KR20210071575A - 중쇄 디올을 생산하는 재조합 균주 및 이를 이용한 중쇄 디올의 생산방법 - Google Patents

중쇄 디올을 생산하는 재조합 균주 및 이를 이용한 중쇄 디올의 생산방법 Download PDF

Info

Publication number
KR20210071575A
KR20210071575A KR1020190161900A KR20190161900A KR20210071575A KR 20210071575 A KR20210071575 A KR 20210071575A KR 1020190161900 A KR1020190161900 A KR 1020190161900A KR 20190161900 A KR20190161900 A KR 20190161900A KR 20210071575 A KR20210071575 A KR 20210071575A
Authority
KR
South Korea
Prior art keywords
seq
nucleotide sequence
gene
dna
artificial sequence
Prior art date
Application number
KR1020190161900A
Other languages
English (en)
Other versions
KR102307507B1 (ko
Inventor
안정오
박규연
전우영
장민정
이홍원
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Priority to KR1020190161900A priority Critical patent/KR102307507B1/ko
Priority to PCT/KR2020/017700 priority patent/WO2021112641A1/ko
Publication of KR20210071575A publication Critical patent/KR20210071575A/ko
Application granted granted Critical
Publication of KR102307507B1 publication Critical patent/KR102307507B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/001Oxidoreductases (1.) acting on the CH-CH group of donors (1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0077Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with a reduced iron-sulfur protein as one donor (1.14.15)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/18Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01001Alcohol dehydrogenase (1.1.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/03Oxidoreductases acting on the CH-OH group of donors (1.1) with a oxygen as acceptor (1.1.3)
    • C12Y101/0302Long-chain-alcohol oxidase (1.1.3.20)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/15Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with reduced iron-sulfur protein as one donor, and incorporation of one atom of oxygen (1.14.15)
    • C12Y114/15003Alkane 1-monooxygenase (1.14.15.3)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 중쇄 디올을 생산하는 재조합 균주 및 이를 배양하여 중쇄 디올을 생산하는 방법에 관한 것으로, 본 발명의 재조합 미생물은 ω-산화 대사 경로 중의 내인성 모노옥시게나아제, 지방 알코올 디하이드로게나아제, 지방 알코올 옥시다아제, 및/또는 지방 알데히드 디하이드로게나아제 유전자가 제거되고, β-산화 대사 경로 중의 아실-CoA 유전자가 제거되어 지방 알코올의 추가적인 산화 및 β-산화 대사를 방지하고, 또한, 외인성 박테리아 모노옥시게나아제 유전자가 도입되어 과산화 활성을 낮춤으로써 중쇄 디올을 높은 수율로 생산할 수 있다.

Description

중쇄 디올을 생산하는 재조합 균주 및 이를 이용한 중쇄 디올의 생산방법{RECOMBINANT STRAIN FOR PRODUCING MIDIUM CHAIN DIOL AND METHOD FOR PRODUCING MIDIUM CHAIN DIOL USING THE SAME}
본 발명은 중쇄 디올을 생산하는 재조합 균주 및 이를 배양하여 중쇄 디올을 생산하는 방법에 관한 것이다.
바이오플랫폼 화합물은 바이오매스 유래 원료를 기반으로 하여 생물학적 또는 화학적 전환을 통해 생산된 것으로, 고분자 모노머, 신소재 등의 합성에 사용되고 있다.
바이오플랫폼 화합물 중 α,ω-디올은 폴리에스테르의 단량체로 사용되는 물질로서, 폴리에스테르는 그 뛰어난 성질로부터 섬유용, 필름용, 병용을 비롯해 널리 여러 가지 용도로 사용되고 있다. 예를 들면, 에틸렌글리콜과 테레프탈산의 중축합으로 얻어지는 폴리에틸렌테레프탈레이트는 기계적 강도, 화학 특성 등에 뛰어나서 많은 용도에 사용되고 있고, 의료용(衣料用)으로 가장 적합한 합성 섬유로서 전세계에서 대량 생산되고 있다. 또한, 1,3-프로판디올과 테레프탈산을 원료로 하는 폴리트리메틸렌테레프탈레이트는 최근 저렴한 1,3-프로판디올 합성법이 개발된 것도 있어서 시장은 증가 경향에 있고, 신장탄성 회복성이 뛰어나고, 영률이 낮은 폴리머 특성을 살린 소프트한 촉감의 의료 용도로서의 전개가 기대된다. 아울러, 최근에는 석유 자원의 고등(高騰)·고갈을 우려하여 바이오매스 자원 유래의 폴리에스테르가 주목받고 있다.
α,ω-디올의 생산은 화학적 합성이나 미생물 발효를 통한 생물학적 방법으로 이루어질 수 있는데, 이러한 생물학적 방법을 이용할 경우에는 대사공학 기술을 이용한 신규 균주 개발 및 발효공정의 최적화가 요구된다.
종래에 α,ω-디올을 생산할 수 있는 균주로는 β-산화 대사 경로와 ω-산화 대사 경로를 함께 갖고 있는 미생물이 이용될 수 있고, 예컨대 크렙실라 옥시토카(Klebsiella oxytoca), 크렙실라 뉴모니애(Klebsiella pneumoniae), 애어로박터 애어로제네스(Aerobacter aerogenes), 재조합 사카로마이세스 세레비지애(Saccharomyces cerevisiae) 등의 균주들은 2,3-부탄디올을 고수율 및 고생산성으로 생산할 수 있는 것으로 알려져 있다(KRA 2012-0107021, KRA 2012-0128776, KRA 2015-0068581). 그러나, 이들 미생물 중 일부는 병원성 미생물로 분류되고 있어 안전 및 산업화 측면에 제약이 따르고, 또한 현재 산업 규모의 제조는 단쇄 디올 생합성에만 국한되어 있으며, 중쇄 또는 장쇄의 α,ω-디올에 대한 연구는 미흡한 실정이다.
한편, 대장균(E.coli)에서 알칸 화합물로부터 시토크롬 p450 효소를 이용하여 1, 12-디올을 생산하는 기술이 알려져 있으나(Scheps, D et al, Organic & Biomolecular Chemistry 2011, 9, 6727-6733), 대장균 시스템은 CYP 발현을 위해 고가의 haem 전구체 및 내인성 전자 전달계가 필요하고, 소수성 기질의 흡수가 제한적이라는 점에서 중쇄 디올의 대규모 생산에는 한계가 있다.
따라서, 환경적인 문제를 일으키지 않으면서도, 가격적인 면에서 효율적인 중쇄 디올의 대량 생산 방법에 대한 연구가 여전히 요구되고 있다.
본 발명은 탄화수소의 ω-산화 대사 경로와 β-산화 대사 경로를 모두 가지고 있는 미생물에서, 일부 유전자가 제거 및/또는 도입된 재조합 미생물을 제공하는 것을 목적으로 한다.
또한, 본 발명은 상기 재조합 미생물을 배양함으로써, 지방산 유래의 알코올 또는 알칸으로부터 중쇄 디올을 생산하는 방법을 제공하는 것을 목적으로 한다.
상기 기술적 과제를 달성하기 위하여, 본 발명의 일 측면은 ω-산화 대사 경로 중의 내인성 모노옥시게나아제 유전자, 지방 알코올 디하이드로게나아제 유전자, 지방 알코올 옥시다아제 유전자가 제거되고, 선택적으로 지방 알데히드 디하이드로게나아제 유전자가 제거되며, 또한, β-산화 경로 중의 아실-CoA 옥시다아제 유전자가 제거된 재조합 미생물을 제공한다.
본 발명의 일 구현예에 따르면, 상기 재조합 미생물은 내인성 모노옥시게나아제가 제거된 후에, 외인성 모노옥시게나아제 유전자가 도입된 것 일 수 있다. 상기 외인성 모노옥시게나아제 유전자는 박테리아 유래의 시토크롬 P450 산화효소일 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 일 구현예에 따르면, 상기 내인성 모노옥시게나아제 유전자, 지방 알코올 디하이드로게나아제 유전자, 지방 알코올 옥시다아제 유전자 및 아실-CoA 옥시다아제 유전자는 미생물 내에 존재하는 모든 상동형 유전자가 제거된 것 일 수 있으나, 이에 한정되는 것은 아니다. 본 발명의 다른 구현예에 따르면, 상기 모노옥시게나아제 유전자, 지방 알코올 디하이드로게나아제 유전자, 지방 알코올 옥시다아제 유전자가 및 아실-CoA 옥시다아제 유전자는 미생물 내에 존재하는 일부 상동형 유전자가 제거된 것 일 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 일 구현예에 따르면, 상기 내인성 모노옥시게나아제 유전자는 ALK1, ALK2, ALK3, ALK4, ALK5, ALK6, ALK7, ALK8, ALK9, ALK10, ALK11 및 ALK12 유전자로 이루어진 군으로부터 선택될 수 있으나 이에 한정되는 것은 아니다.
본 발명의 일 구현예에 따르면, 상기 지방 알코올 디하이드로게나아제 유전자는 ADH1, ADH2, ADH3, ADH4, ADH5, ADH6, ADH7, ADH8 및 FADH 유전자로 이루어진 군으로부터 선택될 수 있으나 이에 한정되는 것은 아니다.
본 발명의 일 구현예에 따르면, 상기 지방 알코올 옥시다아제 유전자는 FAO 유전자일 수 있으나 이에 한정되는 것은 아니다.
본 발명의 일 구현예에 따르면, 상기 지방 알데히드 디하이드로게나아제 유전자는 FALDH1, FALDH2, FALDH3 및 FALDH4 유전자로 이루어진 군으로부터 선택될 수 있으나 이에 한정되는 것은 아니다.
본 발명의 일 구현예에 따르면, 상기 아실-CoA 옥시다아제 유전자는 ACO1, ACO2, ACO3, ACO4, ACO5 및 ACO6로 이루어진 군으로부터 선택될 수 있으나 이에 한정되는 것은 아니다.
본 발명의 일 구현예에 따르면, 상기 외인성 모노옥시게나아제 유전자는 CYP153A13, CYP153A33, CYP154, CYP151A 및 CYP140A로 이루어진 군으로부터 선택될 수 있으나 이에 한정되는 것은 아니다.
본 발명의 일 구현예에 따르면, 상기 미생물은 효모일 수 있으나 이에 한정되는 것은 아니다. 본 발명의 바람직한 구현예에 따르면, 상기 효모는 야로위아 속, 사카로마이에스 속, 피키아 속 및 캔디다 속으로 이루어진 군으로부터 선택될 수 있으나 이에 한정되는 것은 아니다.
본 발명의 다른 측면은, 상기 재조합 미생물을 제조하는 단계; 및 상기 재조합 미생물에 지방산 알콜 또는 알칸을 기질로 처리하여 배양하는 단계를 포함하는 탄소수 5 내지 28을 갖는 중쇄 디올의 생산 방법을 제공한다.
본 발명의 재조합 미생물은 ω-산화 대사 경로 중의 내인성 모노옥시게나아제, 지방 알코올 디하이드로게나아제, 지방 알코올 옥시다아제, 및/또는 지방 알데히드 디하이드로게나아제 유전자가 제거되고, β-산화 대사 경로 중의 아실-CoA 유전자가 제거되어 지방 알코올의 추가적인 산화 및 β-산화 대사를 방지하고, 또한, 외인성 박테리아 모노옥시게나아제 유전자가 도입되어 과산화 활성을 낮춤으로써 중쇄 디올을 높은 수율로 생산할 수 있다.
도 1은 ω-산화 및 β-산화 대사 반응과 관련된 생성물 및 관련 효소의 종류를 보여주는 것이다.
도 2는 선별 마커로서 URA3를 통한 상동 재조합 과정을 나타낸 것이다: HR은 상동 영역, RS는 반복 시퀀스.
도 3은 본 발명의 균주 개량을 위한 벡터 pYIGEM을 나타낸 것이다.
도 4는 본 발명의 형질전환 미생물에서 낙-아웃된 유전자의 종류를 나타낸 것이다. 붉은 색으로 표시된 네모는 해당 유전자가 제거된 것을 의미한다.
도 5는 본 발명의 n-알칸 또는 지방 알코올에서 중쇄 디올을 생산할 수 있는 플랫폼 균주 및 이에 의한 중쇄 디올의 생산 수율을 확인한 결과이다. (a)는 야로위아의 β- 산화 경로에서 β- 알코올 및 β- 알데히드 산화를 차단함으로써 중쇄 디올의 생산을 위한 천연 대사 경로를 조작하였다. (b), (c) 는 재조합 야로위아를 함유하는 진탕 플라스크 배양물에서 n-도데칸 및 1-도데칸올의 1,12-디올로의 변형을 나타낸 것이다(1,12-DDDA, 1,12-도데칸이산; 12-HDA, 12-하이드록시도데칸산; 1,12-DIOL, 1,12-도데칸디올).
도 6은 표준 및 배양액에서 1,12-디올의 GC-MS 분석 결과를 나타낸 것이다.
도 7은 ALK3 및/또는 ALK6 유전자를 결실시킨 재조합 야로위아 균주의 n-알칸으로부터 중쇄 디올의 생산 효과를 나타낸 것이다. (a)는 야로위아 유래의 내인성 모노옥시게나아제의 기질 선호도를 나타낸 것이고, (b)는 ALK3 및/또는 ALK6 유전자를 결실시킨 야로위아 돌연변이체를 나타낸 것이며, (c)는 진탕 플라스크에서 ALK3 및/또는 ALK6 유전자를 결실시킨 야로위아 돌연변이체를 배양시켜 n-도데칸 및 1-도데칸올로부터 1,12-디올의 생체 변환을 확인한 결과이다(1,12-DDDA, 1,12-도데칸이산; 12-HDA, 12-하이드록시도데칸산; 1,12-DIOL, 1,12-도데칸디올).
도 8은 야로위아 균주에 포함된 내인성 모노옥시게나아제 각각의 과산화 활성을 확인한 결과이다. (a)는 야로위아 균주에서 각각의 ALK 유전자의 발현을 나타낸 것이고, (b)는 각각의 ALK 유전자를 발현하는 야로위아 △ALK1-12 돌연변이체를 함유하는 진탕 플라스크 배양에서 n-알칸의 중쇄 디올로의 생체 변형을 나타낸 것이다(1,12-DDDA, 1,12-도데칸이산; 12-HDA, 12-하이드록시도데칸산; 1-DDA, 도데칸산; 1,12-DIOL, 1,12-도데칸디올).
도 9는 야로위아 △ALK1-12 돌연변이체에서 박테리아 CYP15A 유전자의 발현을 나타낸 것이다. (a)는 야로위아 균주에서 박테리아 CYP15A 유전자의 발현을 위한 플라스미드를 나타낸 것이고, (b)는 각각의 박테리아 CYP15A 유전자를 발현하는 △ALK1-12 돌연변이체의 진탕 플라스크 배양 결과를 나타낸 것이며, (c)는 산화된 생성물의 조성을 나타낸 것이다(1,12-DDDA, 1,12-도데칸이산; 12-HDA, 12-하이드록시도데칸산; 1-DDA, 도데칸산; 1-DOL, 1-도데칸올; 1,12-DIOL, 1,12-도데칸디올).
도 10a는 다양한 박테리아 모노옥시게나아제 유전자의 도입에 따른 산화 생성물의 조성을 나타낸 것이다(1,12-DDDA, 1,12-도데칸이산; 12-HDA, 12-하이드록시도데칸산; 1-DDA, 도데칸산; 1-DOL, 1-도데칸올; 1,12-DIOL, 1,12-도데칸디올).
도 10b는 다양한 박테리아 모노옥시게나아제 유전자의 도입에 따른 중쇄 디올의 생산 수율을 나타낸 것이다.
이하, 본 발명을 상세히 설명한다.
본 발명의 일 측면에 따르면, 본 발명은
탄화수소의 ω-산화 대사 경로와 β-산화 대사 경로를 모두 가지고 있는 미생물에서, ω-산화 대사 경로 중의 내인성 모노옥시게나아제 유전자, 지방 알코올 디하이드로게나아제 유전자, 지방 알코올 옥시다아제 유전자, 및 지방 알데히드 디하이드로게나아제 유전자; 및 β-산화 경로 중의 아실-CoA 옥시다아제 유전자가 제거되고, 또한, 외인성 모노옥시게나아제 유전자가 도입된 재조합 미생물을 제공한다.
본 명세서에서 용어, "ω-산화"는 지방산의 메틸기 말단이 산화되어 디카르복시산이 형성되는 대사 과정을 의미하고, "β-산화"는 카르복시기에서 β-자리의 탄소원자가 산화되어 아세틸 CoA를 방출하면서 그때마다 탄소 원자수가 2개 적은 지방산이 되면서 점차 분해되어 가는 대사 과정을 의미한다. 상기 ω-산화 및 β-산화의 개념과 이러한 대사 과정에 관여하고 있는 효소들에 대해서는 생화학 분야의 통상의 기술자에게 있어서 널리 알려져 있다. 예컨대, ω-산화에 있어서, 지방산이 기질로 이용될 경우에는 먼저 시토크롬 P450 및 NADPH-시토크롬 P450 리덕타아제(reductase)의 작용에 의해 ω-히드록시 지방산이 생성되고, 상기 ω-히드록시 지방산은 지방 알코올 디하이드로게나아제 및 지방 알코올 옥시다아제의 작용에 의해 ω-알데히드 지방산이 생성되며, 상기 ω-알데히드 지방산은 지방 알데히드 디하이드로게나아제의 작용에 의해 디카르복시산이 제조된다. 또한, β-산화에 있어서는 아실-CoA 옥시다아제에 의해 탄소 원자수가 2개 적은 지방산이 생성된다(도 1).
본 발명에서 "모노옥시게나아제"는 시토크롬 P450 산화효소 또는 시토크롬 P450(CYP) 라고도 하며, 산소를 기질에 도입하는 반응을 촉매하는 산소화효소를 의미한다. 본 발명에서는 지방 알코올 또는 알칸을 기질로 사용하여 말단에 수산화기를 도입시키는 역할을 한다. 본 발명에서 "내인성 모노옥시게나아제"는 야생형 미생물에 본래부터 존재하는 산소화효소를 의미하고, "외인성 모노옥시게나아제"는 외부 유전자가 도입되어 발현된 산소화효소를 의미한다.
본 발명의 일 구현예에서, 상기 내인성 모노옥시게나아제 유전자는 ALK1, ALK2, ALK3, ALK4, ALK5, ALK6, ALK7, ALK8, ALK9, ALK10, ALK11 및 ALK12로 이루어진 군으로부터 선택될 수 있으나 이에 한정되는 것은 아니다. 구체적으로 상기 ALK1, ALK2, ALK3, ALK4, ALK5, ALK6, ALK7, ALK8, ALK9, ALK10, ALK11 및 ALK12 는 각각 서열번호 1 내지 9의 뉴클레오티드 서열을 포함할 수 있으나 이에 한정되는 것은 아니다.
본 발명의 일 실시예에서, 내인성 모노옥시게나아제 중 일부를 제거한 재조합 효모를 지방 알코올 또는 알칸을 기질로 포함하는 배지에서 배양하였을 때, 모노옥시게나아제를 제거하지 않은 재조합 효모 대비 과산화 생성물이 감소되고, 중쇄 디올의 생산성이 향상되었음을 확인하였다(도 7).
본 발명의 일 구현예에서, 상기 외인성 모노옥시게나아제 유전자는 CYP153A13, CYP153A33, nfa22930(CYP154), nfa33510(CYP151A) 및 nfa22290(CYP140A)으로 이루어진 군으로부터 선택될 수 있으나 이에 한정되는 것은 아니다. 구체적으로, 상기 CYP153A13, CYP153A33, nfa22930, nfa33510 및 nfa22290는 각각 서열번호 33 내지 37의 뉴클레오티드 서열을 포함할 수 있으나 이에 한정되는 것은 아니다.
본 발명의 다른 일 실시예에서는, 야생형 효모의 내인성 모노옥시게나아제 유전자를 모두 제거한 후 박테리아 유래의 외인성 모노옥시게나아제 유전자를 도입한 재조합 효모를 지방 알코올 또는 알칸을 기질로 포함하는 배지에서 배양하였을 때, 중쇄 디올의 생산성이 현저하게 향상되었음을 확인하였다(도 9, 도 10a, 도 10b).
본 발명의 일 구현예에 따르면, 상기 내인성 모노옥시게나아제 유전자, 지방 알코올 디하이드로게나아제 유전자, 지방 알코올 옥시다아제 유전자, 아실-CoA 옥시다아제 유전자는 해당 미생물 내에 존재하는 모든 상동형 유전자가 제거되는 것이 바람직하지만, 경우에 따라 이들 중 일부 유전자가 제거된 재조합 미생물도 본 발명에 있어서 적용될 수 있다.
본 발명의 일 구현예에 따르면, 상기 지방 알코올 디하이드로게나아제 유전자는 ADH1, ADH2, ADH3, ADH4, ADH5, ADH6, ADH7, ADH8 및 FADH로 이루어진 군으로부터 선택될 수 있으나 이에 한정되는 것은 아니다. 구체적으로, 상기 ADH1, ADH2, ADH3, ADH4, ADH5, ADH6, ADH7, ADH8 및 FADH는 각각 서열번호 13 내지 21의 뉴클레오티드 서열을 포함할 수 있으나 이에 한정되는 것은 아니다.
본 발명의 일 구현예에 따르면, 상기 지방 알코올 옥시다아제 유전자는 FAO 유전자일 수 있으나 이에 한정되는 것은 아니다. 구체적으로, 상기 FAO 유전자는 서열번호 22의 뉴클레오티드 서열을 포함할 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 일 구현예에 따르면, 상기 지방 알데히드 디하이드로게나아제 유전자는 FALDH1, FALDH2, FALDH3 및 FALDH4로 이루어진 군으로부터 선택될 수 있으나 이에 한정되는 것은 아니다. 구체적으로, 상기 FALDH1, FALDH2, FALDH3 및 FALDH4 유전자는 각각 서열번호 23 내지 26의 뉴클레오티드 서열을 포함할 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 일 구현예에 따르면, 상기 아실-CoA 옥시다아제 유전자는 ACO1, ACO2, ACO3, ACO4, ACO5 및 ACO6로 이루어진 군으로부터 선택될 수 있으나 이에 한정되는 것은 아니다. 구체적으로, 상기 ACO1, ACO2, ACO3, ACO4, ACO5 및 ACO6 유전자는 각각 서열번호 27 내지 32의 뉴클레오티드 서열을 포함할 수 있으나, 이에 한정되는 것은 아니다.
본 발명에 있어서, 본 기술분야에 공지된 통상의 유전자 재조합 기술을 이용하여 상기 모노옥시게나아제, 지방 알코올 디하이드로게나아제, 지방 알코올 옥시다아제 유전자, 지방 알데히드 디하이드로게나아제 및 아실-CoA 옥시다아제로부터 선택되는 유전자가 제거된 재조합 미생물을 제조할 수 있다. 본 발명에 있어서, 상기 "제거"란 용어는 해당 유전자의 일부 또는 전부가 물리적으로 제거된 것뿐만 아니라, 해당 유전자로부터 전사된 mRNA로부터 단백질이 만들어지지 않는 상태 및 해당 유전자로부터 발현된 단백질이 기능을 하지 못하는 상태 등도 포괄적으로 포함하는 의미로 사용된다.
본 발명에서 사용될 수 있는 유전자 재조합 기술로는 형질전환(transformation), 형질도입(transduction), 형질주입(transfection), 미세주입(microinjection), 전기천공(electroporation) 등의 방법을 예시할 수 있으나 이에 한정되는 것은 아니다.
본 발명에 있어서, 사용될 수 있는 미생물은 ω-산화 및 β-산화 대사 과정을 모두 갖고 있는 임의의 미생물이 제한없이 사용될 수 있으며, 예컨대 효모를 포함하는 진핵생물 및 대장균을 포함하는 원핵생물 등이 사용될 수 있다. 본 발명의 구현예에 따르면, 상기 미생물은 효모를 사용하는 것이 바람직하며, 상기 효모로는 야로위아 속(Yarrowia sp), 사카로마이세스 속(Saccharomyces sp), 피키아 속(Pichia sp), 캔디다 속(Candida sp) 등의 효모가 제한없이 사용될 수 있고, 이 중에서도 야로위아 리폴리티카(Yarrowia lipolytica), 캔디다 트로피 칼리스(Candida tropicalis), 캔디다 인판티콜라(Candida infanticola), 사카로마이세스 세레비지애(Saccharomyces cerevisiae), 피키아 알코홀로피아(Pichia alcoholophia), 위커하미엘라 소르보필라(Wickerhamiella sorbophila) 또는 캔디다 마이코더마(Candida mycoderma)를 사용할 수 있다.
상기와 같이, 지방 알코올 디하이드로게나아제, 지방 알코올 옥시다아제 유전자 및 β-산화 대사 경로 관련 유전자와, 선택적으로 지방 알데히드 디하이드로게나아제 유전자가 제거된 미생물의 경우, 알칸이 기질로 공급되면 시토크롬 P450 및 NADPH-시토크롬 P450 리덕타아제의 작용에 의해 두 말단 중 어느 한 쪽이 산화되어 1차 알코올이 형성되지만, 지방 알코올 디하이드로게나아제 유전자 및 지방 알코올 옥시다아제 유전자가 제거되어 있기 때문에 더 이상의 산화가 일어나지 못하게 된다. 그리고, 상기와 같이 형성된 1차 알코올은 다시 기질이 되어 시토크롬 P450 및 NADPH-시토크롬 P450 리덕타아제의 작용에 의해 다른 쪽 말단이 산화됨으로써 2차 알코올인 디올이 형성되게 된다. 상기와 같이 알칸을 기질로 이용하게 되면 2차례에 걸친 산화 반응을 통해 디올이 형성되지만, 기질로 알칸이 아닌 알코올을 이용하게 되면 1차례의 산화만으로 디올이 형성된다.
또한, 높은 과산화 활성을 가지는 내인성 모노옥시게나아제 유전자가 일부 제거된 미생물의 경우, 알칸이 기질로 공급되면 시토크롬 P450 및 NADPH-시토크롬 P450 리덕타아제의 작용에 의해 두 말단 중 어느 한 쪽이 산화되어 1차 알코올이 형성되고, 일부 모노옥시게나아제의 결실 전 대비 1차 알코올의 과산화 생성물은 감소하며, 다른 쪽 말단이 산화되어 형성되는 중쇄 디올의 생성량이 증가하게 된다.
또한, 내인성 모노옥시게나아제 유전자의 전부가 제거되고 외인성 박테리아 모노옥시게나아제가 도입된 미생물의 경우, 알칸이 기질로 공급되면 모노옥시게나아제의 과산화 활성이 현저하게 감소되어 중쇄 디올의 생성량이 월등하게 증가하게 된다.
다른 일 측면에서, 본 발명은
(a) 탄화수소의 ω-산화 대사 경로와 β-산화 대사 경로를 모두 가지고 있는 미생물에서, ω-산화 대사 경로 중의 내인성 모노옥시게나아제 유전자, 지방 알코올 디하이드로게나아제 유전자, 지방 알코올 옥시다아제 유전자, 및 지방 알데히드 디하이드로게나아제 유전자; 및 β-산화 경로 중의 아실-CoA 옥시다아제 유전자가 제거되고, 외인성 모노옥시게나아제 유전자가 도입된 재조합 미생물을 제조하는 단계; 및
(b) 상기 재조합 미생물에 지방산 알콜 또는 알칸을 기질로 처리하여 배양하는 단계;를 포함하는 중쇄 디올의 생산 방법을 제공한다.
본 발명에 있어서, 상기 ω-산화 대사 경로 중의 지방 알코올 디하이드로게나아제 및/또는 지방 알코올 옥시다아제 유전자가 제거되고, 선택적으로 지방 알데히드 디하이드로게나아제 유전자가 제거되고; β-산화 대사 경로 중의 아실-CoA 유전자가 제거되며; 또한 외인성 모노옥시게나아제 유전자가 도입된 재조합 미생물을 이용하여 지방 알코올의 추가적인 산화 및 β-산화 대사를 방지함으로써 중쇄 디올을 높은 수율로 생산할 수 있다. 상기 내인성 모노옥시게나아제, 지방 알코올 디하이드로게나아제, 지방 알코올 옥시다아제, 지방 알데히드 디하이드로게나아제 및 β-산화 대사 경로 관련 유전자는 해당 미생물 내에 존재하는 모든 상동형 유전자가 제거된 것이 바람직하지만, 경우에 따라 이들 중 일부 유전자가 제거된 재조합 미생물도 본 발명에 있어서 적용될 수 있다.
본 발명에 있어서, 사용될 수 있는 미생물은 ω-산화 및 β-산화 대사 과정을 모두 갖고 있는 임의의 미생물이 제한없이 사용될 수 있으며, 예컨대 효모를 포함하는 진핵생물 및 대장균을 포함하는 원핵생물 등이 사용될 수 있다. 본 발명의 구현예에 따르면, 상기 미생물은 효모를 사용하는 것이 바람직하며, 상기 효모로는 야로위아 속, 사카로마이세스 속, 피키아 속, 캔디다 속 등의 효모가 제한없이 사용될 수 있고, 이 중에서도 야로위아 리폴리티카, 사카로마이세스 세레비지애, 위커하미엘라 소르보필라, 캔디다 트로피칼리스, 캔디다 인판티콜라, 피키아 알코홀로피아 또는 캔디다 마이코더마를 사용하는 것이 바람직하며, 야로위아 리폴리티카를 사용하는 것이 더욱 바람직하다.
본 발명에 있어서, 본 기술분야에 공지된 통상의 유전자 재조합 기술을 이용하여 상기 내인성 모노옥시게나아제, 지방 알코올 디하이드로게나아제, 지방 알코올 옥시다아제 유전자, 지방 알데히드 디하이드로게나아제 및 아실-CoA 옥시다아제로부터 선택되는 유전자가 제거된 재조합 미생물을 제조할 수 있다. 본 발명에 있어서, 상기 "제거"란 용어는 해당 유전자의 일부 또는 전부가 물리적으로 제거된 것뿐만 아니라, 해당 유전자로부터 전사된 mRNA로부터 단백질이 만들어지지 않는 상태 및 해당 유전자로부터 발현된 단백질이 기능을 하지 못하는 상태 등도 포괄적으로 포함하는 의미로 사용된다.
본 발명에 있어서, "디올"은 두 개의 히드록시기(-OH 기)를 포함하고 있는 화합물을 총칭하는 것으로서, "중쇄 디올"은 탄소수 5 내지 30, 바람직하게는 탄소수 6 내지 20, 보다 바람직하게는 탄소수 8 내지 16 또는 탄소수 6 내지 14를 갖는 디올 화합물을 모두 포함하는 의미로 사용된다.
본 발명에 있어서, 단계 (b)의 기질은 지방산 유래의 알코올 및 알칸으로 이루어지는 군으로부터 선택될 수 있으나 이에 한정되는 것은 아니다. 본 발명의 구현예에 따르면, 상기 지방산 유래의 알코올로는 탄소수 5 내지 30, 바람직하게는 탄소수 6 내지 20, 보다 바람직하게는 탄소수 8 내지 16을 갖는 알코올이 사용될 수 있으나 이에 한정되는 것은 아니다. 본 발명의 다른 구현예에 따르면, 상기 알칸은 탄소수 5 내지 30, 바람직하게는 탄소수 6 내지 20, 보다 바람직하게는 탄소수 8 내지 16을 갖는 알칸이 사용될 수 있으나 이에 한정되는 것은 아니다. 본 발명의 바람직한 구현예에 따르면, 상기 알칸은 도데칸일 수 있으나 이에 한정되는 것은 아니다. 본 발명의 다른 바람직한 구현예에 따르면, 상기 중쇄 디올은 1,12-도데칸디올일 수 있으나 이에 한정되는 것은 아니다.
이하, 본 발명을 실시예에 의하여 상세히 설명한다.
단, 하기 실시예는 본 발명을 구체적으로 예시하는 것이며, 본 발명의 내용이 하기 실시예에 의해 한정되지 아니한다.
1. 재료 및 방법
1-1. 미생물
플라스미드의 증식에는 대장균 (E. coli DH5α)을 사용하였다. 디올 생산 균주는 야생형 효모 야로위아 리폴리티카(Yarrowia lipolytica)를 사용하였으며, 본 발명에서 사용한 야로위아 균주는 하기 표 4에 나타내었다. 상기 야로위아 균주를 25% 글리세롤에서 -70℃로 유지하였고, 스톡 균주를 YPD 한천 배지 (10 g/L yeast extract, 20 g/L Bacto peptone, 20 g/L glucose, and 20 g/L agarose)에 도말하여 30℃에서 밤새 배양하였다.
1-2. 효모의 게놈에서 유전자의 결실
야로위아의 표적 유전자는 URA3 유전자를 선별 마커로 사용하여 상동 재조합을 통해 녹아웃되었다 (도 2). URA3 유전자는 야로위아 균주로부터 증폭되었다; 야로위아의 글루타메이트 생성 유전자 (GLT1) 또는 MATB2 5'-UTR 영역 또는 살모넬라 엔테리카(Salmonella enterica)의 ATP 포스포리보실트랜스퍼라제 유전자 (HisG)로부터 부분 서열을 함유하는 반복 서열 (RS)을 pGEM T easy 벡터 (Promega)에 클로닝 하였다. XXX_F / XXX_R (표 1)을 사용하여 PCR에 의해 야로위아 게놈 DNA로부터 각각의 표적 유전자의 5'- 및 3'- 플랭킹 영역 (표 2)을 증폭시켰다.
이름 프라이머 염기서열 (5'-> 3') 서열번호
pop-out vector cloning HisG1-BglII F aattgggcccagatctcagaccggttcagacaggat 38
HisG1-EcoRI R tctctgggcggaattcggaggtgcggatatgaggta 39
HisG1-NotI F tgtttctcggcggccgccagaccggttcagacaggat 40
HisG1-BamHI R tccaacgcgtggatccggaggtgcggatatgaggta 41
HisG2-BglII F aattgggcccagatctaacgctacctcgaccagaaa 42
HisG2-EcoRI R tctctgggcggaattctcttctcgatcggcagtacc 43
HisG2-NotI F tgtttctcggcggccgcaacgctacctcgaccagaaa 44
HisG2-BamHI R tccaacgcgtggatcctcttctcgatcggcagtacc 45
HisG3-BglII F aattgggcccagatctgtgatctgacgcctgatgg 46
HisG3-EcoRI R tctctgggcggaattctcagggtattgaagctcatgg 47
HisG3-NotI F tgtttctcggcggccgcgtgatctgacgcctgatgg 48
HisG3-BamHI R tccaacgcgtggatcctcagggtattgaagctcatgg 49
glt1-BglII F aattgggcccagatcttcagaacttgcgccgataaa 50
glt1-EcoRI R tctctgggcggaattcctttgccagctagaccatagag 51
glt1-NotI F tgtttctcggcggccgctcagaacttgcgccgataaa 52
glt1-BamHI R tccaacgcgtggatccctttgccagctagaccatagag 53
glt2-BglII F aattgggcccagatctattggcgggttcgttactt 54
glt2-EcoRI R tctctgggcggaattccctggaagaaggccgtattatc 55
glt2-NotI F tgtttctcggcggccgcattggcgggttcgttactt 56
glt2-BamHI R tccaacgcgtggatcccctggaagaaggccgtattatc 57
ACO1 deletion POX1-F1 ttcctcaatggtggagaaga 58
POX1-R1 tctttatcctgtctgaaccggtctggtaccatagtccttgccatgc 59
POX1-F2 atcgctacctcatatccgcacctcccttctgtcccccgagtttct 60
POX1-R2 aagaagggcttgagagtcg 61
ACO2 deletion POX2-F1 cccaacaacactggcac 62
POX2-R1 tctttatcctgtctgaaccggtctgctcctcatcgtagatggc 63
POX2-F2 atcgctacctcatatccgcacctccgacaagacccgacaggc 64
POX2-R2 agaccagagtcctcttcg 65
ACO3 deletion POX3-F1 accttcacagagccaccca 66
POX3-R1 atggctctctgggcggtgttgggggtgttgatgatg 67
POX3-F2 ttgttgtgtttctcgcaaggttctcatcgaggcctg 68
POX3-R2 aggaaaggtcgaagagtgctct 69
ACO4 deletion POX4-F1 actgcgagagcgatctg 70
POX4-R1 tctttatcctgtctgaaccggtctgttcatgagcatgtagtttcg 71
POX4-F2 atcgctacctcatatccgcacctccgaggacgacaaagccggag 72
POX4-R2 agagcagagtcctcctcaa 73
ACO5 deletion POX5-F1 aacttcctcacaggcagcgagc 74
POX5-R1 atggctctctgggcggagtagagagtgggagttgaggtc 75
POX5-F2 ttgttgtgtttctcgccccgtcaaggacgctgag 76
POX5-R2 acagtaaggtggggcttgactc 77
ACO6 deletion POX6-F1 agtccctcaacacgtttaccg 78
POX6-R1 tctttatcctgtctgaaccggtctgccatttagtggcagcaacgtt 79
POX6-F2 atcgctacctcatatccgcacctccgagctctgatcaaccgaacc 80
POX6-R2 aggaagggtctaatgacaga 81
FALDH1 deletion FALDH1-F1 aatcactcctcctacgc 82
FALDH1-R1 tctttatcctgtctgaaccggtctgtggtctcggggacacctc 83
FALDH1-F2 atcgctacctcatatccgcacctccccatcatcaagccccgaa 84
FALDH1-R2 accgacataatctgagcaat 85
FALDH2 deletion FALDH2-F1 accactaggtgagatcgag 86
FALDH2-R1 tctttatcctgtctgaaccggtctgctccgacactaccggaacgc 87
FALDH2-F2 atcgctacctcatatccgcacctcccttgctcccacagttgtt 88
FALDH2-R2 gatcacccagaaccatagc 89
FALDH3 deletion FALDH3-F1 gtgacccccaccacgtcac 90
FALDH3-R1 tctttatcctgtctgaaccggtctgttctgacattttcagcgccac 91
FALDH3-F2 atcgctacctcatatccgcacctccccattacgagcgtttgacgg 92
FALDH3-R2 cagggctggggaccacc 93
FALDH4 deletion FALDH4-F1 taccgactggaccagattc 94
FALDH4-R1 tctttatcctgtctgaaccggtctgcggcagtggcaatgatcttac 95
FALDH4-F2 atcgctacctcatatccgcacctccgactcgattcatcgctcctac 96
FALDH4-R2 caaatctttcggaagattcgg 97
FAO deletion FAO-F1 atcattgtcggtggaggaac 98
FAO-R1 acgcctttctggtcgaggtagcgttgcgtagtcgtaaggctggac 99
FAO-F2 attctggtactgccgatcgagaagaccgtcatcggtgagattctt 100
FAO-R2 attcgaggtcggagatcctt 101
ADH1 deletion ADH1-F1 cccagaaggctgtcattttc 102
ADH1-R1 acgcctttctggtcgaggtagcgtttcgcagttcttggggatatg 103
ADH1-F2 attctggtactgccgatcgagaagagccgacaaggagaagatgtg 104
ADH1-R2 caatcttgccctcctccat 105
ADH2 deletion ADH2-F1 ccagaagggtgtcatcttcg 106
ADH2-R1 acgcctttctggtcgaggtagcgttatcgcagttcttgggaatgt 107
ADH2-F2 attctggtactgccgatcgagaagaccgacaaggagaagatgtgc 108
ADH2-R2 caatcttgccctcctccata 109
ADH3 deletion ADH3-F1 agaaagccgtcatcttcgag 110
ADH3-R1 ttgcacaagtaacgaacccgccaattcacagttcttggggatgtg 111
ADH3-F2 ggagataatacggccttcttccagggctgacaaggagaagatgtgc 112
ADH3-R2 acttggagcagtccagaacg 113
ADH4 deletion ADH4-F1 gtcaaaacgtcgacgaacct 114
ADH4-R1 aggtatttatcggcgcaagttctgaggcttgaggtcaatgtcgat 115
ADH4-F2 ctcctctatggtctagctggcaaaggacatggaggcccactctaa 116
ADH4-R2 agtactcccaagcgtcctca 117
ADH5 deletion ADH5-F1 gagagccgctttcaccac 118
ADH5-R1 aggtatttatcggcgcaagttctgaagagcctggtaggcagtgag 119
ADH5-F2 ctcctctatggtctagctggcaaagttccaggacgtgatcaagga 120
ADH5-R2 taaggatgatcttgccggtag 121
ADH6 deletion ADH6-F1 gacccagaaagccattgtgt 122
ADH6-R1 aggtatttatcggcgcaagttctgaagccacctgagaaaggtctg 123
ADH6-F2 ctcctctatggtctagctggcaaagcaccgaggagaaggagaaga 124
ADH6-R2 tccctcctccatcaaggtaa 125
ADH7 deletion ADH7-F1 gacgttcccaagacacaaaag 126
ADH7-R1 aggtatttatcggcgcaagttctgaaggcgtactgctggaaagag 127
ADH7-F2 ctcctctatggtctagctggcaaagacccacaccaaggagctg 128
ADH7-R2 caacgacacgaccaacaatc 129
ADH8 deletion ADH8-F1 atcgcgccaacttgtttaat 130
ADH8-R1 aggtatttatcggcgcaagttctgacaccttctctcgtgggatgt 131
ADH8-F2 ctcctctatggtctagctggcaaagtgtgttgagtctggcaaagc 132
ADH8-R2 tcaagtccatggcatcaaac 133
FADH deletion FADH-F1 ccgaaggaaagaccatcact 134
FADH-R1 ttgcacaagtaacgaacccgccaatagaaggaagagcagcccata 135
FADH-F2 ggagataatacggccttcttccagggcttgggcttacaagtttgg 136
FADH-R2 tcggtgaaggcagagttgat 137
ALK1 deletion ALK1-F1 gtctttctgctagcctac 138
ALK1-R1 acgcctttctggtcgaggtagcgttgaagagctcttgggcatcaaag 139
ALK1-F2 attctggtactgccgatcgagaagactacctgcgatacgttc 140
ALK1-R2 gagccttggtggtcttg 141
ALK2 deletion ALK2-F1 cgttttggccgttgc 142
ALK2-R1 acgcctttctggtcgaggtagcgttgttgttgggaattcgc 143
ALK2-F2 attctggtactgccgatcgagaagagcgagtacctgcgatttg 144
ALK2-R2 gcgttaatgagcttctcg 145
ALK3 deletion ALK3-F1 gctcgaaatactgattggag 146
ALK3-R1 acgcctttctggtcgaggtagcgttcgcccttgaagttgtctacac 147
ALK3-F2 attctggtactgccgatcgagaagagcagtgtgagtacctgcgttatg 148
ALK3-R2 tcaactaactactgtaccctc 149
ALK4 deletion ALK4-F1 gaccaatcttacgatcgtgc 150
ALK4-R1 acgcctttctggtcgaggtagcgttctgcatgagtctttcg 151
ALK4-F2 attctggtactgccgatcgagaagactcaagaagctgcgagctg 152
ALK4-R2 cttcatcgacacccaaac 153
ALK5 deletion ALK5-F1 caactctttggcgtcc 154
ALK5-R1 acgcctttctggtcgaggtagcgttgagtgagtcgagtcgag 155
ALK5-F2 attctggtactgccgatcgagaagagctccgaagtgctattc 156
ALK5-R2 catcttgacccaaacacc 157
ALK6 deletion ALK6-F1 cttggccttggccattc 158
ALK6-R1 acgcctttctggtcgaggtagcgttccttcttgatggtcttgaaaag 159
ALK6-F2 attctggtactgccgatcgagaagaggtgatactcccgacgaattg 160
ALK6-R2 ctactccatcttcaaccaaac 161
ALK7 deletion ALK7-F1 cgatactggtgctggctttc 162
ALK7-R1 acgcctttctggtcgaggtagcgttctcttgcaaactgaggacg 163
ALK7-F2 attctggtactgccgatcgagaagacgactacctgcgatacgtg 164
ALK7-R2 ctcctggtgacacagagtc 165
ALK8 deletion ALK8-F1 ctgatcatccccattacgctc 166
ALK8-R1 cagcgccatcaggcgtcagatcacgtttcaagggaagacaaggg 167
ALK8-F2 gaccatgagcttcaataccctgactgactttgggaccagcac 168
ALK8-R2 gactcatggtgatatggg 169
ALK9 deletion ALK9-F1 cagcttccatcttccccggttc 170
ALK9-R1 cagcgccatcaggcgtcagatcacgctcgagagtgttgccatc 171
ALK9 amplification ALK9-F agcaataggaaagcttatgctgggaagaactctc 172
ALK9-R ggatccgcaattaacactagttcttcttgtacaac 173
ALK10 amplification ALK10-F agcaataggaaagcttatgattctactctacgtcc 174
ALK10-R ggatccgcaattaacatcacggtaagttatttgtgc 175
ALK11 amplification ALK11-F agcaataggaaagcttatgctcttaccactgcttt 176
ALK11-R ggatccgcaattaacatcacttgacccgaatcctc 177
ALK12 amplification ALK12-F agcaataggaaagcttatgctcgaaatactgattg 178
ALK12-R ggatccgcaattaacatcaactaactactgtaccc 179
경로 효소 유전자 GenBank accession No. 서열번호
ω-Oxidation pathway Cytochrome P450 ALK1 YALI0E25982g 1
ALK2 YALI0F01320g 2
ALK3 YALI0A20130g 3
ALK4 YALI0B13816g 4
ALK5 YALI0B13838g 5
ALK6 YALI0B01848g 6
ALK7 YALI0A15488g 7
ALK8 YALI0C12122g 8
ALK9 YALI0B06248g 9
ALK10 YALI0B20702g 10
ALK11 YALI0C10054g 11
ALK12 YALI0A20130g 12
Alcohol dehydrogenase ADH1 YALI0D25630g 13
ADH2 YALI0E17787g 14
ADH3 YALI0A16379g 15
ADH4 YALI0E15818g 16
ADH5 YALI0D02167g 17
ADH6 YALI0A15147g 18
ADH7 YALI0E07766g 19
ADH8 YALI0C12595g 20
FADH YALI0F09603g 21
Fatty-alcohol oxidase FAO YALI0B14014g 22
Fatty aldehyde dehydrogenase FALDH1 YALI0A17875g 23
FALDH2 YALI0E15400g 24
FALDH3 YALI0B01298g 25
FALDH4 YALI0F23793g 26
β-Oxidation pathway Acyl-CoA oxidase ACO1 YALI0E32835g 27
ACO2 YALI0F10857g 28
ACO3 YALI0D24750g 29
ACO4 YALI0E27654g 30
ACO5 YALI0C23859g 31
ACO6 YALI0E06567g 32
결실 및 팝-아웃 카세트에 대한 상동성 영역을 PCR 중첩에 의해 수득하고, 이 분절 단편을 효모 세포로 형질 전환시켰다. 이어서, Boeke et al. (1984)의 방법에 따라 5- 플루오로 오로틱산 (5-FOA) 선택 및 우라실 마커 구출을 수행 하였다. 유전자의 성공적인 파괴는 게놈 DNA로부터 프라이머 XXX_F1 / XXX_R1 및 XXX_F2 / XXX_R2를 사용하여 PCR에 의해 확인되었다. 유전자 DNA 추출 키트 (Gene all biotechnology, Korea)를 이용하여 게놈 DNA를 얻었다. Prime star DNA 중합 효소 (Takara, Japan)를 갖는 Biometra T3000 열 순환기를 PCR 증폭에 사용 하였다. 증폭된 단편을 QIAgen 정제 키트 (Qiagen, Germany)로 정제하고, DNA 단편을 QIAquick 겔 추출 키트 (Qiagen, Germany)를 사용하여 아가로스겔로부터 회수 하였다.
1-3. 모노옥시게나아제 발현 벡터의 구축
플라스미드 pGEM-T-easy 벡터 (Promega, USA)를 야로위아에서 발현 벡터의 골격으로 사용 하였다. 선별 마커로서 사용된 URA3 유전자를 프라이머 세트 YlURA3 1F Kpn 및 YlURA3 2B Spe를 사용하여 PCR에 의해 Y. lipolytica Po1g 균주의 게놈 DNA (gDNA)로부터 증폭시켰다. PCR 생성물을 KpnI / SpeI로 분해하고 KpnI 및 SpeI 분해된 pGEM-T-easy 벡터에 삽입 하였다. 생성된 플라스미드를 pYIGEM_URA3으로 지정하였다. TEF 프로모터 및 자율 복제 서열 (GenBank no. X68252) 모두 프라이머 세트 Y1TEFp sph 1F / YlTEFp Nde Hind 2R 및 Y1ARS1 1K Kpn Hind / YlARS1 2R Nco를 사용하여 Y. lipolytica Po1g 균주의 gDNA로부터 증폭시켰다. 각기 수득된 PCR 생성물을 TEF 프로모터의 경우 SphI / HindIII, ARS의 경우 HindIII / NcoI로 분해시켰다; 2 개의 분해된 단편을 SphI / NcoI 분해된 pYIGEM_URA3으로 라이게이션 하였다. 생성된 플라스미드를 pYIGEM로 지정하였다(도 3). 야로위아에서 각각의 ALK 유전자의 오픈 리딩 프레임 (ORF)을 ALKX_AF1 / ALKX_AR1 및 ALKX_AF2 / ALKX_AR2 프라이머를 사용하여 PCR을 통해 야로위아의 게놈 DNA로부터 증폭시켰다 (표 2). 각 ALK의 증폭된 단편을 HindIII 및 BamHI로 분해하고, 분해된 단편을 pYIGEM의 HindIII 및 BamHI 사이에 삽입 하였다. 각각의 결과 발현 벡터를 pYIGEM_ALK_X (표 3)로 지정 하였다.
야로위아에서 박테리아 CYP153A 모노옥시게나아제에 대한 발현 벡터를 구축하기 위해, ALK1의 ER 막 고정을 위한 서열 (atgtccaacgccctcaacctgtcgctggcgctcggcgtctttctgctagcctactatggcttctccgtgatccagtaccgcatcaaaacccgcaagctcgaaaagaagtggaagtgtggtaagcccaaggatatttcacgattc: 서열번호 180)을 정렬(align) PCR에 의해 박테리아 CYP153A 모노옥시게나아제의 N-말단에 융합시켰다. 융합된 유전자를 HindIII 및 BamHI로 분해하고, 분해된 단편을 pYIGEM의 HindIII 및 BamHI 사이에 삽입 하였다. 각각의 결과 발현 벡터를 pYIGEM_CYP153_X (표 3)로 지정 하였다.
발현 벡터 설명
pYUHisG1 pGEM T easy derivative, URA3 [a] maker, HisG1 [b] pop-out cassette
pYUHisG2 pGEM T easy derivative, URA3 maker, HisG2 [b] pop-out cassette
pYUGlt2 pGEM T easy derivative, URA3 maker, Glt2 [c] pop-out cassette
pYUGlt3 pGEM T easy derivative, URA3 maker, Glt3 [c] pop-out cassette
pYIGEM pGEM T easy derivative, TEF [d] promoter, URA3 maker, ARS [e]
pYIALK_1 pYIEGM derivative, ALK1
pYIALK_2 pYIEGM derivative, ALK2
pYIALK_3 pYIEGM derivative, ALK3
pYIALK_4 pYIEGM derivative, ALK4
pYIALK_5 pYIEGM derivative, ALK5
pYIALK_6 pYIEGM derivative, ALK6
pYIALK_7 pYIEGM derivative, ALK7
pYIALK_8 pYIEGM derivative, ALK8
pYIALK_9 pYIEGM derivative, ALK9
pYIALK_10 pYIEGM derivative, ALK10
pYIALK_11 pYIEGM derivative, ALK11
pYIALK_12 pYIEGM derivative, ALK12
pYICYP153_13 pYIEGM derivative, Actinobacter sp.-derived CYP153A13 [f]
pYICYP153_33 pYIEGM derivative, Marinobacter aquaeolei VT8-derived CYP153A33 [f]
1-4. 재조합 균주의 배양
배양 테스트할 균주를 전날 3 ㎖ YPD 배지(Bacto Laboratories, Yeast extract 10g/L, Bacto peptone 20g/L, glucose 20g/L)에 접종하여 30℃에서 200rpm으로 하루 동안 키웠다. 이어서, 전배양한 배양액 1 mL를 100mL의 성장기 배지(50 g/L glucose, 10 g/L yeast extract, 6.7 g/L yeast nitrogen base w/o amino acids (YNB), 5 g/L (NH4)2SO4, 0.05 g/L uracil, and 0.1 M potassium phosphate buffer pH 6.0) 를 함유하는 1L baffled 플라스크에 넣고, 플레이트 교반기에서 30℃ 200 rpm으로 하루 동안 배양하였다. 600 nm에서 세포 밀도가 대략 40에 도달 할 때 (OD 600), 성장기 배지에서 배양한 배양액 50 mL를 전환기 배지(30 g/L glucose, 3 g/L yeast extract, 6.7 g/L YNB w/o amino acids, 5 g/L (NH4)2SO4, 0.05 g/L uracil, 0.1 M potassium phosphate buffer pH 7.6) 50 mL를 함유하는 250mL baffled 플라스크에 넣어, 30℃에서 200 rpm으로 하루 또는 이틀 동안 배양하였다. 이때, 기질로는 0.05% tween 80에 용해된 n-알칸 또는 1-알칸올 1~ 10 g/L를 사용하였다.
1-5. 시료의 분석 방법
600 nm의 흡광도에서 UV 분광 광도계 (Uvikon XL, France Secomam)를 사용하여 바이오 매스를 측정하였다. 기판 및 생성물은 70eV에서 작동되는 4 중 극자 전자 선택 이온화 검출기 (EI)가 장착된 가스 크로마토그래피-질량 분석 시스템 (GC-MS)에 의해 식별되고 정량화되었다. Agilent HP-5MS 컬럼 (길이 30m, 내경 0.25mm 및 필름 두께 0.25μm)을 10: 1 분할 비율로 사용하였다. 캐리어 가스로서 헬륨을 사용하였고, 오븐 온도는 150 ℃ 내지 172 ℃ 범위였다. 산-처리 배양 배지 및 동등한 부피의 클로로포름을 사용하여 GC-MS 분석을 위한 기질 및 생성물의 추출을 수행 하였다. 시알릴화를 위해, N, O- 비스 (트리메틸 실릴) 트리 플루오로 아세트 아미드 (BSTFA)를 추출 된 샘플 (1: 2, v/v)에 첨가하고, 혼합물을 60 ℃에서 20 분 동안 배양하였다. 내부 표준으로서 테트라 데칸이 사용되었다.
2. 실험 결과 및 고찰
2-1. 낙-아웃 균주의 제작
ω-산화 및 β-산화의 각 단계에는 여러 유전자가 관여한다. 따라서, 소수성 기질로부터 α,ω-디올의 생산에 적합한 야로위아 균주를 조작하는 것은 게놈 전체 변형을 수반 하였다. 야로위아에서, 비 동종 말단 결합 (NHEJ)은 DNA에서 이중 가닥 파괴를 복구하기 위해 상동 재조합 (HR)보다 많이 사용된다. HR 효율성을 개선하기 위해 NHEJ 기반 이중 가닥 파손 (DSB) 복구를 담당하는 KU70 유전자를 파괴한 다음 선별 마커로 사용되는 URA3 유전자와 함께 2 분자 PCR 기반 유전자 표적화 방법을 사용했다. 표적 유전자를 제거하기 위해 사용된 2 분자 결실 카세트를 URA3 스플릿 마커 재조합을 통해 게놈에 부위 특이적으로 삽입 하였다. 삽입 부위는 PCR에 의해 확인되었다; 이어서 5'-FOA 플레이트의 선택을 통한 URA3의 팝-아웃이 이어졌다. 이 전략은 무한한 수의 유전자를 삭제하고 ω- / β- 산화 경로를 유발하는 다양한 균주의 구성을 가능하게했다 (도 4).
그 결과, 야생형 효모(Yarrowia lipolytica) 균주에 존재하는 시토크롬 p450 모노옥시게나아제 유전자 (ALK1~12), 지방 알코올 디하이드로게나아제 유전자 (ADH1~8, FADH), 지방 알코올 옥시다아제 유전자 (FAO), 지방 알데히드 디하이드로게나아제 유전자 (FALDH1~4), 산화 대사 경로 관련 유전자 (아실-CoA 옥시다아제 유전자; ACO1~6)의 일부 또는 전부가 제거된 총 9종의 낙-아웃 균주를 제작하였다(표 4 및 도 4).
개발균주 특징
YID01 MatA, leu2-270, ura3-302::△ura3△ku70△aco1-6::URA3
YID02 MatA, leu2-270, ura3-302::△ura3△ku70△aco1-6△faldh1-4::URA3
YID03 MatA, leu2-270, ura3-302::△ura3△ku70△aco1-6△faldh1-4△fao::URA3
YID04 MatA, leu2-270, ura3-302::△ura3△ku70△aco1-6△faldh1-4△fao△adh1-8::URA3
YID05 MatA, leu2-270, ura3-302::△ura3△ku70△aco1-6△faldh1-4△fao△adh1-8△fadh::URA3
YID06 MatA, leu2-270, ura3-302::△ura3△ku70△aco1-6△faldh1-4△fao△adh1-8△fadh△alk3::URA3
YID07 MatA, leu2-270, ura3-302::△ura3△ku70△aco1-6△faldh1-4△fao△adh1-8△fadh△alk6::URA3
YID08 MatA, leu2-270, ura3-302::△ura3△ku70△aco1-6△faldh1-4△fao△adh1-8△fadh△alk3△alk6::URA3
YID09 MatA, leu2-270, ura3-302::△ura3△ku70△aco1-6△faldh1-4△fao△adh1-8△fadh△alk1-12::URA3
2-2. 효모 기반의 중쇄-디올 생합성 플랫폼의 개발
먼저, ω- 산화를 통해 합성된 대사 산물의 분해를 막기 위해, 아실-CoA 산화 효소를 암호화하는 6 개의 유전자 (ACO1-6)를 삭제함으로써 야로위아에서 ω- 산화 경로를 차단했다. 생성된 균주 YID001은, bi- 이작용성 화학 물질과 소수성 기질을 유일한 탄소원으로 이용할 수 없었다. 이러한 특성 덕분에 YID001을 α,ω-디올의 생산을 위한 스타터 변형으로 사용할 수 있었다.
배양 배지에서 α,ω-디올을 축적 할 수 있는 균주를 개발하기 위해, 본 발명자들은 ω- 산화 경로를 통해 알데히드기를 카르복실기로 산화시키는 4 개의 지방 알데히드 탈수소효소 (FALDH1-4)를 암호화하는 유전자를 제거함으로써 YID001의 게놈을 변형시킴으로써, 돌연변이체 YID002를 생성했다.
다음으로, YID002의 게놈에서 1 개의 알코올 산화효소 (FAO1), 4 개의 지방 알코올 탈수소효소 (FADH1-4) 및 8 개의 알코올 탈수소효소 (ADH1-8)를 암호화하는 유전자를 제거했다(도 5a). 조작된 균주 YID003, YID004 및 YID005는 n- 알칸 또는 지방 알코올로부터 각각 1,12-디올을 생산하였으며 (도 5b 및 5c), 이는 GC-MS를 통해 확인되었다 (도 6: n-도데칸은 4.47±0.38, 10.91±1.13, 및 11.1±1.33, 1-도데칸올은 3.10±0.58, 6.14±0.73, 및 9.62±0.98 mg/L). 흥미롭게도, FAO1 결실된 균주 만이 1,12-디올을 생산하였으며, 이는 FAO1이 알코올 기의 분해에 중요한 역할을 한다는 것을 나타낸다.
한편, ACO1-6, FAO, FADH1-4 ADH1-8을 결실시켰음에도 불구하고, 1,12-도데칸이산 및 ω- 하이드록시 도데칸산을 포함하는 과산화 생성물의 형성은 총 산화된 생성물의 90 % 이상이었다 (도 5b). 이 결과는 야로위아가 n- 알칸이 CYP에 의해 말단 하이드록실화 된 후에 산화 과정을 계속할 수 있는 다른 효소(들)를 보유하고 있음을 시사한다.
2-3. 효모의 내인성 모노옥시게나아제 유전자의 결실
야로위아는 CYP52 계열에 속하는 12 개의 CYP 유전자 (ALK1-12)를 보유하고 있다. 먼저, Alk3pAlk6p와 같은 주요 ALK가 과산화 부산물 형성을 담당한다고 가정하였다. Alk3pAlk6p는 n-알칸의 지방산으로의 히드록실화에 매우 관여하기 때문에 선택되었다(도 7a). ALK3ALK6의 결실이 부산물의 형성에 어떻게 영향을 미치는지를 확인하기 위하여, 본 발명자들은 ALK3 및 ALK6의 결실을 갖는 균주 YID005의 돌연변이체를 생성하였다; 이들 돌연변이체를 각각 △alk3 또는 alk6로 지정 하였다 (도 7b).
그 결과 도 7c에 나타낸 바와 같이, Alk3p 및/또는 Alk6p가 결실된 돌연변이체 (YID006-8)는 n-도데칸으로부터 1,12-디올의 생산량을 증가시키는 것을 확인하였다. △aralk3△aralk6 돌연변이체(YID008)를 함유하는 플라스크에서 1,12-도데칸이산의 양은 약 28 % 감소 된 반면, n-도데칸으로부터 생성된 1,12-디올의 양은 약 60 % 증가되었다. 그러나, 과산화 부산물은 여전히 총 산화 생성물의 90 %를 초과하여 형성되었고, 1,12-디올은 총계의 7 % 미만으로 생성되었다.
2-4. 내인성 모노옥시게나아제 유전자의 종류에 따른 과산화 활성 확인
중쇄 디올의 생산성을 향상시키기 위해, 본 발명자들은 초기에 과산화 및 낮은 알카리에 대한 높은 말단 히드록실화 활성을 갖는 12 개의 내인성 Alkp들을 스크리닝 하였다.
구체적으로, n-알칸으로부터 α,ω-디올의 생산에 적합한 Alkps를 얻기 위해, 본 발명자들은 CYP 배경에서 생성되지 않은 균주에서 Alkp를 평가하고 지방 알코올 또는 지방 알데히드의 다운스트림 산화 능력이 부족한 것으로 평가 하였다.이러한 이유로, 본 발명자들은 ω-알코올 및 ω- 알데히드 산화가 미리 차단된 균주 YID005로부터 모든 ALK 유전자들을 결실시켰다 (도 8a). 각각의 Alkp를 발현시키기 위해, 각각의 ALK 유전자가 구성 적 TEF1 프로모터에 의해 제어되는 발현 벡터를 구축 하였다. 각각의 ALK 유전자를 개별적으로 발현하는 균주는 플라스크 배양에서 n-도데 칸과 함께 배양되었다.
그 결과, 도 8b는 1,12-도데칸디온산, 12-하이드록시도데칸산, 1-도데칸올 및 도데칸산을 포함하는 산화 생성물의 생성을 평가함으로써 결정된 균주의 산화 활성을 보여준다. 다른 Alks와 비교하여, Alk8p, Alk11p 및 Alk12p는 n-도데칸에 대한 비교적 약한 말단 산화 활성을 나타냈다. 모든 Alkp는 총 생성물의 80 % 이상을 나타내는 과산화 된 생성물의 형성을 촉매하여, 모든 Alkp가 n-도데칸의 대사 동안 1- 도데칸올 및 도데칸산 알데히드의 산화에 관여했음을 나타낸다. Alk1p 및 Alk2p에 의해 촉매된 1,12-도데칸디 온산의 형성은 총 생성물의 70 % 인 반면, Alk3p, Alk6p, Alk9p 및 Alk10p에 의한 촉매는 전체 생성물의 45-60 %의 범위에 있었다. Alk4p 및 Alk7p는 각각 47.4 및 44.2 %의 12-하이드록시도데칸산; 및 32.3 및 10.81 %의 12-도데칸산의 생산을 촉매 하였다. Alkps 중 어느 것도 1,12-디올의 생산을 촉매 할 수 없었지만, 1-도데 카놀의 생산은 전체의 4 %에 불과했다. 일단 Alkps에 의해 1-DO가 생성되면, 과산화 산화에 의한 1-DO의 1-DDA 로의 연속 산화 활성이 반대쪽 말단의 β-탄소에서의 산화 활성보다 더 높은 것으로 보였다.
이로부터, 이들 Alkps는 n-도데칸으로부터 1,12-디올을 높은 수율로 생산하기에는 어느 정도 한계가 있음을 알 수 있다.
2-5. 효모에 외인성 박테리아 모노옥시게나아제의 도입
박테리아 클래스 I P450에 속하는 CYP153A 모노옥시게나아제는 포화 및 불포화 지방산 및 알칸의 ω- 하이드록실화를 촉매한다. Y. lipolytica에 의한 n-알칸으로부터 α,ω- 디올의 생산에 대한 CYP153A의 효과를 확인하기 위하여, n-알칸의 α,ω- 말단 활성을 보여주는 CYP153A13A.sp 및 CYP153A33M.aq에 대한 발현 벡터를 구축했다. 구축된 벡터에서, CYP153A13A.sp 및 CYP153A33M.aq 모노옥시게나아제를 암호화하는 유전자는 ER 막 고정 Alk1p의 서열에 융합되었다; 융합된 유전자는 구성적 TEF1 프로모터에 의해 제어되었다. 발현 벡터를 돌연변이 균주 YID009에 도입하고 (도 9a), 형질전환체를 플라스크에서 n-도데칸과 함께 배양하였다. 야로위아의 내인성 CPRb는 CYP153A13A.sp와 CYP153A33M.aq의 환원 효소 파트너로 사용되었다.
그 결과, 도 9b 및 9c는 플라스크 배양에서 이들 균주에 의해 생성된 생성물의 분포를 보여준다. 이들 생성물 중에서, 1-도데칸올, 12-하이드록시도데칸산, 1,12-도데칸이산 및 1,12-디올을 확인 하였다. CYP153A13A.sp와 비교하여, CYP153A33M.aq는 과산화 활성이 낮았다. 이는 CYP153A33M.aq가 CYP153A13A.sp (전체 제품의 11.8 %)를 사용하여 생산된 것보다 알칸에서 1,12-디올 (전체 제품의 41.8 %)의 높은 퍼센트를 생산했음을 나타낸다. 결과적으로, 균주 YID005 (11.1 mg/L)에 의해 생성된 양과 비교하여, CYP153A33M.aq를 함유하는 균주는 1.76 g/L에서 더 높은 수준의 1,12-디올을 생성 하였다 (도 9b 및 9c).
2-6. 효모에 다양한 박테리아 모노옥시게나아제의 도입
다른 종류의 박테리아의 모노옥시게나아제를 사용하였을 때에도 n-알칸으로부터 중쇄 디올을 높은 수준으로 생산할 수 있는지 확인하고자 하였다.
구체적으로, CYP153A13A.sp, CYP153A33M.aq, nfa22290, nfa22930과 nfa33510에 대한 발현 벡터를 구축한 후, 각 발현 벡터를 돌연변이 균주 YID009(내인성 ALK 결실 균주)에 도입한 후 형질전환체를 n-dodecane과 함께 배양하였다.
효소 유전자 박테리아 균주 서열번호
Cytochrome P450
monooxygenase
CYP153A13 M.aquaeolei 33
CYP153A33 Alcanivorax borkumensis 34
nfa22930 (CYP154) Nocardia farcinica 35
nfa33510 (CYP151A) Nocardia farcinica 36
nfa22290 (CYP140A) Nocardia farcinica 37
그 결과, 내인성 모노옥시게나아제를 가지는 재조합 효모(YID05) 대비 외인성 모노옥시게나아제 유전자를 도입한 모든 돌연변이체에서 과산화 활성이 낮았으며(도 10a), 1,12-디올을 더 높은 수준으로 생성함을 확인하였다(도 10b). 특히, 내인성 모노옥시게나아제를 제거하고 및 외인성 CYP153AM.aq 유전자가 도입된 균주 (1.76 mg/L)는 내인성 모노옥시게나제를 포함하는 YID05 균주 (0.011 mg/L) 대비 중쇄 디올을 160배 더 많이 생산하는 것을 확인하였다(도 10b).
<110> Korea Research Institute of Bioscience and Biotechnology <120> RECOMBINANT STRAIN FOR PRODUCING MIDIUM CHAIN DIOL AND METHOD FOR PRODUCING MIDIUM CHAIN DIOL USING THE SAME <130> 2019-DPA-3498 <160> 180 <170> KoPatentIn 3.0 <210> 1 <211> 1572 <212> DNA <213> Artificial Sequence <220> <223> ALK1 <400> 1 atgtccaacg ccctcaacct gtcgctggcg ctcggcgtct ttctgctagc ctactatggc 60 ttctccgtga tccagtacca catcaaaacc cgcaagctcg aaaagaagtg gaagtgtggt 120 aagcccaagg atatttcacg attccccttt tcagcctcct tcttcatccc cttcctggtt 180 gagtccaaga agaaccgact gctcgagttt gttcagtgga tgtttgagtc ccaggtctac 240 cccggttaca cctgcaagac caccgtgttc ggcgttgaca tgtaccacac tgtcgaccct 300 gagaacctca aggctgttct agccacccag ttcaaggact tttgtctcgg tgagcgacac 360 gctcagttcc tccccgttct tggcaacggt atctttactc ttgacggcca gggatggcag 420 cattctcgag ccatgctgcg accccagttt gctcgagatc aggtttccga cgttgagatg 480 atcgaggagc acatccagta catgacctct cgaatcccca aggatggctc tgcctttgat 540 gcccaagagc tcttcttcaa cctgactctt gacactgcca ccgagttcct gtttggccag 600 tctgtcggtt cccagaccgt cgaaaccaac cccactgccg tccccaccga tatgcccgtc 660 catctccgaa agtctttcca ggaggacttc aacaccgctc aggagcacct tggccagcga 720 gctcgtcttc agatgttcta ctgggcctgg agaccccgag agctgtactc ttctggagag 780 cgagtccatg cctttgtcga ccactacgtt aagaaggctc ttgaggagtc cgagaagcac 840 gttgacgacg gtaagtacgt tttcctccga gagcttgcca aggagaccaa ggaccccatt 900 gttctgcgag accaggctct caacattctt cttgctggcc gagataccac tgcttctctt 960 ctgtcttggt gcctgtatct gatggctcga cgacccgagg tttatgccaa gctgcgagag 1020 gaggtcattg agaaccttgg agacggtgag gatctgtcca ccatcacctt tgagtctctc 1080 aagcgatgcg actacctgcg atacgttctt aacgaagtcc tgcgactcta cccctctgtc 1140 cctgccaaca tgcgatacgc tacccgagac accactcttc cccgaggagg aggacctgac 1200 ggaatgcagc ccattgtcgt ccgaaagggc aacctcgttt cataccacgt tttcaccact 1260 caccgactca aggagttctg gggtgaggac gctgaggagt tccgacccga gcgatggtac 1320 gaggatggtg cctcccaggc taagggatgg gagtacctgc ccttcaatgg aggaccccga 1380 atctgtctgg gccagcagta cgctcttacc gaggctggct atgctcttgc acgaatcgcg 1440 cagctctacg acaccatcga gaacgctgac gacaagcctg agcctcccgt caagttccat 1500 gctctgacca tgtgccacca cactggtgtc ctggtcaagc tctacaactc caagaccacc 1560 aaggctcagt aa 1572 <210> 2 <211> 1572 <212> DNA <213> Artificial Sequence <220> <223> ALK2 <400> 2 atgatcatct tatacgtttt ggccgttgcg gtctccttcc tcatcttcaa gagagtcacc 60 tacacgatgc gaagccgaga gctcgccaag aagtggcact gtgaggagcc tcacaacctg 120 aatgagttcc ccctgaactt gccgctcttc ttcctcatca tcaatgcctc tcgacgacac 180 gagctgctcg ataccctact tggccttttc cgatcctttg ctcccaccaa gactgttaag 240 caggtgcttc tgggctcctt cactatcatc cccaccaacg atcccgagaa catcaaggcc 300 gttctggcca ctcagttcaa ggacttctgc ctgggccagc gacacggcca gcttgccccc 360 gttctgggag acggaatctt cactctggac ggccagggat ggcagcactc tcgagccatg 420 ctgcgacccc agtttgctcg agaccaggtg tctgacgtcg agatgatcga gcgacacgtg 480 cagatgatgt tgctgcgaat tcccaacaac aagaagttcg acatccagga gctcttcttc 540 aacctgaccc ttgatactgc caccgagttt ctgtttggcc agaccgtcgg ctcccagacc 600 gtcgagatgc ccaacgagga caagtctacc gtctctgata tgcccaagga tatgcgaaag 660 tctttccagg aggactttaa tgtggcccag caccacggtg gaatccgaac tagattccag 720 atgttctact ggctgtggcg acccactgag ctcttctctt cctccaagcg agtccacgcc 780 tttgtcgacc actacgtcga gaaggctctt gccaactccg acgaagagaa gtccgacgac 840 aagtacattt tcctgcgaga actggcccga gaagtcaagg acccccgagt tctgcgagac 900 caggccctca acattctgct tgctggccga gacaccaccg ccggtgttct gtcctggatc 960 gtctacgagc tggcccgaca ccccgaggtg tggaagaagc tgcgagccga gattcaccag 1020 gactttggtg acggcagcga tctctcccag atcacctttg agggtcttaa gcgatgcgag 1080 tacctgcgat ttgtcatcaa cgagactctg cgactctatc cttctgttcc tcttaacgtc 1140 cgatacgcct ctcgagatac cactcttccc cgaggaggag gacccgacga gtccaagcct 1200 atccttgtcc gaaagggaga caccattgtc tacaacgtct tctctatgca ccgaactgag 1260 gagttctggg gcaaggactg cgacgagttc cgacctgagc gatgggctga gaagggctct 1320 cgaggctggg agtacctgcc cttcaacgga ggaccccgaa tttgcctggg ccagcagtac 1380 gctctcactg agacctcgta cgtcatcact cgaatctgcc agctgttcac caatatcgag 1440 aacgctgaca cagctgtcga gcctcctcag aagctgcacg ccctcactct gtgccatctt 1500 aacggtgtgt tcgttaagat gacccgggac gaggctgcct ttgccgagac cgagaagctc 1560 attaacgcat aa 1572 <210> 3 <211> 1566 <212> DNA <213> Artificial Sequence <220> <223> ALK3 <400> 3 atgctcgaaa tactgattgg agtcaccctc ttctttacct tgtggagggt gctggtgcta 60 gccgacctca agagaagaca gaagaagtct ggatatgggt atcctccgat tgcttccaat 120 ggacttcttg gatggagagg gctggtccac cagctatcag gatttgttaa ggatattgga 180 ccagccggct ggggagctca gttcaaagaa catggcaaga cccatctcta tcctgtcttc 240 cccactcaat tgctggtgac ccgggatcct gacaatgtca aggcgattct ggcgactcaa 300 ttcaaagatt tttctttcgg aatcagaaaa gaagcgcttt gtccgtctct gggatacgga 360 atattcaccg tggagggctc aagctggtct cattctcgtg ctctactgag acctcagttt 420 tcaagagagc agatctcacg tctggactca gtggagcacc actttcagga gtttgcacag 480 tgtgtagaca acttcaaggg cgagtatttc gacattcaaa aactgttttt tgctcagtca 540 atggacactt ctactgattt tttgcttggc gaatcagtag gctgtctgaa agagctcctg 600 gagactaggg acggagacga gagctctaag aagttcggag ccaactttca acatgcattt 660 gacagagtac aacgattggt ggctctgcga gtagtgttcc aagaaaacta ctggataatc 720 ggagatgtct tcttcaggaa cgagttccgc caggtaaacg agctgattca aaagttcgtg 780 cagggttacg ttgataaggc tctcaaggct cgagctcaca aagcgcctat ttacaccaat 840 cctgacaagt acatattttt gtacgagttg gccagagata ccactaatcc ccgagttctc 900 agagatcaag ttctcaacat tctcattgca ggacgagaca ctaccgcagc tactctatcc 960 tggctcatgt ttgagctggc tcagaaacct cacattttcc acaagctgag aaaggccgtg 1020 attgaagact ttgggaccac aattgaaaac atcagtttcg aaagtctcaa gcagtgtgag 1080 tacctgcgtt atgttttgaa cgaggttttg agacttcatc ctgttgtacc catcaacctg 1140 agagtggctc tcaaagatac tactcttcct agaggaggtg gacctaatgg agatgagccc 1200 atctttgtgc ccaagggtca gaaaatcaac tatgccgttt actggacaca cagagacgag 1260 caatactggg gtgaagatgc cgaggagttc aaacccgaaa gatgggacac taccaatcat 1320 ccaggacctc tgggaaaggg atgggagttt ctgcctttca atggtggtcc cagaatctgt 1380 ctgggtcagc aatttgctct cactgaaatg ggttacattc tcactaggct ggtccaggag 1440 tatagcgata tcgggattga tgaggagtac catgataggc cgctaagggt gaggcattct 1500 atcaccatga gtcacgggga cggtgttcat gtgaggttat cgagggaggg tacagtagtt 1560 agttga 1566 <210> 4 <211> 1560 <212> DNA <213> Artificial Sequence <220> <223> ALK4 <400> 4 atgttgacca atcttacgat cgtgctgatc acccttctgg tgacatatac ggtgctgacc 60 cgtacggctc tgcggatcca gcgggcaaga aaggccaagc aaatgggagc tactcttcct 120 cctcgagtta acaatggtat tctgggatgg tacggattgt ggctcgtgat ccagaacgcc 180 cgatccatga aactacccca caccctcgga aagcggtttg ccaatggacc tacctggctc 240 actcctgtgg ctggtaacga gcccatcaac accattgatc ccgagaacgt caaggctatc 300 ctggccactc agttcaagga cttttgtctg ggcattcgac acagggcact gagcccttct 360 atcggagatg gtatcttcac tctggacgga gaaggatgga cccactctcg agctctgctg 420 cgacctcagt tttcgcgaca gcagatctcc cgagtccact cgctcgaaag actcatgcag 480 attctgttca aattgattcg aaaggagaac ggcgagtact ttgacctgca gaacctcttc 540 ttcatgttta ccctagactc tgccaccgag tttctttacg gggcttctgt cgacactctg 600 gccgatctcc tgggcgagcc tgtagaagga gaccacgggg gagtcggcga ggaggtccga 660 aaggcctacc agcagagcat caacaacgcc caggacatct ccgctattcg aacccgtctc 720 cagggtcttt actggattgc aggaaacatc taccagcgaa acctgtatca aaagagtaac 780 aagggcgtca aggatttcag ccagttcttt gtcgacaagg ctctcaacac atccaaggaa 840 aagctcaagg aaatggagga ctccgacaac tacgtctttc tgtacgagct tgtcaagagc 900 acccgaaacc ccgttgtcat tcgagaccag ctcatcaaca ttctggtcgc gggacgggat 960 actaccgcct ctctgctgtc ctttaccttc tacactcttg gacgaagacc cgatgttctc 1020 aagaagctgc gagctgccat tctggaggat ttcggaacct cccccgacga gatcaccttc 1080 gagtctctca agcgatgtga ttacttgcga tacgtgctca atgaggttct ccgactatac 1140 ccttcggttc ctatcaacgc tcgaagtgct accagggaca ctactcttcc ccgaggagga 1200 ggacctgacg gtaagcagcc cgtcttcgtc tacaagggcc agatggtggc ctactgcgtg 1260 tactggatgc accgagacaa gaagtactgg ggtgaagatg ccctggagtt caatcctgat 1320 cgatgggacc ccaaagtgca accacagaac aagggctggg agtacctgcc gttcaacgga 1380 ggtcctcgaa tttgtttggg acagcaattt gcccttaccg aagccggtta tgtggtgact 1440 cgaatgctcc aagagtttga tactgtacat tgcaagaacc agaaggagga ggagcatcct 1500 ccttatgctc ttgatttgac catgcgccac ggtgagggtg tttgggtgtc gatgaagtag 1560 1560 <210> 5 <211> 1596 <212> DNA <213> Artificial Sequence <220> <223> ALK5 <400> 5 atgctacaac tctttggcgt ccttgtgttg gcgctgacaa ccgctctgct cgcccagctg 60 gcctacaaca agtatgaata caaccgcaag gtgaagcagt ttggctgtgg tgaactaacc 120 gtcgcgaaga acggcttttt gggctggaag ggaatccgag cagtgctcca tgtgctcaaa 180 accaagaagg gaccagctgc tcttaaggag cgaatcgatg cgtatggacg aacctatgtc 240 tttcacattg gccctgcccc tgtgatttcc accatggagc ctgagaacat caaggcaatg 300 ttggcgactc aatttaagga cttttctctg ggaactcgat acagatccct ggctcctact 360 cttggagacg gaatttttac tcttgacggt catggatgga cccactctcg agctcttctc 420 cgacctcagt ttgcccgaga gcaggtttct cgactcgact cactcgaagc tcatttccag 480 atcctgaaaa tgtgcgttga taaggagatg cgagagaagg gaaacgatcc cagaggattt 540 gacatccaga acctcttctt cctctttact ctggactctg ctaccgagtt tttgtttggt 600 tcttcggtgg actcgcttgt ggacttcctc gacgaccctt cagtgcgcac gggagaccac 660 ggaggagtcg acgaggctgc tcgaaagggt ttcaacaact ccttcaatca cgctcaggaa 720 ttgtgtgccc tgcgatcccg actacatact ctttactgga ttgtaggatc cgttgtcaag 780 aaggagcctt ttgagcggta caacaaggag atcaagactt ttgtggattt tttcgctgcg 840 aaggctctga aggcccgaaa ggagaaggac atgtctctca tggacaatga tcagtacatt 900 tttatgtacg agttggtcaa ggaaaccacc aaccccgtca ccctcagaga ccagatgctt 960 aacattctcc ttgctggacg agataccacc gcctccatgt tgtcgtggat ctactttcga 1020 ctggctcgag accccaagct gtacgctaag ctccgaagtg ctattcttga agactttgga 1080 accactcccg aagccatcac tttcgagtct ctgaagcaat gtgactatct ccgatacgtt 1140 cttaatgagg cccttcgact ctaccccgtt gttcccatca acggaagaac cgccactcgg 1200 gacactactc ttcctagagg aggtggaccc gaccagtccc agcccatttt cattcccaaa 1260 ggccagaccg tgtcttactc tgtttactgg actcaccgag accctcgatt ctggggcgag 1320 gatgctgagg agttcattcc tgagcgatgg gatcctcgaa acggcaacat tggccgaggg 1380 tgggagtacc tgccgttcaa cggtggtcct cgaatctgcc ttggtcagca gtttgctctt 1440 accgaggttg gatacgttct gagtagactg gttcagacat atgagacact tgagacttgt 1500 gaccacaagc ctctgccccc tctgtacaac catgctctta cgatgtgcca tgaggagggt 1560 gtttgggtca agatgtataa gggtgagaag gcgtag 1596 <210> 6 <211> 1581 <212> DNA <213> Artificial Sequence <220> <223> ALK6 <400> 6 atgatccagt cggttttctt ggccttggcc attctcatcg cctatctggg gtttgcagaa 60 tggttttctc gattccaaca cagacgaatc tccaaaaaga agggctgtgg catgcctccc 120 atggcaaatg gagggtttct gggttggtac ggactctata agacgtacca gatcacgtca 180 gaacgcacat accctcattc catgcgaatg ggcctcgagg cgtttggcca tacgtttgtc 240 tatcctgttc caggtacaga catgctacaa acgatccatc cagacaacat caaagcgatt 300 ctggcgaccc aattcaaaga tttttcactg ggaacccgtc acaaaatcat gctgccaact 360 ctcggagacg gtatctttac tctcgatgga gagggatgga cccattcccg agctctactg 420 cgacctcaat tcgcccggga tcaggtcagt cacgtggctt ctctagagag acacattcag 480 gtgcttttca agaccatcaa gaaggagaac aaggagtgtg atcctgccaa gggctttgat 540 atccaggagc tcttcttcat gttgactctc gatactgcca cagaatttct ttgcggagac 600 tcggttgatt ccttgaccga ctacttggcc gacccaactg ctccccagct cgaccactct 660 ggtattgacg aaaatgtgcg acgagctttc cctgaagcct ttaataccgc tcagtggttc 720 tgttccattc gagccaaact catgaagttg tatttcttcg ctggaaccgt cttttaccga 780 aagaagtacg ccgacgctaa caagattgtg cacgacttca ccgactttta cgtgtccaag 840 gctctggccg ccagaaaaga aaagttccag gaactcgacc aggagggcaa gtacattttc 900 ttgtacgagc tggcaaagga gacccgaaac cccaaggtgc tcagagacca gatgctcaac 960 attttgcttg ccggacgtga caccaccgca tctcttcttt cctgggtcat gttccgaatg 1020 gctcgtcaac ctgaaacttg gaagaagctg agacaggctg tgattaatga ttttggtgat 1080 actcccgacg aattgtcttt tgagtcactc aagcgatgcg aatatctccg atacgtgctt 1140 aacgaaggtc tgcggcttta tccttctgtt cccatgaact tccgagtggc cacaagagat 1200 actactcttc ccaagggagg aggtcctgac cttgaccagc ccatcttcat cccaaagggc 1260 ggtatcgtgg tttactctgt ctatcatacc caccgagctg aggagtactg gggtaaggat 1320 acagaggagt ttattcctga gcgatgggat cctgctgagg gctatcagat tgcccgagga 1380 tgggagtatc ttccattcaa tggtggtcct cgaatttgtc taggtcagca gtttgccctt 1440 accgaggctg ggtatgtttt ggccagactt gctcaggagt ttgagactgt gaccagttgt 1500 gatgataagc cattgcctcc caagtacaat acccatttga ccatgagtca tgatgatggt 1560 gtttggttga agatggagta g 1581 <210> 7 <211> 1581 <212> DNA <213> Artificial Sequence <220> <223> ALK7 <400> 7 atgttccagc tattctcgat actggtgctg gctttcacaa ctgccctggt cgcccagctg 60 gcgtataacc agtacgacta tcaacgcaag gtcaagaagt ttggatgtgg ccagctccgt 120 gtggctgaaa acggactgtt tggctggaaa ggcctgcgag aagtgctccg tatcaacaag 180 tacaagttgg gtcctgctgc cttgaaggac cggtttgaaa agtacggcaa gacgcatgtg 240 ttccacgtcg gtccgtctcc tctcatcact accatggatc cggagaacat caaggccatg 300 ttggccaccc agttcaagga cttttgtctc attgccagat acaaagccct gggacccatg 360 cttggagacg gcattttcac cctcgatgga cacggctgga cccattctcg ggctctgttg 420 cgtcctcagt ttgcaagaga gcaggtctct cgactcgatt ccatcgaaca tcactttcag 480 attctcaaaa agtgcatttc caaggaaatg agcgacaaga gagacacaca aagaggcttt 540 gacatccaaa acctcttctt tctcatgacc ctggacactg ccaccgagtt tctgtttggc 600 tcgtcggtcg attctctggt ggactttctc gacgatcctt ctattcagac tggagaccac 660 ggagggattg acgaggccgc aagaaagggc ttcagcaacg cattcaaccg tgctcaggag 720 ctgagctctc tcagaactcg tcttcacaag ctgtattggg tgattggaac cctggctgtc 780 agggaaccat accaccgata caatagagaa gtcaagacgt ttgtggacca ttacgcagcc 840 aaggcgatta aagcccgcaa cgaaaagaac accgatctgc tcgataacga caagtacatc 900 ttcatgtatg agctggtcaa agagacctcc aatcccatca ccctgagaga ccagatgctc 960 aacattttgc tggctggaag agacaccacc gcctcgatgc tctcatggat atatttcagg 1020 cttgcccgtg accctaagcg atatgccaag ctccgagcgg cagttctggc tgactttgga 1080 ccgggccccg agaatattac gtttgagtcg ctcaagaaat gcgactacct gcgatacgtg 1140 ttgaacgagt ccctccgagt gtatcctgtg gtacccatca atgctcgaac cgcttctcgc 1200 gacaccactc tacctcgagg aggagggcct gatggatcac agcccatctt tgtgcccaag 1260 gggcaaaccg tgtcatactc agtctggtgg acccaccgag accccgaatt ctggggacag 1320 gacgctgagg agttcattcc cgagcgatgg gacaccaaga acggcagtat tggacgagga 1380 tgggagtacc tgccgttcaa tggaggtcct cgaatttgtt taggtcaaca gtttgccttg 1440 actgaggtgg gatacgtgtt gagtcggatg gtacagacct acgagacgct ggaaagtgga 1500 gacaccaagc ccttgcctcc gctctacaac catgccttga ctctgtgtca ccaggagggc 1560 gtttggatta agacggagtg a 1581 <210> 8 <211> 1752 <212> DNA <213> Artificial Sequence <220> <223> ALK8 <400> 8 atgataccat ttaccaagat caatctcgaa ctactactac tacccttact gatcatcccc 60 attacgctct ttttgctagt actaaacgtt caagtcaaca ctgttcatag acgttacaag 120 gagtaccgac taaagctggc cagatgcccc cagcaatcca cgggtttatt tggatggtgg 180 ttaatctacg cggtggttcg atgtaaccgt gatcgcttct acagtgccaa agttgttgac 240 tatttcacca aactacgcac cttcatcgtc tcgctaggag gagaactggt catctacacg 300 tccgagtccg aaaacatcaa ggccctctta gccacgcaat tctccgatta cgatctcgga 360 aagacccgac atgctttact cttcaccctc atgggagatg gaatcttcac tttggacggc 420 caaggctggg cacactcgag agctctactg cgacctcagt tttcaaagga aacggtcagc 480 cccttgtctt cccttgaaac atctctacaa caactgatgg caattgtcaa gcgaagagtg 540 gctctcaagg gagaagtcga tattcaggaa ctgttcttca tgctaacaat ggacacagcc 600 actaatttac tgtacggaga gtcagtagac tccctcggag attgtctcaa agagaccaag 660 aaggagacac acgttatgac ggacggcaag cgtaaccttc tccaatctcg tgaccaccac 720 tccaacgttc cgaacgaatg ggagcccatc tatggaacat atgagaagaa aggactggga 780 atcggctcag agaacagcct ccagtcaggt gtttctccac gcgactcgcc tgtctttgag 840 gtctctgtgt ctgaagatat tcgaaaggcc tacccagctg ctctgaccac ggccctcgag 900 ttctcggcaa tgcgttccaa gcttcagagg ttctattgga tctggggaga tgttctttac 960 cgacaaaaat tccactcggc tgtcaacaca gtccatgcct tttccaacca ttttgtcaac 1020 caagccttga aactgacacc ccaagagctc cagatgaaga gtgcagagaa gtacaccttc 1080 ctttacgagc ttgctcagcg tactcgtgat ccagtggcta ttcgagacca gcttatcaac 1140 attctcattg ctggacgaga cactacagcg gcgctcttgt ccttcgtgtt cctgtgtctg 1200 gtagccaatc ccgagaagct agctaaactg agagaaggca ttatgactga ctttgggacc 1260 agcacagact ccataacctt tgaatctctc aagcggtgtg tctaccttcg ttatgtcatc 1320 aacgaggctc ttcgtctgtg tcctcctgtt cccataaaca tgagacaggc gaacaaggac 1380 acaacactgc ctactggagg tggtaagaac catgacgaac ccatatttgt ggccaagaac 1440 cagattgtca cgtactctgt gctattcatg caccacaacc agaatatttg gggacctgat 1500 gcctccgagt tccgtcctga acggtggggg gaacctgcat gtcccaaagg atgggagtat 1560 ttgcccttca atggcggtcc acgaatctgt cttggccagc agtatgcttt gactgaggct 1620 gcatatgtca ttgttcggtt ggttcaggag tttacggaga tcgaatggcg agacaggaag 1680 ggtctaccag tgctgttcaa gacccatatc accatgagtc tgggagaagg tctgagggtt 1740 catatgaaat ag 1752 <210> 9 <211> 1638 <212> DNA <213> Artificial Sequence <220> <223> ALK9 <400> 9 atgctgggaa gaactctctt agtctcagac cactgtgtag atataacagc ttccatcttc 60 cccggttctt ctcacccctt cacaaccacg aacccagcta tgaacacctt ccatctgtta 120 atcgcactag ccacatttgt ggttgtatac attctttcgt cctcgttcgt ataccagcga 180 cgcaccaacg ctctagagaa gcaatggaag tgcggaaagc cactctacta cgcatcgttc 240 ccgcggtcgc tatggcactt ttacgtcttt ttgcgcgaat ctcgaaaaca caagctcctg 300 gagggcttcc agcgttcatt tgaagccaag aagcccttcc ttaccaacaa agtgaacatc 360 ttcggcaagg acatcttcaa cacctgcgat cccgaaaacc tcaaggccat gcttgccacg 420 caattcaagg acttttgtct gggagaacgc cacgctcaac tgtttcctgt tctgggcgac 480 ggtattttca ctctggacgg caacggatgg caacactctc gagccatgct ccgaccccag 540 tttgctagag accaggtatc tgatgtgcac atggtcgaga cccacctaaa gttcctgaca 600 tctcgaatca caggcagcaa acccgtagac atgcaggagc tcttcttcaa cctgactctg 660 gacaccgcca ccgagtttct gtttggccag tcggttggat gccagattgc agagtccgat 720 cctggcgctt actcctcaga catgcctctg gatctgcgaa agtcgttcca gaaagacttt 780 aacaaggccc aggagcacct tggtgagcgt gtcagactac agatgctcta ctggctatgg 840 aaccccaagg aactacagac tgctggagct agagttcatg cgttcgtcga ccattacgtg 900 tctaaggctt tggtggaggc tgaagagaag gtggacgacg acaagtacgt gttcctcagg 960 gagctggctc gagaaactaa agaccccaag gttcttagag accaggctct gaacattctt 1020 ctggcaggac gagacaccac ggcctcgctg ctgtcctggt gtttctatct catggctaga 1080 gacgatagag tgtggcagaa gctgcgttct gaggtcattg agcactttgg agatggagag 1140 aatctcgaga acatcacttt tgagtccctg aagcgatgcg attacctgag atatgtgctc 1200 aacgaggtgc tgcgactcta cccttccgtt cctgccaata tgcgattcgc tacgaaggac 1260 actactcttc ctcgaggagg agggcccgtg ggacaggatc ccatcgttat cagaaagggc 1320 aacgttattt cttaccatgt gttcaccacc cacagattga cacagtattg gggagaggat 1380 gccgaggagt ttgttcctga gcggtgggct gaaggaaagg ctcgtggatg ggagtatctt 1440 ccattcaacg gagggcctag aatctgtctc ggacagcaat atgcccttac agaggcagga 1500 tacgtgctag ttagacttgc acagatgtat gacactctgg agaatgccga cgacaagcct 1560 gagcccccag tgaaactgca tgctctgacc atgagtcatc tcacaggtgt gcacgtgaag 1620 ttgtacaaga agaactag 1638 <210> 10 <211> 1542 <212> DNA <213> Artificial Sequence <220> <223> ALK10 <400> 10 atgattctac tctacgtcct ggcctttctg gtgtcttacc tgattttcac ccgtcttcga 60 tatcgctacc agagctataa gctggcccaa aagtggaaat gttcaccggt gagagacgtc 120 tcatcgtttc ctatggcttt tcctgagttc ttgttcttct tcaagtcggg caagaacaat 180 gtcttgttag acgagtttgt caacttcttc accaaacgac aaccaaacct gaccgtgggt 240 ctggtgctgg caggcaatga tgtgactgtt acactagagc ctgagaacct caaagccttg 300 ctggctacac agttcaaaga cttttgttta ggagtcagac acaaccaatt ggcccccata 360 ttgggtgacg gcatattcac tcttgatgga cagggttggc aacactcccg agccatgcta 420 cggccacagt ttgcccggga tcaagtttcg gacgttgata tgatcgaacg acatgtccag 480 aacctggttc gcaaaattcc acagggtgat tcatttgaca tccaagggct tttctttaac 540 ttgacgctcg atacagccac agagtttctc tttggtcagt ctgtgagctg ccagacggtg 600 gacaatccag ctgaagatga ctctactgtg actgacatgc ccattcctat gcgaaaatca 660 ttccaatcag atttcaatct cgctcaacac catgggggtt acagagtgcg tcttcaaatg 720 ttttactggc tctggagacc acaggagctg tttacggcca gcaaaagtgt ccgcaagttc 780 gtggaccatt acgtcaagaa ggctcttgtt gaaagcgaga aggaaaagca ggctgatgac 840 aagtatgtat ttctcacaga gctggctcgt gaggtcaaat ctccacaggt tctgagtgac 900 caggccctaa acattcttct ggcaggaaga gacaccacgg cttctctatt gtcttggtgc 960 atctacttgt tagccagaca ccctgaaact tggaacaagc tgagagacga aattctgagc 1020 acttttggtt ctggctcgga cctgtctctc atcacttttg agtctctaaa gagatgcgag 1080 tacctacgat tcgtcatcaa tgaaacactc agattgtatc cttcagtccc cgtcaatgtt 1140 cgctacgcaa cacgtgacac aacactacct agaggagggg gaccggacga gagccaacca 1200 attctcatca gaaagaactc tgtactcgtc tacagtgtgt tcgcgaccca tcgtctgaaa 1260 aagttctggg gcgaagatgc agacgagttc cgacctgaac gatggggaga gggcatatca 1320 cgaggatggg agtacttgcc gttcaacgga gggcccagaa tctgtctggg ccaacaatac 1380 gcattgacag agaccagcta tgtactgact cgaatcgtgc agctgttcgg cactctggag 1440 aacgcagacg ccagtccaga accccccatg aaactacatg ctctaaccat gtgccatctg 1500 accggagtcc acgttaaaat gagcacaaat aacttaccgt ga 1542 <210> 11 <211> 1566 <212> DNA <213> Artificial Sequence <220> <223> ALK11 <400> 11 atgctcttac cactgctttt cgccggctgc gtgttttttt tcctgcacca gcggctcaat 60 tactaccgac gcaaacagcg ggcgtacgaa aaatggcttg cgagcggcaa gtttggcgcc 120 gggcaaaagg tggcggatat ccaggttcaa aacaactttt tgcgcaaccc gtttggtctg 180 gtgcagtttg tggagtttct gaatcgaacc aagggtgcgt tttttgtcga tttcgtcaac 240 caaaacttcc aaaagtacgg ctacattctg cccacccgga cgctgggcaa ggtgaacatc 300 atcacctgcg atccggagct gatcaaaacg gtgctggcga cgaatttcaa ggattggagc 360 attggaatcc gacgaaaggc catgtttccc gtcctgggaa acgccatctt ctccgtggaa 420 ggagaccaat ggacccattc gcgagccatg ctgcgacctc aatttgcccg cgacagcatc 480 gccaacgtcg ctgatctcga gcggcacgtg acccgcctga tcaacgtctt ccgtggctac 540 ggcgtccaat catttgactg ccaaaagtac tttttccagt tcacgttgga ctcggcgagc 600 gattttttgt ttggcgaaag caccaactcg ctgagcgtcc aggacgacaa aagcgagtca 660 gaggacactg gggagtcgtt caacgtgctg acccagcagg gtgagaacgc cgaatcgttt 720 gcccaggcct tcaaggttgc cttcaccttc accgcgatcc ggttgcggct acagcagttt 780 tactggttgc ttcgaccctc caacaaaaag taccgagaca gtatcgacac ggttcacaga 840 cttgttgacg gatatgtgga gcgagcgttg gagaacaagg aggatacgga ccgatacatc 900 atctccaacc agctggtcaa ggtctgcgac gacaaaaaat acatccgcga ccaacttttg 960 ggcattttat tggcgggaag aaacaccacc gccgcagttc tggcctggat catgtatgag 1020 tcggcgcgac ggcccgaaat ctggaacaaa atgcgacagg aggtgaccga cacgttttcc 1080 gacggccccg tgacctccga cgagctccgc aagtgtgttt acgtccgctc ggtcatcaac 1140 gaggcccttc gtgtctaccc ttctgtaccc atgaaccaga gagtggcagt gcgagacacg 1200 tttctgccga ccggcggcgg tcctgacggc tcgcttcctc tctattgtcc tcgaggaacc 1260 aaagtggcct actcggtctt tgctctacac atgcgagagg atttctacgg ctccgacagt 1320 cacattttcc gcccagagcg atggaacgag ggagtgggca aaggatggca atatttgccg 1380 ttcaacggcg gtcctcgaat ctgtctgggc cagcaatttg cgctcatgga ggccagctac 1440 accctggtaa gactggtaca ggagttcgat accgttgagt tggatatgga ggtggttgat 1500 cctcccccga agatgtcttc ctttagtatg gttcatcgcg atggtgtgag gattcgggtc 1560 aagtga 1566 <210> 12 <211> 1566 <212> DNA <213> Artificial Sequence <220> <223> ALK12 <400> 12 atgctcgaaa tactgattgg agtcaccctc ttctttacct tgtggagggt gctggtgcta 60 gccgacctca agagaagaca gaagaagtct ggatatgggt atcctccgat tgcttccaat 120 ggacttcttg gatggagagg gctggtccac cagctatcag gatttgttaa ggatattgga 180 ccagccggct ggggagctca gttcaaagaa catggcaaga cccatctcta tcctgtcttc 240 cccactcaat tgctggtgac ccgggatcct gacaatgtca aggcgattct ggcgactcaa 300 ttcaaagatt tttctttcgg aatcagaaaa gaagcgcttt gtccgtctct gggatacgga 360 atattcaccg tggagggctc aagctggtct cattctcgtg ctctactgag acctcagttt 420 tcaagagagc agatctcacg tctggactca gtggagcacc actttcagga gtttgcacag 480 tgtgtagaca acttcaaggg cgagtatttc gacattcaaa aactgttttt tgctcagtca 540 atggacactt ctactgattt tttgcttggc gaatcagtag gctgtctgaa agagctcctg 600 gagactaggg acggagacga gagctctaag aagttcggag ccaactttca acatgcattt 660 gacagagtac aacgattggt ggctctgcga gtagtgttcc aagaaaacta ctggataatc 720 ggagatgtct tcttcaggaa cgagttccgc caggtaaacg agctgattca aaagttcgtg 780 cagggttacg ttgataaggc tctcaaggct cgagctcaca aagcgcctat ttacaccaat 840 cctgacaagt acatattttt gtacgagttg gccagagata ccactaatcc ccgagttctc 900 agagatcaag ttctcaacat tctcattgca ggacgagaca ctaccgcagc tactctatcc 960 tggctcatgt ttgagctggc tcagaaacct cacattttcc acaagctgag aaaggccgtg 1020 attgaagact ttgggaccac aattgaaaac atcagtttcg aaagtctcaa gcagtgtgag 1080 tacctgcgtt atgttttgaa cgaggttttg agacttcatc ctgttgtacc catcaacctg 1140 agagtggctc tcaaagatac tactcttcct agaggaggtg gacctaatgg agatgagccc 1200 atctttgtgc ccaagggtca gaaaatcaac tatgccgttt actggacaca cagagacgag 1260 caatactggg gtgaagatgc cgaggagttc aaacccgaaa gatgggacac taccaatcat 1320 ccaggacctc tgggaaaggg atgggagttt ctgcctttca atggtggtcc cagaatctgt 1380 ctgggtcagc aatttgctct cactgaaatg ggttacattc tcactaggct ggtccaggag 1440 tatagcgata tcgggattga tgaggagtac catgataggc cgctaagggt gaggcattct 1500 atcaccatga gtcacgggga cggtgttcat gtgaggttat cgagggaggg tacagtagtt 1560 agttga 1566 <210> 13 <211> 1050 <212> DNA <213> Artificial Sequence <220> <223> ADH1 <400> 13 atgaccacca tccccaagac ccagaaggct gtcattttcg agacctccgg cggtcctctc 60 atgtacaagg acgtgcctgt gcctgttcct gccgacgacg agattctcgt caacgtcaag 120 ttttccggag tgtgccacac tgacctccat gcctggaagg gcgactggcc tcttgacacc 180 aaacttcctc tcattggcgg ccacgagggc gccggagttg tcgtggccaa gggcaagaac 240 gtgaccacct tcgaaatcgg cgactacgcc ggtatcaagt ggattaacaa ggcctgttac 300 acctgtgagt tctgccaggt gtctgccgag cccaactgtc ctaaagctac catgtcggga 360 tacacccacg acggctcgtt ccagcagtac gccactgcca acgctgtcca ggcagcccat 420 atccccaaga actgcgacct cgcccagatt gctcccattc tctgcgccgg catcaccgtc 480 tacaaggctc ttaagaccgc tggcctcaag gctggtgagt gggccgccgt taccggagct 540 ggaggaggcc tcggttctct ggccgtccag tacgctaagg ccatgggcta ccgagtgctg 600 gccattgaca ccggcgccga caaggagaag atgtgcaagg agctcggcgc cgaggtcttc 660 atcgactttg ctaagtccaa ggatctggtc aaggacgtcc aggatgccac caagggcgga 720 ccccacgccg ttatcaacgt gtctgtctcc gagtttgccg tcaaccagtc cgtcgagtac 780 gtgcgaactc tgggcaccgt ggttctggtc ggcctgcccg ctggagctgt ctgcaagtcg 840 cccatcttcc agcaagtggc tcgatccatt cagatcaagg gttcctatgt tggcaaccga 900 gccgactcgc aggaggccat tgaattcttc gcccggggcc ttgtcaagtc tcccattatt 960 attgtgggtc tttcccagct ggagtccgtc tacaagctga tggaggaggg caagattgcc 1020 ggcagatacg ttctggacac ttacaagtaa 1050 <210> 14 <211> 1056 <212> DNA <213> Artificial Sequence <220> <223> ADH2 <400> 14 atgtctgctc ccgtcatccc caagacccag aagggtgtca tcttcgagac ctccggcggt 60 cctctcatgt acaaggacat ccccgtgcct gtgcctgccg acgacgagat tctggtcaac 120 gtcaagttct ccggagtctg ccacacggat ctgcacgcct ggaagggcga ctggcctctg 180 gacaccaagc ttcctctggt cggaggccac gagggtgccg gagtggttgt tgccaagggt 240 aagaacgttg acacgtttga gattggcgac tatgccggca tcaagtggat caacaaggcc 300 tgctacacct gcgagttctg ccaggtggcc gccgagccca actgtcccaa cgctaccatg 360 tctggataca cccacgacgg ctctttccag cagtacgcca ccgccaacgc cgtgcaggcc 420 gcgcacattc ccaagaactg cgatctcgcc gagattgccc ccattctgtg cgccggaatc 480 accgtctaca aggctctcaa gactgccgcc atcctcgctg gccagtgggt tgccgttact 540 ggtgctggag gaggactcgg aacacttgct gtccagtacg ccaaggccat gggctaccga 600 gtgctggcca ttgacactgg cgccgacaag gagaagatgt gcaaggacct tggtgccgag 660 gttttcatcg actttgccaa gaccaaggac ctcgtcaagg acgtccagga ggccaccaag 720 ggcggacccc acgccgtcat caatgtgtct gtctccgagt ttgcagtcaa ccagtccatt 780 gagtacgtgc gaaccctggg aaccgttgtt ttggtcggtc tgcccgccgg cgccgtctgc 840 aagtctccca tcttccagca ggtggctcga tctatccaga tcaagggctc ttacgttgga 900 aaccgagccg actcccagga ggccattgag ttcttctccc gaggtctcgt caagtcgccc 960 atcatcatca tcggtctgtc cgagctggaa aaggtctaca agcttatgga ggagggcaag 1020 attgccggcc gatacgttct ggacacctcc aagtaa 1056 <210> 15 <211> 1050 <212> DNA <213> Artificial Sequence <220> <223> ADH3 <400> 15 atgaccacca tccccaagac ccagaaagcc gtcatcttcg agacctccgg cggccccctc 60 atgtacaagg acgtgcctgt gcccgtgcct gccgacgacg agattctggt caacgtcaag 120 tactccggcg tgtgccacac ggacctgcac gcctggaagg gcgactggcc cctggacacc 180 aagctccccc tgattggcgg ccacgagggc gccggcgtgg ttgttgccaa gggcaagaac 240 gtgaccacct ttgagattgg cgactacgcc ggtatcaagt ggatcaacaa ggcctgctac 300 acctgcgagt tctgccaggt ggcggccgag cccaactgcc ccaaggccac catgtccgga 360 tacacccacg acggctcttt ccagcagtac gccaccgcca acgctgtcca ggccgcccac 420 atccccaaga actgtgacct cgcccaggtt gcccccattc tctgcgccgg tatcaccgtc 480 tacaaggctc tcaagaccgc tggcctcaag gctggtgagt gggccgccgt gaccggagct 540 ggaggaggcc tcggctctct ggccgtccag tacgccaagg ccatgggcta ccgagtgctg 600 gccattgaca ctggcgctga caaggagaag atgtgcaagg agctcggcgc cgaggtcttc 660 atcgactttg ccaagtccaa ggatctggtc aaggacgtcc aggaggccac caagggcgga 720 ccccacgccg tcatcaacgt gtctgtctcc gagtttgccg tcaaccagtc tgttgagtac 780 gtgcgaaccc tgggaaccgt tgttctggtc ggtctgcccg ccggtgccgt ctgcaagtcg 840 cccatcttcc agcaggttgc tcgatctatt cagatcaagg gctcttacgt cggaaaccga 900 gccgactccc aggaggccat tgagttcttt gcccgaggac tggtcaagtc ccccatcatt 960 attgttggtc tctccgagct cgaatccgtc tacaagctca tggaggaggg caagattgcc 1020 ggtcgatacg ttctggactg ctccaagtaa 1050 <210> 16 <211> 1479 <212> DNA <213> Artificial Sequence <220> <223> ADH4 <400> 16 atggtcaaaa cgtcgacgaa ccttgcacga aacgtgctgc gaaccatcca ggccaaccct 60 cctcccggcc tcgaggtaaa tggcatcacc tcacacaact tcggagccta ccagcgggct 120 ttcaccccca tggtgatgca gggagccgga cacagaaact acgccagtga tcacaaggag 180 acggagtacg cgttccagat ggccgcttcc aacatccgat acggccccgg cgtgacggca 240 gaggtgggct acgacttcaa gaacatgcga atcgaccggg tggctgtctt caccgacaag 300 aacctgctca atacccccgc cgtcaaaacc gcactgcagt cgctcgacaa gtgtggaatc 360 aaatacgacc tttattcgga cgtgtgcgtt gagcccaaag agccctctgt gctcgacgcc 420 attgcctggg gacgagctaa gcagcccaag gcctaccttg ccattggagg aggctctgtc 480 atggacactg ccaagatggc caacctgtac cagtgcttcc ccgacgctga gctgcttgat 540 ttcgtcaacg cccccattgg aaaggctcag cccatcgaca ttgacctcaa gcctctgatt 600 gccgtcccca ccactgccgg caccggatcc gagaccactg gaactgccat cttcgatctc 660 gtttcccgaa aggccaagac cggtattgct aaccgtgctc tgaagcccct gcttggaatt 720 gtcgatcctc tcaactctgc caccatgccc gagcaggtta aggccgcttc cggcctcgat 780 gtcctatgtc actctcttga gtcctacact gccatcccct accagcagcg aaccccccgt 840 cccagcaacc ccaacatgcg acctgcctac caaggatcca accccattgc tgatattttc 900 tctctcgagg gtctgcgtct ggccattgag taccttcctc gatcttgtgc cgaccccgaa 960 gacatggagg cccactctaa catgcttctt ggatctactc ttgccggtgt gggttttgga 1020 aacgccggtg ttcacatctg ccacggtctc tcttacccca tctctggaat gaacacctcc 1080 tactaccacc ccgactacca cactgaccat cctctggttc cccacggtat ctccgttgca 1140 gttactgctc cttctgtctt caagtttact gctcccagcg accccgagcg acatctcaag 1200 gccgcctctc tgtttggcgt tgatgtttcc aacgtcaagc gagagtctgc cggagaggtg 1260 cttgctgagg ccatccaaga gttcatgttc actaagctca agcaccaacc ccggggtgtc 1320 tctgctcttg gttacaagcg aagcgacatt tctgctctcg ttgacggtgc cgttcctcaa 1380 cgacgagttc ttgatctcgc ccccggtatc cacggtgttg aggaggccga ggtccgagag 1440 gcccttacct ctattcttga ggacgcttgg gagtactaa 1479 <210> 17 <211> 1041 <212> DNA <213> Artificial Sequence <220> <223> ADH5 <400> 17 atgagagccg ctttcaccac cgcgtacggc ggtcccgaca agatcgagta ctccgattct 60 ctgcccaagg tgaagcttgg aggtgacgac cacgtgctca tccgagttgc cgacgcctcc 120 atcaacccca ttgatgggct gcgaaaccga ggaatgctgc gtattctcat gtgtgacgac 180 catccccacg tctttggata cgacgtcgga ggcttcgtcg aagaggtcgg ctccaagtgc 240 accaacctca aggttggcga ccgagtctac ggccgaattg gcgagtctca gagcggcacc 300 ctcgccggct acgtttctgc ccaggagagc gtcattgccg tggctcctac taacctgcct 360 ctgagcgaga ctgctggtgt gcctttggtt ggtctcactg cctaccaggc tctgagagcg 420 ggcgatgtgc agcctggaca gcgagtcttc atctccaagg gcgctggagg agttggaacc 480 atcgctatcc agctcgccaa gcacgtcttt ggagcttatg tcattactac tggttcggac 540 cacaaggccg agcttctcaa agagcttgga gctgacgagg tcatcaacta ccgaaaggaa 600 aagttccagg acgtgatcaa ggagccagtc gactttgcct ttgacgtttc cgacgagcct 660 gccgcacatg caaagatcac caagaagaac ggattcgtgg cggctctgcg aggagctcct 720 tctcccgcta ctgccaagaa gattctggcc caccctcctg gattcctcat gaacaacgtt 780 ctgcgagccg ctaactttgc aacctcccga actgcctggt ggtacggagt ccgatacgag 840 gccatctact gcgttccttc tgctaaggat ctggacactc tgcgaggcta ccttgaaaag 900 ggtactatca agcccatcgt tgactgcact tatgacctca aggatgccaa gctagcaatg 960 gagaagcttg agagtggacg agctaccggc aagatcatcc ttagtgtgga tgatactctt 1020 gataaggagt tcaagcagta a 1041 <210> 18 <211> 1047 <212> DNA <213> Artificial Sequence <220> <223> ADH6 <400> 18 atgacaatcc ccaagaccca gaaagccatt gtgttcgaaa cctctggagg tcccctggag 60 tacaaggacg tgcctgtgcc cgtgcccggc gaccatcaga ttctcgtcaa cgtcaagtac 120 tcgggagttt gccactctga cctccacgcc tggatgggag actggcctct acccaccaag 180 ctccctctta tcggcggcca cgaaggagcc ggcgtcgtgg tggccaaggg aaaaaacgtg 240 accacgttcg aaattggaga ctacgccgga atcaagtgga tcaaccaggc gtgctacacg 300 tgcgagttct gccaggaggc ctacgagccc aactgtccca aggcccagat ctcgggatac 360 acaatggacg gaaccttcca gcagtatgca cttgcagatg ctgtgcaggc agcccacatt 420 ccccagggca cagacctttc tcaggtggct cctattctgt gtgccggagt gactgtttac 480 aaggccatca agacctctgg acgaaaggca ggagaatggt tggccgtgac aggtgcagga 540 ggaggactcg gatcgctggc ggtgcagtac gccaaggcca tgggtttccg agtgctggcc 600 atcgacacca ccgaggagaa ggagaagatg tgtctggaac tgggagcaga ggtctttgtg 660 gactttgcca agactgacaa tctggtggca cgagttcagg agattactgg aggtggccct 720 catggagtca tcaacgtttc tgtgtccgag tttgccatca accagtctct cgagtacgtt 780 cggtccgttg gaactgttgt tctggtgggt ctgcctgctg gagctgtgtg caagtcgccc 840 atcttctcgc aggtggcccg ggctattacc atcaagggct ctcctgtggg taaccgagcc 900 gacacccagg aggctctgtc attctttacc cgaggattgg ttcactcgcc tattcatgtg 960 gtcggactgt ctgagctgca gaaggtgttt accttgatgg aggagggaaa gattgcgggt 1020 cggtatgttg tcgataccag caagtaa 1047 <210> 19 <211> 1065 <212> DNA <213> Artificial Sequence <220> <223> ADH7 <400> 19 atgagcgacg ttcccaagac acaaaaggcc gtcgttttcg aggaagtcaa cggacctttg 60 atgtacaagg acattcccgt ccccactccc gccaaggacg agctgctcgt caaggtgcag 120 tattccggtg tctgccactc ggatctgtcc atctggaagg gtgattgggc acagcagctg 180 cggttcagcc ccaagatgcc gctggtcggc ggtcatgagg gagcaggaga ggttgtgggc 240 atgggcgatc aggtgaccgg atggcaggtc ggagaccgaa ccggagtcaa gtttatttct 300 ggctcttgtc tcacttgcga gcactgttct gctggctggg accagcactg cgtagccccc 360 ggcgtgtcag gtctgctcaa agacggctct ttccagcagt acgcctgcgt gaaggccgcc 420 accgcacccc gaatccccga ttcttgcgat ctggctggtg ttgcacccgt tctgtgtgca 480 ggcatcaccg cctacactgc cctcaagaac tctggtctca aggccggtga gtgggtggtg 540 atcaccggag ctggaggagg actcggatcc tacgccgtcc agtacgccaa gtgcatgggt 600 ttccgtgtga ttgccattga cactggagac gacaaggaga cccacaccaa ggagctggga 660 gccgaggtgt ttattgactt tgccaagagt ggtgctggca tgattgctga gattcacaag 720 ctcaccggag gtggcgccca cgccgtggtc aactttgctg tgcaggacgc ggctgtcgag 780 gctgccactc tgtacgtgcg aacccgaggc actctggttc tgtgtgctct gccacccaac 840 ggtaccgtca agagtcacat tctcaaccac gtgggtcgag gactcaccat caagggcagt 900 tatgtgggta ataagctgga tactcaggaa gccattgact tctatgcacg gggtctcgtc 960 aagaccaagt accgtctcgg cgagctgagc aagctcgagg agtattacca gcagatgctt 1020 gatggtaaga ttgttggtcg tgtcgttgtt gataacagca agtag 1065 <210> 20 <211> 1275 <212> DNA <213> Artificial Sequence <220> <223> ADH8 <400> 20 atggtattga tcgaatcagg gtatgattat ggctatatac gtcttttcag aatcgcgcca 60 acttgtttaa ttgaggaatt aaaggccccc ttcttctcgt tccccacctt tgaacgaaca 120 cactatccaa ccctaactta taagcgaaac cgatctacac aacacatcac ttcctgcgct 180 tttaccacaa gtcgtcgaca tctcctttac cagcaattac actctctcga catgtctctg 240 ccactcaccg ataaatcttt caagcgtctg ggcaactctg gcctcaaggt gtcctccatc 300 attgtgggat gtatgtcgtt tggttctagc aactgggctc cttgggtcat tggagacgaa 360 gagcggtccc tggagctgct gaaggctgcc tacgaccgag gtttgcgaac gttcgacacc 420 gcctccacct actccaacgg tctctccgag gtgctactgg gcaagtttct gcgaaagtac 480 aacatcccac gagagaaggt ggtcattatg accaaggtgt tcttccccgt ggccgaggag 540 ggactccacg gagagaccat tctcggcggt cgatcggagg aggagatgct ggagttcacc 600 aaccgaatcg gactgtctcg aaagaacatt attgcctcgg tggacgactg ctgtgaacga 660 ctcggcactt acattgatct gctgcagatc catcgactcg acgacgagtg tccctacgag 720 gagatcatga aggccctgca tgactgtgtt gagtctggca aagcccgcta cctaggagcc 780 tcttccatgc gagccgtgga gtttgtggag ctgcagaacg tggctgagaa gcatggctgg 840 accaagttta tctctatgca gtctctttac aacctcatca accgggagga cgagcgggaa 900 ctcaactggt actgcaacaa gactggtgtt ggtctcattc cctggtctcc tctggctcga 960 ggcattcttg cgcgacccag aagtgctgag gacactgctc ggtccggttc tgatctgcga 1020 atgatgctgt tcgacaagga ccacgactcc actgccgaga tcatcgaccg ggtcgagaag 1080 atggccaaga agaagggcgt tgccatggcc acaatcgcca ccgcctgggt ccttcacaag 1140 ggtgccatgc ccattgttgg tttctcgtcc gagaagcgaa tggatgaggc tctggccgcc 1200 ctggacgttg agtttgatgc catggacttg aagtacctcg aggatgctta cgagcccgtc 1260 aagtacaaga tgtaa 1275 <210> 21 <211> 1050 <212> DNA <213> Artificial Sequence <220> <223> FADH <400> 21 atgaccacca tccccaagac ccagaaggct gtcattttcg agacctccgg cggtcctctc 60 atgtacaagg acgtgcctgt gcctgttcct gccgacgacg agattctcgt caacgtcaag 120 ttttccggag tgtgccacac tgacctccat gcctggaagg gcgactggcc tcttgacacc 180 aaacttcctc tcattggcgg ccacgagggc gccggagttg tcgtggccaa gggcaagaac 240 gtgaccacct tcgaaatcgg cgactacgcc ggtatcaagt ggattaacaa ggcctgttac 300 acctgtgagt tctgccaggt gtctgccgag cccaactgtc ctaaagctac catgtcggga 360 tacacccacg acggctcgtt ccagcagtac gccactgcca acgctgtcca ggcagcccat 420 atccccaaga actgcgacct cgcccagatt gctcccattc tctgcgccgg catcaccgtc 480 tacaaggctc ttaagaccgc tggcctcaag gctggtgagt gggccgccgt taccggagct 540 ggaggaggcc tcggttctct ggccgtccag tacgctaagg ccatgggcta ccgagtgctg 600 gccattgaca ccggcgccga caaggagaag atgtgcaagg agctcggcgc cgaggtcttc 660 atcgactttg ctaagtccaa ggatctggtc aaggacgtcc aggatgccac caagggcgga 720 ccccacgccg ttatcaacgt gtctgtctcc gagtttgccg tcaaccagtc cgtcgagtac 780 gtgcgaactc tgggcaccgt ggttctggtc ggcctgcccg ctggagctgt ctgcaagtcg 840 cccatcttcc agcaagtggc tcgatccatt cagatcaagg gttcctatgt tggcaaccga 900 gccgactcgc aggaggccat tgaattcttc gcccggggcc ttgtcaagtc tcccattatt 960 attgtgggtc tttcccagct ggagtccgtc tacaagctga tggaggaggg caagattgcc 1020 ggcagatacg ttctggacac ttacaagtaa 1050 <210> 22 <211> 1830 <212> DNA <213> Artificial Sequence <220> <223> FAO <400> 22 atgtctgacg acaagcacac tttcgacttt atcattgtcg gtggaggaac cgccggcccc 60 actctcgccc ggcgactggc cgatgcctgg atctccggta agaagctcaa ggtgctcctg 120 ctcgagtccg gcccctcttc cgagggtgtt gatgatattc gatgccccgg taactgggtc 180 aacaccatcc actccgagta cgactggtcc tacgaggtcg acgagcctta cctgtctact 240 gatggcgagg agcgacgact ctgtggtatc ccccgaggcc attgtctggg tggatcctct 300 tgtctgaaca cctctttcgt catccgagga acccgaggtg atttcgaccg aatcgaagag 360 gagaccggcg ctaagggctg gggttgggat gatctgttcc cctacttccg aaagcacgag 420 tgttacgtgc cccagggatc tgcccacgag cccaagctca ttgacttcga cacctacgac 480 tacaagaagt tccacggtga ctctggtcct atcaaggtcc agccttacga ctacgcgccc 540 atctccaaga agttctctga gtctctggct tctttcggct acccttataa ccccgagatc 600 ttcgtcaacg gaggagcccc ccagggttgg ggtcacgttg ttcgttccac ctccaacggt 660 gttcgatcca ccggctacga cgctcttgtc cacgccccca agaacctcga cattgtgact 720 ggccacgctg tcaccaagat tctctttgag aagatcggtg gcaagcagac cgccgttggt 780 gtcgagacct acaaccgagc tgccgaggag gctggcccta cctacaaggc ccgatacgag 840 gtggttgtgt gctgcggctc ttatgcctct ccccagcttc tgatggtttc cggtgttgga 900 cccaagaagg agctcgagga ggttggtgtc aaggacatca ttttggactc tccttacgtt 960 ggaaagaacc tgcaggacca tcttatctgc ggtatctttg tcgaaattaa ggagcccgga 1020 tacacccgag accaccagtt cttcgacgac gagggactcg acaagtccac cgaggagtgg 1080 aagaccaagc gaaccggttt cttctccaat cctccccagg gcattttctc ttacggccga 1140 atcgacaacc tgctcaagga tgatcccgtc tggaaggagg cctgcgagaa gcagaaggct 1200 ctcaaccctc gacgagaccc catgggtaac gatccctctc agccccattt cgagatctgg 1260 aatgctgagc tctacatcga gctagagatg acccaggctc ccgacgaggg ccagtccgtc 1320 atgaccgtca tcggtgagat tcttcctcct cgatccaagg gttacgtcaa gctgctgtcc 1380 cccgacccta tggagaaccc cgagattgtc cacaactacc tgcaggaccc tgttgacgct 1440 cgagtcttcg ctgccatcat gaagcacgcc gccgacgttg ccaccaacgg tgctggcacc 1500 aaggacctcg tcaaggctcg atggcccccg gagtccaagc ccttcgagga aatgtccatc 1560 gaggaatggg agacttacgt ccgagacaag tctcacacct gtttccaccc ctgtggtact 1620 gtcaagcttg gtggtgctaa tgataaggag gccgttgttg acgagcgact ccgagtcaag 1680 ggtgtcgacg gcctgcgagt tgccgacgtc tctgtccttc cccgagtccc caacggacac 1740 acccaggctt ttgcctacgc tgttggtgag aaggctgccg acctcatcct tgccgacatt 1800 gctggaaagg atctccgacc tcgaatctaa 1830 <210> 23 <211> 1602 <212> DNA <213> Artificial Sequence <220> <223> FALDH1 <400> 23 atgtcctggg aaacaatcac tcctcctacg ccaatcgata cgtttgacag caacttgcaa 60 cgtcttcgag actctttcga gaccggcaag ctcgactctg tcgactaccg tctcgagcag 120 ctgcgaaccc tgtggttcaa gttctacgac aacctcgaca acatctacga ggcggtcacc 180 aaggatctcc atcgacccag gttcgaaacc gagctcaccg aggtactgtt tgttcgagac 240 gagttctcca ccgtcatcaa gaacctgcga aagtgggtca aggaagaaaa ggtggagaac 300 cccggaggcc ccttccagtt tgccaacccc cgaatccgac ccgttcctct gggagtggtg 360 ctggtcatca ctccctggaa ctaccccgtc atgctcaaca tctcacctgt gattgccgcc 420 attgctgccg gctgtcccat cgtgctcaag atgtccgagc tgtctcccca cacttccgct 480 gttcttggcc gaatcttcaa ggaggccctg gaccccggta tcatccaggt tgtttacgga 540 ggtgtccccg agaccaccgc ccttcttacc cagcattggg acaagatcat gtacaccgga 600 aacggagccg ttggtcgaat catcgcccag gccgcggtca agaacctgac tcctctagct 660 cttgagcttg gtggcaagtc acccgtgttc atcacttcca actgcaagag cgttatgacg 720 gccgctcggc gaatcgtgtg gggcaagttt gtcaacgccg gccagatctg tgtcgctcca 780 gactacattc tggttgctcc cgaaaaggag gccgagctcg tcgcttgtat caaggaggtg 840 ctccaagaac gatacggctc caagagagac gcccaccacc ccgatctgtc ccatatcatt 900 tccaagcccc attggaagcg tattcacaac atgatcgccc agaccaaggg agacatccag 960 gtgggtggac tcgagaacgc cgacgaagac caaaagttca tccagcccac aatcgtctcc 1020 aacgttccag atgacgacat tctcatgcag gacgagattt tcggacccat catccccatc 1080 atcaagcccc gaaccctcgg ccagcaggtt gattacgtca caagaaacca tgacaccccc 1140 ctggccatgt acatcttctc tgacgacccc aaggaggtgg actggctaca gacccgaatc 1200 cgagctggtt ctgtaaacat caacgaggtc attgagcagg tcggactggc ctctctgcct 1260 ctcagtggag ttggagcttc cggaaccgga gcataccatg gaaaattctc cttcgatgtc 1320 ttcacccaca agcaggccgt tatgggacag cccacctggc ccttctttga atacctcatg 1380 tattaccggt accctcctta ctccgagtac aagatgaagg tgctccgaac cctgttccca 1440 ccggttctga ttcctcgaac cggccgaccc gacgctactg ttcttcagcg agttctcggc 1500 aacaagctgc tttggatcat tattgccgcc cttgttgcgt acgccaaacg aaatgagctg 1560 ctcatcacca ttgctcagat tatgtcggtg tttattaagt ag 1602 <210> 24 <211> 1566 <212> DNA <213> Artificial Sequence <220> <223> FALDH2 <400> 24 atgtcagagt tcgattggga gtcaattttg ccggcaacac cactaggtga gatcgagaag 60 gatattcaaa ccctacgaca gggcttcagg tccggaaaga cgctggattt gaacttcagg 120 cttgaccaga ttcgtaagct tttctatgct ctctatgata atgtcgatgc gatcaaagaa 180 gcaattcata aggatctcgg acgtccggtc ttcgagactg aactttgcga gatctccttt 240 cagtggggtg aattcaataa tgtcgtttct aacttgaaga aatgggcagc tgatgagacg 300 gtgaagggaa ccaccattca atacactctc acccggccaa agattagaaa gcgtccactt 360 ggtaccgtcc ttatcatatc tccttggaac tacccatttg ttctgaccat ctctcccctg 420 cttgctgctc tagcggcagg aaatacggtg gccctaaagt tctccgaaat gtgcccacat 480 acatcgcttt tgctgggaaa gttgtgcaca gaggcacttg ataaagaaat tttcaaggca 540 tttcagggag gcgttccggt agtgtcggag attctcaagt acaagttcga caaaatcatg 600 tacactggaa atcatcgagt tggcaagatc atcttggacg cagctaacaa atacctcacc 660 cccgttattt tggagcttgg aggcaaatca ccagtcttcg tgactaagaa ttgccaaaac 720 gtatctcttg ctgccaagcg tgctctgtgg ggtaaactgg tcaacgctgg acaaacatgc 780 gttgcccccg attacatcat cgtcgagcct gaggtcgaac aggagtttat caaagcttgc 840 cagtactggg ttgagaagtt ctaccgaggt ggagttgact ctgatcataa ggacttcact 900 catattgcaa cacctggaca ttggagacga ttgacatcca tgcttgccca gacagaggga 960 aatatcatca caggcggaaa ttcggacgag aaatcacggt ttcttgctcc cacagttgtt 1020 gcgaaagttc ctgatggtga ttctttgatg aatgatgaga tctttggccc tatcctgccc 1080 atcctgacag ccagatccgt tgacgaaggt attcgctatg ttcatgagaa tcacgacact 1140 cccctggcca tgtatgtctt tactgataat gcatcagaag gagagtatat ccaatctcaa 1200 atcaactcag gtggcctgat attcaatgat agtcttgttc acgttggctg cgtgcaggcg 1260 ccttttggtg gtgtcggcca atccggctat gggtcttatc acggcgaaga ttccttcttg 1320 gctttttcac acaggcagac tttcatgaag cagccccatt tcatcgaacg accaatggcg 1380 atcagatatg ccccctacac tagtcgaaaa caaaaggctg tccagggtag tctagctgct 1440 ccatcttttc ctcgaacagg aaaggttgac cgctccctgt tggagcggat atttggtaag 1500 ctatggttct gggtgatcgt tttagggcta ggagcagcca gtttgaagtc aggaattttc 1560 ttatga 1566 <210> 25 <211> 1590 <212> DNA <213> Artificial Sequence <220> <223> FALDH3 <400> 25 atgactacca ctgccacaga gacccccacg acaaacgtga cccccaccac gtcactgccc 60 aaggagaccg cctccccagg agggaccgct tctgtcaaca cgtcattcga ctgggagagc 120 atctgcggca agacgccgtt ggaggagatc gagtcggaca tttcgcgtct caaaaagacc 180 ttccgatcgg gcaaaactct ggatctggac taccgactcg accagatccg aaacctggcg 240 tatgcgatcc gcgataacga aaacaagatc cgcgacgcca tcaaggcgga cctgaaacga 300 cctgacttcg aaaccatggc ggccgagttc tcggtccaga tgggcgaatt caactacgtg 360 gtcaaaaacc tgccgaaatg ggtcaaggac gaaaaagtca agggaaccag catggcgtac 420 tggaactcgt cgccaaagat ccggaaacgg cccctgggct ccgtgcttgt catcacgccc 480 tggaactacc cactgattct ggccgtgtcg cctgttctgg gcgccattgc cgcaggcaac 540 accgtggcgc tgaaaatgtc agaaatgtca cccaacgcgt caaaggtgat tggcgacatt 600 atgacagctg ccctggaccc ccagctcttt caatgcttct tcggaggagt ccccgaaacc 660 accgagatcc tcaaacacag atgggacaag atcatgtaca ccggaaacgg caaagtgggc 720 cgaatcatct gtgaggctgc caacaagtac ttgacacctg tggagctcga actcggagga 780 aagtcgcctg ttttcgtcac caaacactgc tccaacctgg aaatggccgc ccgccgaatc 840 atctggggca aattcgtcaa cggaggacaa acctgcgtgg ctccagacta cgttctggtg 900 tgtcccgagg tccacgacaa atttgtggct gcctgtcaaa aggtgctgga caagttctac 960 cctaacaact ctgccgagtc cgagatggcc catatcgcca cccctctcca ttacgagcgt 1020 ttgacgggcc tgctcaattc cacccgaggt aaggtcgttg ctggaggcac tttcaactcg 1080 gccacccggt tcattgctcc tacgattgtc gacggagtgg atgccaacga ttctctgatg 1140 cagggagaac tgtttggtcc tcttctcccc attgtcaagg ccatgagcac cgaggctgcc 1200 tgcaactttg tgcttgagca ccaccccacc cccctggcag agtacatctt ttcagataac 1260 aattctgaga ttgattacat ccgagatcga gtgtcgtctg gaggtctcgt gatcaacgac 1320 actctgatcc acgtgggatg cgtacaggcg ccctttggag gtgtcggaga cagtggaaat 1380 ggaggatacc atggcaagca cactttcgat ttgttcagcc attctcagac ggtcctcaga 1440 caacccggat gggtcgaaat gctgcagaag aaacggtatc ctccgtacaa caagagcaac 1500 gagaagtttg tccggagaat ggtggtcccc agccctggtt ttccccggga gggtgacgtg 1560 agaggatttt ggtcgagact cttcaactag 1590 <210> 26 <211> 1560 <212> DNA <213> Artificial Sequence <220> <223> FALDH4 <400> 26 atgtctacct ttgattggga atccattgtg cctgccactc ctctcgacca gattcctggc 60 gacatccagc gactgcgaaa gggcttccga tccggaaaga ccctcgatct caactaccga 120 ctggaccaga ttcgaaactt gcactacgtc ctcagagaca atgtcgaggc catcaaggac 180 gccgtgtaca aggatctcgg ccgacccaag cacgagactg acctgtgcga ggtgggtttc 240 ctgtggggcg agtttaacaa cgtggttgcc aacctcaaga agtgggccgc cgacgaggac 300 gtcaagacca acctgcagta ctccatctcc tcccccaaga tccgaaagcg acctcttgga 360 aacgtgctca tcatctcgcc ctggaactac ccctttatgc tgaccgtgtc tcctctcatt 420 ggagctctgg ctgccggtaa cactgtggct gtcaagttct ccgaaatggc cccccacact 480 tccaaaattg ttggcgactt gtgcaccaag gccctcgacc ccgacgtctt ccaggccatc 540 cagggaggtg tccccgtcgt caccaagacc ctcgagcaga agttcgacaa gattatgtac 600 actggtaacc acactgtcgg taagatcatt gccactgccg ccaacaagta cctgacaccc 660 gtcatcctcg agctcggagg taagtcgccc gtttttgtca ccaagaactg caagaacatc 720 aagcttgccg ctaagcgagc cctgtggggt aaggtggtaa acgctggcca gacctgtgtg 780 gctcccgact acgtgattgt cgagcccgag gtggagcagg agtttatcga cgcctgcaag 840 tactggatta acgagttcta cagtggtaag attgaccagt acaaccccga ctttgccaag 900 atcgccaccc ccaaccactg gaaccgactt acctccatgt tgagcaagtc caagggagag 960 atcattactg gaggtaacac tgacgagaag actcgattca tcgctcctac tgtcgtcgca 1020 aaggtccccg acaatgattc cctgatggag gacgagattt tcggccctct tctgcccatt 1080 ctcactgccc gatccgtcga ggagggtatc aagtacgtgc acgagaacca cgacacccct 1140 cttgccatgt acgtcttcac tgacaaggcc tctgagggcg actacatcca gtcccagatc 1200 aactctggtg gccttatctt caatgacact ctgatccacg ttggatgtgt ccaggctccg 1260 tttggtggtg tcggcatgtc cggttacggt gcttaccatg gcgaggactc cttcctggcc 1320 ttcacccacc gacaaaccta cctcaaccag cccaagcttc tggagcctct tcaggacgtg 1380 cgatacgccc cctacaccaa aaccaagcga agcatggtca agaacctgct gctggtcggc 1440 cccattttcc cccgaaccgg ctccgtatac cccaacgtgc tgatccgaat cttccgaaag 1500 atttggttct gggtccttat tgtcgccatc ggagctgctg gtgccaaggc tctgctctag 1560 1560 <210> 27 <211> 2034 <212> DNA <213> Artificial Sequence <220> <223> ACO1 <400> 27 atggccaagg agcgaggtaa gactcaattc actgtccgag atgtgaccaa cttcctcaat 60 ggtggagaag aagagaccca gattgtcgag aagatcatga gcagtattga acgtgatcca 120 gtactgtctg tcactgctga ctacgactgc aaccttcagc aggcccgaaa acagaccatg 180 gagcgggtgg ctgctctgtc gccttatctg gtcaccgata ctgagaagct atctctgtgg 240 cgtgcgcaac tgcatggaat ggttgatatg tctactcgta cgcggttgtc gatccacaac 300 aacctgttca ttggttccat caggggatct ggtactcctg aacagttcaa gtactgggtc 360 aagaagggag cggtggctgt taagcagttc tatggatgct ttgccatgac agagttgggc 420 catggaagca acctcaaggg actagagaca accgccactt atgaccagga cagtgaccag 480 ttcattatca acactcctca tattggtgct accaagtggt ggattggcgg tgcagcccac 540 acttccaccc attgtgtttg tttcgcgaaa ctgattgtgc atggcaagga ctatggtact 600 cgaaactttg tggtacctct ccgaaatgtc cacgatcaca gtctcaaggt cggtgtttca 660 attggagaca ttggaaagaa gatgggcaga gatggtgttg acaatggctg gatccagttc 720 accaatgttc gaatccccag acagaacatg ctaatgagat atgccaaggt gtctgatact 780 ggagtggtaa ccaaacccgc tcttgaccaa ctcacttatg gagccctcat tcgaggtcga 840 gtgtccatga ttgccgactc gttccacgtc tccaaacgat tcctcacaat tgctcttcgg 900 tacgcttgtg tccgacgaca gtttggaacc tctggagaca ctaaggagac caagatcatc 960 gactaccctt accaccagcg acgattgctg cctcttctgg cctactgcta cgctatgaag 1020 atgggtgctg atgaggctca gaagacttgg attgagacca ccgatcgaat tctggctctc 1080 aatcccaacg accccgccca gaagaacgat ctggagaagg ccgtcaccga cacaaaggag 1140 ctgtttgctg cgtctgcagg aatgaaggca tttaccacgt ggggatgtgc caaaatcatt 1200 gatgagtgcc gacaggcctg tggaggtcat ggatactctg gatataacgg atttggccag 1260 ggctacgctg actgggttgt ccagtgtacc tgggaaggag acaacaacgt tctgtgtctg 1320 tcaatgggcc gagggctggt tcagtcagct ctacagattt tggctggaaa gcacgtcggt 1380 gcttctattc agtacgtagg agacaagtct aaaatctccc agaacggcca gggtaccccc 1440 agagagcaac ttctgtcccc cgagtttcta gtagaagctt tcagaacggc ttctcgaaac 1500 aacattctca gaaccaccga taaataccaa gagcttgtca aaactctcaa tcccgaccag 1560 gcctttgagg agctgtctca gcagagattc cagtgtgctc gaatccacac acgacagcat 1620 cttatctctt cattctatgc ccgaattgcc actgccaaag acgatatcaa gccccatctg 1680 ctgaaactgg ccaatctgtt tgccctctgg tcaattgagg aggacactgg aatcttcctg 1740 cgggagaaca tcctcacccc tggagacatt gacctgatca acagtcttgt ggacgagctc 1800 tgtgttgcag ttcgagatca ggtaattgga ctcactgatg cctttggtct ctctgacttc 1860 ttcattaacg ctcccatcgg ctcctacgat ggtaatgttt acgaaaagta ctttgccaag 1920 gtcaaccagc aaaaccccgc tactaaccct cgtcctccct actacgagtc gactctcaag 1980 cccttcttgt tccgagaaga ggaggacgat gaaatttgcg atctcgatga gtga 2034 <210> 28 <211> 2103 <212> DNA <213> Artificial Sequence <220> <223> ACO2 <400> 28 atgaacccca acaacactgg caccattgaa atcaacggta aggagtacaa caccttcacc 60 gagccccccg tggccatggc tcaggagcga gccaagacct ccttccccgt gcgagagatg 120 acctacttcc tcgacggtgg cgagaagaac accctcaaaa acgagcagat catggaggag 180 attgagcgag accctctttt caacaacgac aactactacg atctcaacaa ggagcagatc 240 cgagagctca ccatggagcg agtcgccaag ctgtctctgt ttgtgcgtga tcagcccgag 300 gacgacatca agaagcgatt tgctctcatt ggtatcgccg atatgggaac ctacacccga 360 cttggtgtcc actacggcct cttctttggc gccgtccgag gtaccggaac tgccgagcag 420 tttggccact ggatctccaa gggagccgga gacctgcgaa agttctacgg atgtttctcc 480 atgaccgagc tgggccatgg ctccaacctg gctggtctcg agaccaccgc catctacgat 540 gaggagaccg acgagttcat catcaacacc cctcacattg ccgccaccaa gtggtggatt 600 ggaggagccg cccacaccgc cacccacact gtcgtgttcg cccgactcat tgtcaagggc 660 aaggactacg gtgtcaagac ctttgttgtc cagctgcgaa acatcaacga ccacagcctc 720 aaggtcggta tctctattgg tgatatcgga aagaagatgg gccgagacgg tatcgataac 780 ggatggatcc agttcaccaa cgtgcgaatc ccccgacaga acctgctcat gaagtacaca 840 aaggtcgacc gagagggtaa cgtgacccag cctcctctgg ctcagcttac ctacggttct 900 cttatcactg gtcgagtctc catggcctct gattctcacc aggtcggaaa gcgattcatc 960 accattgctc tgcgatacgc ctgcattcga cgacagttct ccaccacccc cggccagccc 1020 gagaccaaga tcatcgacta cccctaccat cagcgacgac ttctgcctct tctggcctat 1080 gtctatgctc ttaagatgac tgccgatgag gttggagctc tcttctcccg aaccatgctt 1140 aagatggacg acctcaagcc cgacgacaag gccggcctca atgaggttgt ttccgacgtc 1200 aaggagctct tctccgtctc cgccggtctc aaggccttct ccacctgggc ttgtgccgac 1260 gtcattgaca agacccgaca ggcttgcggt ggccacggtt actctggata caacggtttc 1320 ggccaggcct acgccgactg ggttgtccag tgcacctggg agggtgacaa caacattctc 1380 accctttctg ccggccgagc tcttatccag tctgccgttg ctctgcgaaa gggcgagcct 1440 gttggtaacg ccgtttctta cctgaagcga tacaaggatc tggccaacgc taagctcaat 1500 ggccgatctc tcaccgaccc caaggtcctc gtcgaggcct gggaggttgc tgccggtaac 1560 atcatcaacc gagccaccga ccagtacgag aagctcattg gcgagggtct taacgccgac 1620 caggcctttg aggttctgtc tcagcagcga ttccaggccg ccaaggtcca cacacgacga 1680 cacctcattg ccgctttctt ctcccgaatt gacaccgagg ctggcgaggc catcaagcag 1740 cccctgctta acctggctct gctgtttgcc ctgtggtcca tcgaagagga ctctggtctg 1800 ttcctgcgag agggcttcct cgagcccaag gatatcgaca ccgtcaccga gctcgtcaac 1860 aagtactgca ccactgtgcg agaggaggtc attggctaca ccgatgcctt caacctgtcc 1920 gactacttca tcaacgctcc tattggatgc tacgatggtg acgcttaccg acactacttc 1980 cagaaggtca acgagcagaa ccctgcccga gacccccgac ctccttacta cgcctctact 2040 ctcaagccct tccttttccg agaggaggag gatgatgaca tttgcgagct tgatgaggaa 2100 tag 2103 <210> 29 <211> 2103 <212> DNA <213> Artificial Sequence <220> <223> ACO3 <400> 29 atgatctccc ccaacctcac agctaacgtc gagattgacg gcaagcagta caacaccttc 60 acagagccac ccaaggcgct cgccggcgag cgagccaagg tcaagttccc catcaaggac 120 atgacggagt ttctgcacgg tggcgaggag aacgtgacca tgatcgagcg actgatgacg 180 gagctcgagc gagaccccgt gctcaacgtg tcgggcgact acgacatgcc caaggagcag 240 ctgcgagaga cggccgtggc gcgaattgcg gcgctgtccg gccactggaa gaaggacaca 300 gaaaaggagg cgctgctgcg gtcccagctg cacggcattg tggacatggg cacccgaatc 360 cgactcggtg tgcacacggg cctgttcatg ggcgccatcc ggggttccgg caccaaggag 420 cagtacgact actgggtgcg aaagggcgcc gcggacgtca agggcttcta cggctgcttt 480 gctatgaccg agctgggcca tggctccaac gtggccggtc ttgagaccac cgccacctac 540 atccaggaca cggacgagtt catcatcaac acccccaaca ctggagccac caagtggtgg 600 attggaggag ccgcccactc ggccacccac accgcctgct ttgctcgtct gcttgtcgac 660 ggcaaggact acggcgtcaa gatctttgtt gtccagctgc gagacgtctc ttctcactct 720 ctcatgcccg gcatcgctct cggcgacatt ggaaagaaga tgggccgaga cgccatcgac 780 aacggctgga tccagttcac caatgtgcga atcccccgac agaacatgct catgaagtac 840 gccaaggtct cgtctaccgg caaggtgtcg cagcctcctc tggcccagct cacctacggc 900 gctctcattg gcggccgagt caccatgatt gccgactcct tctttgtctc ccagcgattc 960 atcaccattg ctctgcgata cgcctgtgtg cgacgacagt ttggcaccac ccccggccag 1020 cccgagacta agatcatcga ctacccctac catcagcgac gtctgctgcc tcttctggcc 1080 ttcacctacg ccatgaagat ggccgccgac cagtcccaga ttcagtacga tcagaccacc 1140 gatctgctgc agaccatcga ccctaaggac aagggcgctc tgggcaaggc cattgtcgac 1200 ctcaaggagc tgtttgcctc ttctgctggt ctcaaggcct tcaccacctg gacctgtgcc 1260 aacatcattg accagtgccg acaggcctgc ggtggccacg gctactctgg ctacaacggc 1320 tttggccagg cctacgccga ctgggttgtc cagtgcacct gggagggtga caacaacgtc 1380 ctgtgtctgt ccatgggccg aggtctcatc cagtcgtgtc tgggccaccg aaagggtaag 1440 cctctgggct cttctgtcgg ctacctggct aacaagggtc ttgagcaggc tactctgagc 1500 ggccgagacc tcaaggaccc caaggttctc atcgaggcct gggagaaggt cgccaacggc 1560 gccatccagc gggccactga caaatttgtc gagctcacca agggcggcct ctctcctgac 1620 caggcctttg aggagctgtc gcagcagcga ttccagtgtg ccaagatcca cacccgaaag 1680 cacctggtga ctgccttcta cgagcgaatc aacgcctctg cgaaggccga cgtcaagcct 1740 tacctcatca acctcgccaa cctcttcact ctgtggtcca ttgaggagga ctctggtctc 1800 ttcctgcgag agggtttcct gcagcccaag gacattgacc aggtgactga gctggtgaac 1860 cactactgca aggaggttcg agaccaggtt gccggctaca ccgatgcctt tggtctgtct 1920 gactggttca tcaacgctcc cattggaaac tacgatggtg acgtttacaa gcattacttt 1980 gccaaggtta accagcagaa ccctgctcag aacccccgac ctccttacta tgagagcact 2040 cttcgacctt tcctgttccg agaggatgag gatgacgaca tttgcgagct ggacgaggaa 2100 tag 2103 <210> 30 <211> 2106 <212> DNA <213> Artificial Sequence <220> <223> ACO4 <400> 30 atgatcaccc caaaccccgc taacgacatt gtccatgacg gcaagctcta cgacaccttc 60 actgagcccc ccaagctgat ggctcaggag cgagctcagc tggacttcga ccctagagac 120 atcacctact ttctggatgg ctctaaggag gagaccgagc tgctggagtc gctcatgctc 180 atgtacgagc gagaccctct cttcaacaac cagaacgagt acgatgaatc gtttgaaaca 240 ctgcgagagc gatctgtgaa gcgaattttc cagctgtcca agtccatcgc catggacccc 300 gagcccatgt ctttccgaaa gattgggttc ctgggtattc ttgacatggg aacgtatgct 360 cgactgggag tccactacgc gctcttctgt aactccatcc ggggccaggg aacccccgat 420 cagctcatgt actggctgga ccagggagcc atggtcatca agggcttcta cggctgtttt 480 gccatgaccg aaatgggcca tggatctaac ctgtcgcgtc tggaaaccat cgccactttc 540 gacaaagaga ccgacgaatt tatcattaac acgccccacg ttggagccac aaagtggtgg 600 attggtggtg ctgctcacac tgctactcac acacttgcct ttgcccgtct tcaagtagac 660 ggaaaggact acggtgtgaa atcgtttgtc gtacctctcc gaaacctgga cgaccattcg 720 ctgcgtcctg gaatcgccac aggtgatatt ggtaagaaga tgggtcgaga tgccgttgac 780 aacggctgga ttcagttcac caacgtccga gtgccccgaa actacatgct catgaagcat 840 accaaggttc ttcgagacgg taccgtcaag cagccgcctt tggcccaact gacttacgga 900 tctctcatca ctggacgagt ccagatgacc actgactctc acaatgtgtc caaaaagttc 960 ctcaccattg ccctgagata cgccaccatc cgacgacagt tctcgtcaac tccaggagag 1020 cccgaaaccc gactaattga ctacctgtac caccaaagac gactcctgcc tcttatggct 1080 tactcttacg ccatgaaact agctggagat cacgtccgag agctgttctt tgcatcccag 1140 gagaaggctg agagcctcaa ggaggacgac aaagccggag ttgagtctta cgtccaggat 1200 atcaaggagc tcttctctgt ttctgctggt ctcaaggctg ccactacatg ggcttgtgct 1260 gacatcattg acaaggcccg acaggcgtgt ggaggccacg gatactctgc ctacaacggc 1320 tttggacagg ccttccagga ctgggttgtc cagtgcactt gggagggtga caatactgtt 1380 ctgactctat ctgccggccg agctctgatc caatctgctc tcgtctaccg aaaggagggc 1440 aaactaggta acgccacgaa gtacctctct cggtccaagg agcttgccaa cgccaagaga 1500 aacggacgat ccctggaaga ccccaagctg ctcgtggagg catgggaggc tgtctctgcc 1560 ggtgctatca acgctgctac tgacgcttac gaggagctct ccaagcaggg agtttctgtt 1620 gacgagtgct ttgagcaggt gtcccaggag cgattccagg ctgcccgaat ccacactcga 1680 cgagctctta tcgaggcctt ctactcacga atcgccactg ctgatgagaa ggtgaagcct 1740 catctgatcc ctctggccaa cctgtttgcc ctgtggtcca ttgaggagga ctctgctctg 1800 ttcctggctg agggctactt tgagcctgag gatatcattg aggtgacttc tcttgtcaac 1860 aagtactgcg gaattgttcg aaagaacgtt attggataca ccgatgcctt caacctgtcc 1920 gactacttca tcaacgctgc cattggacga tacgacggag acgtgtacaa gaactacttt 1980 gagaaggtca aacagcagta ccctcctgag ggtggcaagc ctcactacta cgaggatgtc 2040 atgaagccct tcctgcatcg agagcgaatt cccgatgtcc ccatggagcc cgaggatatt 2100 cagtaa 2106 <210> 31 <211> 2100 <212> DNA <213> Artificial Sequence <220> <223> ACO5 <400> 31 atgaacaaca accccaccaa cgtgatcctt ggaggcaagg agtacgacac cttcaccgag 60 cctccggccc agatggagct ggagcgagcc aagacacaat tcaaggtccg agacgtgacc 120 aacttcctca caggcagcga gcaggagaca ctgctgaccg agcgaatcat gcgggagatt 180 gagcgagatc ccgttctcaa cgtcgccggc gactacgacg ccgatcttcc caccaagcga 240 cgacaagctg ttgagcgaat cggggctctg gcccgatacc tgcccaagga ttccgagaag 300 gaggccattt tgcgaggcca gctgcatggt attgtggaca tgggtacccg aacccgaatc 360 gccgttcact acggtctgtt tatgggcgcc attcgtggct caggaaccaa ggagcagtac 420 gattactggg tcgccaaggg cgccgctact ctgcacaaat tctatggctg ctttgccatg 480 actgagctgg gtcacggatc taacgtggcc ggtctcgaga ccaccgccac ccttgataag 540 gacaccgacg agttcatcat caacaccccc aactcgggag ccacaaagtg gtggattgga 600 ggagctgccc actctgctac ccacacggct tgtcttgccc gactcattgt tgatggcaag 660 gactatggtg ttaagatctt cattgttcag ctgcgagacc tcaactccca ctctctactc 720 aacggtattg ccattggaga tatcggcaag aagatgggcc gagatgccat tgataatggt 780 tggatccagt tcacagacgt ccgaattccc cgacagaaca tgctcatgcg atacgaccgg 840 gtgtctcgag acggcgaggt taccacctcc gagcttgccc agctcaccta cggagcactt 900 ctgtctggcc gagtgaccat gattgccgag tctcacctcc tgtctgctcg gttcctcacc 960 attgctcttc ggtacgcctg tatccgtcga cagttcggag ctgtgcctga caagcccgag 1020 actaagctca tcgactaccc ctaccaccaa cgacgtctgc tgcctcttct ggcctacacc 1080 tacgccatga agatgggcgc cgacgaggcc cagcagcagt acaactcctc ctttggcgct 1140 cttctcaagc tcaaccccgt caaggacgct gagaagtttg ctgtcgccac tgccgacctc 1200 aaggctctgt ttgcctcttc tgccggaatg aaggccttca ccacctgggc tgccgccaag 1260 atcattgacg agtgccgaca ggcctgtggt ggccatggct actccggcta caacggtttc 1320 ggtcaggctt acgccgactg ggtcgtccaa tgcacttggg agggtgacaa caacgtgctg 1380 tgtctgtcca tgggtcgatc gctcatccag tcgtgcattg ccatgagaaa gaagaagggc 1440 catgtcggca agtcggtcga gtacctgcag cgacgagacg agctgcagaa tgcccgagtt 1500 gacaacaagc ctctcactga ccctgctgtg ctcatcactg catgggagaa ggttgcctgc 1560 gaggccatca acagagccac tgactccttc atcaagctca cccaggaggg tctgtctcct 1620 gaccaggcct ttgaggagct gtctcaacag agatttgagt gtgcgcgaat ccacacccga 1680 aagcatctga tcacctcgtt ctacgctcga atctccaagg ccaaggcccg agtcaagccc 1740 caccttactg ttcttgccaa cctctttgcc gtctggtcca tcgaggagga ctctggtctc 1800 ttccttcggg agggctgctt cgagcctgcc gagatggacg agatcaccgc tctggtcgac 1860 gagctgtgct gcgaggctcg agagcaggtc attggattca ccgacgcctt caacctgtcc 1920 gacttcttca ttaacgcccc cattggccga ttcgacggag acgcctacaa gcactacatg 1980 gacgaggtca aggctgccaa caaccctcgt aacacccatg ctccttacta cgagaccaag 2040 ctgcgaccct tcctgttccg acccgatgag gacgaggaga tttgcgacct ggacgagtag 2100 2100 <210> 32 <211> 2070 <212> DNA <213> Artificial Sequence <220> <223> ACO6 <400> 32 atgctctctc aacagtccct caacacgttt accgagcccc cggtcgaaat ggcccgggag 60 cgaaaccaga cttccttcaa cccgcgtctg ctgacgtact ttctggacgg aggcgaaaag 120 aacactctgc ttatggaccg actgatgcaa gagtacgagc gagaccctgt gtttcgaaac 180 gagggcgact acgatattac cgatgtggcc cagtcgcgag agctggcctt caagcgaatc 240 gccaagctca tcgagtatgt gcacaccgac gacgaggaga cgtatctgta ccgatgcatg 300 cttctgggcc aaatcgatat gggagccttt gcccggtacg ccatccacca cggagtctgg 360 ggcggtgcca ttcgaggtgc aggaacgcct gagcagtacg aattctgggt caagaaagga 420 tctctgtcgg ttaagaagtt ctatggatcc ttctccatga ccgagctggg ccacggcagt 480 aacttggtgg gtctggagac caccgccacc ctggacaaga acgcagacga gttcgtgatc 540 aacactccca acgttgctgc cactaaatgg tggatcggag gagccgccga taccgccact 600 cacacagctg tgtttgcacg tctcattgtc gacggagagg accacggtgt caagacgttt 660 gtggtgcagc tgcgagacgt ggagactcac aacctgatgc ctggtattgc tatcggagac 720 tgcggcaaga agatgggacg tcagggaacc gacaacggct ggatccagtt cacccatgtg 780 cgaattcccc gacagaacat gctcatgcga tactgtcacg tggacagcga cggaaatgtt 840 accgagccca tgatggctca gatggcctac ggagctcttc tggctggccg agtcggaatg 900 gccatggaca gttatttcac ctcgcgaaag ttccttacca ttgctcttcg atatgccacc 960 attcgacgag cttttgctgc cggaggaggt caggagacca agctgatcga ctacccttac 1020 caccagcgac gtctgctccc cctcatggcc cagacatatg ccatcaagtg caccgccgat 1080 aaggtcagag atcagttcgt caaggtcacc gacatgctcc taaacctcga tgtttctgac 1140 caagaggccg tgcccaaggc cattgccgag gctaaggagc tcttctctgt ttctgctggt 1200 gtcaaggcta ccacaacttg ggcttgcgca cacaccattg accagtgcag acaggcgtgt 1260 ggaggccacg gatactctgc ttacaacggt tttggacgtg cttactccga ttgggtgatc 1320 cagtgcacct gggagggaga caataacatt ctgtgtctgt cagctggcag agctctggtc 1380 cagtctaacc gagctgtccg ggctggcaag cccattggag gtcctaccgc ctacctggct 1440 gctcccgctg gttcccccaa gctcgctggt cgaaacttgt acgaccccaa ggtcatgatt 1500 ggggcctggg agactgtttc ccgagctctg atcaaccgaa ccaccgatga gtttgaggtg 1560 ctggccaaga agggtctgtc tactgcccag gcctacgagg agctgtccca gcaacgattc 1620 ctgtgtactc gaatccacac ccgtctgtac atggtcaaga acttctacga gcgaattgcc 1680 gaggagggca ccgagttcac caaggagcct cttaccagac ttgccaacct gtacgccttc 1740 tggtccgtcg aagaggaggc tggaatcttc ctccgagagg gctacatcac tccccaggag 1800 ctcaagtaca tcagtgccga gatccgaaag cagctcttgg aggtgcgaaa ggacgtcatt 1860 ggctacaccg atgccttcaa cgtgcctgat tttttcctca actctgccat tggacgagct 1920 gacggagatg tctacaagaa ctacttcaag gtggtcaaca ctcagaaccc tccccaagac 1980 cctcgacctc cttattacga gtctgtcatt agacccttcc tgttccgaaa ggacgaggat 2040 gaggaaattt gctctcttga ggatgagtag 2070 <210> 33 <211> 1368 <212> DNA <213> Artificial Sequence <220> <223> M.aquaeolei <400> 33 atgaaccgta tggaagtcgc ccagcaagag gctgcacaac tgccccggat gccacaacgc 60 aagctcaagg atatccctgg tgactacggc tggccgttac tcgggcatac cgtgccgttt 120 ctgaaggact atcacaaaat ggtcacccag caagcggcta agcatgggct gattttcaaa 180 agctcggtgt tattccagca cggggtgacg ctgctcggcc ccgatgccaa cgagtttgtt 240 ctcaaggacc cggaacatgc tttttccagc cgggcggcct ggaatccgat cttggaaaag 300 ctgttcaccg acggtttaat gttgcgtgat tttgccgacc ataaatttca ccgccgcatc 360 atgcaacagg catttaaaaa acccgccttg gccagttatc taggccgcat gaacggtcac 420 attggcagtg agatcagcca ctggcccaca ggcaaagaat tgaggttcca agaccatatc 480 aagtctttgt tactggacgt gggcgcacaa atctttttcg gcttggaaat ggggccggag 540 tccaacaagg tgaaccagtc ttttatcgac gcaaccgacg cctctttggc cgtcgttcgt 600 ctgcccatcc cgggcctgct ctggcaccgt ggcatgaaag ggcgccgcta tttggaaaag 660 tttgtcaccg ggctgattcc acaaaaacgg gccagtaaca cacccgattt cttcagcgag 720 ctttgcaagg ccgcagacga agaagggggc ctctcagata aagacgtgat gaaccacatg 780 atcttcctgt tgttcgccgc ccacgacacc accaccagca ccctgtgctc cattgtctac 840 atgctagcca aacacccgaa ctggcaagat atactggtga aagaaataga agggctgaat 900 aaagaaacgc tagactatga cgacttggcg aaaatggaaa aaaccgactg ggtctttcgc 960 gaaaccctgc gcatgcgacc cgcgctcacc accttccccc ggcgcacagt caaagagatt 1020 gagtatcagg gctataccct gccaaagaac accttggtaa gtatatccac gctctacaca 1080 cactacatgg aagactactg gagcaacccg accaccttcg acccggaacg cttcagcgac 1140 gaacgcgccg agcacaagaa gcacttttac cagtgggtcc ctttcggcgg cggccatcac 1200 aaatgcttag gtctgaattt cgctgaatta caaaccaaga cttttctgtt ccagtttctg 1260 aaacgttacc gcgttagcgt caaacccggc tacgaactgc ccacccagca agtaccgctg 1320 atcatgccaa aagatggatt acccgtggtg ctagaaaaaa gagcctaa 1368 <210> 34 <211> 1413 <212> DNA <213> Artificial Sequence <220> <223> Alcanivorax borkumensis <400> 34 atgccaacac tgcccagaac atttgacgac attcagtccc gactgattaa cgccacctcc 60 agggtggtgc cgatgcagag gcaaattcag ggactgaaat tcttaatgag cgccaagagg 120 aagaccttcg gcccacgccg accgatgccc gaattcgttg aaacacccat cccggacgtt 180 aacacgctgg cccttgagga catcgatgtc agcaatccgt ttttataccg gcagggtcag 240 tggcgcgcct atttcaaacg gttgcgtgat gaggcgccgg tccattacca gaagaacagc 300 cctttcggcc ccttctggtc ggtaactcgg tttgaagaca tcctgttcgt ggataagagt 360 cacgacctgt tttccgccga gccgcaaatc attctcggtg accctccgga ggggctgtcg 420 gtggaaatgt tcatagcgat ggatccgccg aaacacgatg tgcagcgcag ctcggtgcag 480 ggagtagtgg caccgaaaaa cctgaaggag atggaggggc tgatccgatc acgcaccggc 540 gatgtgcttg acagcctgcc tacagacaaa ccctttaact gggtacctgc tgtttccaag 600 gaactcacag gccgcatgct ggcgacgctt ctggattttc cttacgagga acgccacaag 660 ctggttgagt ggtcggacag aatggcaggt gcagcatcgg ccaccggcgg ggagtttgcc 720 gatgaaaatg ccatgtttga cgacgcggca gacatggccc ggtctttctc caggctttgg 780 cgggacaagg aggcgcgccg cgcagcaggc gaggagcccg gtttcgattt gatcagcctg 840 ttgcagagca acaaagaaac gaaagacctg atcaatcggc cgatggagtt tatcggtaat 900 ttgacgctgc tcatagtcgg cggcaacgat acgacgcgca actcgatgag tggtggcctg 960 gtggccatga acgaattccc cagggaattt gaaaaattga aggcaaaacc ggagttgatt 1020 ccgaacatgg tgtcggaaat catccgctgg caaacgccgc tggcctatat gcgccgaatc 1080 gccaagcagg atgtcgaact gggcggccag accatcaaga agggtgatcg agttgtcatg 1140 tggtacgcgt cgggtaaccg ggacgagcgc aaatttgaca accccgatca gttcatcatt 1200 gatcgcaagg acgcacgaaa ccacatgtcg ttcggctatg gggttcaccg ttgcatgggc 1260 aaccgtctgg ctgaactgca actgcgcatc ctctgggaag aaatactcaa gcgttttgac 1320 aacatcgaag tcgtcgaaga gcccgagcgg gtgcagtcca acttcgtgcg gggctattcc 1380 aggttgatgg tcaaactgac accgaacagt taa 1413 <210> 35 <211> 1230 <212> DNA <213> Artificial Sequence <220> <223> Nocardia farcinica <400> 35 atggagtcaa cccagatgcc gctcgtgctc gatccgatcg gcgccgatat ccagggcgaa 60 tccgaacgtc tccgtgcgcg ggggccggtc acctcggtcg agatgcccgg tggtgtgcgg 120 gcctggtcgg tcaccgatcc cgccctgctc aagcaactcc tggtcgatcc ccgggtgtcc 180 aaggatcccc gccagcactg gcccgccttc atcaacggcg agatctccca ggactggccg 240 cttttcctgt gggtcgcggt gaccaacatg ttcaccgcct acggcgccga ccaccggcgc 300 ctgcgcaagc tggtcgcccc cgccttcacc gcgcgccgca ccgaggcgat gcgcgggcag 360 gtggaacgga tcaccaagga actgctcgac accctcgcgc agacccccgc gggcgaggcc 420 gtcgacctgc gcgaggcgtt cgcctatccg ctgccgatcc aggtgatctc ggaactgatg 480 ggcgtgcccg aggatctcaa tcccggcctg cgcgcctgcg tggacggcat cttcgacacc 540 tcgctcaccg ccgagcaggc ccaggccaac tacggcgaaa tgtaccgcat cctgggcgaa 600 ctcatcgcct accggcgtgc gaacccgggc gaggacatga ccagcctgct catcacccag 660 cgtgacgacg agggttccag cctcaccgac caggaactcc tcgacaccct gctgctggtg 720 atcagcgcgg gccacgagac caccgtgaac ctgctcgacc aggcggtttt cgccctcctc 780 acacaccctg agcagcgggc cgcgctcgcg gagggccggg ccacctggac cgacgtcgtc 840 gaggagtcgc tgcgtttcga ggcccccatc gcgcacctgc cgttgcgcta cgccgtcgac 900 gacctcgacg tcgggggcgt gcacatcgcc aagggcgagc cgatcctggc ctcctacgcc 960 gcggccaacc gcgacccgaa ggtgttcggc gacaacgccg acgaattcga cctgagccga 1020 accaccaagg accacctggc cttcggctac ggcgcccacc actgcctcgg cgccccgctg 1080 gcccgcctcg aggcgtccat cgcgctcccc gccctgttcg accgcttccc gaacctgcgc 1140 ctggccgccg cccccgacga actcggcacg gtgcagagct tcatctccaa cggccaccgc 1200 cacctgccgg tgtacctgac ggcggagtag 1230 <210> 36 <211> 1218 <212> DNA <213> Artificial Sequence <220> <223> Nocardia farcinica <400> 36 gtgaccacgc tccacccacc gctcgaacac ccctacctgg acacccacac ccccgaattc 60 ctcgacgacc ccaaccggtt cctcggcggc gacgccgacc ggctccgggt ggcccggggc 120 cgcaccggcg cggagttctt cgcctacgac accgtgcgcg ggctctaccg ggacgaccgg 180 gtcggcccac gcagcccaca gttcttcctc gacaaggggc tgaccggcgg gccgatcatc 240 gactacctgg tcgacggcaa cctcaacctg acctggtcgg ccaaccacga ccggatccgc 300 ccgattctgc tcaggggatt ccggccgagc cggatcgtcc aggccagggc gatgatgagc 360 gagctggccg agaccttggt cgaccggctc gccggtcggg accggatcaa cttcgtcacc 420 gagtacagcc accacctcgc gatcggcgtc gtggccggtt tcatcggcat cccgttcgac 480 gaggtcgacg ccttcgccga cgccaccgtc aaactccggc tgctcggcca ggagccgatc 540 tggcccggcg tcgcgccgct ggaggatgcg ctgcaagccg tgcacgacta cagcgccgtg 600 ctggtcgagc aacggcgacg acagccgcgc gaggacttca tcagcgacct catcgaggcc 660 aaggactccg aggaggccga catcaccgac gtggagatcg tctggcacat cgcgggcgtc 720 ctgctggccg ggcacgacac cacgcgctac cagctggcgt cggcggtacg agcgatcgtc 780 gaggccggac agtggcaggc gctcgcggcg aacccggcac tgatccccgc cgcgatcaac 840 gagtcactgc gactgcaccc ggccaccccg cgccaggtca aggtggtcca gcgacccctg 900 acgctggaag gaatcgactt cgagcccggc caggccgtca ccctcaacat cagcggcgcc 960 gggcgcgacc cgcgctcgtt ccccgacccg gaccgtttcg acccgcagcg gcccgccccg 1020 ttgttcgaca tcggattcgg ctacgggggg cactactgcc tcggccacgc cgtcgccaag 1080 gcggagatgg aggaagggct gaaggtgctc acccggcgat ggcgcgaggt ggcgctcgac 1140 ggcccggtgg aactggccgc cggcggtgtc atcgccgggc ccgaggtggt gccgatccgc 1200 tacgagctcg ccgaatga 1218 <210> 37 <211> 1212 <212> DNA <213> Artificial Sequence <220> <223> Nocardia farcinica <400> 37 atgagcgccg cgacgagttg gatcgaagac atcacgatgg aggaactcga gcgaaatccg 60 tacccgttct acgagcggct gcgccgggag gcgccgctgg cgttcattcc gattctgggc 120 acctacgcgg cgaccaccaa ggaattgtgc cgcaccatcg ccaacagccc cgatttcgaa 180 gcgatcatca cccccgcggg cgggcggacc ttcggtcacc cggccgtcat cggcgtcaac 240 ggtgagatcc acgaggacct gcgctcgatg gtcgaccccg ccctgcagcc ctccgaggtc 300 gaccgctggg tggacggctt ggtccgcccc atcgcgcggc gctacctcgc cgaattcgag 360 aacgacggcc acgccgacct ggtcgcccag ttctgcgaac cggtgagtgt ccgcgcgctc 420 ggtgatctgc tggggttgcg cgacgtcggc tccgacaagt tgcgggaatg gttccacaaa 480 ttgtcgaact ccttcaccaa tgccgcgatg aacgaggacg gcaccttcgc caacccggcc 540 ggtttcgacc agggtgacga ggcgaaggcc gagatccgcg cgatcgtcga cccgctgatc 600 gaccactgga tcgcccaccc cgacgacagc gccatctcgc actggctgca cgacggcatg 660 cccgagggcc aggtccgcga ccgcgactac atctacccga ccctgtatgt gttcctgctc 720 ggcgccatgc aggaacccgg ccacgcgatg gcctcgaccg tcgcggggct gttcaccagg 780 cccgatcagc tggagcgggt gatcgacgac ccggcgctga ttccgcgggc ggtcgccgag 840 tcgctgcgct ggacctcccc gatctggtcg gcgacggcgc gcaccaacac cgtcgacgtc 900 accatcgacg gcgtcttcct gcccaagggt tcggtggtca tgatggccta cggttcggcc 960 aatcacgacg agaacgacta caacgcgccc tccgcctacg acatggaccg cccgccgctg 1020 ccgcacctgg ccttcggcgc cggtgaccac gcctgcgccg gaacctattt cgccaacaag 1080 gtgtgccaga tcggcctgga ggaattgttc gaggcgattc cgaacatcga gcgcgacgac 1140 cgcaagccga tcgacttctg gggctggggt ttccgcggcc cgaccgaact gcacgtgacg 1200 tgggaggtgt ga 1212 <210> 38 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> HisG1-BglII F <400> 38 aattgggccc agatctcaga ccggttcaga caggat 36 <210> 39 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> HisG1-EcoRI R <400> 39 tctctgggcg gaattcggag gtgcggatat gaggta 36 <210> 40 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> HisG1-NotI F <400> 40 tgtttctcgg cggccgccag accggttcag acaggat 37 <210> 41 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> HisG1-BamHI R <400> 41 tccaacgcgt ggatccggag gtgcggatat gaggta 36 <210> 42 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> HisG2-BglII F <400> 42 aattgggccc agatctaacg ctacctcgac cagaaa 36 <210> 43 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> HisG2-EcoRI R <400> 43 tctctgggcg gaattctctt ctcgatcggc agtacc 36 <210> 44 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> HisG2-NotI F <400> 44 tgtttctcgg cggccgcaac gctacctcga ccagaaa 37 <210> 45 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> HisG2-BamHI R <400> 45 tccaacgcgt ggatcctctt ctcgatcggc agtacc 36 <210> 46 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> HisG3-BglII F <400> 46 aattgggccc agatctgtga tctgacgcct gatgg 35 <210> 47 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> HisG3-EcoRI R <400> 47 tctctgggcg gaattctcag ggtattgaag ctcatgg 37 <210> 48 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> HisG3-NotI F <400> 48 tgtttctcgg cggccgcgtg atctgacgcc tgatgg 36 <210> 49 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> HisG3-BamHI R <400> 49 tccaacgcgt ggatcctcag ggtattgaag ctcatgg 37 <210> 50 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> glt1-BglII F <400> 50 aattgggccc agatcttcag aacttgcgcc gataaa 36 <210> 51 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> glt1-EcoRI R <400> 51 tctctgggcg gaattccttt gccagctaga ccatagag 38 <210> 52 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> glt1-NotI F <400> 52 tgtttctcgg cggccgctca gaacttgcgc cgataaa 37 <210> 53 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> glt1-BamHI R <400> 53 tccaacgcgt ggatcccttt gccagctaga ccatagag 38 <210> 54 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> glt2-BglII F <400> 54 aattgggccc agatctattg gcgggttcgt tactt 35 <210> 55 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> glt2-EcoRI R <400> 55 tctctgggcg gaattccctg gaagaaggcc gtattatc 38 <210> 56 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> glt2-NotI F <400> 56 tgtttctcgg cggccgcatt ggcgggttcg ttactt 36 <210> 57 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> glt2-BamHI R <400> 57 tccaacgcgt ggatcccctg gaagaaggcc gtattatc 38 <210> 58 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> POX1-F1 <400> 58 ttcctcaatg gtggagaaga 20 <210> 59 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> POX1-R1 <400> 59 tctttatcct gtctgaaccg gtctggtacc atagtccttg ccatgc 46 <210> 60 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> POX1-F2 <400> 60 atcgctacct catatccgca cctcccttct gtcccccgag tttct 45 <210> 61 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> POX1-R2 <400> 61 aagaagggct tgagagtcg 19 <210> 62 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> POX2-F1 <400> 62 cccaacaaca ctggcac 17 <210> 63 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> POX2-R1 <400> 63 tctttatcct gtctgaaccg gtctgctcct catcgtagat ggc 43 <210> 64 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> POX2-F2 <400> 64 atcgctacct catatccgca cctccgacaa gacccgacag gc 42 <210> 65 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> POX2-R2 <400> 65 agaccagagt cctcttcg 18 <210> 66 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> POX3-F1 <400> 66 accttcacag agccaccca 19 <210> 67 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> POX3-R1 <400> 67 atggctctct gggcggtgtt gggggtgttg atgatg 36 <210> 68 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> POX3-F2 <400> 68 ttgttgtgtt tctcgcaagg ttctcatcga ggcctg 36 <210> 69 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> POX3-R2 <400> 69 aggaaaggtc gaagagtgct ct 22 <210> 70 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> POX4-F1 <400> 70 actgcgagag cgatctg 17 <210> 71 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> POX4-R1 <400> 71 tctttatcct gtctgaaccg gtctgttcat gagcatgtag tttcg 45 <210> 72 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> POX4-F2 <400> 72 atcgctacct catatccgca cctccgagga cgacaaagcc ggag 44 <210> 73 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> POX4-R2 <400> 73 agagcagagt cctcctcaa 19 <210> 74 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> POX5-F1 <400> 74 aacttcctca caggcagcga gc 22 <210> 75 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> POX5-R1 <400> 75 atggctctct gggcggagta gagagtggga gttgaggtc 39 <210> 76 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> POX5-F2 <400> 76 ttgttgtgtt tctcgccccg tcaaggacgc tgag 34 <210> 77 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> POX5-R2 <400> 77 acagtaaggt ggggcttgac tc 22 <210> 78 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> POX6-F1 <400> 78 agtccctcaa cacgtttacc g 21 <210> 79 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> POX6-R1 <400> 79 tctttatcct gtctgaaccg gtctgccatt tagtggcagc aacgtt 46 <210> 80 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> POX6-F2 <400> 80 atcgctacct catatccgca cctccgagct ctgatcaacc gaacc 45 <210> 81 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> POX6-R2 <400> 81 aggaagggtc taatgacaga 20 <210> 82 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> FALDH1-F1 <400> 82 aatcactcct cctacgc 17 <210> 83 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> FALDH1-R1 <400> 83 tctttatcct gtctgaaccg gtctgtggtc tcggggacac ctc 43 <210> 84 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> FALDH1-F2 <400> 84 atcgctacct catatccgca cctccccatc atcaagcccc gaa 43 <210> 85 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> FALDH1-R2 <400> 85 accgacataa tctgagcaat 20 <210> 86 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> FALDH2-F1 <400> 86 accactaggt gagatcgag 19 <210> 87 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> FALDH2-R1 <400> 87 tctttatcct gtctgaaccg gtctgctccg acactaccgg aacgc 45 <210> 88 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> FALDH2-F2 <400> 88 atcgctacct catatccgca cctcccttgc tcccacagtt gtt 43 <210> 89 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> FALDH2-R2 <400> 89 gatcacccag aaccatagc 19 <210> 90 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> FALDH3-F1 <400> 90 gtgaccccca ccacgtcac 19 <210> 91 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> FALDH3-R1 <400> 91 tctttatcct gtctgaaccg gtctgttctg acattttcag cgccac 46 <210> 92 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> FALDH3-F2 <400> 92 atcgctacct catatccgca cctccccatt acgagcgttt gacgg 45 <210> 93 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> FALDH3-R2 <400> 93 cagggctggg gaccacc 17 <210> 94 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> FALDH4-F1 <400> 94 taccgactgg accagattc 19 <210> 95 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> FALDH4-R1 <400> 95 tctttatcct gtctgaaccg gtctgcggca gtggcaatga tcttac 46 <210> 96 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> FALDH4-F2 <400> 96 atcgctacct catatccgca cctccgactc gattcatcgc tcctac 46 <210> 97 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> FALDH4-R2 <400> 97 caaatctttc ggaagattcg g 21 <210> 98 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> FAO-F1 <400> 98 atcattgtcg gtggaggaac 20 <210> 99 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> FAO-R1 <400> 99 acgcctttct ggtcgaggta gcgttgcgta gtcgtaaggc tggac 45 <210> 100 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> FAO-F2 <400> 100 attctggtac tgccgatcga gaagaccgtc atcggtgaga ttctt 45 <210> 101 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> FAO-R2 <400> 101 attcgaggtc ggagatcctt 20 <210> 102 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ADH1-F1 <400> 102 cccagaaggc tgtcattttc 20 <210> 103 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> ADH1-R1 <400> 103 acgcctttct ggtcgaggta gcgtttcgca gttcttgggg atatg 45 <210> 104 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> ADH1-F2 <400> 104 attctggtac tgccgatcga gaagagccga caaggagaag atgtg 45 <210> 105 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> ADH1-R2 <400> 105 caatcttgcc ctcctccat 19 <210> 106 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ADH2-F1 <400> 106 ccagaagggt gtcatcttcg 20 <210> 107 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> ADH2-R1 <400> 107 acgcctttct ggtcgaggta gcgttatcgc agttcttggg aatgt 45 <210> 108 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> ADH2-F2 <400> 108 attctggtac tgccgatcga gaagaccgac aaggagaaga tgtgc 45 <210> 109 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ADH2-R2 <400> 109 caatcttgcc ctcctccata 20 <210> 110 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ADH3-F1 <400> 110 agaaagccgt catcttcgag 20 <210> 111 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> ADH3-R1 <400> 111 ttgcacaagt aacgaacccg ccaattcaca gttcttgggg atgtg 45 <210> 112 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> ADH3-F2 <400> 112 ggagataata cggccttctt ccagggctga caaggagaag atgtgc 46 <210> 113 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ADH3-R2 <400> 113 acttggagca gtccagaacg 20 <210> 114 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ADH4-F1 <400> 114 gtcaaaacgt cgacgaacct 20 <210> 115 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> ADH4-R1 <400> 115 aggtatttat cggcgcaagt tctgaggctt gaggtcaatg tcgat 45 <210> 116 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> ADH4-F2 <400> 116 ctcctctatg gtctagctgg caaaggacat ggaggcccac tctaa 45 <210> 117 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ADH4-R2 <400> 117 agtactccca agcgtcctca 20 <210> 118 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> ADH5-F1 <400> 118 gagagccgct ttcaccac 18 <210> 119 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> ADH5-R1 <400> 119 aggtatttat cggcgcaagt tctgaagagc ctggtaggca gtgag 45 <210> 120 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> ADH5-F2 <400> 120 ctcctctatg gtctagctgg caaagttcca ggacgtgatc aagga 45 <210> 121 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> ADH5-R2 <400> 121 taaggatgat cttgccggta g 21 <210> 122 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ADH6-F1 <400> 122 gacccagaaa gccattgtgt 20 <210> 123 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> ADH6-R1 <400> 123 aggtatttat cggcgcaagt tctgaagcca cctgagaaag gtctg 45 <210> 124 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> ADH6-F2 <400> 124 ctcctctatg gtctagctgg caaagcaccg aggagaagga gaaga 45 <210> 125 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ADH6-R2 <400> 125 tccctcctcc atcaaggtaa 20 <210> 126 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> ADH7-F1 <400> 126 gacgttccca agacacaaaa g 21 <210> 127 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> ADH7-R1 <400> 127 aggtatttat cggcgcaagt tctgaaggcg tactgctgga aagag 45 <210> 128 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> ADH7-F2 <400> 128 ctcctctatg gtctagctgg caaagaccca caccaaggag ctg 43 <210> 129 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ADH7-R2 <400> 129 caacgacacg accaacaatc 20 <210> 130 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ADH8-F1 <400> 130 atcgcgccaa cttgtttaat 20 <210> 131 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> ADH8-R1 <400> 131 aggtatttat cggcgcaagt tctgacacct tctctcgtgg gatgt 45 <210> 132 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> ADH8-F2 <400> 132 ctcctctatg gtctagctgg caaagtgtgt tgagtctggc aaagc 45 <210> 133 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ADH8-R2 <400> 133 tcaagtccat ggcatcaaac 20 <210> 134 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> FADH-F1 <400> 134 ccgaaggaaa gaccatcact 20 <210> 135 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> FADH-R1 <400> 135 ttgcacaagt aacgaacccg ccaatagaag gaagagcagc ccata 45 <210> 136 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> FADH-F2 <400> 136 ggagataata cggccttctt ccagggcttg ggcttacaag tttgg 45 <210> 137 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> FADH-R2 <400> 137 tcggtgaagg cagagttgat 20 <210> 138 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> ALK1-F1 <400> 138 gtctttctgc tagcctac 18 <210> 139 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> ALK1-R1 <400> 139 acgcctttct ggtcgaggta gcgttgaaga gctcttgggc atcaaag 47 <210> 140 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> ALK1-F2 <400> 140 attctggtac tgccgatcga gaagactacc tgcgatacgt tc 42 <210> 141 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> ALK1-R2 <400> 141 gagccttggt ggtcttg 17 <210> 142 <211> 15 <212> DNA <213> Artificial Sequence <220> <223> ALK2-F1 <400> 142 cgttttggcc gttgc 15 <210> 143 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> ALK2-R1 <400> 143 acgcctttct ggtcgaggta gcgttgttgt tgggaattcg c 41 <210> 144 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> ALK2-F2 <400> 144 attctggtac tgccgatcga gaagagcgag tacctgcgat ttg 43 <210> 145 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> ALK2-R2 <400> 145 gcgttaatga gcttctcg 18 <210> 146 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ALK3-F1 <400> 146 gctcgaaata ctgattggag 20 <210> 147 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> ALK3-R1 <400> 147 acgcctttct ggtcgaggta gcgttcgccc ttgaagttgt ctacac 46 <210> 148 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> ALK3-F2 <400> 148 attctggtac tgccgatcga gaagagcagt gtgagtacct gcgttatg 48 <210> 149 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> ALK3-R2 <400> 149 tcaactaact actgtaccct c 21 <210> 150 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ALK4-F1 <400> 150 gaccaatctt acgatcgtgc 20 <210> 151 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> ALK4-R1 <400> 151 acgcctttct ggtcgaggta gcgttctgca tgagtctttc g 41 <210> 152 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> ALK4-F2 <400> 152 attctggtac tgccgatcga gaagactcaa gaagctgcga gctg 44 <210> 153 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> ALK4-R2 <400> 153 cttcatcgac acccaaac 18 <210> 154 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> ALK5-F1 <400> 154 caactctttg gcgtcc 16 <210> 155 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> ALK5-R1 <400> 155 acgcctttct ggtcgaggta gcgttgagtg agtcgagtcg ag 42 <210> 156 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> ALK5-F2 <400> 156 attctggtac tgccgatcga gaagagctcc gaagtgctat tc 42 <210> 157 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> ALK5-R2 <400> 157 catcttgacc caaacacc 18 <210> 158 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> ALK6-F1 <400> 158 cttggccttg gccattc 17 <210> 159 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> ALK6-R1 <400> 159 acgcctttct ggtcgaggta gcgttccttc ttgatggtct tgaaaag 47 <210> 160 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> ALK6-F2 <400> 160 attctggtac tgccgatcga gaagaggtga tactcccgac gaattg 46 <210> 161 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> ALK6-R2 <400> 161 ctactccatc ttcaaccaaa c 21 <210> 162 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ALK7-F1 <400> 162 cgatactggt gctggctttc 20 <210> 163 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> ALK7-R1 <400> 163 acgcctttct ggtcgaggta gcgttctctt gcaaactgag gacg 44 <210> 164 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> ALK7-F2 <400> 164 attctggtac tgccgatcga gaagacgact acctgcgata cgtg 44 <210> 165 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> ALK7-R2 <400> 165 ctcctggtga cacagagtc 19 <210> 166 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> ALK8-F1 <400> 166 ctgatcatcc ccattacgct c 21 <210> 167 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> ALK8-R1 <400> 167 cagcgccatc aggcgtcaga tcacgtttca agggaagaca aggg 44 <210> 168 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> ALK8-F2 <400> 168 gaccatgagc ttcaataccc tgactgactt tgggaccagc ac 42 <210> 169 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> ALK8-R2 <400> 169 gactcatggt gatatggg 18 <210> 170 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> ALK9-F1 <400> 170 cagcttccat cttccccggt tc 22 <210> 171 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> ALK9-R1 <400> 171 cagcgccatc aggcgtcaga tcacgctcga gagtgttgcc atc 43 <210> 172 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> ALK9-F <400> 172 agcaatagga aagcttatgc tgggaagaac tctc 34 <210> 173 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> ALK9-R <400> 173 ggatccgcaa ttaacactag ttcttcttgt acaac 35 <210> 174 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> ALK10-F <400> 174 agcaatagga aagcttatga ttctactcta cgtcc 35 <210> 175 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> ALK10-R <400> 175 ggatccgcaa ttaacatcac ggtaagttat ttgtgc 36 <210> 176 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> ALK11-F <400> 176 agcaatagga aagcttatgc tcttaccact gcttt 35 <210> 177 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> ALK11-R <400> 177 ggatccgcaa ttaacatcac ttgacccgaa tcctc 35 <210> 178 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> ALK12-F <400> 178 agcaatagga aagcttatgc tcgaaatact gattg 35 <210> 179 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> ALK12-R <400> 179 ggatccgcaa ttaacatcaa ctaactactg taccc 35 <210> 180 <211> 144 <212> DNA <213> Artificial Sequence <220> <223> ER membrane fixing <400> 180 atgtccaacg ccctcaacct gtcgctggcg ctcggcgtct ttctgctagc ctactatggc 60 ttctccgtga tccagtaccg catcaaaacc cgcaagctcg aaaagaagtg gaagtgtggt 120 aagcccaagg atatttcacg attc 144

Claims (13)

  1. 탄화수소의 ω-산화 대사 경로와 β-산화 대사 경로를 모두 가지고 있는 미생물에서, ω-산화 대사 경로 중의 내인성 모노옥시게나아제 유전자, 지방 알코올 디하이드로게나아제 유전자, 지방 알코올 옥시다아제 유전자, 및 지방 알데히드 디하이드로게나아제 유전자; 및 β-산화 경로 중의 아실-CoA 옥시다아제 유전자가 제거되고, 또한, 외인성 모노옥시게나아제 유전자가 도입된 재조합 미생물.
  2. 청구항 1에 있어서,
    상기 외인성 모노옥시게나아제 유전자는 박테리아 유래의 시토크롬 P450 산화효소인, 재조합 미생물.
  3. 청구항 1에 있어서,
    상기 내인성 모노옥시게나아제 유전자는 서열번호 1의 뉴클레오티드 서열을 포함하는 ALK1, 서열번호 2의 뉴클레오티드 서열을 포함하는 ALK2, 서열번호 3의 뉴클레오티드 서열을 포함하는 ALK3, 서열번호 4의 뉴클레오티드 서열을 포함하는 ALK4, 서열번호 5의 뉴클레오티드 서열을 포함하는 ALK5, 서열번호 6의 뉴클레오티드 서열을 포함하는 ALK6, 서열번호 7의 뉴클레오티드 서열을 포함하는 ALK7, 서열번호 8의 뉴클레오티드 서열을 포함하는 ALK8, 서열번호 9의 뉴클레오티드 서열을 포함하는 ALK9, 서열번호 10의 뉴클레오티드 서열을 포함하는 ALK10, 서열번호 11의 뉴클레오티드 서열을 포함하는 ALK11, 및 서열번호 12의 뉴클레오티드 서열을 포함하는 ALK12 유전자로 이루어진 군에서 선택되는 적어도 하나인 재조합 미생물.
  4. 청구항 1에 있어서,
    상기 외인성 모노옥시게나아제 유전자는 서열번호 33의 뉴클레오티드 서열을 포함하는 CYP153A13, 서열번호 34의 뉴클레오티드 서열을 포함하는 CYP153A33, 서열번호 35의 뉴클레오티드 서열을 포함하는 nfa22930, 서열번호 36의 뉴클레오티드 서열을 포함하는 nfa33510및 서열번호 37의 뉴클레오티드 서열을 포함하는 nfa22290으로 이루어진 군에서 선택되는 적어도 하나인 재조합 미생물.
  5. 청구항 1에 있어서,
    상기 지방 알코올 디하이드로게나아제 유전자는 서열번호 13의 뉴클레오티드 서열을 포함하는 ADH1, 서열번호 14의 뉴클레오티드 서열을 포함하는 ADH2, 서열번호 15의 뉴클레오티드 서열을 포함하는 ADH3, 서열번호 16의 뉴클레오티드 서열을 포함하는 ADH4, 서열번호 17의 뉴클레오티드 서열을 포함하는 ADH5, 서열번호 18의 뉴클레오티드 서열을 포함하는 ADH6, 서열번호 19의 뉴클레오티드 서열을 포함하는 ADH7, 서열번호 20의 뉴클레오티드 서열을 포함하는 ADH8 및 서열번호 21의 뉴클레오티드 서열을 포함하는 FADH 유전자로 이루어진 군으로부터 선택되는 적어도 하나인 재조합 미생물.
  6. 청구항 1에 있어서,
    상기 지방 알코올 옥시다아제 유전자는 서열번호 22의 뉴클레오티드 서열을 포함하는 FAO 유전자인 재조합 미생물.
  7. 청구항 1에 있어서,
    상기 지방 알데히드 디하이드로게나아제 유전자는 서열번호 23의 뉴클레오티드 서열을 포함하는 FALDH1, 서열번호 24의 뉴클레오티드 서열을 포함하는 FALDH2, 서열번호 25의 뉴클레오티드 서열을 포함하는 FALDH3, 서열번호 26의 뉴클레오티드 서열을 포함하는 FALDH4 유전자로 이루어진 군에서 선택되는 적어도 하나인 재조합 미생물.
  8. 청구항 1에 있어서,
    상기 아실-CoA 옥시다아제 유전자는 서열번호 27의 뉴클레오티드 서열을 포함하는 ACO1, 서열번호 28의 뉴클레오티드 서열을 포함하는 ACO2, 서열번호 29의 뉴클레오티드 서열을 포함하는 ACO3, 서열번호 30의 뉴클레오티드 서열을 포함하는 ACO4, 서열번호 31의 뉴클레오티드 서열을 포함하는 ACO5 및 서열번호 32의 뉴클레오티드 서열을 포함하는 ACO6로 이루어진 군에서 선택되는 적어도 하나인 재조합 미생물.
  9. 청구항 1에 있어서,
    상기 내인성 모노옥시게나아제 유전자, 지방 알코올 디하이드로게나아제 유전자, 지방 알코올 옥시다아제 유전자 및 아실-CoA 옥시다아제 유전자의 미생물 내에 존재하는 모든 상동형 유전자가 제거된 재조합 미생물.
  10. 청구항 1에 있어서,
    상기 내인성 모노옥시게나아제 유전자, 지방 알코올 디하이드로게나아제 유전자, 지방 알코올 옥시다아제 유전자가 및 아실-CoA 옥시다아제 유전자의 미생물 내에 존재하는 일부 상동형 유전자가 제거된 재조합 미생물.
  11. 청구항 1에 있어서,
    상기 미생물은 효모인 재조합 미생물.
  12. 청구항 11에 있어서,
    상기 효모는 야로위아 속, 사카로마이에스 속, 피키아 속 및 캔디다 속으로 이루어진 군에서 선택되는 효모인 재조합 미생물.
  13. 청구항 1의 재조합 미생물을 제조하는 단계; 및
    상기 재조합 미생물에 지방 알코올 또는 알칸을 기질로 처리하여 배양하는 단계를 포함하는 탄소수 5 내지 28을 갖는 중쇄 디올의 생산 방법.
KR1020190161900A 2019-12-06 2019-12-06 중쇄 디올을 생산하는 재조합 균주 및 이를 이용한 중쇄 디올의 생산방법 KR102307507B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020190161900A KR102307507B1 (ko) 2019-12-06 2019-12-06 중쇄 디올을 생산하는 재조합 균주 및 이를 이용한 중쇄 디올의 생산방법
PCT/KR2020/017700 WO2021112641A1 (ko) 2019-12-06 2020-12-04 중쇄 디올을 생산하는 재조합 균주 및 이를 이용한 중쇄 디올의 생산방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190161900A KR102307507B1 (ko) 2019-12-06 2019-12-06 중쇄 디올을 생산하는 재조합 균주 및 이를 이용한 중쇄 디올의 생산방법

Publications (2)

Publication Number Publication Date
KR20210071575A true KR20210071575A (ko) 2021-06-16
KR102307507B1 KR102307507B1 (ko) 2021-10-01

Family

ID=76222606

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190161900A KR102307507B1 (ko) 2019-12-06 2019-12-06 중쇄 디올을 생산하는 재조합 균주 및 이를 이용한 중쇄 디올의 생산방법

Country Status (2)

Country Link
KR (1) KR102307507B1 (ko)
WO (1) WO2021112641A1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170049434A (ko) * 2015-10-27 2017-05-10 한국생명공학연구원 중쇄 디올의 생산 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102145000B1 (ko) * 2013-10-01 2020-08-14 삼성전자주식회사 대장균 내에서 1,4-부탄디올의 생합성에 사용되는 효소, 이의 변이체 및 이를 이용한 1,4-부탄디올 생산방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170049434A (ko) * 2015-10-27 2017-05-10 한국생명공학연구원 중쇄 디올의 생산 방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Fickers 등, FEMS Yeast Research, 5권, 페이지 527-543 (2005)* *
Scheps 등, Microbial Biotechnology, 6권, 페이지 694-707 (2013)* *

Also Published As

Publication number Publication date
KR102307507B1 (ko) 2021-10-01
WO2021112641A1 (ko) 2021-06-10

Similar Documents

Publication Publication Date Title
US11142761B2 (en) Compositions and methods for rapid and dynamic flux control using synthetic metabolic valves
JP5121070B2 (ja) L−又はd−ラクタート:フェリチトクロームc酸化還元酵素遺伝子が機能しない乳酸産生酵母
JP4637372B2 (ja) 有機生成物の合成方法および合成材料
RU2521502C2 (ru) Микробиологический способ получения 1,2-пропандиола
EP4039695A1 (en) Expression constructs and methods of genetically engineering methylotrophic yeast
ES2620770T3 (es) Proceso de fermentación que emplea células de levadura que tienen una ruta alterada desde dihidroxiacetona fosfato hasta glicerol
KR100869623B1 (ko) 하이드록시 카복실산류의 생산 방법
US7141410B2 (en) Methods and materials for the production of organic products in cells of Candida species
KR20080028902A (ko) 이싸첸키아 오리엔탈리스에 속하는 종 및 그와 밀접한관련이 있는 종의 유전자 변형된 효모 및 이를 이용한 발효방법
JP2009279007A (ja) 遺伝子工学のためのプロモーターおよびプラスミドシステム
EP2439271A1 (en) Polypeptide having d-lactate dehydrogenase activity, polynucleotide encoding the polypeptide, and process for production of d-lactic acid
WO2020243792A1 (en) Recombinant yeast
US20030004299A1 (en) Production of polyhydroxyalkanoates
WO2014165763A1 (en) Microorganisms for the conversion of methane and methanol to higher value chemicals and fuels
JP2012170422A (ja) キシローストランスポーター活性を有する新規タンパク質および当該タンパク質をコードするポリヌクレオチド、並びにそれらの利用
KR102307507B1 (ko) 중쇄 디올을 생산하는 재조합 균주 및 이를 이용한 중쇄 디올의 생산방법
JP5649119B2 (ja) シロ−イノシトール産生細胞および当該細胞を用いたシロ−イノシトール製造方法
KR101903551B1 (ko) 중쇄 디올의 생산 방법
KR102306725B1 (ko) 아세토인 생산능을 갖는 유전적으로 조작된 효모 및 이를 이용한 아세토인 생산방법
KR102157781B1 (ko) 디카르복시산 생산을 위한 미생물 및 이를 이용한 디카르복시산 생산방법
KR101903552B1 (ko) 중쇄 디아민의 생산 방법
KR20200023450A (ko) 기능적 dna 서열의 안정화된 카피 수를 갖는 미생물 및 관련 방법
KR20140032057A (ko) 글리세롤 탈수 반응 산물의 생산 능력이 향상된 재조합 미생물 및 그 용도
KR102339122B1 (ko) 3-하이드록시부티레이트-4-하이드록시부티레이트 공중합체 생산용 형질전환 메탄자화균 및 이의 용도
KR102330595B1 (ko) 에탄올 생산 경로가 억제된 내산성 효모 및 이를 이용한 젖산의 제조방법

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right