KR20210023240A - Manufacturing method of lead plate for lead acid battery using nonwoven fabric with rough surface - Google Patents

Manufacturing method of lead plate for lead acid battery using nonwoven fabric with rough surface Download PDF

Info

Publication number
KR20210023240A
KR20210023240A KR1020190103185A KR20190103185A KR20210023240A KR 20210023240 A KR20210023240 A KR 20210023240A KR 1020190103185 A KR1020190103185 A KR 1020190103185A KR 20190103185 A KR20190103185 A KR 20190103185A KR 20210023240 A KR20210023240 A KR 20210023240A
Authority
KR
South Korea
Prior art keywords
active material
nonwoven fabric
electrode plate
acid battery
lead acid
Prior art date
Application number
KR1020190103185A
Other languages
Korean (ko)
Inventor
최석모
윤강현
허윤혜
Original Assignee
주식회사 한국아트라스비엑스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한국아트라스비엑스 filed Critical 주식회사 한국아트라스비엑스
Priority to KR1020190103185A priority Critical patent/KR20210023240A/en
Publication of KR20210023240A publication Critical patent/KR20210023240A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/806Nonwoven fibrous fabric containing only fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to a manufacturing method of a lead plate for a lead acid battery using a nonwoven fabric with a rough surface, and more specifically, to the manufacturing method of the lead plate for the lead acid battery using the nonwoven fabric with the rough surface, which attaches a polyester non-woven fabric with a surface which is processed to be rough to an electrode plate in order to prevent an active material from falling off on an active material coating layer to which the active material is applied, and thus it is possible to improve the bonding force between the active material and the nonwoven fabric and improve an area in contact with the active material so that an electrolyte can penetrate more than before, thereby improving the durability and basic performance of the lead acid battery.

Description

거친 표면을 가지는 부직포를 적용한 납축전지용 극판 제조 방법{Manufacturing method of lead plate for lead acid battery using nonwoven fabric with rough surface}Manufacturing method of lead plate for lead acid battery using nonwoven fabric with rough surface}

본 발명은 거친 표면을 가지는 부직포를 적용한 납축전지용 극판 제조 방법에 관한 것으로서, 더욱 상세하게는 활물질이 도포된 활물질도포층에 활물질 탈락 방지를 위하여 극판에 부착되는 표면을 거칠게 처리한 폴리에스터 부직포를 접착시킴으로써, 활물질과 부직포 간의 결합력을 향상시키고, 활물질에 접촉하는 면적을 향상시켜 전해액이 종래보다 더욱 많이 침투할 수 있도록 하여 납축전지의 내구성과 기초성능을 향상시킬 수 있는 거친 표면을 가지는 부직포를 적용한 납축전지용 극판 제조 방법에 관한 것이다.The present invention relates to a method of manufacturing an electrode plate for a lead acid battery to which a nonwoven fabric having a rough surface is applied, and more particularly, a polyester nonwoven fabric having a roughly treated surface attached to the electrode plate to prevent the active material from falling off on the active material coating layer coated with the active material. By bonding, a nonwoven fabric having a rough surface that can improve the durability and basic performance of lead acid batteries by improving the bonding strength between the active material and the nonwoven fabric and improving the area in contact with the active material so that the electrolyte can penetrate more than before is applied. It relates to a method for manufacturing an electrode plate for a lead acid battery.

현재 납축전지 활물질 메커니즘은 활물질에 물리적 강도 및 황산과의 반응 표면적 확보를 위하여 폴리에스터 계열 화이버를 첨가하고 있다.The current lead acid battery active material mechanism is adding polyester-based fibers to the active material to secure physical strength and a reaction surface area with sulfuric acid.

통상적으로 납축전지 활물질에 0.8 ~ 5 데니어의 섬도를 갖고, 1 ~ 10 mm 길이의 폴리에스터 계열의 화이버를 첨가하는데 이러한 섬유(화이버)는 내산성과 내산화성이 우수한 특징이 있다. Typically, polyester-based fibers having a fineness of 0.8 to 5 denier and a length of 1 to 10 mm are added to the lead acid battery active material, and these fibers (fibers) have excellent acid resistance and oxidation resistance.

이때, 첨가되는 유기합성 단섬유는 통상적으로 원형 단면 형태를 가지며, 길이는 2 ~ 10mm 정도이다.At this time, the added short organic synthetic fibers generally have a circular cross-sectional shape, and the length is about 2 to 10 mm.

유기합성 단섬유의 성분은 내산성 및 내산화성이 우수한 폴리프로필렌, 폴리에스테르, 모드아크릴 계열이 주종을 이루고 있다.The components of organic synthetic staple fibers are mainly made of polypropylene, polyester, and modacrylic, which have excellent acid resistance and oxidation resistance.

종래 기술인 대한민국특허등록번호 제10-0603908호인 "축전지용 극판 및 그 제조 방법"은 활물질 표면에 섬유 필라멘트가 박히도록 섬유강화 종이를 압력을 가해 부착하고 표면의 요철부에 활물질을 충전하여서 되는 극판 제조 방법을 개시한다. In the related art of Korean Patent Registration No. 10-0603908, "electrode plate for storage battery and its manufacturing method", the electrode plate is manufactured by attaching fiber-reinforced paper by applying pressure so that the fiber filaments are stuck on the surface of the active material and filling the active material in the irregularities of the surface. Initiate the method.

상기한 종래 대한민국등록특허는 "축전지용 극판 및 그 제조 방법"에 관한 것으로서 축전지의 극판은 전기가 흐르는 통로 역할을 하는 기판에 전기 화학적 활성을 갖는 활물질이 도포되고, 그 활물질 표면에 섬유강화 종이를 부착 또는 압착하는 단계에서 섬유강화종이의 섬유 필라멘트가 일정 깊이로 박히도록 압력을 가해 부착하고, 섬유강화종이의 표면 요철부에 활물질이 충전되어 그 결착표면적을 증대시킴으로서, 기판으로부터 활물질이 탈리되는 것을 방지하고, 나아가, 섬유강화종이의 다공성으로 인한 극판의 초기고율방전 특성을 향상시키고 또한 섬유강화종이의 섬유필라멘트 조직의 안정된 지지력과 내산성으로 인한 활물질을 잘 보유하고 지지함으로서 축전지의 수명을 연장시키는 기술에 관한 것이다. The above-described conventional Korean registered patent relates to "electrode plate for storage battery and its manufacturing method". The electrode plate of the storage battery is coated with an active material having an electrochemical activity on a substrate serving as a passage through which electricity flows, and fiber-reinforced paper is applied to the surface of the active material. In the step of attaching or pressing, pressure is applied so that the fibrous filaments of the fibrous reinforced paper are stuck to a certain depth, and the active material is filled in the surface irregularities of the fibrous reinforced paper to increase the binding surface area, thereby preventing the active material from detaching from the substrate. In addition, technology that improves the initial high rate discharge characteristics of the electrode plate due to the porosity of the fiber-reinforced paper, and also extends the life of the battery by holding and supporting the active material due to the stable support and acid resistance of the fibrous filament structure of the fiber-reinforced paper. It is about.

지금까지 납축전지용 그리드 합금으로 납(Pb)-칼슘(Ca)-주석(Sn)계 합금을 사용해 왔으나 이러한 합금구성만으로는 가혹한 사용환경(고온 및 과충전 현상)에 충분히 대응하지 못해 그리드의 부식이나 부식의 성장(growth)으로 인한 변형이 발생하여 납축전지의 수명이 짧아지고 있는 것이 문제로 지적되고 있다. Until now, lead (Pb)-calcium (Ca)-tin (Sn)-based alloys have been used as grid alloys for lead-acid batteries, but this alloy composition alone cannot adequately cope with the harsh environment (high temperature and overcharging phenomenon), so the grid is corroded or corroded. It has been pointed out as a problem that the life of the lead acid battery is shortened due to deformation caused by the growth of the battery.

이에 따라 그리드의 내부식성, 기계적 강도 개선 및 성장 변형의 억제가 요구되고 있다.Accordingly, it is required to improve the corrosion resistance and mechanical strength of the grid and to suppress the growth deformation.

한편, 종래의 납축전지의 활물질은 일반적으로 연분(鉛粉)과 황산수용액을 기본으로 하며, 양극과 음극 특성에 따라서 기타 첨가제를 배합한 후, 혼합하여 활물질을 만든다. On the other hand, the active material of a conventional lead acid battery is generally based on lead powder and an aqueous sulfuric acid solution, and other additives are mixed according to the characteristics of the positive electrode and the negative electrode, and then mixed to make an active material.

이렇게 만들어진 활물질은 기판에 바르는 작업인 도포 작업을 거쳐, 양/음극 특성에 따라 숙성공정 및 건조공정을 거친 후, 준비된 양극판과 음극판을 여러 장 교호로 중첩하며, 이때, 극판 간에 전기적 단락을 방지하기 위하여 비전도성 격리판을 설치하여, 양극판과 음극판 및 격리판이 극판군(群)을 이루도록 구성되어 있다. The active material thus made is applied to the substrate, undergoes a aging process and a drying process according to the characteristics of the positive and negative electrodes, and then alternately overlaps the prepared positive and negative plates, and at this time, to prevent an electrical short between the electrode plates. For this purpose, a non-conductive separator is installed, and a positive electrode plate, a negative electrode plate, and a separator are configured to form an electrode plate group.

극판군은 축전지 용량에 따라 여러 개가 직렬로 접속되어 전조안에 수용된다. According to the capacity of the storage battery, several electrode plate groups are connected in series and are accommodated in the roll box.

상기 수용된 극판군은 전기적인 성질을 가질 수 있도록 초충전인 화성공정을 거치게 되는데, 이때 양극판의 활물질은 이산화납(PbO2)이 형성되고 특성상, 산화된 납의 미립자가 무수히 결합되어 있으며 다공성이 풍부하여 입자간을 전해액이 자유로이 확산, 침투하도록 되어 있다. The accommodated electrode plate group undergoes a conversion process, which is supercharged so as to have electrical properties.At this time, lead dioxide (PbO2) is formed as the active material of the positive electrode plate, and due to its characteristics, numerous particles of oxidized lead are combined and the porosity is abundant. The electrolyte is freely diffused and penetrated into the liver.

또한, 음극판의 활물질은 해면상납(海綿狀鉛, Pb)으로 역시 다공성과 반응성이 풍부하여 전해액이 자유로이 확산, 침투하도록 된 것이다. In addition, the active material of the negative electrode plate is sea surface lead (Pb), which is also rich in porosity and reactivity, so that the electrolyte can freely diffuse and penetrate.

이렇게 만들어진 제품은 비로소 시장에서 사용할 수 있게 되는 것이다.The product made in this way can be used in the market.

또한, 초충전 과정을 원활히 하며, 제품의 내구성을 향상시키기 위하여 극성별로 별도의 숙성 및 건조공정을 거치게 된다. In addition, in order to facilitate the supercharge process and improve the durability of the product, separate aging and drying processes are performed for each polarity.

양극판의 숙성공정은 제품의 내구성을 증대시키는 중요한 공정으로서 스팀(steam)의 뜨거운 온도(약 70 ~ 100℃)와 수분(습도 99%이상)으로 활물질의 구성성분인 납(Pb)을 산화납(PbO)으로 변화시킬 뿐만 아니라, 활물질의 결정구조를 변화시킨다. The aging process of the positive electrode plate is an important process to increase the durability of the product, and lead (Pb), a constituent of the active material, is converted into lead (Pb) as a component of the active material at the hot temperature (about 70 ~ 100℃) and moisture (humidity 99%) of PbO), but also changes the crystal structure of the active material.

음극판은 별도 공정 없이 자연 상태에서 방치하면 숙성 및 건조를 동시에 할 수 있다. The negative electrode plate can be aged and dried at the same time if it is left in its natural state without any separate process.

하지만, 충분한 숙성 및 건조가 이루어지지 않으면 극판군을 형성하는 조립과정에서 극판과 극판끼리 달라붙으며, 수분이 존재하여 활물질의 내구력이 떨어져 기판사이에 박혀 있는 활물질은 조그마한 충격에도 손쉽게 떨어지게 된다. However, if sufficient aging and drying are not performed, the electrode plate and the electrode plate adhere to each other in the assembly process of forming the electrode plate group, and the durability of the active material decreases due to the presence of moisture, so that the active material embedded between the substrates easily falls even under a small impact.

이와 같은 과정을 거쳐 만들어진 납축전지는 충,방전의 횟수가 증가함에 따라 납과 황산의 반응에 의해서 활물질은 기판에서 더욱 쉽게 떨어지게 되며, 떨어진 활물질들은 더 이상 반응에 참가할 수 없기 때문에, 결국 납축전지의 성능을 저하시켜 납축전지의 수명을 통상 1~2년에 불과하게 만들었다.As the number of times of charge and discharge increases, the active material falls more easily from the substrate by the reaction of lead and sulfuric acid, and the fallen active materials can no longer participate in the reaction. By degrading the performance, the life of the lead acid battery is usually only 1 to 2 years.

따라서, 납 축전지 내구성과 성능을 향상시킬 수 있는 제조 공정이 요구되고 있는 실정이다.Accordingly, there is a demand for a manufacturing process capable of improving the durability and performance of the lead storage battery.

종래의 기술로서, '음극활물질 및 그 제조방법 그리고 납축전지'는 리그닌이 납분말에 첨가되어 이루어지는 것을 특징으로 하는 음극(負極) 활물질에 관한 기술을 개시한 바 있다. As a conventional technique, the'cathode active material and its manufacturing method and lead acid battery' has disclosed a technique related to a negative electrode active material, characterized in that lignin is added to lead powder.

그러나, 상기의 기술은 활물질의 수명을 향상시킨 효과는 기대하기는 어려웠다.However, it was difficult to expect the above technology to have an effect of improving the life of the active material.

또한, 납축전지를 사용하는 중에 충전 및 방전을 반복하면서 극판에 붙어 있는 활물질의 탈락 현상이 발생하게 되는데, 이렇게 탈락되는 활물질은 납축전지 성능 및 수명에 영향을 미치게 된다.In addition, while the lead acid battery is used, the active material attached to the electrode plate may be removed while repeating charging and discharging, and the active material that is removed in this way affects the performance and life of the lead acid battery.

따라서, 우수한 납축전지 성능을 유지하기 위하여 납으로 생산된 극판에 붙어 있는 활물질의 탈락을 방지하여야 하며, 이를 위하여 극판에 활물질을 바르는 도포 공정에서 종이, 부직포 등의 지지체를 도포하는 방법이 사용되고 있었다.Therefore, in order to maintain excellent lead acid battery performance, it is necessary to prevent the active material from falling off attached to the electrode plate made of lead, and for this purpose, a method of applying a support such as paper or nonwoven fabric in the application process of applying the active material to the electrode plate has been used.

구체적으로, 납축전지의 극판이 진동에 의해 극판에 부착된 활물질이 탈락되는 것을 방지하기 위해 보호판 역할을 하는 합성수지제(폴리에스터 등) 부직포를 부착하게 된다.Specifically, a nonwoven fabric made of synthetic resin (polyester, etc.) serving as a protective plate is attached to prevent the active material attached to the electrode plate from falling off due to vibration of the electrode plate of the lead acid battery.

이러한 합성수지제 부직포는 내열성이 200℃ 이상으로 우수하며, 전기적인 내산화성 시험에서도 납축전지에 사용되는 PE격리판과 근접한 성능 특성을 가지고 있다. This nonwoven fabric made of synthetic resin has excellent heat resistance of 200°C or higher, and has performance characteristics close to that of PE separators used in lead acid batteries even in electrical oxidation resistance tests.

그리고, 우수한 활물질 지지력을 가지고 있어 활물질 탈락 방지 효과가 있다. In addition, since it has excellent active material support, there is an effect of preventing the active material from falling off.

또한, 해당 부직포의 접착 방식은 케미칼 본드 접착 방식을 선택하여 접착제로서는 아크릴계열 접착제를 사용함으로써, 수명 종지 후에도 단섬유가 풀어지지 않고 그대로 형태를 유지한다.In addition, since the nonwoven fabric has a chemical bond adhesive method selected and an acrylic-based adhesive is used as an adhesive, the short fibers are not released even after the end of their life and the shape is maintained as it is.

이러한 특성을 가졌음에도 활물질 도포 및 부직포 부착 작업 후 조립시 부직포가 부착된 극판을 보면 들뜨거나 극판에서 부직포가 벗겨진 상태를 확인할 수 있었다.Even though it had such characteristics, it could be confirmed that the nonwoven fabric was lifted or the nonwoven fabric was peeled off from the electrode plate by looking at the electrode plate to which the nonwoven fabric was attached during assembly after applying the active material and attaching the nonwoven fabric.

상기와 같은 단점을 개선하여야만 납축전지의 기초성능과 내구성이 향상될 수 있음은 당연한 것이다.It is natural that the basic performance and durability of the lead acid battery can be improved only by improving the above disadvantages.

따라서, 활물질의 탈락 현상을 방지하면서 활물질에 접촉하는 면적을 향상시켜 전해액이 보다 많이 침투할 수 있도록 하여 기초 성능과 내구성을 더욱 향상시킬 수 있는 새로운 제조 공정이 필요하게 되었다.Accordingly, there is a need for a new manufacturing process capable of further improving basic performance and durability by improving the area in contact with the active material while preventing the active material from falling off so that the electrolyte can penetrate more.

대한민국특허등록번호 제10-0483246호Korean Patent Registration No. 10-0483246

따라서, 본 발명은 상기 종래의 문제점을 해소하기 위해 안출된 것으로,Therefore, the present invention was devised to solve the above conventional problems,

활물질이 도포된 활물질도포층에 활물질 탈락 방지를 위하여 극판에 부착되는 표면을 거칠게 처리한 폴리에스터 부직포를 접착시킴으로써, 활물질과 부직포 간의 결합력을 향상시키고, 활물질에 접촉하는 면적을 향상시켜 전해액이 종래보다 더욱 많이 침투할 수 있도록 하여 납축전지의 내구성과 기초성능을 향상시킬 수 있는 거친 표면을 가지는 부직포를 적용한 납축전지용 극판 제조 방법을 제공하고자 한다.By adhering a polyester nonwoven fabric with roughly treated surface attached to the electrode plate to prevent the active material from falling off the active material coating layer on which the active material is applied, the bonding strength between the active material and the nonwoven fabric is improved, and the area in contact with the active material is improved. It is intended to provide a method of manufacturing an electrode plate for a lead acid battery using a nonwoven fabric having a rough surface that can improve the durability and basic performance of the lead acid battery by allowing more penetration.

본 발명이 해결하고자 하는 과제를 달성하기 위하여, 본 발명의 일실시예에 따른 거친 표면을 가지는 부직포를 적용한 납축전지용 극판 제조 방법은,In order to achieve the problem to be solved by the present invention, a method of manufacturing an electrode plate for a lead acid battery using a nonwoven fabric having a rough surface according to an embodiment of the present invention,

극판에 활물질을 도포하는 활물질도포단계(S100);와Active material application step (S100) of applying the active material to the electrode plate; And

상기 활물질이 도포된 활물질도포층에 활물질 탈락 방지를 위하여 폴리에스터 부직포의 극판에 부착되는 표면을 거칠게 하는 표면 거칠기를 수행하기 위한 폴리에스터부직포표면거칠기단계(S200);와A polyester non-woven fabric surface roughening step (S200) for performing a surface roughening of the surface attached to the electrode plate of the polyester non-woven fabric in order to prevent the active material from falling off the active material coating layer on which the active material is applied; And

상기 표면 거칠기를 수행한 폴리에스터 부직포의 표면을 활물질이 도포된 극판에 접착시키기 위한 폴리에스터부직포거친표면접착단계(S300);를 포함함으로써, 납 축전지 내구성과 성능을 향상시키기 위한 과제를 해결하게 되는 것이다.By including a polyester non-woven fabric rough surface bonding step (S300) for bonding the surface of the polyester non-woven fabric subjected to the surface roughness to the electrode plate coated with the active material; to solve the problem for improving the durability and performance of the lead storage battery will be.

본 발명인 거친 표면을 가지는 부직포를 적용한 납축전지용 극판 제조 방법을 통해, 활물질이 도포된 활물질도포층에 활물질 탈락 방지를 위하여 극판에 부착되는 표면을 거칠게 처리한 폴리에스터 부직포를 접착시킴으로써, 활물질과 부직포 간의 결합력을 향상시키고, 활물질에 접촉하는 면적을 향상시켜 전해액이 종래보다 더욱 많이 침투할 수 있도록 하여 납축전지의 내구성과 기초성능을 향상시킬 수 있는 효과를 제공하게 된다.Through the method of manufacturing an electrode plate for a lead acid battery applying a nonwoven fabric having a rough surface according to the present invention, the active material and the nonwoven fabric are adhered to the active material coating layer on which the active material is applied to prevent the active material from falling off. It provides an effect of improving the durability and basic performance of the lead acid battery by improving the bonding force between and improving the area in contact with the active material so that the electrolyte can penetrate more than before.

도 1은 본 발명의 일실시예에 따른 거친 표면을 가지는 부직포를 적용한 납축전지용 극판 제조 방법의 공정도이다.
도 2는 본 발명의 일실시예에 따른 거친 표면을 가지는 부직포를 적용한 납축전지용 극판 제조 방법에서 표면 거칠기 작업을 수행한 후의 폴리에스터 부직포 단면을 나타낸 사진이다.
도 3은 본 발명의 일실시예에 따른 거친 표면을 가지는 부직포를 적용한 납축전지용 극판 제조 방법에서 제조된 개선품과 종래품를 비교한 그래프로서, 미국 자동차 기술자 협회 규격에 따라 고온 환경에서 수명을 검증한 그래프 도면이다.
도 4는 본 발명의 일실시예에 따른 거친 표면을 가지는 부직포를 적용한 납축전지용 극판 제조 방법에서 제조된 개선품과 종래품를 비교한 그래프로서, 충전수입성 시험 그래프 도면이다.
1 is a flowchart of a method of manufacturing an electrode plate for a lead acid battery to which a nonwoven fabric having a rough surface is applied according to an embodiment of the present invention.
2 is a photograph showing a cross-section of a polyester nonwoven fabric after performing a surface roughening operation in a method for manufacturing an electrode plate for a lead acid battery to which a nonwoven fabric having a rough surface is applied according to an embodiment of the present invention.
3 is a graph comparing improved products and conventional products manufactured in the method of manufacturing an electrode plate for a lead acid battery using a nonwoven fabric having a rough surface according to an embodiment of the present invention. It is a graph drawing.
4 is a graph comparing an improved product manufactured in a method for manufacturing an electrode plate for a lead acid battery using a nonwoven fabric having a rough surface according to an embodiment of the present invention and a conventional product, and is a graph showing a charge income test.

본 발명의 일실시예에 따른 거친 표면을 가지는 부직포를 적용한 납축전지용 극판 제조 방법은,A method of manufacturing an electrode plate for a lead acid battery using a nonwoven fabric having a rough surface according to an embodiment of the present invention,

극판에 활물질을 도포하는 활물질도포단계(S100);와Active material application step (S100) of applying the active material to the electrode plate; And

상기 활물질이 도포된 활물질도포층에 활물질 탈락 방지를 위하여 폴리에스터 부직포의 극판에 부착되는 표면을 거칠게 하는 표면 거칠기를 수행하기 위한 폴리에스터부직포표면거칠기단계(S200);와A polyester non-woven fabric surface roughening step (S200) for performing a surface roughening of the surface attached to the electrode plate of the polyester non-woven fabric in order to prevent the active material from falling off the active material coating layer on which the active material is applied; And

상기 표면 거칠기를 수행한 폴리에스터 부직포의 표면을 활물질이 도포된 극판에 접착시키기 위한 폴리에스터부직포거친표면접착단계(S300);를 포함하는 것을 특징으로 한다.It characterized in that it comprises a; polyester nonwoven fabric rough surface bonding step (S300) for bonding the surface of the polyester nonwoven fabric subjected to the surface roughness to the electrode plate coated with the active material.

이때, 상기 표면 거칠기를 수행한 폴리에스터 부직포의 표면을 활물질이 도포된 극판에 접착시킬 경우에, 활물질과 폴리에스터 부직포 간의 결합력을 향상시키며, 동시에 활물질에 접촉하는 면적을 향상시켜 전해액 침투가 표면 거칠기를 수행하지 않은 부직포보다 많은 것을 특징으로 한다.At this time, when the surface of the polyester nonwoven fabric subjected to the surface roughness is adhered to the electrode plate on which the active material is applied, the bonding strength between the active material and the polyester nonwoven fabric is improved, and at the same time, the area in contact with the active material is improved, so that the penetration of the electrolyte solution becomes rough. It is characterized in that it is more than the nonwoven fabric that did not perform.

이때, 상기 거친 표면을 가지는 부직포를 적용한 납축전지용 극판 제조 방법에 의해,At this time, by the method of manufacturing an electrode plate for a lead acid battery to which the nonwoven fabric having a rough surface is applied,

제조된 납축전지의 보유 용량이 80Ah ~ 87Ah의 용량일 경우,When the manufactured lead acid battery has a capacity of 80Ah ~ 87Ah,

수명은 3주차(1,290cycle)에서 4주차(1,720cycle)로 30% ~ 35% 범위 내의 내구성 향상을 제공할 수 있는 것을 특징으로 한다.The lifespan is characterized in that it can provide durability improvement within the range of 30% to 35% from the 3rd week (1,290 cycles) to the 4th week (1,720 cycles).

따라서, 상기 본 발명의 제조 방법에 의해,Therefore, by the manufacturing method of the present invention,

제조된 거친 표면을 가지는 부직포를 적용한 납축전지용 극판을 포함하고 있는 납축전지를 제공할 수 있게 되는 것이다.It is possible to provide a lead acid battery including an electrode plate for a lead acid battery to which the manufactured nonwoven fabric having a rough surface is applied.

이하, 본 발명에 의한 거친 표면을 가지는 부직포를 적용한 납축전지용 극판 제조 방법의 실시예를 통해 상세히 설명하도록 한다.Hereinafter, it will be described in detail through an embodiment of a method for manufacturing an electrode plate for a lead acid battery to which a nonwoven fabric having a rough surface is applied according to the present invention.

도 1은 본 발명의 일실시예에 따른 거친 표면을 가지는 부직포를 적용한 납축전지용 극판 제조 방법의 공정도이다.1 is a flowchart of a method of manufacturing an electrode plate for a lead acid battery to which a nonwoven fabric having a rough surface is applied according to an embodiment of the present invention.

도 1에 도시한 바와 같이, 상기 거친 표면을 가지는 부직포를 적용한 납축전지용 극판 제조 방법은,As shown in Figure 1, the method of manufacturing an electrode plate for a lead acid battery to which the nonwoven fabric having a rough surface is applied,

극판에 활물질을 도포하는 활물질도포단계(S100);와Active material application step (S100) of applying the active material to the electrode plate; And

상기 활물질이 도포된 활물질도포층에 활물질 탈락 방지를 위하여 폴리에스터 부직포의 극판에 부착되는 표면을 거칠게 하는 표면 거칠기를 수행하기 위한 폴리에스터부직포표면거칠기단계(S200);와A polyester non-woven fabric surface roughening step (S200) for performing a surface roughening of the surface attached to the electrode plate of the polyester non-woven fabric in order to prevent the active material from falling off the active material coating layer on which the active material is applied; And

상기 표면 거칠기를 수행한 폴리에스터 부직포의 표면을 활물질이 도포된 극판에 접착시키기 위한 폴리에스터부직포거친표면접착단계(S300);를 포함하는 것을 특징으로 한다.It characterized in that it comprises a; polyester nonwoven fabric rough surface bonding step (S300) for bonding the surface of the polyester nonwoven fabric subjected to the surface roughness to the electrode plate coated with the active material.

일반적으로 납축전지를 사용하는 중에 충전 및 방전이 반복되면서 극판에 붙어 있는 활물질의 탈락현상이 발생하게 되는데, 이렇게 탈락된 활물질은 납축전지 성능 및 수명에 영향을 미치게 된다.In general, while charging and discharging are repeated while using a lead acid battery, an active material adhered to the electrode plate may be removed, and the active material thus removed affects the performance and life of the lead acid battery.

따라서, 우수한 납축전지 성능을 유지하기 위해 납으로 생산된 극판에 붙어 있는 활물질의 탈락을 방지해야 하며, 이를 위해 극판에 활물질을 바르는 도포 과정에서 종이, 부직포 등의 지지체를 접착하는 방법이 사용되고 있다.Therefore, in order to maintain excellent lead-acid battery performance, it is necessary to prevent the active material from falling off attached to the electrode plate made of lead, and for this purpose, a method of adhering a support such as paper or nonwoven fabric in the application process of applying the active material to the electrode plate is used.

구체적으로 설명하자면, 납축전지의 극판이 진동에 의해 극판에 부착된 활물질이 탈락되는 것을 방지하기 위해 보호판 역할을 하는 합성수지제(폴리에스터 등) 부직포를 부착하게 된다.Specifically, a synthetic resin (polyester, etc.) nonwoven fabric serving as a protective plate is attached to prevent the active material attached to the electrode plate from falling off due to vibration of the electrode plate of the lead acid battery.

이러한 합성수지제 부직포는 내열성이 200℃ 이상으로 우수하며, 전기적인 내산화성 시험에서도 납축전지에 사용되는 PE격리판과 근접한 성능 특성을 가지고 있다. This nonwoven fabric made of synthetic resin has excellent heat resistance of 200°C or higher, and has performance characteristics close to that of PE separators used in lead acid batteries even in electrical oxidation resistance tests.

그리고, 우수한 활물질 지지력을 가지고 있어 활물질 탈락 방지 효과가 있다. In addition, since it has excellent active material support, there is an effect of preventing the active material from falling off.

이때, 일반적으로 부직포의 접착 방식은 케미칼 본드 접착 방식을 선택하여 접착제로서는 아크릴계열 접착제를 사용함으로써 수명 종지 후에도 단섬유가 풀어지지 않고 그대로 형태를 유지한다.At this time, in general, a chemical bond bonding method is selected as the bonding method of the nonwoven fabric, and an acrylic-based adhesive is used as the adhesive, so that the short fibers are not released and maintains the shape as it is, even after the end of life.

이러한 특성을 가졌음에도 불구하고, 활물질 도포 및 부직포 부착 작업 후, 조립시 부직포가 부착된 극판을 보면 들뜨거나 극판에서 부직포가 벗겨진 상태를 확인할 수 있다.Despite having these characteristics, after applying the active material and attaching the nonwoven fabric, when assembling the electrode plate to which the nonwoven fabric is attached, it can be seen that the nonwoven fabric is lifted or the nonwoven fabric is peeled off from the electrode plate.

더불어, 다공도는 20% 이상을 요구하는데 이는 다공성이 우수할수록 극판과 전해액 간의 침투가 보다 자유로워 반응성이 향상되기 때문이다.In addition, the porosity is required to be 20% or more, because the better the porosity, the more free the penetration between the electrode plate and the electrolyte solution, thereby improving the reactivity.

따라서, 상기한 활물질과 부직포간의 결합력을 향상시킬 수 있으면서 동시에 다공도를 20% 이상 제공할 수 있는 새로운 극판 제조 공정을 본 발명을 통해 개시하게 된 것이다.Accordingly, a new electrode plate manufacturing process capable of improving the bonding force between the active material and the nonwoven fabric described above and providing a porosity of 20% or more is disclosed through the present invention.

구체적으로 설명하자면, 상기 거친 표면을 가지는 부직포를 적용한 납축전지용 극판 제조 방법에서, 활물질도포단계(S100)는 극판에 활물질을 도포하는 과정이다.Specifically, in the method of manufacturing an electrode plate for a lead acid battery using the nonwoven fabric having a rough surface, the active material application step (S100) is a process of applying the active material to the electrode plate.

이는 일반적인 공지 기술이므로 상세한 설명은 생략하여도 극판에 활물질을 도포하는 공정은 당업자들이라면 누구나 쉽게 이해하고 있을 것이다.Since this is a general known technique, the process of applying the active material to the electrode plate will be easily understood by anyone skilled in the art even if the detailed description is omitted.

이후, 상기 폴리에스터부직포표면거칠기단계(S200)는 상기 활물질이 도포된 활물질도포층에 활물질 탈락 방지를 위하여 폴리에스터 부직포의 극판에 부착되는 표면을 거칠게 하는 표면 거칠기를 수행하기 위한 과정이다.Thereafter, the polyester nonwoven fabric surface roughening step (S200) is a process for performing a surface roughening of the surface attached to the electrode plate of the polyester nonwoven fabric in order to prevent the active material from falling off on the active material coating layer coated with the active material.

즉, 폴리에스터 부직포의 양면 중 극판에 부착되는 표면에 표면 거칠기 작업을 수행하게 되는 것이다.That is, a surface roughening operation is performed on the surface attached to the electrode plate among both sides of the polyester nonwoven fabric.

따라서, 도 2와 같은 표면이 거칠어진 폴리에스터 부직포 면을 확보할 수 있게 되는 것이다.Accordingly, it is possible to secure a polyester nonwoven fabric surface with a roughened surface as shown in FIG. 2.

도 2에 도시한 바와 같이, 좌측 이미지는 표면이 매끄러운 기존 폴리에스터 부직포 단면을 나타낸 사진이며, 우측 이미지는 표면 거칠기 작업 이후에 표면이 거칠어진 폴리에스터 부직포 단면을 나타낸 사진이다.As shown in FIG. 2, the image on the left is a photograph showing a cross section of an existing polyester nonwoven fabric with a smooth surface, and the image on the right is a photograph showing a cross section of a polyester nonwoven fabric with a roughened surface after the surface roughening operation.

도 2의 우측 사진과 같이, 표면 거칠기를 수행하게 되면 일반적인 제조 사양 상 다공도 20% 이상을 요구하게 되는데, 이를 만족할 수 있게 된다.As shown in the right photo of FIG. 2, when the surface roughness is performed, a porosity of 20% or more is required according to general manufacturing specifications, which can be satisfied.

그리고, 상기 부직포 표면에 표면 거칠기 작업을 수행하기 위하여 일반적으로 니들 펀칭을 이용하여 표면 거칠기 작업을 수행할 수 있으며, 기타 표면 거칠기 장치를 이용하여 표면을 거칠게 작업할 수 있다면 어떠한 장치로도 상관없을 것이다.In addition, in order to perform the surface roughening work on the surface of the nonwoven fabric, it is generally possible to perform a surface roughening operation using needle punching, and any device may be used as long as the surface can be roughened using other surface roughening devices. .

이후, 폴리에스터부직포거친표면접착단계(S300)는 상기 표면 거칠기를 수행한 폴리에스터 부직포의 표면을 활물질이 도포된 극판에 접착시키게 되는 공정이다.Thereafter, the step of bonding the polyester nonwoven fabric rough surface (S300) is a process in which the surface of the polyester nonwoven fabric subjected to the surface roughness is adhered to the electrode plate coated with the active material.

즉, 일반적으로 사용되는 케미칼 본드 접착 방식을 선택하여 접착제로서는 아크릴계열 접착제를 사용함으로써, 수명 종지 후에도 폴리에스터 부직포가 풀어지지 않고 그대로 형태를 유지할 수 있도록 하는 것이다.That is, by selecting a commonly used chemical bond bonding method and using an acrylic-based adhesive as an adhesive, the polyester nonwoven fabric is not released and maintains its shape even after the end of its life.

따라서, 상기와 같은 공정을 거치게 되면 표면 거칠기를 수행한 폴리에스터 부직포의 표면을 활물질이 도포된 극판에 접착시킬 경우에, 활물질과 폴리에스터 부직포 간의 결합력을 향상시키며, 동시에 활물질에 접촉하는 면적을 향상시켜 전해액 침투가 표면 거칠기를 수행하지 않은 부직포보다 많도록 제공할 수 있게 된다.Therefore, when the above-described process is performed, when the surface of the polyester nonwoven fabric subjected to surface roughness is adhered to the electrode plate coated with the active material, the bonding strength between the active material and the polyester nonwoven fabric is improved, and at the same time, the area in contact with the active material is improved. As a result, it is possible to provide an electrolyte so that the penetration of the electrolyte solution is greater than that of the nonwoven fabric not subjected to surface roughness.

상기와 같이, 전해액 침투가 기존 방식보다 많아지게 되면 기초성능과 내구성이 향상될 수 있음은 실험을 통해 확인할 수 있었다.As described above, it was confirmed through an experiment that basic performance and durability can be improved when the electrolyte penetration is greater than that of the conventional method.

구체적으로 설명하면, 종래의 일반 납축전지 대비 5% 이상의 기초성능 향상과 33% 내구성 향상을 시킬 수 있다는 점을 발견하고, 확인시험을 거쳐 본 발명을 완성하기에 이른 것이다. Specifically, it was found that it was possible to improve basic performance by 5% or more and improve durability by 33% compared to a conventional lead acid battery, and the present invention was completed through a confirmation test.

위에서 상술한 바와 같이 본 발명의 효과를 파악하기 위해 일반적으로 음극활물질을 도포한 후 극판과 스트랍을 결합한 납축전지와 본 발명의 거친 표면을 포함한 폴리에스터 부직포를 적용한 극판과 스트랍을 결합한 납축전지에 대한 기초성능 및 수명시험을 하되, 후속 공정인 조립 공정을 통해 최종적인 80Ah의 용량을 갖는 제품을 제작하였으며, 고온에서의 수명을 검증하기 위해 SAE J240 규격에 따라 수명 시험을 진행하였다. As described above, in order to understand the effects of the present invention, in general, a lead acid battery combining an electrode plate and a strap after applying a negative electrode active material, and a lead acid battery combining an electrode plate and a strap to which a polyester nonwoven fabric including the rough surface of the present invention is applied. The basic performance and lifespan tests were performed, but a product with a final capacity of 80Ah was manufactured through the assembly process, which is a subsequent process, and a life test was conducted according to SAE J240 standard to verify the lifespan at high temperatures.

시험결과 보유용량에서 87Ah의 용량과 수명이 4주차에서 종지되었으며, 이는 종래품 대비 보유용량에서 6%, 수명에서는 33%로 향상되었다.As a result of the test, the capacity and lifespan of 87Ah in the holding capacity ended at the fourth week, which was improved by 6% in the holding capacity and 33% in the lifespan compared to the conventional product.

이에 대한 실험 자료는 후술하도록 하겠다.Experimental data on this will be described later.

도 3은 본 발명의 일실시예에 따른 거친 표면을 가지는 부직포를 적용한 납축전지용 극판 제조 방법에서 제조된 개선품과 종래품를 비교한 그래프로서, 미국 자동차 기술자 협회 규격에 따라 고온 환경에서 수명을 검증한 그래프 도면이다.3 is a graph comparing improved products and conventional products manufactured in the method of manufacturing a lead-acid battery electrode plate using a nonwoven fabric having a rough surface according to an embodiment of the present invention, and verifying the lifespan in a high-temperature environment according to the standards of the American Automobile Engineers Association. It is a graph drawing.

상기 시험 규격은 납축전지가 고온(75℃)에서 충전/방전을 반복하여 수명이 종지될 때까지의 사이클을 측정하는 시험 방법이다. The test standard is a test method for measuring the cycle until the end of the life of the lead acid battery by repeating charging/discharging at a high temperature (75°C).

(1사이클 : 25A 4분 방전, 14.8V[최대 25A] 정전압 10분 충전) (1 cycle: 25A 4 minutes discharge, 14.8V [max 25A] constant voltage 10 minutes charge)

본 시험은 1주 동안 430회 반복하며, 그 후 64시간 정치 후, 630A 고율로 방전하여 30초 시점에서의 전압을 측정함으로써 납축전지의 상태를 판정한다. This test is repeated 430 times for one week, and then left to stand for 64 hours, discharged at a high rate of 630A, and the voltage at the time point of 30 seconds is measured to determine the state of the lead acid battery.

30초 시점의 전압이 7.2V 이상이면 납축전지를 온전한 상태로 판정하여 위의 싸이클을 반복하며, 7.2V 이하이면 납축전지를 수명 종지로 판정하여, 시험을 중단한다.If the voltage at the time of 30 seconds is more than 7.2V, the lead acid battery is judged as intact and the above cycle is repeated. If it is less than 7.2V, the lead acid battery is judged as the end of its life and the test is stopped.

<시험예><Test Example>

후술하는 종래품이라 함은, 출원인이 제조하는 일반적으로 사용하는 활물질을 도포한 후, 극판과 스트랍을 결합한 납축전지를 말하며, 개선품은 거친 표면을 포함한 폴리에스터 부직포를 적용한 극판과 스트랍을 결합한 납축전지를 말한다.The conventional product to be described later refers to a lead-acid battery in which an electrode plate and a strap are combined after applying a generally used active material manufactured by the applicant, and the improved product is a combination of an electrode plate and a strap applied with a polyester nonwoven fabric including a rough surface. It refers to a lead acid battery.

구분division 종래품Conventional product 개선품Improvement RCRC 118min118min 125min125min CCACCA 622A622A 640A640A C20C20 82Ah82Ah 87Ah87Ah 내구성(SAE J240)Durability (SAE J240) 3주(1,290cycle)3 weeks (1,290 cycles) 4주(1,720cycle)4 weeks (1,720 cycles)

상기 표 1은 종래의 납축전지와 위 개선품을 이용하여 제조한 납축전지의 성능 시험결과로서, 내구성이 종래품의 경우, 3주(1,290 cycle)에서 수명이 종지되었으며, 개선품의 경우, 4주(1,720 cycle)을 나타내고 있다.(도 3 참조)Table 1 above shows the performance test results of a conventional lead acid battery and a lead acid battery manufactured using the above improved products. In the case of the conventional product, the durability ended in 3 weeks (1,290 cycles), and in the case of the improved product, 4 weeks ( 1,720 cycles).

따라서, 종래의 종래품보다 내구성이 33% 향상되었음을 실험을 통해 확인할 수 있었다.Therefore, it was confirmed through an experiment that the durability was improved by 33% compared to the conventional conventional product.

1) 보유용량 (RC : Reserve Capacity)1) Reserve Capacity (RC)

보유용량 RC는 만충전 완료 후 1시간 이상 방치한 다음 25℃에서 25A의 방전전류로 방전종지전압 10.5V 도달 시까지의 방전가능지속시간을 측정하는 것으로서, 예를 들면, 이는 차량에 있어서, 시동이 정지된 상태 등에서 부하를 작동시키는데 어느 시간까지 최소한의 기능을 발휘할 수 있는가에 대한 척도가 된다. Retention capacity RC measures the duration of discharge possible until the discharge end voltage reaches 10.5V with a discharge current of 25A at 25℃ after leaving for 1 hour or more after completion of full charge. It is a measure of how long the minimum function can be exerted to operate the load in a stopped state, etc.

시험결과, 표 1에서 보는 바와 같이, 본 발명에 따른 거친 표면을 포함한 폴리에스터 부직포를 적용한 극판을 적용하여 제조하였을 경우, 보유용량(RC)은 126 ~ 130분으로, 정확하게는 125분으로 기존 종래품에 대비하여 6%의 성능 향상 효과를 보임으로써, 거친 표면을 포함한 폴리에스터 부직포를 적용한 극판을 포함한 납축전지에 대한 긍정적인 영향을 주었음을 알 수 있었다.As a result of the test, as shown in Table 1, when manufactured by applying an electrode plate to which a polyester nonwoven fabric including a rough surface according to the present invention is applied, the holding capacity (RC) is 126 to 130 minutes, and is precisely 125 minutes. By showing an effect of improving the performance of 6% compared to the product, it was found that it had a positive effect on the lead-acid battery including the electrode plate to which the polyester nonwoven fabric including the rough surface was applied.

2) 저온시동전류(CCA : Cold Cranking Ampere)2) Low temperature starting current (CCA: Cold Cranking Ampere)

일반적으로 축전지의 급속방전 특성은 -10℃ 이하에서 급속히 저하되는데, 저온시동전류(CCA)는 저온에서의 자동차 시동능력을 평가하기 위한 고율방전시험으로서, 만충전 완료 후 -18℃에서 630A로 30초 방전시의 전압을 측정한다. In general, the rapid discharge characteristics of a storage battery rapidly deteriorate below -10℃. The low-temperature starting current (CCA) is a high-rate discharge test for evaluating the starting capability of a vehicle at low temperatures. Measure the voltage at the time of super discharge.

이 시험에 있어서는 30초 때의 전압이 7.2V이상 요구되며, 높을수록 성능이 우수한 것으로 평가된다. In this test, the voltage at 30 seconds is required to be more than 7.2V, and the higher it is, the better the performance is evaluated.

본 발명에서는 (30초 전압÷6-0.2)×630의 보정식을 사용하여 CCA를 계산하였다.In the present invention, the CCA was calculated using a correction formula of (30 second voltage ÷ 6-0.2) × 630.

시험결과, 표 1에서 보는 바와 같이, 30초 전압은 7.15V ~ 7.22V, 환산 CCA는 650A ~ 660A로, 정확하게는 640A로서 종래품에 대비하여 4 %의 성능향상 효과를 보임으로써, 거친 표면을 포함한 폴리에스터 부직포를 적용한 극판을 포함한 납축전지는 저온시동전류에 대한 긍정적인 영향을 주었음을 알 수 있었다. As a result of the test, as shown in Table 1, the voltage for 30 seconds is 7.15V ~ 7.22V, and the converted CCA is 650A ~ 660A. It was found that the lead-acid battery including the electrode plate to which the polyester nonwoven fabric was applied had a positive effect on the low-temperature starting current.

3) 20 시간율 용량(AH)3) 20 hour rate capacity (AH)

이는 저율방전 특성을 알아보기 위한 것으로, 납축전지 용량에 대해 비교적 적은 전류인 3.75A로 연속 방전시켜, 전압이 10.5V에 도달할 때까지의 방전용량(AH)을 측정하는 것이다. This is to find out the low rate discharge characteristics, and measure the discharge capacity (AH) until the voltage reaches 10.5V by continuously discharging at 3.75A, which is a relatively small current with respect to the capacity of the lead acid battery.

시험 결과, 85AH ~ 89AH로, 정확하게는 87AH로 기존제품에 대비하여 6%의 성능향상 효과를 보임으로써, 거친 표면을 포함한 폴리에스터 부직포를 적용한 극판을 포함한 납축전지는 20 시간율 용량(AH)에 대한 긍정적인 영향을 주었음을 알 수 있었다.As a result of the test, 85AH ~ 89AH, and precisely 87AH, showed a 6% performance improvement effect compared to conventional products, so that lead-acid batteries including electrode plates with polyester nonwoven fabric including rough surfaces have a capacity of 20 hours (AH). It can be seen that it had a positive effect on.

4) 수명 검증 시험(SAE J240, Cycle)4) Life verification test (SAE J240, Cycle)

미국 자동차 기술자 협회 규격에 따라 75℃ 환경에서 수명을 검증한 그래프(SAE J240)로서, 상기 시험 규격은 납축전지가 고온(75℃)에서 충전/방전을 반복하여 수명이 종지될 때까지의 사이클을 측정하는 시험 방법이다. As a graph (SAE J240) that verified the lifespan in a 75°C environment according to the standards of the American Association of Automobile Engineers, the test standard indicates the cycle until the end of the life of the lead acid battery by repeating charging/discharging at high temperature (75°C). It is a test method to measure.

(1사이클 : 25A 4분 방전, 14.8V[최대 25A] 정전압 10분 충전)(1 cycle: 25A 4 minutes discharge, 14.8V [max 25A] constant voltage 10 minutes charge)

본 시험은 1주 동안 430회 반복하며, 그 후 64시간 정치 후 630A 고율로 방전하여 30초 시점에서의 전압을 측정함으로써 납축전지의 상태를 판정한다.This test is repeated 430 times for 1 week. After that, after standing for 64 hours, discharge at a high rate of 630A and measure the voltage at the time of 30 seconds to determine the state of the lead acid battery.

30초 시점의 전압이 7.2V 이상이면 납축전지를 온전한 상태로 판정하여 위의 싸이클을 반복하며, 7.2V 이하이면 납축전지를 수명종지로 판정하여, 시험을 중단한다. If the voltage at the time of 30 seconds is more than 7.2V, the lead acid battery is judged as intact and the above cycle is repeated. If it is less than 7.2V, the lead acid battery is judged as the end of its life and the test is stopped.

시험 결과, 도 2에서 보는 것과 같이 종래품에 대비하여 수명에서 33% 향상 효과를 보임으로써, 거친 표면을 포함한 폴리에스터 부직포를 적용한 극판을 포함한 납축전지가 수명 증가에 대한 긍정적인 영향을 주었음을 알 수 있었다.As a result of the test, as shown in FIG. 2, the lead acid battery including the electrode plate to which the polyester nonwoven fabric including the rough surface was applied had a positive effect on the life increase by showing a 33% improvement in life compared to the conventional product. Could know.

5) 충전수입성 시험 (CA: Charge Acceptance test)5) Charge acceptance test (CA: Charge Acceptance test)

만충전된 시료를 상온(25±2℃)에서 5시간율 전류(70Ah 기준 17.5A)로 2.5시간 방전한 후, 0±2℃ 온도에서 12시간이상 방치한다. After discharging a fully charged sample for 2.5 hours at room temperature (25±2℃) with a 5-hour rate current (17.5A based on 70Ah), leave it at 0±2℃ for 12 hours or more.

이후 정전압 14.4V±0.1V으로 충전하여 충전 10분때 전류를 측정한다. After that, charge it with a constant voltage of 14.4V±0.1V and measure the current at 10 minutes of charging.

시험결과, 전지전도도 및 충전 효율이 높아 개선품이 종래품 대비 10분 정도에 전류가 13% 증대되었음을 알 수 있었다.(도 4 참조)As a result of the test, it was found that the improved product increased the current by 13% in about 10 minutes compared to the conventional product due to high battery conductivity and charging efficiency (see FIG. 4).

구분division 시간time 종래품Conventional product 개선품Improvement




충전수입성





Rechargeable income
1분1 min 27.327.3 28.0928.09
2분2 minutes 24.5124.51 26.8526.85 3분3 minutes 22.3422.34 25.1725.17 4분4 minutes 21.5521.55 24.4224.42 5분5 minutes 20.1120.11 23.5123.51 6분6 minutes 19.4519.45 22.8122.81 7분7 minutes 18.7518.75 21.0821.08 8분8 minutes 17.7117.71 20.1720.17 9분9 minutes 17.0517.05 19.8719.87 10분10 minutes 16.5816.58 18.7718.77

상기와 같은 제조 방법을 통해, 활물질이 도포된 활물질도포층에 활물질 탈락 방지를 위하여 극판에 부착되는 표면을 거칠게 처리한 폴리에스터 부직포를 접착시킴으로써, 활물질과 부직포 간의 결합력을 향상시키고, 활물질에 접촉하는 면적을 향상시켜 전해액이 종래보다 더욱 많이 침투할 수 있도록 하여 납축전지의 내구성과 기초성능을 향상시킬 수 있는 효과를 제공하게 된다.Through the manufacturing method as described above, by adhering a polyester nonwoven fabric having a rough surface attached to the electrode plate to prevent the active material from falling off to the active material coating layer on which the active material is applied, thereby improving the bonding strength between the active material and the nonwoven fabric, and contacting the active material. By improving the area, the electrolyte can penetrate more than before, thereby providing the effect of improving the durability and basic performance of the lead acid battery.

상기와 같은 내용의 본 발명이 속하는 기술분야의 당업자는 본 발명의 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시 예들은 모든 면에서 예시된 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. Those skilled in the art to which the present invention with the above contents pertains will understand that the present invention can be implemented in other specific forms without changing the technical spirit or essential features of the present invention. Therefore, the embodiments described above are exemplified in all respects and should be understood as non-limiting.

S100 : 활물질도포단계
S200 : 폴리에스터부직포표면거칠기단계
S300 : 폴리에스터부직포거친표면접착단계
S100: Active material application step
S200: Polyester nonwoven fabric surface roughness step
S300: Polyester nonwoven fabric rough surface adhesion step

Claims (4)

거친 표면을 가지는 부직포를 적용한 납축전지용 극판 제조 방법에 있어서,
극판에 활물질을 도포하는 활물질도포단계(S100);와
상기 활물질이 도포된 활물질도포층에 활물질 탈락 방지를 위하여 폴리에스터 부직포의 극판에 부착되는 표면을 거칠게 하는 표면 거칠기를 수행하기 위한 폴리에스터부직포표면거칠기단계(S200);와
상기 표면 거칠기를 수행한 폴리에스터 부직포의 표면을 활물질이 도포된 극판에 접착시키기 위한 폴리에스터부직포거친표면접착단계(S300);를 포함하는 것을 특징으로 하는 거친 표면을 가지는 부직포를 적용한 납축전지용 극판 제조 방법.
In the method of manufacturing an electrode plate for a lead acid battery using a nonwoven fabric having a rough surface,
Active material application step (S100) of applying the active material to the electrode plate; And
A polyester nonwoven fabric surface roughening step (S200) for performing a surface roughening of the surface attached to the electrode plate of the polyester nonwoven fabric in order to prevent the active material from falling off the active material coating layer on which the active material is applied; And
A polyester nonwoven fabric rough surface bonding step (S300) for bonding the surface of the polyester nonwoven fabric subjected to the surface roughness to the electrode plate coated with the active material; an electrode plate for a lead acid battery to which a nonwoven fabric having a rough surface is applied. Manufacturing method.
제 1항에 있어서,
상기 표면 거칠기를 수행한 폴리에스터 부직포의 표면을 활물질이 도포된 극판에 접착시킬 경우에, 활물질과 폴리에스터 부직포 간의 결합력을 향상시키며, 동시에 활물질에 접촉하는 면적을 향상시켜 전해액 침투가 표면 거칠기를 수행하지 않은 부직포보다 많은 것을 특징으로 하는 거친 표면을 가지는 부직포를 적용한 납축전지용 극판 제조 방법.
The method of claim 1,
When the surface of the polyester nonwoven fabric subjected to the surface roughness is adhered to the electrode plate coated with the active material, the bonding strength between the active material and the polyester nonwoven fabric is improved, and at the same time, the area in contact with the active material is improved, so that the penetration of the electrolyte solution performs the surface roughness. A method of manufacturing an electrode plate for a lead acid battery using a nonwoven fabric having a rough surface, characterized in that it is more than a nonwoven fabric.
제 1항에 있어서,
상기 거친 표면을 가지는 부직포를 적용한 납축전지용 극판 제조 방법에 의해,
제조된 납축전지의 보유 용량이 80Ah ~ 87Ah의 용량일 경우,
수명은 3주차(1,290cycle)에서 4주차(1,720cycle)로 30% ~ 35% 범위 내의 내구성 향상을 제공할 수 있는 것을 특징으로 하는 거친 표면을 가지는 부직포를 적용한 납축전지용 극판 제조 방법.
The method of claim 1,
By the method of manufacturing an electrode plate for a lead acid battery to which the nonwoven fabric having a rough surface is applied,
When the manufactured lead acid battery has a capacity of 80Ah ~ 87Ah,
A method of manufacturing an electrode plate for a lead acid battery using a nonwoven fabric having a rough surface, characterized in that it can provide durability improvement within the range of 30% to 35% from 3 weeks (1,290 cycles) to 4 weeks (1,720 cycles).
제 1항의 제조 방법에 의해,
제조된 거친 표면을 가지는 부직포를 적용한 납축전지용 극판을 포함하고 있는 납축전지.

By the manufacturing method of claim 1,
A lead acid battery containing a lead acid battery electrode plate to which the manufactured nonwoven fabric having a rough surface is applied.

KR1020190103185A 2019-08-22 2019-08-22 Manufacturing method of lead plate for lead acid battery using nonwoven fabric with rough surface KR20210023240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190103185A KR20210023240A (en) 2019-08-22 2019-08-22 Manufacturing method of lead plate for lead acid battery using nonwoven fabric with rough surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190103185A KR20210023240A (en) 2019-08-22 2019-08-22 Manufacturing method of lead plate for lead acid battery using nonwoven fabric with rough surface

Publications (1)

Publication Number Publication Date
KR20210023240A true KR20210023240A (en) 2021-03-04

Family

ID=75174460

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190103185A KR20210023240A (en) 2019-08-22 2019-08-22 Manufacturing method of lead plate for lead acid battery using nonwoven fabric with rough surface

Country Status (1)

Country Link
KR (1) KR20210023240A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100483246B1 (en) 2000-11-09 2005-04-15 가부시키가이샤 유아사코오포레이션 Negative electrode active material, process for its production and lead storage battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100483246B1 (en) 2000-11-09 2005-04-15 가부시키가이샤 유아사코오포레이션 Negative electrode active material, process for its production and lead storage battery

Similar Documents

Publication Publication Date Title
KR102105992B1 (en) Manufacturing method of lead plate for lead battery with high conductivity graphene fiber and lead acid battery
KR102225198B1 (en) Manufacturing method of active material for lead-acid battery using Diatomaceous earth fiber
KR20180045327A (en) Manufacturing method of active material for lead-acid battery
KR20030005759A (en) Electrode for lead storage battery and method for manufacturing thereof
KR20180045244A (en) Plate for lead storage battery and manufacturing method of it
KR102424570B1 (en) Method for manufacturing electrode plate of lead acid battery with improved adhesion between active materials by adding aqueous SBR-CMC
KR20210023240A (en) Manufacturing method of lead plate for lead acid battery using nonwoven fabric with rough surface
KR102225190B1 (en) Manufacturing method of positive electrode active material for lead acid battery using Water based binder
KR20200045225A (en) PE material short circuit prevention device
KR20210034314A (en) Manufacturing method of positive electrode active material for lead acid battery using porous titanium
KR20210023239A (en) Manufacturing method of lead plate for lead acid battery using water-soluble nonwoven fabric
KR102305192B1 (en) Manufacturing method of active material for lead-acid battery Addition of Deep groove on the surface polyester fiber
KR102233128B1 (en) Manufacturing method of active material for lead acid battery containing bimetallic structured fiber
KR102196991B1 (en) Method for manufacturing anode active material for lead-acid battery employing high conductivity black phosphorus
KR102617642B1 (en) A method of manufacturing a rug for a lead acid battery with a nano ceramic coating layer applied to prevent rug corrosion in a lead acid battery substrate
KR102103287B1 (en) Manufacturing method of active material for lead acid battery using CNT coating fiber
KR102305183B1 (en) Method for patterning the surface of polar plates for lead acid batteries
KR102225186B1 (en) Method for manufacturing anode active material for lead-acid battery using hollow spiral carbon fiber
KR102424560B1 (en) Electrode plate manufacturing method for lead acid battery with improved charging efficiency and low-temperature starting capability by applying ion conductive polymer electrolyte membrane
KR20200045224A (en) Manufacture of gold-plated grid for the production of lead-acid batteries for high temperature regions and lead acid battery
KR20210017162A (en) Manufacturing method of active material for lead acid battery using Multi walled CNT
KR102295765B1 (en) A method of manufacturing an electrode plate for a lead acid battery that improves the adhesion of an active material and improves electrical conductivity by applying a conductive silver paste
KR102580194B1 (en) Electrode plate manufacturing method for lead-acid battery with increased active material adhesion and improved electrical conductivity by applying a conductive paste nonwoven fabric with added graphite
KR102209377B1 (en) How to remove residues from lead-acid battery lugs using Etching solution
KR102305187B1 (en) electrode manufacturing method with improved adhesion to active materials using laser processing

Legal Events

Date Code Title Description
E601 Decision to refuse application