KR20210046327A - Manufaturing method of carbon nano dispersion for heating, and heater thereof - Google Patents

Manufaturing method of carbon nano dispersion for heating, and heater thereof Download PDF

Info

Publication number
KR20210046327A
KR20210046327A KR1020190129918A KR20190129918A KR20210046327A KR 20210046327 A KR20210046327 A KR 20210046327A KR 1020190129918 A KR1020190129918 A KR 1020190129918A KR 20190129918 A KR20190129918 A KR 20190129918A KR 20210046327 A KR20210046327 A KR 20210046327A
Authority
KR
South Korea
Prior art keywords
carbon
heating element
manufacturing
nanodispersion
nanomaterial
Prior art date
Application number
KR1020190129918A
Other languages
Korean (ko)
Inventor
김지한
Original Assignee
주식회사 어플라이드카본나노
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 어플라이드카본나노 filed Critical 주식회사 어플라이드카본나노
Priority to KR1020190129918A priority Critical patent/KR20210046327A/en
Publication of KR20210046327A publication Critical patent/KR20210046327A/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/04Heating means manufactured by using nanotechnology

Abstract

The present invention relates to a method for manufacturing a carbon nano-dispersion solution for heat generation and a method for manufacturing a heating element using the same, which use a structure-linked carbon nanomaterial in which a linear carbon nanowire is inserted between planar graphene layers, and in particular, a carbon nano-dispersion solution for heat generation is manufacturing by using a structural-linked carbon nano material, and a heating element is manufactured by coating the carbon nano-dispersion solution on metal, ceramic (tile, board, marble), polymer (film, plate, fiber, non-woven fabric), glass, or paper, and then forming an electrode on the upper or lower part of the coating layer. In addition, if necessary, by additionally coating the carbon nano-dispersion solution on an appropriate part of a material constituting the heating element, so that it is possible to improve the thermal diffusivity and obtain an electromagnetic wave shielding effect.

Description

발열용 탄소나노분산액의 제조방법 및 이를 이용한 발열체 제조방법{Manufaturing method of carbon nano dispersion for heating, and heater thereof}Manufacturing method of carbon nano dispersion for heating, and method of manufacturing a heating element using the same {Manufaturing method of carbon nano dispersion for heating, and heater thereof}

본 발명은 면상의 그래핀 층 사이에 선형의 탄소나노선재를 삽입시킨 구조연계형 탄소나노소재를 이용한 발열용 탄소나노분산액 제조방법 및 이를 이용한 발열체 제조방법에 관한 것으로 특히, 구조연계형 탄소나노소재를 이용하여 발열용 탄소나노분산액을 제조하고 이를 금속, 세라믹(타일, 보드, 대리석), 고분자(필름, 판재, 섬유, 부직포), 유리, 종이에 코팅한후 코팅층 상부 또는 하부에 전극을 형성하는 방법으로 발열체를 제조하는 방법에 관한 것이다. 또한 필요시 발열체를 구성하는 소재의 적절한 부위에 탄소나노분산액을 추가 코팅함으로서 열확산성 향상과 전자파 차폐 효과를 기대할 수 있다. The present invention relates to a method of manufacturing a heating element using a structure-linked carbon nanomaterial in which a linear carbon nanowire is inserted between a layer of graphene on a plane, and a method of manufacturing a heating element using the same. Using a carbon nanodispersion solution for heating, coating it on metal, ceramic (tile, board, marble), polymer (film, plate material, fiber, non-woven fabric), glass, and paper, and then forming an electrode on the top or bottom of the coating layer. It relates to a method of manufacturing a heating element by a method. In addition, if necessary, by adding a carbon nanodispersion solution to an appropriate part of the material constituting the heating element, it is possible to expect improved thermal diffusion and shielding effects from electromagnetic waves.

차세대 핵심 소재로 자리매김하고 있는 탄소나노튜브(Carbon Nanotube), 그래핀(Graphene), 풀러렌(fullerene) 등과 같은 탄소나노소재는 우수한 전기전도성, 열전도성, 내구성, 형상특성으로 인하여 다양한 산업분야에서 적용폭을 넓혀가고 있다. Carbon nanomaterials such as carbon nanotube, graphene, and fullerene, which are positioned as next-generation core materials, are applied in various industrial fields due to their excellent electrical conductivity, thermal conductivity, durability, and shape characteristics. It is expanding its width.

특히 탄소나노소재를 다양한 용매에 분산시켜 이를 적절한 대상 소재에 코팅하여발열체를 제조하는 경우 우수한 에너지 효율을 기대할 수 있기에 많은 연구와 상용화가 시도되고 있다. In particular, when a carbon nanomaterial is dispersed in various solvents and coated on an appropriate target material to manufacture a heating element, excellent energy efficiency can be expected, so many studies and commercializations are being attempted.

기존의 발열체용 전도성 잉크 제조에는 카본블랙(Carbon black). 흑연(graphite)등을 사용하였으나 최근에는 탄소나노소재의 대량 생산에 힘입어 탄소나노튜브와 그래핀을 전도성 소재로 사용하려는 시도가 확대되고 있다.Carbon black is used to manufacture conductive inks for conventional heating elements. Graphite, etc. were used, but in recent years, due to the mass production of carbon nanomaterials, attempts to use carbon nanotubes and graphene as conductive materials are expanding.

면상 구조의 그래핀은 코팅시 X-Y(수평)방향으로의 전도성은 좋은 반면 발열 효과를 극대화할 수 있는 Z방향(수직 방향)으로의 전도성은 상대적으로 열세인 것을 감안하여 면상의 그래핀 층 사이로 선형의 탄소나노선재를 삽입하는 방식으로 그래핀과 탄소나노선재의 구조를 연계시키게 되면 코팅층내에서X-Y-Z 방향(수평과 수직 방향)으로의 전도성이 개선되어 발열 효율을 극대화 할 수 있다.The planar structure graphene has good conductivity in the XY (horizontal) direction when coated, but the conductivity in the Z direction (vertical direction), which can maximize the heating effect, is relatively inferior. If the structure of the graphene and the carbon nanowire is connected by inserting the carbon nanowire in the coating layer, the conductivity in the XYZ direction (horizontal and vertical direction) is improved, thereby maximizing the heating efficiency.

탄소나노튜브를 이용한 분산액 및 발열체 제조와 관련한 선행기술로는 "CNT 페이스트로부터 형성된 면상 발열체를 갖는 휴대용 저전력 히터" (대한민국 특허 제10-1803194호), "나노소재를 이용한 면상발열 유리패널" (대한민국 특허 제10-1895008호) 등이 있으며, “탄소나노튜브용 분산제 및 이를 포함하는 조성물" (대한민국 등록특허 제10-0815028호), “도전성잉크 및 도전성 기판" (대한민국 등록특허 제10-0599053호), “탄소나노튜브 분산방법" (PCT 국제출원 제 PCT/EP2007/008193 호)" 등이 있는 데 이들 대부분은 탄소나노튜브 단독 사용시에 분산제 및 분산공정의 선택과 발열체를 제조하는 방법에 관한 기술들이다, The prior art related to the production of dispersion and heating element using carbon nanotubes is "portable low-power heater having a planar heating element formed from CNT paste" (Korean Patent No. 10-1803194), "A planar heating glass panel using nanomaterials" (Korea Patent No. 10-1895008), etc., and “Dispersant for carbon nanotubes and composition containing the same” (Korean Patent Registration No. 10-0815028), “Conductive Ink and Conductive Substrate” (Korean Registration Patent No. 10-0599053 ), “Carbon Nanotube Dispersion Method” (PCT International Application No. PCT/EP2007/008193)”, etc. Most of these are technologies related to the selection of a dispersant and dispersion process and a method of manufacturing a heating element when using carbon nanotubes alone. admit,

그래핀을 이용한 분산액 및 발열체 제조와 관련한 선행기술로는 "그래핀 면상발열체 및 그 그래핀 면상발열체의 제조방법"(대한민국 특허출원 제 10-2013-0113097호), "그래핀 산화물을 포함하는 발열 조성물 및 그를 이용한 발열체" (대한민국 특허출원 제10-2017-0098341호), "환원 그래핀의 안정적 분산용액 제조방법 및 이에 의해 제조된 환원그래핀 분산용액"(대한민국 공개특허 10-2012-0039799) 등이 있으나 이들은 그래핀 단독 사용시의 발열조성물 및 발열체 제조 방법을 제시하고 있다. As the prior art related to the production of the dispersion liquid and the heating element using graphene, "the graphene planar heating element and the method of manufacturing the graphene planar heating element" (Korean Patent Application No. 10-2013-0113097), "Fever including graphene oxide Composition and heating element using the same" (Korean Patent Application No. 10-2017-0098341), "Method for preparing a stable dispersion solution of reduced graphene and a reduced graphene dispersion solution prepared thereby" (Korean Patent Laid-Open Patent 10-2012-0039799) And the like, but these suggest a heating composition and a method of manufacturing a heating element when graphene is used alone.

탄소소재들간의 혼합믈을 이용한 분산액 및 발열체 제조와 관련한 선행기술로는 "탄소나노튜브를 이용한 발열체용 전도성 잉크 조성물" (대한민국 특허 제10-1209174호), "3차원 카본구조체를 포함하는 면상발열체 및 제조방법" (대한민국 특허 제10-1447077호), "탄소 함유형 면상발열 구조체" (대한민국 특허 제10-2017-0066770호) 등이 있으며 이들은 탄소나노튜브와 카본블랙 또는 흑연분말과 단순 혼합하거나 카본 코팅층에 탄소나노튜브를 수직성장시키는 방법등을 제시할 뿐 본 발명에서 제시하는 그래핀층 사이에 탄소나노선재를 삽입하는 방식의 구조연계형 탄소나노소재를 사용한 분산액 및 발열체 제조방법과는 구별된다. The prior art related to the production of dispersions and heating elements using a mixture of carbon materials includes "conductive ink composition for heating elements using carbon nanotubes" (Korean Patent No. 10-1209174), and "planar heating elements including three-dimensional carbon structures. And manufacturing method" (Korean Patent No. 10-1447077), "Carbon-containing planar heating structure" (Korean Patent No. 10-2017-0066770), etc. These are simply mixed with carbon nanotubes and carbon black or graphite powder, or The method of vertical growth of carbon nanotubes on the carbon coating layer is presented, but it is distinguished from the method of manufacturing a dispersion and heating element using a structure-linked carbon nanomaterial in which a carbon nanowire is inserted between the graphene layers presented in the present invention. .

본 발명의 목적은, 탄소나노소재를 이용한 발열층내 X-Y-X방향으로의 전자이동과열 확산성 향상을 위하여 그래핀과 탄소나노선재의 구조를 연계한 구조연계형 탄소나노소재를 이용한 분산액과 이러한 탄소나노분산액으로 발열체를 제조하는 방법을 제공하는 것이다.An object of the present invention is a dispersion liquid using a structure-linked carbon nanomaterial that links the structures of graphene and carbon nanowires to improve the electron transfer superheat diffusivity in the XYX direction in a heating layer using a carbon nanomaterial, and such a carbon nanodispersion liquid. It is to provide a method of manufacturing a heating element.

상기의 목적을 달성하기 위한 본 발명의 요지는 아래와 같다. The gist of the present invention for achieving the above object is as follows.

(1) 선형의 탄소나노선재를 면상의 그래핀 층 사이에 삽입시킨 구조연계형 탄소나노소재를 중량비로 0.1~30 wt%를 용매에 분산시키는 단계를 포함하는 발열용 탄소나노분산액 제조방법.(1) A method for preparing a carbon nano-dispersion for heating, comprising dispersing 0.1 to 30 wt% of a structure-linked carbon nanomaterial in which a linear carbon nanowire is inserted between the planar graphene layers in a solvent.

(2) 상기 구조연계형 탄소나노소재에 사용되는 선형의 탄소나노선재로는 탄소나노튜브 또는 탄소나노섬유, 탄소섬유 이며, 면상의 탄소나노소재로는 그래핀, 흑연인 것을 특징으로 하는 상기 (1)에 따른 발열용 탄소나노분산액 제조방법..(2) The linear carbon nanowire used in the structure-linked carbon nanomaterial is a carbon nanotube, carbon nanofiber, or carbon fiber, and the planar carbon nanomaterial is graphene or graphite. Method for producing carbon nanodispersion for heating according to 1)..

(3) 상기 용매는 증류수, 알코올, DMF, MEK 또는 Polyol로부터 선택되는 어느 하나 이상인 것을 특징으로 하는 상기 (1)에 따른 발열용 탄소나노분산액 제조방법.(3) The solvent is distilled water, alcohol, DMF, MEK, or a method for producing a carbon nanodispersion for heating according to the above (1), characterized in that any one or more selected from Polyol.

(4) 상기 분산단계는 초음파(Ultrasonic), 롤 밀링(Roll Milling), 볼 밀링(Ball Milling), 제트밀링(Zet Milling), 스크루 혼합(Screw Mixing), 또는 어트리션 밀링(Attrition Milling)으로부터 선택되는 어느 하나 이상의 방법으로 수행되는 것을 특징으로 하는 상기 (1)에 따른 발열용 탄소나노분산액 제조방법.(4) The dispersion step is from ultrasonic, roll milling, ball milling, jet milling, screw mixing, or attrition milling. Method for producing a carbon nanodispersion for heating according to (1), characterized in that carried out by any one or more selected methods.

(5) 상기 (1) 내지 (4) 중 어느 하나에 따라 제조된 탄소나노분산액을 금속, 세라믹(타일, 보드, 대리석), 고분자(필름, 판재, 섬유, 부직포), 유리, 종이에 코팅 및 경화시켜 탄소나노코팅층을 형성하는 단계와; 상기 탄소나노코팅층에 전극을 형성시켜 발열체를 제조하는 단계를 포함하는 탄소나노발열체 제조방법. (5) The carbon nanodispersion prepared according to any one of the above (1) to (4) is coated on metal, ceramic (tile, board, marble), polymer (film, plate, fiber, non-woven fabric), glass, paper, and Curing to form a carbon nanocoating layer; A method of manufacturing a carbon nano heating element comprising the step of manufacturing a heating element by forming an electrode on the carbon nano coating layer.

(6) 상기 코팅 과정은 스프레이코팅법, 닥터블레이드법, 스크린인쇄법 또는 침적법 중 어느 하나의 방법으로 수행되는 것을 특징으로 하는 상기 (5)에 따른 탄소나노 발열체 제조방법. (6) The coating process is a method for manufacturing a carbon nano heating element according to (5), characterized in that the coating process is performed by any one of a spray coating method, a doctor blade method, a screen printing method, or an immersion method.

(7) 상기 탄소나노소재 코팅층의 경화 과정은 열경화, 자연경화 또는 자외선 경화 방법으로 수행되는 것을 특징으로 하는 상기 (5)에 따른 탄소나노발열체 제조방법. (7) The method of manufacturing a carbon nano heating element according to (5), wherein the curing process of the carbon nanomaterial coating layer is performed by thermal curing, natural curing, or ultraviolet curing.

(8) 상기 발열체를 구성하는 소재의 적절한 부위에 탄소나노분산액을 추가로 코팅함으로서 열확산성을 향상시키고 전자파를 차폐하는 것을 특징으로 하는 상기 (5)에 따른 탄소나노발열체 제조방법(8) The method for manufacturing a carbon nano heating element according to (5), characterized in that by additionally coating a carbon nano dispersion liquid on an appropriate part of the material constituting the heating element to improve thermal diffusivity and shield electromagnetic waves.

본 발명에 따른 구조연계형 탄소나노분산액에 따르면, 수평방향의 전도성이 좋은 면상의 그래핀층 사이에 수직방향의 전도성을 개선하기 위한 목적으로 선상의 탄소나노선재를 삽입한 구조연계형 탄소나노소재를 이용하여 코팅층내 X-Y-X방향으로의 전자이동과 열확산성을 향상시킴으로써 코팅층의 발열성을 향상시킬 수 있다. According to the structure-linked carbon nanodispersion according to the present invention, a structure-linked carbon nanomaterial in which a linear carbon nanowire is inserted for the purpose of improving the conductivity in the vertical direction between graphene layers having good horizontal conductivity By using it, the heat dissipation of the coating layer can be improved by improving electron transfer and thermal diffusion in the XYX direction in the coating layer.

또한 상기 탄소나노분산액으로 형성된 코팅층에 전극을 형성시킴으로서 탄소나노발열체를 제조할 수 있다.In addition, by forming an electrode on the coating layer formed of the carbon nanodispersion liquid, it is possible to manufacture a carbon nano heating element.

도 1은 본 발명에 따른 구조연계형 탄소나노소재를 이용한 발열용 탄소나노분산액 제조방법과 이를 이용한 발열체 제조 방법에 관한 전체 흐름도.
도 2는 본 발명에 사용한 구조연계형 탄소나노소재의 모식도.
.도 3은 본 발명에 사용한 구조연계형 탄소나노소재의 SEM사진.
도 4는 본 발명에 따른 구조연계형 탄소나노소재를 이용한 발열용 탄소나노분산액 제조방법에 관한 흐름도.
도 5는 본 발명에 따른 발열용 탄소나노분산액을 이용한 발열체의 모식도.
1 is an overall flowchart of a method for manufacturing a carbon nanodispersion for heating using the structure-linked carbon nanomaterial according to the present invention and a method for manufacturing a heating element using the same.
Figure 2 is a schematic diagram of the structure-linked carbon nanomaterial used in the present invention.
Figure 3 is a SEM photograph of the structure-linked carbon nanomaterial used in the present invention.
Figure 4 is a flow chart of a method for producing a carbon nano-dispersion for heating using a structure-linked carbon nanomaterial according to the present invention.
Figure 5 is a schematic diagram of a heating element using a carbon nanodispersion for heating according to the present invention.

이하, 첨부된 도면을 참조하여 본 발명에 따른 실시예에 대하여 상세히 설명한다. 한편, 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한, 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. Meanwhile, throughout the specification, when a certain part "includes" a certain component, it means that other components may be further included rather than excluding other components unless otherwise stated.

도 1은 본 발명에 따른 구조연게형 탄소나노소재를 이용한 발열용 탄소나노분산액의 제조방법과 이를 이용한 발열체 제조방법에 관한 전체 흐름도를 나타내고, 도 4는 본 발명에 따른 발열용 탄소나노분산액 제조방법에 관한 흐름도를 나타낸다. FIG. 1 is a flow chart showing a method of manufacturing a carbon nanodispersion for heating using a structurally-linked carbon nanomaterial according to the present invention and a method of manufacturing a heating element using the same, and FIG. It shows the flow chart of.

먼저, 본 발명에 따른 발열용 탄소나노분산액의 제조방법은, 도 1 및 도 4에 도시된바와 같이, 구조연게형 탄소나노소재를 제공하는 단계(100)와; 상기 구조연계형 탄소나노소재를 분산제와 함께 용매에 분산시키는 단계(200, 300)를 포함하여 구성된다.First, the method of manufacturing a carbon nanodispersion for heating according to the present invention includes the step 100 of providing a structure-linked carbon nanomaterial, as shown in FIGS. 1 and 4; And dispersing the structure-linked carbon nanomaterial in a solvent together with a dispersant (200, 300).

도2는 구조연계형 탄소탄소나노소재의 모식도이며 도 3은 SEM사진을 나타낸 것이다. 면상의 그래핀은 수평방향으로의 전자이동과 열 확산성은 우수하나 수직방향으로는 상대적으로 열세이므로 본 발명에서는 평면 구조의 그래핀에 선형의 탄소나노선재가 삽입된 형태의 구조연게형 탄소나노소재를 발열용 소재로 이용하였다. 2 is a schematic diagram of a structure-linked carbon carbon nanomaterial, and FIG. 3 is a SEM photograph. Planar graphene has excellent electron transfer and thermal diffusivity in the horizontal direction, but is relatively inferior in the vertical direction, so in the present invention, a structure-linked carbon nanomaterial in which a linear carbon nanowire is inserted into a planar graphene. Was used as a material for heating.

도 4는 본 발명에 따른 구조연계형 탄소나노소재를 이용한 발열용 탄소나노분산액의 제조방법이다. 구조연계형 탄소나노소재를 분산제와 함께 용매에 혼합한 후 1차, 2차 분산공정을 거치면서 제조하게 된다. 이러한 분산과정은 기계적 혼합공정에서 초기 분산 및 점도를 조절하는 1차 분산단계(200)를 거쳐, 최종적으로 이들 혼합물을 초음파 분산 공정에서 용도에 맞게 탄소나노분산액을 제조하는 2차 분산단계(300)로 구성된다. 분산 방법은, 초음파(Ultrasonic), 비드밀링(Bead Milling), 롤밀링(Roll Milling), 볼밀링(Ball Milling), 제트밀링(Zet Milling), 스크루 혼합(Screw Mixing), 또는 어트리션 밀링(Attrition Milling)으로부터 선택되는 어느 하나 이상의 방법으로 수행될 수 있다.Figure 4 is a method for producing a carbon nanodispersion for heating using a structure-linked carbon nanomaterial according to the present invention. The structure-linked carbon nanomaterial is mixed with a dispersant in a solvent and then manufactured through the first and second dispersion processes. This dispersion process goes through the first dispersion step 200 of adjusting the initial dispersion and viscosity in the mechanical mixing process, and finally, the second dispersion step 300 of preparing the carbon nanodispersion according to the purpose in the ultrasonic dispersion process. It consists of Dispersion method is ultrasonic (Ultrasonic), bead milling (Bead Milling), roll milling (Roll Milling), ball milling (Ball Milling), jet milling (Zet Milling), screw mixing (Screw Mixing), or attrition milling ( Attrition Milling) can be performed by any one or more methods selected from.

용매에 분산되는 구조연계형 탄소나노소재의 첨가량은 용매에 대해 0.1~30 wt% 범위로 분산되는 것이 바람직하다. 0.1 wt. 이하일 경우 목표로하는 발열 성능을 기대하기 어렵고, 30 wt%를 초과하는 경우에는 분산액의 점도가 과다하게 높아져서 코팅층의 형성이 어렵기 때문에 바람직하지 않다.The amount of the structure-linked carbon nanomaterial dispersed in the solvent is preferably dispersed in the range of 0.1 to 30 wt% with respect to the solvent. 0.1 wt. If it is less than or equal to, it is difficult to expect the target heat generation performance, and if it exceeds 30 wt%, the viscosity of the dispersion is excessively high, making it difficult to form a coating layer, which is not preferable.

상기 분산액에 사용되는 용매는 증류수, 알코올, DMF, MEK 또는 Polyol로부터 선택되는 어느 하나 이상일 수 있으며, 특별히 제한되는 것은 아니다.The solvent used in the dispersion may be any one or more selected from distilled water, alcohol, DMF, MEK, or Polyol, and is not particularly limited.

상기 분산제는 Triton-X, CMC, PVB, PAB 또는 EAB로부터 선택되는 어느 하나 이상일 수 있으며, 분산제의 양은 탄소나노소재 함량의 0.1~3배의 범위인 것이 바람직하다. 0.1배 이하이면 시간이 지남에 따라 탄소나노소재의 재응집 현상이 일어나며 3배 이상이 되면 탄소나노소재 표면에 부착되는 분산제의 함량이 과도하게 많아져 서 전도성이 나빠지게 된다. The dispersant may be any one or more selected from Triton-X, CMC, PVB, PAB, or EAB, and the amount of the dispersant is preferably in the range of 0.1 to 3 times the content of the carbon nanomaterial. If it is less than 0.1 times, re-aggregation of the carbon nanomaterial occurs over time, and if it is more than 3 times, the content of the dispersant attached to the surface of the carbon nanomaterial is excessively increased, resulting in poor conductivity.

발열체 제조에 있어서 코팅 모재로는 금속, 세라믹(타일, 보드, 대리석), 고분자(필름, 판재, 섬유, 부직포), 유리, 종이 등 고체 형상의 물질이 대상이 될 수 있다. In the manufacture of the heating element, a solid material such as metal, ceramic (tile, board, marble), polymer (film, plate, fiber, non-woven fabric), glass, and paper may be used as the coating base material.

발열체 제조를 위한 상기 탄소나노분산액의 코팅 방법은 스프레이코팅법(Spray Coating), 닥터블레이드법(Dr. Blade), 스크린인쇄법(Screen Printing) 또는 침적법(Dipping) 중 어느 하나 이상의 방법으로 수행될 수 있으며, 상기 코팅층의 경화(Curing) 방법은 열경화, 자연경화 또는 자외선 경화 방법으로 수행될 수 있다.The coating method of the carbon nanodispersion solution for manufacturing the heating element may be performed by any one or more of a spray coating method, a doctor blade method, a screen printing method, or a dipping method. The curing method of the coating layer may be performed by thermal curing, natural curing, or ultraviolet curing.

탄소나노분산액의 코팅면에 전극을 형성하는 방법은 탄소나노분산액 코팅전 모재 표면에 전극을 형성시킨후 탄소나노분산액을 코팅하는 방법과 탄소나노분산액을 코팅한 후 그 위에 전극을 형성하는 방법이 대상이 될 수 있다. The methods of forming an electrode on the coated surface of the carbon nanodispersion solution include forming an electrode on the surface of the base material before coating the carbon nanodispersion solution, and then coating the carbon nanodispersion solution, and forming an electrode thereon after coating the carbon nanodispersion solution. Can be

또한 필요시 발열체를 구성하는 소재의 적절한 부위에 탄소나노분산액을 추가 코팅함으로서 열확산성 향상과 전자파 차폐 효과를 기대할 수 있다. In addition, if necessary, by adding a carbon nanodispersion solution to an appropriate part of the material constituting the heating element, it is possible to expect improved thermal diffusion and shielding effects from electromagnetic waves.

(실시예)(Example)

구조연계형 탄소나노소재를 이용하여 탄소나노분산액을 제조한 후 탄소나노튜브와 그래핀을 각각 단독으로 사용여 제조한 탄소나노분산액과의 발열특성을 비교하였다.After preparing a carbon nanodispersion using a structure-linked carbon nanomaterial, the exothermic properties of the carbon nanodispersion prepared using each of carbon nanotubes and graphene alone were compared.

구조연계형 탄소나노소재를 분산제와 함께 증류수, 알코올 또는 유기용매와 혼합함에 있어서 탄소나노소재의 농도는 3 wt.%, 분산제는 1 wt.% 가 되도록 하였다. 탄소나노튜브와 그래핀 단독으로 사용하는 경우에도 각각의 농도를 동일하게 하여 비교하였다.When the structure-linked carbon nanomaterial was mixed with distilled water, alcohol, or an organic solvent with a dispersant, the concentration of the carbon nanomaterial was 3 wt.% and the dispersant was 1 wt.%. Even when carbon nanotubes and graphene were used alone, the concentrations were the same and compared.

상기의 탄소나노소재와 분산제를 증류수와 함께 1차 기계적 혼합을 실시한후 2차로 초음파 공정에서 5시간 분산시켜 탄소나노분산액을 제조하였으며, 아래의 표 1에 제조 조건을 정리하였다.The carbon nanomaterial and the dispersant were first mechanically mixed with distilled water, and then dispersed for 5 hours in an ultrasonic process to prepare a carbon nanodispersion solution, and the manufacturing conditions are summarized in Table 1 below.

구 분division 내 용Contents 탄소나노소재 종류Types of carbon nanomaterials 탄소나노튜브, 그래핀, 구조연계형 탄소나노소재Carbon nanotube, graphene, structure-linked carbon nanomaterial 용매의 종류Type of solvent 증류수Distilled water 분산제의 종류Type of dispersant CMCCMC 탄소나노소재 농도 (wt.%)Carbon nanomaterial concentration (wt.%) 33 분산방법Dispersion method 기계적 혼합, 초음파 (5시간)Mechanical mixing, ultrasonic (5 hours)

발열층을 형성하는 방법으로는 탄소나노분산액을 60℃로 예열된 건축용 타일(300x300mm)에 스프레이 방법으로 동일한 양을 코팅한 후 구리전극을 부착하는 방법으로 발열체를 제조하였다. 통상 코팅층의 발열특성(전기적 특성)은 탄소나노분산액의 코팅 두께와 탄소나노소재의 첨가량을 조절하는 방법으로 제어가 가능하였다.As a method of forming the heating layer, a heating element was manufactured by coating the same amount of a carbon nanodispersion solution on a building tile (300x300mm) preheated to 60°C by a spray method and then attaching a copper electrode. In general, the heating characteristics (electrical characteristics) of the coating layer can be controlled by controlling the coating thickness of the carbon nanodispersion liquid and the amount of carbon nanomaterials added.

표 2는 본 발명에 따른 구조제어형 탄소나노분산액과 기존의 탄소나노튜브, 그래핀을 이용하여 제조한 분산액과의 발열특성을 비교한 결과이다. 본 발명에서의 구조제어형 탄소나노분산액을 코팅한 경우가 탄소나노튜브와 그래핀 분산액을 각각 코팅한 경우보다 전기저항이 낮고 승온속도는 빠르며 소비전력은 감소되는 것으로 나타나서 본 발명의 구조제어형 탄소나노소재를 적용한 경우 발열 특성이 개선될 수 있음을 확인하였다.Table 2 is a result of comparing the heat generation characteristics of the structure-controlled carbon nanodispersion according to the present invention with a dispersion prepared using conventional carbon nanotubes and graphene. In the case of coating the structure-controlled carbon nanodispersion in the present invention, the electric resistance is lower, the heating rate is faster, and the power consumption is reduced compared to the case where the carbon nanotubes and graphene dispersions are coated respectively, so that the structure-controlled carbon nanomaterials of the present invention It was confirmed that the heating characteristics can be improved when is applied.

분산액 종류Dispersion type 탄소나노튜브Carbon nanotube 그래핀Graphene 구조연계형
탄소나노소재
Structure-linked type
Carbon nanomaterial
전기저항
(Ohm/Sq.)
Electrical resistance
(Ohm/Sq.)
1.4 x 103 1.4 x 10 3 1.2 x 103 1.2 x 10 3 0.64 x 103 0.64 x 10 3
40℃ 까지 승온속도
(초)
Heating rate up to 40℃
(second)
5252 5555 4343
소비전력(WH)Power consumption (WH) 2121 2222 1717

Claims (6)

면상의 그래핀층 사이에 선형의 탄소나노선재를 삽입시킨 구조연계형 탄소나노소재를 제공하는 단계와;
상기 구조연계형 탄소나노소재를 중량비로 0.1~30wt%, 분산제를 탄소나노소재의 0.1~3배 농도로 용매에 분산시켜 발열용 탄소나노분산액을 제조하는 단계와;
상기 탄소나노분산액을 모재에 코팅한후 코팅층 상부 또는 하부에 전극을 형성하는 방법으로 발열체를 제조하는 단계를 포함하는 것을 특징으로 하는 탄소나노분산액 제조방법 및 발열체 제조방법.
Providing a structure-linked carbon nanomaterial in which a linear carbon nanowire is inserted between the planar graphene layers;
Dispersing the structure-linked carbon nanomaterial in a weight ratio of 0.1 to 30wt% and a dispersant in a solvent at a concentration of 0.1 to 3 times that of the carbon nanomaterial to prepare a carbon nanodispersion for exothermic use;
And producing a heating element by coating the carbon nanodispersion solution on a base material and then forming an electrode on or under the coating layer.
제 1항에 있어서,
상기 구조연계형 탄소나노소재의 구성에 있어서 면상의 탄소나노소재로는 그래핀 또는 흑연, 선상의 탄소나노선재로는 탄소나노튜브, 탄소나노섬유, 탄소섬유 중에서 하나 이상 포함되는 것을 특징으로 하는 탄소나노분산액 제조방법 및 발열체 제조방법.
The method of claim 1,
In the constitution of the structure-linked carbon nanomaterial, carbon, characterized in that it contains at least one of graphene or graphite as a planar carbon nanomaterial, and a carbon nanotube, a carbon nanofiber, and a carbon fiber as a linear carbon nanowire. Nano dispersion manufacturing method and heating element manufacturing method
제1항에 있어서,
상기 탄소나노분산액 제조방법은 용매에 그래핀과 탄소나노선재를 혼합한 후 기계적으로 혼합하는 방법과 초음파로 분산시키는 방법중에서 하나 이상을 포함하는 것을 특징으로 하는 탄소나노분산액 제조방법 및 발열체 제조방법.
The method of claim 1,
The carbon nanodispersion manufacturing method comprises at least one of a method of mixing graphene and a carbon nanowire in a solvent and then mechanically mixing and dispersing by ultrasonic waves.
제1항에 있어서,
상기 용매는 증류수, 알코올, DMF, MEK 또는 Polyol로부터 선택되는 어느 하나 이상인 것을 특징으로 하는 탄소나노분산액 제조방법 및 발열체 제조방법.
The method of claim 1,
The solvent is distilled water, alcohol, DMF, MEK or polyol, characterized in that any one or more selected from the carbon nanodispersion manufacturing method and heating element manufacturing method.
제 1항에 있어서,
상기 발열체 제조를 위하여 탄소나노분산액을 코팅하는 모재로서는 금속, 세라믹(타일, 보드, 대리석), 고분자(필름, 판재, 섬유, 부직포), 유리, 종이 중에서 하나 이상인 것을 특징으로 하는 탄소나노분산액 제조방법 및 발열체 제조방법.
The method of claim 1,
A method for producing a carbon nanodispersion solution, characterized in that the base material coating the carbon nanodispersion solution for the production of the heating element is at least one of metal, ceramic (tile, board, marble), polymer (film, plate material, fiber, non-woven fabric), glass, and paper. And a heating element manufacturing method.
제1항에 있어서,
상기 발열체를 구성하는 소재의 적절한 부위에 탄소나노분산액을 추가로 코팅함으로서 열확산성을 향상시키고 전자파를 차폐하는 것을 특징으로 하는 탄소나노분산액 제조방법 및 발열체 제조방법.
The method of claim 1,
A carbon nanodispersion manufacturing method and a heating element manufacturing method, characterized in that by further coating a carbon nanodispersion solution on an appropriate part of a material constituting the heating element to improve thermal diffusivity and shield electromagnetic waves.
KR1020190129918A 2019-10-18 2019-10-18 Manufaturing method of carbon nano dispersion for heating, and heater thereof KR20210046327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190129918A KR20210046327A (en) 2019-10-18 2019-10-18 Manufaturing method of carbon nano dispersion for heating, and heater thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190129918A KR20210046327A (en) 2019-10-18 2019-10-18 Manufaturing method of carbon nano dispersion for heating, and heater thereof

Publications (1)

Publication Number Publication Date
KR20210046327A true KR20210046327A (en) 2021-04-28

Family

ID=75721205

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190129918A KR20210046327A (en) 2019-10-18 2019-10-18 Manufaturing method of carbon nano dispersion for heating, and heater thereof

Country Status (1)

Country Link
KR (1) KR20210046327A (en)

Similar Documents

Publication Publication Date Title
KR102018289B1 (en) Method for preparation of high concentrated carbon nanotube/graphene dispersion
KR101420051B1 (en) manufaturing method of carbon nano ink for heat dissipation, and surface activation of coating layer thereof
KR101294596B1 (en) Composition and method of carbon nanotube paste for flat heating element device
KR101078079B1 (en) Conductive Paste Containing Silver-Decorated Carbon Nanotubes
KR20100066780A (en) Conductive paste and conductive circuit board produced therewith
KR102166230B1 (en) Conductive filler, method for producing same, conductive paste and method for producing conductive paste
KR20090037755A (en) Carbon nanotube conductive layer using spray coating and preparing method thereof
CN110467846A (en) A kind of preparation method of oiliness electric heating conversion ink and prepared ink
KR101777691B1 (en) Heating composition having graphene oxide and heater using the same
Yang et al. One-pot ball-milling preparation of graphene/carbon black aqueous inks for highly conductive and flexible printed electronics
CN105374568B (en) Graphite-phase C3N4The preparation method of/CNT combined counter electrode
KR20100004399A (en) High conducting film using low-dimensional materials
KR20150095406A (en) Printable high heat resistance heating paste composition
KR100642622B1 (en) Resin-basd Caron Nanotube Hybrid Materials with High Thermal Conductivity
KR101679144B1 (en) Composition for forming conductive copper pattern by light sintering including carbon nanostructures, method for preparing conductive copper pattern by light sintering, and electronic device including the conductive copper pattern prepared therefrom
KR101639600B1 (en) High conductive Paste composition and producing Method thereof using high temperature heat treatment
KR101843400B1 (en) Electrode composition for film heater, wiring board for film heater, film heater using the same and method thereof
KR20210046327A (en) Manufaturing method of carbon nano dispersion for heating, and heater thereof
KR101628491B1 (en) Carbon-platinum-iridium oxide complex, manufacturing method thereof and catalyst for fuel cell anode using the same
JP6457834B2 (en) Conductive filler, method for producing the same, and conductive paste
KR20180066347A (en) Method for Manufacturing Non Metallic Silicon Complex Using Nano Hole of CNT and the Silicon Complex
CN105206484B (en) Preparation method of N-doped SiC nanoneedle flexible field emission cathode material
TW201511039A (en) Conductive resin composition for microwave heating
KR102259236B1 (en) Composition of carbon nanotube paste for flat heating element device, flat heating element device comprising the same and film heater for preventing winter damage of water pipe using carbon nanotube
KR101729758B1 (en) A stacking type digitizer using copper-nano-ink for low temperature sintering and a method for manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination