N): 0.006% 이하, 잔부 Fe 및 기타 불가피한 불순물을 포함하고,
미세조직으로 마르텐사이트 및 베이나이트 복합조직과 면적분율 2.5~10%로 잔류 오스테나이트 상을 포함하는 저온 충격인성이 우수한 고경도 내마모강.
By weight%, carbon (C): 0.25 to 0.50%, silicon (Si): 1.0 to 1.6%, manganese (Mn): 0.6 to 1.6%, phosphorus (P): 0.05% or less (excluding 0%), sulfur (S): 0.02% or less (excluding 0%), Aluminum (Al): 0.07% or less (excluding 0%), Chromium (Cr): 0.5 to 1.5%, Calcium (Ca): 0.0005 to 0.004%, Nitrogen (N): 0.006% or less, the balance contains Fe and other unavoidable impurities,
High hardness and wear-resistant steel with excellent low-temperature impact toughness, including martensite and bainite composite structures as microstructures, and retained austenite phases with an area fraction of 2.5 to 10%.
제 1항에 있어서,
상기 내마모강은 중량%로, 니켈(Ni): 0.01~0.5%, 몰리브덴(Mo): 0.01~0.3%, 티타늄(Ti): 0.005~0.025%, 보론(B): 0.0002~0.005% 및 바나듐(V): 0.2% 이하 중 1종 이상을 더 포함하는 저온 충격인성이 우수한 고경도 내마모강.
The method of claim 1,
The wear-resistant steel is, by weight, nickel (Ni): 0.01 to 0.5%, molybdenum (Mo): 0.01 to 0.3%, titanium (Ti): 0.005 to 0.025%, boron (B): 0.0002 to 0.005% and vanadium (V): High hardness wear-resistant steel excellent in low-temperature impact toughness further comprising at least one of 0.2% or less.
제 1항에 있어서,
상기 마르텐사이트 및 베이나이트 복합조직은 평균 래스(lath) 크기가 0.3㎛ 이하인 저온 충격인성이 우수한 고경도 내마모강.
The method of claim 1,
The martensite and bainite composite structure has an average lath size of 0.3 μm or less and high hardness wear-resistant steel with excellent low-temperature impact toughness.
제 1항에 있어서,
상기 내마모강은 상기 마르텐사이트와 베이나이트 복합조직을 면적분율 90% 이상으로 포함하는 저온 충격인성이 우수한 고경도 내마모강.
The method of claim 1,
The wear-resistant steel is a high-hardness wear-resistant steel with excellent low-temperature impact toughness comprising the martensite and bainite composite structure in an area fraction of 90% or more.
제 1항에 있어서,
상기 내마모강은 표면 경도가 460~540HB 이고, -40℃에서의 충격 흡수 에너지가 17J 이상인 저온 충격인성이 우수한 고경도 내마모강.
The method of claim 1,
The wear-resistant steel has a surface hardness of 460 to 540HB, and a high-hardness wear-resistant steel with excellent low-temperature impact toughness with an impact absorption energy of 17J or more at -40°C.
제 1항에 있어서,
상기 내마모강은 5~40mm의 두께를 가지는 저온 충격인성이 우수한 고경도 내마모강.
The method of claim 1,
The wear-resistant steel is a high-hardness wear-resistant steel having a thickness of 5-40 mm and excellent low-temperature impact toughness.
중량%로, 탄소(C): 0.25~0.50%, 실리콘(Si): 1.0~1.6%, 망간(Mn): 0.6~1.6%, 인(P): 0.05% 이하(0%는 제외), 황(S): 0.02% 이하(0%는 제외), 알루미늄(Al): 0.07% 이하(0%는 제외), 크롬(Cr): 0.5~1.5%, 칼슘(Ca): 0.0005~0.004%, 질소(N): 0.006% 이하, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 강 슬라브를 준비하는 단계;
상기 강 슬라브를 1050~1250℃의 온도범위에서 가열하는 단계;
상기 가열된 강 슬라브를 950~1150℃의 온도범위에서 조압연하는 단계;
상기 조압연 후 850~950℃의 온도범위에서 마무리 열간압연하여 열연강판을 제조하는 단계; 및
상기 열연강판을 25℃/s 이상의 냉각속도로 200~400℃까지 냉각한 후 공냉하는 단계
를 포함하는 저온 충격인성이 우수한 고경도 내마모강의 제조방법.
By weight%, carbon (C): 0.25 to 0.50%, silicon (Si): 1.0 to 1.6%, manganese (Mn): 0.6 to 1.6%, phosphorus (P): 0.05% or less (excluding 0%), sulfur (S): 0.02% or less (excluding 0%), Aluminum (Al): 0.07% or less (excluding 0%), Chromium (Cr): 0.5 to 1.5%, Calcium (Ca): 0.0005 to 0.004%, Nitrogen (N): preparing a steel slab containing 0.006% or less, the balance Fe and other unavoidable impurities;
heating the steel slab in a temperature range of 1050 to 1250 °C;
rough rolling the heated steel slab in a temperature range of 950 to 1150 °C;
manufacturing a hot-rolled steel sheet by finishing hot rolling in a temperature range of 850 to 950° C. after the rough rolling; and
Cooling the hot-rolled steel sheet to 200-400°C at a cooling rate of 25°C/s or more, followed by air cooling
A method for producing high-hardness wear-resistant steel with excellent low-temperature impact toughness, comprising:
제 7항에 있어서,
상기 강 슬라브는 중량%로, 니켈(Ni): 0.01~0.5%, 몰리브덴(Mo): 0.01~0.3%, 티타늄(Ti): 0.005~0.025%, 보론(B): 0.0002~0.005% 및 바나듐(V): 0.2% 이하 중 1종 이상을 더 포함하는 저온 충격인성이 우수한 고경도 내마모강의 제조방법.
8. The method of claim 7,
The steel slab is in wt%, nickel (Ni): 0.01 to 0.5%, molybdenum (Mo): 0.01 to 0.3%, titanium (Ti): 0.005 to 0.025%, boron (B): 0.0002 to 0.005% and vanadium ( V): A method of manufacturing high-hardness wear-resistant steel having excellent low-temperature impact toughness, further comprising at least one of 0.2% or less.
제 7항에 있어서,
상기 공냉시 자가-템퍼링(self-tempering)이 일어나는 것을 특징으로 하는 저온 충격인성이 우수한 고경도 내마모강의 제조방법.
8. The method of claim 7,
A method of manufacturing high-hardness wear-resistant steel having excellent low-temperature impact toughness, characterized in that self-tempering occurs during the air cooling.
제 7항에 있어서,
상기 공냉은 150℃ 이하로 행하는 것인 저온 충격인성이 우수한 고경도 내마모강의 제조방법.
8. The method of claim 7,
The method for producing a high-hardness wear-resistant steel excellent in low-temperature impact toughness that the air cooling is performed at 150° C. or less.
KR1020190168076A 2019-12-16 2019-12-16 Wear resistant steel havinh high hardness and excellent low-temperature impact toughness and method for manufacturing thereof KR102314432B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020190168076A KR102314432B1 (en) 2019-12-16 2019-12-16 Wear resistant steel havinh high hardness and excellent low-temperature impact toughness and method for manufacturing thereof
US17/783,910 US20230002872A1 (en) 2019-12-16 2020-12-01 High hardness wear-resistant steel having excellent low-temperature impact toughness, and manufacturing method therefor
CN202080081443.1A CN114729435A (en) 2019-12-16 2020-12-01 High-hardness wear-resistant steel with excellent low-temperature impact toughness and manufacturing method thereof
JP2022536590A JP7471417B2 (en) 2019-12-16 2020-12-01 High-hardness wear-resistant steel with excellent low-temperature impact toughness and manufacturing method thereof
PCT/KR2020/017372 WO2021125621A1 (en) 2019-12-16 2020-12-01 High hardness wear-resistant steel having excellent low-temperature impact toughness, and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190168076A KR102314432B1 (en) 2019-12-16 2019-12-16 Wear resistant steel havinh high hardness and excellent low-temperature impact toughness and method for manufacturing thereof

Publications (2)

Publication Number Publication Date
KR20210076658A true KR20210076658A (en) 2021-06-24
KR102314432B1 KR102314432B1 (en) 2021-10-19

Family

ID=76478400

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190168076A KR102314432B1 (en) 2019-12-16 2019-12-16 Wear resistant steel havinh high hardness and excellent low-temperature impact toughness and method for manufacturing thereof

Country Status (5)

Country Link
US (1) US20230002872A1 (en)
JP (1) JP7471417B2 (en)
KR (1) KR102314432B1 (en)
CN (1) CN114729435A (en)
WO (1) WO2021125621A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115011867A (en) * 2022-04-19 2022-09-06 清华大学 High-strength-toughness wear-resistant steel lining plate and preparation method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114058973B (en) * 2021-11-02 2023-04-25 河钢股份有限公司 NM 450-level low-carbon low-alloy bainite wear-resistant steel and preparation method thereof
CN114774804B (en) * 2022-03-07 2023-09-15 江阴兴澄特种钢铁有限公司 600 HB-grade hot-rolled low-cost wear-resistant steel plate and manufacturing method thereof
CN115198177B (en) * 2022-06-21 2023-04-07 首钢集团有限公司 NM450 grade steel and preparation method thereof
CN118007027A (en) * 2023-10-30 2024-05-10 钢铁研究总院有限公司 Low-cost high-toughness ultrahigh-strength steel and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6383225A (en) 1986-09-26 1988-04-13 Kawasaki Steel Corp Manufacture of high hardness steel sheet
JPS6410564A (en) 1987-07-03 1989-01-13 Inoue Japax Res Ion wind generator
JPS6421846A (en) 1987-07-16 1989-01-25 Yoshifumi Amano Electrode formation member of discharging display and its process
JPH0841535A (en) 1994-07-29 1996-02-13 Nippon Steel Corp Production of high hardness wear resistant steel excellent in low temperature toughness
JPH08295990A (en) * 1995-04-27 1996-11-12 Creusot Loire Ind Preparation of highly wear-resistant steel and steel product
KR100619841B1 (en) 2004-11-24 2006-09-08 송치복 High elasticity and high strength steel in the composition of high silicon with low alloy for the purpose of impact resistance and abrasion resistance and manufacturing method of the same steel
JP2013216945A (en) * 2012-04-10 2013-10-24 Nippon Steel & Sumitomo Metal Corp Steel sheet and impact absorbing member
KR20150064223A (en) * 2013-03-28 2015-06-10 바오샨 아이론 앤 스틸 유한공사 Low-alloy high-hardness wear-resistant steel plate and manufacturing method therefor
KR20190007055A (en) * 2016-09-21 2019-01-21 신닛테츠스미킨 카부시키카이샤 Steel plate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3543619B2 (en) * 1997-06-26 2004-07-14 住友金属工業株式会社 High toughness wear-resistant steel and method of manufacturing the same
FR2847270B1 (en) * 2002-11-19 2004-12-24 Usinor METHOD FOR MANUFACTURING AN ABRASION RESISTANT STEEL SHEET AND OBTAINED SHEET
CN104451403B (en) * 2014-12-05 2016-08-17 武汉钢铁(集团)公司 Low temperature HB450 level heterogeneous structure abrasion-resistant stee and production method thereof
JP6569319B2 (en) * 2015-06-17 2019-09-04 日本製鉄株式会社 Abrasion-resistant steel plate and method for producing the same
JP6607210B2 (en) * 2017-02-03 2019-11-20 Jfeスチール株式会社 Abrasion resistant steel sheet and method for producing the abrasion resistant steel sheet
BR112019006254B1 (en) * 2017-06-21 2022-08-09 Nippon Steel Corporation STEEL PLATE
KR102031446B1 (en) * 2017-12-22 2019-11-08 주식회사 포스코 Wear resistant steel having excellent hardness and impact toughness and method of manufacturing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6383225A (en) 1986-09-26 1988-04-13 Kawasaki Steel Corp Manufacture of high hardness steel sheet
JPS6410564A (en) 1987-07-03 1989-01-13 Inoue Japax Res Ion wind generator
JPS6421846A (en) 1987-07-16 1989-01-25 Yoshifumi Amano Electrode formation member of discharging display and its process
JPH0841535A (en) 1994-07-29 1996-02-13 Nippon Steel Corp Production of high hardness wear resistant steel excellent in low temperature toughness
JPH08295990A (en) * 1995-04-27 1996-11-12 Creusot Loire Ind Preparation of highly wear-resistant steel and steel product
KR100619841B1 (en) 2004-11-24 2006-09-08 송치복 High elasticity and high strength steel in the composition of high silicon with low alloy for the purpose of impact resistance and abrasion resistance and manufacturing method of the same steel
JP2013216945A (en) * 2012-04-10 2013-10-24 Nippon Steel & Sumitomo Metal Corp Steel sheet and impact absorbing member
KR20150064223A (en) * 2013-03-28 2015-06-10 바오샨 아이론 앤 스틸 유한공사 Low-alloy high-hardness wear-resistant steel plate and manufacturing method therefor
KR20190007055A (en) * 2016-09-21 2019-01-21 신닛테츠스미킨 카부시키카이샤 Steel plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115011867A (en) * 2022-04-19 2022-09-06 清华大学 High-strength-toughness wear-resistant steel lining plate and preparation method thereof

Also Published As

Publication number Publication date
US20230002872A1 (en) 2023-01-05
CN114729435A (en) 2022-07-08
JP7471417B2 (en) 2024-04-19
WO2021125621A1 (en) 2021-06-24
KR102314432B1 (en) 2021-10-19
JP2023506822A (en) 2023-02-20

Similar Documents

Publication Publication Date Title
KR102119959B1 (en) Wear resistant steel having excellent hardness and impact toughness and method of manufacturing the same
CN110100034B (en) High-hardness wear-resistant steel and method for manufacturing same
KR102314432B1 (en) Wear resistant steel havinh high hardness and excellent low-temperature impact toughness and method for manufacturing thereof
KR101490567B1 (en) High manganese wear resistance steel having excellent weldability and method for manufacturing the same
KR102031446B1 (en) Wear resistant steel having excellent hardness and impact toughness and method of manufacturing the same
KR20120070603A (en) High-toughness abrasion-resistant steel and manufacturing method therefor
KR102175570B1 (en) Wear resistant steel having excellent hardness and impact toughness and method of manufacturing the same
KR101899687B1 (en) Wear resistant steel having high hardness and method for manufacturing same
KR102131538B1 (en) Ultra high strength steel material having excellent cold workability and sulfide stress cracking resistance and method of manufacturing the same
CN108368589B (en) High hardness wear resistant steel having excellent toughness and cut crack resistance and method for manufacturing the same
KR102031443B1 (en) Wear resistant steel having excellent hardness and impact toughness and method of manufacturing the same
KR102498150B1 (en) Armored steel havinh high hardness and excellent low-temperature impact toughness and method for manufacturing thereof
KR102498142B1 (en) Armored steel havinh high hardness and excellent low-temperature impact toughness and method for manufacturing thereof
KR102498144B1 (en) Armored steel havinh high hardness and excellent low-temperature impact toughness and method for manufacturing thereof
KR102498141B1 (en) Armored steel havinh high hardness and excellent low-temperature impact toughness and method for manufacturing thereof
KR102498149B1 (en) Armored steel havinh high hardness and excellent low-temperature impact toughness and method for manufacturing thereof
KR102498147B1 (en) Armored steel havinh high hardness and excellent low-temperature impact toughness and method for manufacturing thereof
KR102498158B1 (en) Armored steel havinh high hardness and excellent low-temperature impact toughness and method for manufacturing thereof
KR102498156B1 (en) Armored steel havinh high hardness and excellent low-temperature impact toughness and method for manufacturing thereof
KR20240098230A (en) Wear resistant steel havinh high hardness and method for manufacturing the same
KR20230024090A (en) High hardness bulletproof steel having excellent low temperature toughness and method of manufacturing the same
KR20240096073A (en) Steel plate having high strength and excellent low-temperature impact toughness and method for manufacturing thereof
KR20220087245A (en) Wear-resistant steel having high hardness and excellent impact toughness and its manucfacturing method
KR20210028444A (en) Steel plate having excellent strength and low-temperature impact toughness and method for manufacturing thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant