KR20200045224A - Manufacture of gold-plated grid for the production of lead-acid batteries for high temperature regions and lead acid battery - Google Patents

Manufacture of gold-plated grid for the production of lead-acid batteries for high temperature regions and lead acid battery Download PDF

Info

Publication number
KR20200045224A
KR20200045224A KR1020180126017A KR20180126017A KR20200045224A KR 20200045224 A KR20200045224 A KR 20200045224A KR 1020180126017 A KR1020180126017 A KR 1020180126017A KR 20180126017 A KR20180126017 A KR 20180126017A KR 20200045224 A KR20200045224 A KR 20200045224A
Authority
KR
South Korea
Prior art keywords
lead
grid
gold
acid battery
manufacturing
Prior art date
Application number
KR1020180126017A
Other languages
Korean (ko)
Inventor
최석모
김진구
은기홍
Original Assignee
주식회사 한국아트라스비엑스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한국아트라스비엑스 filed Critical 주식회사 한국아트라스비엑스
Priority to KR1020180126017A priority Critical patent/KR20200045224A/en
Publication of KR20200045224A publication Critical patent/KR20200045224A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/73Grids for lead-acid accumulators, e.g. frame plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

The present invention relates to a method for manufacturing a gold-plated grid for making a lead-acid battery for a high temperature region and a lead-acid battery thereof and, more specifically, to a method for manufacturing a gold-plated grid for making a lead-acid battery for a high temperature region, in which gold is plated on a cathode grid of a lead-acid battery to solve a problem that lifespan is reduced by 50% or more than a lead-acid battery used at room temperature and in particular, a short circuit is generated by growth of a grid when an existing lead-acid battery is used in a high temperature region of 30°C or higher, thereby simultaneously providing an effect of restricting grid growing deformation caused by corrosion of the grid and a performance increase effect due to increase of electric conductivity, and a lead-acid battery thereof. Accordingly, the increase of the electric conductivity and reduction in weight due to a lower density than an existing alloy (or metal) can be expected and a corrosion resistance increase effect due to prevention of a product by reaction with metal can be provided. In particular, a high temperature durability increase effect is provided, thereby providing the lead-acid battery for a high temperature region. According to the present invention, the method comprises a lead grid manufacturing step, a gold plating layer forming step, and a lead plating layer forming step.

Description

고온 지역용 납축전지 제작을 위한 금 도금처리된 그리드 제조 방법 및 납축전지{Manufacture of gold-plated grid for the production of lead-acid batteries for high temperature regions and lead acid battery}Manufacture of gold-plated grid for the production of lead-acid batteries for high temperature regions and lead acid battery}

본 발명은 고온 지역용 납축전지 제작을 위한 금 도금처리된 그리드 제조 방법 및 납축전지에 관한 것으로서, 더욱 상세하게는 종래에 30℃ 이상의 고온지역에서 납 축전지를 사용하는 경우에 상온에서 사용되는 납 축전지에 비해 수명이 50% 이상 수명이 감소하며, 특히 그리드 성장에 의한 쇼트가 발생하는 문제점을 개선하기 위하여 납 축전지 양극 그리드(Grid)에 금을 도금하여 그리드 부식에 따른 그리드 성장 변형 억제 효과 및 전기 전도도 증가로 인한 성능 향상 효과를 동시에 제공할 수 있는 고온 지역용 납축전지 제작을 위한 금 도금처리된 그리드 제조 방법 및 납축전지에 관한 것이다.The present invention relates to a gold-plated grid manufacturing method and a lead acid battery for manufacturing a lead acid battery for a high temperature region, and more specifically, a lead acid battery used at normal temperature when a lead acid battery is used in a high temperature region of 30 ° C. or higher. Compared to the above, the lifespan is reduced by 50% or more, and in particular, in order to improve the short circuit caused by grid growth, gold is plated on the positive electrode grid of the lead-acid battery, so that the effect of suppressing grid growth deformation due to grid corrosion and electrical conductivity The present invention relates to a gold-plated grid manufacturing method and a lead-acid battery for manufacturing a lead-acid battery for a high-temperature area that can simultaneously provide an effect of improving performance due to an increase.

종래 기술인 대한민국특허등록번호 제10-0603908호인 "축전지용 극판 및 그 제조 방법"은 활물질 표면에 섬유 필라멘트가 박히도록 섬유강화 종이를 압력을 가해 부착하고 표면의 요철부에 활물질을 충전하여서 되는 극판 제조 방법을 개시한다. The prior art, Korean Patent Registration No. 10-0603908, “A battery electrode plate and a manufacturing method thereof,” is prepared by applying a fiber-reinforced paper under pressure to attach fiber filaments to the surface of the active material, and filling the concave-convex portion of the surface to produce an electrode plate. The method is disclosed.

상기한 종래 대한민국등록특허는 "축전지용 극판 및 그 제조 방법"에 관한 것으로서 축전지의 극판은 전기가 흐르는 통로 역할을 하는 기판에 전기 화학적 활성을 갖는 활물질이 도포되고, 그 활물질 표면에 섬유강화 종이를 부착 또는 압착하는 단계에서 섬유강화종이의 섬유 필라멘트가 일정 깊이로 박히도록 압력을 가해 부착하고, 섬유강화종이의 표면 요철부에 활물질이 충전되어 그 결착표면적을 증대시킴으로서, 기판으로부터 활물질이 탈리되는 것을 방지하고, 나아가, 섬유강화종이의 다공성으로 인한 극판의 초기고율방전 특성을 향상시키고 또한 섬유강화종이의 섬유필라멘트 조직의 안정된 지지력과 내산성으로 인한 활물질을 잘 보유하고 지지함으로서 축전지의 수명을 연장시키는 기술에 관한 것이다. The above-mentioned conventional Korean registered patent relates to a "electrode plate for a storage battery and a method for manufacturing the same", and the electrode plate of the storage battery is coated with an active material having electrochemical activity on a substrate serving as a passage for electricity, and a fiber-reinforced paper is applied to the surface of the active material. In the step of attaching or compressing, the fiber filaments of the fiber-reinforced paper are attached by applying pressure to a certain depth, and the active material is filled in the irregularities of the surface of the fiber-reinforced paper to increase the binding surface area. Preventing, further improving the initial high-rate discharge characteristics of the electrode plate due to the porosity of the fiber-reinforced paper, and also prolonging the life of the storage battery by retaining and supporting the active material due to the stable support capacity and acid resistance of the fiber filament structure of the fiber-reinforced paper It is about.

지금까지 납축전지용 그리드 합금으로 납(Pb)-칼슘(Ca)-주석(Sn)계 합금을 사용해 왔으나 이러한 합금구성만으로는 가혹한 사용환경(고온 및 과충전 현상)에 충분히 대응하지 못해 그리드의 부식이나 부식의 성장(growth)으로 인한 변형이 발생하여 납축전지의 수명이 짧아지고 있는 것이 문제로 지적되고 있다. Until now, lead (Pb) -calcium (Ca) -tin (Sn) -based alloys have been used as grid alloys for lead-acid batteries, but these alloys alone do not sufficiently cope with harsh usage environments (high temperature and overcharge phenomenon), causing corrosion or corrosion of the grid. It is pointed out that the problem is that the lifespan of the lead acid battery is shortened due to the deformation due to the growth.

이에 따라 그리드의 내부식성, 기계적 강도 개선 및 성장 변형의 억제가 요구되고 있다.Accordingly, there is a need to improve the corrosion resistance of the grid, mechanical strength, and suppress growth deformation.

한편, 양극판의 숙성공정은 제품의 내구성을 증대시키는 중요한 공정으로서 스팀(steam)의 뜨거운 온도(약 70 ~ 100℃)와 수분(습도 99%이상)으로 활물질의 구성성분인 납(Pb)을 산화납(PbO)으로 변화시킬 뿐만 아니라, 활물질의 결정구조를 변화시킨다. On the other hand, the aging process of the positive electrode plate is an important process to increase the durability of the product. It oxidizes lead (Pb), a component of the active material, with hot temperature (about 70 to 100 ° C) of steam and moisture (at least 99% humidity). It not only changes to lead (PbO), but also changes the crystal structure of the active material.

음극판은 별도 공정 없이 자연 상태에서 방치하면 숙성 및 건조를 동시에 할 수 있다. The cathode plate can be aged and dried at the same time if left in a natural state without a separate process.

하지만, 충분한 숙성 및 건조가 이루어지지 않으면 극판군을 형성하는 조립과정에서 극판과 극판끼리 달라붙으며, 수분이 존재하여 활물질의 내구력이 떨어져 기판사이에 박혀 있는 활물질은 조그마한 충격에도 손쉽게 떨어지게 된다. However, if sufficient maturation and drying are not achieved, the electrode plates and the electrode plates stick together in the assembly process of forming the electrode plate group, and moisture is present, so the durability of the active material is reduced and the active material embedded between the substrates is easily dropped even with a small impact.

이와 같은 과정을 거쳐 만들어진 납축전지는 충,방전의 횟수가 증가함에 따라 납과 황산의 반응에 의해서 활물질은 기판에서 더욱 쉽게 떨어지게 되며, 떨어진 활물질들은 더 이상 반응에 참가할 수 없기 때문에, 결국 납축전지의 성능을 저하시켜 납축전지의 수명을 통상 1~2년에 불과하게 만들었다.As the number of charge and discharge increases, the lead-acid battery made through this process is more likely to fall off the substrate by the reaction of lead and sulfuric acid, and the fallen active materials can no longer participate in the reaction. By reducing the performance, the lead-acid battery's lifespan is usually only 1 to 2 years.

따라서, 납 축전지 내구성과 성능을 향상시킬 수 있는 제조 공정이 요구되고 있는 실정이다.Therefore, there is a need for a manufacturing process capable of improving lead acid battery durability and performance.

그리고, 현재, 고온용 납 축전지에서 필요로 하는 재료의 조건이 그리드 성장 및 부식 억제이며 이에 따라 충, 방전 특성 향상과 같은 요구 조건에 부응하는 새로운 형태의 재료들이 개발되고 있다.And, at present, the conditions of materials required for high-temperature lead-acid batteries are suppression of grid growth and corrosion, and accordingly, new types of materials have been developed to meet requirements such as improvement of charge and discharge characteristics.

현재의 납축전지용 그리드 합금은 납-주석-칼슘계 합금을 사용하여 제조되고 있으나 카본재료 코팅등 다양한 복합 재료에 대한 연구는 최근에 진행되고 있다.Current grid alloys for lead acid batteries are manufactured using lead-tin-calcium-based alloys, but research on various composite materials such as carbon material coatings has been recently conducted.

종래의 납축전지 Grid를 제조함에 있어서 납-주석-칼슘계 합금을 Press와 Punching 공정을 적용하여 제조한다.In manufacturing a conventional lead acid battery grid, a lead-tin-calcium-based alloy is manufactured by applying a pressing and punching process.

기존의 납축전지의 주요 재료인 납 특성상 쉽게 산소와 반응하여 산화가 일어나고 결정립 성장에 따라 납 성장이 일어난다.Owing to the nature of lead, which is the main material of the existing lead acid battery, it easily reacts with oxygen to oxidize and lead growth occurs according to grain growth.

특히, 고온 지역에서 자동차에 장착된 제품의 경우 운행 조건 및 전장에서의 사용부하에 따라 그리드 부식이 가속화되어 납축전지 쇼트 발생으로 인해 조기 수명 종지 현상이 발생하게 된다.Particularly, in the case of a product mounted in a vehicle in a high temperature area, grid corrosion is accelerated according to operating conditions and loads used in the battlefield, leading to an early end of life due to lead-acid battery short circuit.

따라서, 지금까지 설명한 문제점을 개선할 수 있는 납축전지 개발이 필요한 실정이다.Therefore, there is a need to develop a lead acid battery capable of improving the problems described so far.

대한민국특허등록번호 제10-0483246호Republic of Korea Patent Registration No. 10-0483246

따라서, 본 발명은 상기 종래의 문제점을 해소하기 위해 안출된 것으로,Therefore, the present invention has been devised to solve the conventional problems,

고온지역에서 자동차에 장착된 제품의 경우, 운행 조건 및 전장에서의 사용부하에 따라 그리드 부식이 가속화되어 납축전지 쇼트 발생으로 인해 조기 수명 종지 현상이 발생되는데, 본 발명의 목적은 종래의 상기 문제점을 개선하고자 Grid 표면에 금 도금을 처리하여 전기 전도도와 내 부식성을 향상시켜 성능 향상 및 조기 수명 종지를 방지하는데 있다.In the case of a product mounted on a vehicle in a high temperature area, grid corrosion is accelerated according to the operating conditions and the load used on the electric field, resulting in an early end of life due to lead-acid battery short circuit. In order to improve, it is to improve the performance and prevent the end of early life by improving the electrical conductivity and corrosion resistance by processing the gold plating on the grid surface.

본 발명이 해결하고자 하는 과제를 달성하기 위하여, 본 발명의 일실시예에 따른 고온 지역용 납축전지 제작을 위한 금 도금처리된 그리드 제조 방법은,In order to achieve the problem to be solved by the present invention, a method for manufacturing a gold-plated grid for manufacturing a lead acid battery for a high-temperature region according to an embodiment of the present invention,

기판인 납 그리드를 제조하는 납그리드제조단계(S100);와Lead grid manufacturing step of manufacturing a lead grid as a substrate (S100); And

상기 납 그리드 표면에 진공 증착기를 이용하여 금으로 진공 증착하여 금 도금층을 형성하는 금도금층형성단계(S200);와A gold plating layer forming step (S200) of forming a gold plating layer by vacuum deposition with gold on a vacuum surface of the lead grid; and

상기 형성된 금 도금층에 납도금 피막층을 형성시키는 납도금피막층형성단계(S300);를 포함함으로써, 금 도금 그리드를 제공하는 것을 과제의 해결 수단으로 제공하고자 한다.By including a lead plating film layer forming step (S300) of forming a lead plating film layer on the formed gold plating layer, to provide a gold plating grid as a solution to the problem.

본 발명인 고온 지역용 납축전지 제작을 위한 금 도금처리된 그리드 제조 방법 및 납축전지를 통해, 전기 전도도 향상, 기존 합금(또는 금속) 보다 낮은 밀도로 경량화 기대, 금속과의 반응 생성물 억제로 내 부식성 향상 효과를 제공하게 된다.The present inventor, through the gold-plated grid manufacturing method and lead-acid battery for the production of lead-acid batteries for high-temperature areas, improves electrical conductivity, expects to be lighter at a lower density than existing alloys (or metals), and improves corrosion resistance by suppressing reaction products with metals It provides an effect.

특히, 고온 내구성 향상 효과를 제공함으로써, 고온 지역용 납축전지를 제공할 수 있게 된다.In particular, by providing a high temperature durability improvement effect, it is possible to provide a lead acid battery for a high temperature region.

도 1은 본 발명의 일실시예에 따른 고온 지역용 납축전지 제작을 위한 금 도금처리된 그리드 제조 방법의 공정도이다.
도 2는 본 발명의 일실시예에 따른 고온 지역용 납축전지 제작을 위한 금 도금처리된 그리드 제조 방법에서 제조된 개선품과 종래품를 비교한 그래프로서, 미국 자동차 기술자 협회 규격에 따라 고온 환경에서 수명을 검증한 그래프 도면이다.
도 3은 본 발명의 일실시예에 따른 고온 지역용 납축전지 제작을 위한 금 도금처리된 그리드 제조 방법의 그리드를 나타낸 사시도이다.
도 4는 본 발명의 일실시예에 따른 고온 지역용 납축전지 제작을 위한 금 도금처리된 그리드 제조 방법에 의해 제조된 금 도금 그리드를 나타낸 사시도이다.
1 is a process diagram of a gold-plated grid manufacturing method for manufacturing a lead acid battery for a high temperature area according to an embodiment of the present invention.
Figure 2 is a graph comparing the improved product and the conventional product prepared in a gold-plated grid manufacturing method for producing a lead acid battery for a high temperature area according to an embodiment of the present invention, life in a high temperature environment according to the American Automobile Engineers Association standard It is a graph drawing verified.
3 is a perspective view showing a grid of a gold-plated grid manufacturing method for manufacturing a lead acid battery for a high temperature area according to an embodiment of the present invention.
4 is a perspective view showing a gold plating grid produced by a gold plating process grid manufacturing method for manufacturing a lead acid battery for a high temperature area according to an embodiment of the present invention.

본 발명의 일실시예에 따른 고온 지역용 납축전지 제작을 위한 금 도금처리된 그리드 제조 방법은,Method for manufacturing a gold-plated grid for manufacturing lead acid batteries for high-temperature areas according to an embodiment of the present invention,

기판인 납 그리드를 제조하는 단계(S100);와Manufacturing a lead grid as a substrate (S100); and

상기 납 그리드 표면에 진공 증착기를 이용하여 금으로 진공 증착하여 금 도금층을 형성하는 금도금층형성단계(S200);와A gold plating layer forming step (S200) of forming a gold plating layer by vacuum deposition with gold on a vacuum surface of the lead grid; and

상기 형성된 금 도금층에 납도금 피막층을 형성시키는 납도금피막층형성단계(S300);를 포함함으로써, 금 도금 그리드를 제공하는 것을 특징으로 한다.By including a lead plating film layer forming step (S300) for forming a lead plating film layer on the formed gold plating layer, it characterized in that to provide a gold plating grid.

이때, 상기 납도금피막층형성단계(S300)는, At this time, the lead plating film layer forming step (S300),

니켈, 은, 동, 인듐, 코발트 중에서 선택되는 하나 또는 둘 이상을 0.1 ~ 8.0% 공석 혼합시켜 제조한 경질 도금을 진공 증착기를 이용하여 진공 증착하는 것을 특징으로 한다.It is characterized in that the hard plating prepared by mixing one or more selected from nickel, silver, copper, indium, and cobalt by 0.1 to 8.0% vacancy is vacuum-deposited using a vacuum evaporator.

또한, 상기 금 도금 그리드는,In addition, the gold plating grid,

배합된 양극활물질 혼합물에 도포되는 것을 특징으로 한다.Characterized in that it is applied to the blended positive electrode active material mixture.

따라서, 상기 고온 지역용 납축전지 제작을 위한 금 도금처리된 그리드 제조 방법에 의해,Therefore, by the method of manufacturing a gold-plated grid for the production of lead-acid batteries for high temperature areas,

제조된 납축전지의 보유 용량이 80Ah의 용량일 경우,When the capacity of the manufactured lead acid battery is 80 Ah,

수명은 274 싸이클에서 304 ~ 315 싸이클로 11 ~ 15%의 내구성 향상을 제공할 수 있는 것을 특징으로 한다.The service life is characterized by being able to provide a durability improvement of 11 to 15% from 304 to 315 cycles at 274 cycles.

따라서, 본 발명의 제조 방법에 의해,Therefore, by the manufacturing method of the present invention,

제조된 금 도금처리된 그리드를 포함하고 있는 납축전지를 제공할 수 있게 된다.It is possible to provide a lead acid battery including a gold-plated grid.

이하, 본 발명에 의한 고온 지역용 납축전지 제작을 위한 금 도금처리된 그리드 제조 방법 및 납축전지의 실시예를 통해 상세히 설명하도록 한다.Hereinafter, it will be described in detail through an embodiment of a gold-plated grid manufacturing method and a lead acid battery for manufacturing a lead acid battery for a high temperature area according to the present invention.

도 1은 본 발명의 일실시예에 따른 고온 지역용 납축전지 제작을 위한 금 도금처리된 그리드 제조 방법의 공정도이다.1 is a process diagram of a gold-plated grid manufacturing method for manufacturing a lead acid battery for a high temperature area according to an embodiment of the present invention.

도 1에 도시한 바와 같이, 본 발명인 고온 지역용 납축전지 제작을 위한 금 도금처리된 그리드 제조 방법은, As shown in Figure 1, the present invention is a method for manufacturing a gold-plated grid for the production of lead acid batteries for high-temperature areas,

기판인 납 그리드를 제조하는 납그리드제조단계(S100);와Lead grid manufacturing step of manufacturing a lead grid as a substrate (S100); And

상기 납 그리드 표면에 진공 증착기를 이용하여 금으로 진공 증착하여 금 도금층을 형성하는 금도금층형성단계(S200);와A gold plating layer forming step (S200) of forming a gold plating layer by vacuum deposition with gold on a vacuum surface of the lead grid; and

상기 형성된 금 도금층에 납도금 피막층을 형성시키는 납도금피막층형성단계(S300);를 포함하게 된다.And a lead plating film layer forming step (S300) of forming a lead plating film layer on the formed gold plating layer.

구체적으로는 납그리드제조단계(S100)를 통해, 도 3에 도시한 바와 같이, 기판인 납 그리드를 제조하게 된다.Specifically, through a lead grid manufacturing step (S100), as shown in FIG. 3, a lead grid as a substrate is manufactured.

이후, 금도금층형성단계(S200)를 통해 상기 납 그리드 표면에 진공 증착기를 이용하여 금으로 진공 증착하여 금 도금층을 형성하게 된다.Thereafter, through a gold plating layer forming step (S200), a gold plating layer is formed by vacuum deposition on the surface of the lead grid using gold using a vacuum evaporator.

이후, 납도금피막층형성단계(S300)를 통해 상기 형성된 금 도금층에 납도금 피막층을 형성시킴으로써, 도 4에 도시한 바와 같은 금 도금 그리드를 제공하는 것을 특징으로 한다.Then, by forming a lead plating film layer on the formed gold plating layer through the lead plating film layer forming step (S300), it is characterized in that to provide a gold plating grid as shown in FIG.

상기와 같은 제조 방법을 통해, 제조된 납 축전지의 경우, 종래의 30℃ 이상의 고온지역에서 납 축전지를 사용하는 경우에 상온에서 사용되는 납 축전지에 비해 수명이 50% 이상이 감소하며 특히 그리드 성장에 의한 쇼트가 발생하는 문제점을 개선하여 납 축전지 양극 Grid에 금을 도금하여 그리드 부식에 따른 그리드 성장변형 억제 효과 및 전기 전도도 증가로 인한 성능 향상 효과를 제공하게 되는 것이다.Through the above-described manufacturing method, in the case of the lead-acid battery produced, when using a lead-acid battery in a high temperature region of 30 ° C or higher, the life span is reduced by 50% or more compared to the lead-acid battery used at room temperature, especially for grid growth By improving the problem of short circuit caused by plating, gold is plated on the anode grid of a lead-acid battery, thereby providing an effect of suppressing grid growth deformation due to grid corrosion and an effect of improving performance due to an increase in electrical conductivity.

다시 설명하면, 종래에 자동차에 장착되는 내비게이션, 블랙박스, 전동 시트 등의 편의 장치와 ABS, VDC, 도난경보시스템 등의 안전장치의 증가로 인해 소모 전략이 높아지고 있어 고성능 배터리가 필요하며, 고온지역에서 사용하는 납축전지의 경우, 상온에서 사용하는 납축전지의 수명이 50% 이상 감소한다. In other words, the consumption strategy is increasing due to the increase in safety devices such as navigation systems, black boxes, electric seats, and safety devices such as ABS, VDC, and anti-theft alarm systems, which require high-performance batteries. In the case of lead-acid batteries used in, the life of lead-acid batteries used at room temperature is reduced by 50% or more.

보다 자세히 언급하면, 배터리의 고장 원인은 사용 중에 부하의 종류와 관리하는 방법에 따라 좌우된다. In more detail, the cause of the failure of the battery depends on the type of load and how it is managed during use.

주된 고장요인은 양극 활물질 설페이션화, 음극 활물질 설페이션화, 양극 격자부식, 격리판 파손, 복합적인 요인 등이 있다. 특히 고온지역에서 자동차에 장착된 제품의 경우, 운행 조건 및 전장에서의 사용부하에 따라 그리드 부식이 가속화 되어 납축전지 쇼트 발생으로 인해 조기 수명 종지 현상이 발생된다. The main failure factors are positive electrode active material sulfation, negative electrode active material sulfation, positive electrode lattice corrosion, separator breakage, and complex factors. In particular, in the case of a product mounted in a vehicle in a high temperature area, grid corrosion is accelerated depending on the operating conditions and the load used on the battlefield, leading to an early end of life due to lead-acid battery short circuit.

따라서, 본 발명에서는 종래의 Grid 표면에 금 도금을 하여 전기전도도와 내부식성을 향상시켜 성능 향상 및 조기 수명 종지 현상을 방지하게 된다.Therefore, in the present invention, by performing gold plating on the surface of a conventional grid, electrical conductivity and corrosion resistance are improved, thereby preventing performance improvement and end of life.

상기한 종래 기술의 문제점을 감안하여 본 발명이 있기까지 연구를 거듭한 결과, 종래의 납 축전지 양극 Grid에 금을 진공 증착하여 금도금 그리드를 제조하여 납축전지를 제조하게 되면, 양극 부식 방지 및 전기전도도를 향상시켜 종래의 납축전지에 대비 10% 이상의 기초성능 향상과 11% 내구성을 향상시킬 수 있다는 점을 발견하고, 확인시험을 거쳐 본 발명을 완성하기에 이른 것이다.In consideration of the problems of the prior art described above, as a result of repeated studies until the present invention, if a lead-acid battery is manufactured by vacuum-depositing gold on a conventional lead-acid battery positive electrode grid to produce a gold-plated grid, it prevents anode corrosion and electrical conductivity. It has been discovered that the basic performance can be improved by more than 10% and the durability can be improved by 11% compared to a conventional lead acid battery, and the present invention has been completed through a verification test.

위에서 상술한 바와 같이 본 발명의 효과를 파악하기 위해 니켈, 은, 인듐, 코발트 등을 0.1 ~8% 정도 공석 혼합하여 제작한 경질도금을 납축전지 양극 Grid에 진공 증착하여 금도금 Grid를 제작한 후 납축전지 완제품을 제작하였다. As described above, in order to grasp the effect of the present invention, nickel, silver, indium, cobalt, etc. are mixed with vacancy by 0.1 to 8%, and vacuum-deposited on a lead-acid battery anode grid to produce a gold-plated grid. A finished battery product was produced.

위 발명의 효과를 파악하기 위해 종래의 극판을 제작하고 조립 및 화성하여 기초성능 및 수명시험을 하였다.In order to grasp the effects of the above invention, a conventional electrode plate was fabricated, assembled, and converted to perform basic performance and life tests.

또한, 최종적인 80Ah의 용량을 갖는 제품을 제작하였으며, 고온에서의 수명을 검증하기 위해 SAE J2801 규격에 따라 수명 시험을 진행하였다. In addition, a product having a final capacity of 80 Ah was produced, and a life test was conducted according to the SAE J2801 standard to verify life at high temperatures.

시험 결과, 보유용량에서 88Ah의 용량과 수명이 304사이클에서 종지되었으며, 이는 종래품 대비 보유용량에서 10%, 수명에서는 11% 향상되었다.As a result of the test, the capacity and life of 88Ah at the holding capacity ended at 304 cycles, which improved by 10% at the holding capacity compared to the conventional product and 11% at the life.

이에 대한 시험 자료는 후술하도록 하겠다.Test data for this will be described later.

도 2는 본 발명의 일실시예에 따른 고온 지역용 납축전지 제작을 위한 금 도금처리된 그리드 제조 방법에서 제조된 개선품과 종래품를 비교한 그래프로서, 미국 자동차 기술자 협회 규격에 따라 고온 환경에서 수명을 검증한 그래프 도면이다.Figure 2 is a graph comparing the improved product and the conventional product prepared in a gold-plated grid manufacturing method for producing a lead acid battery for a high temperature area according to an embodiment of the present invention, life in a high temperature environment according to the American Automobile Engineers Association standard It is a graph drawing verified.

<시험예><Test Example>

후술하는 종래품이라 함은, 출원인이 제조하는 납축전지(BX80)에 사용하는 활물질을 도포하는 그리드 제조 방법을 통해 제조된 제품을 말하며, 개선품은 본 발명의 제조 방법을 통해 고온 지역용 납축전지 제작을 위한 금 도금처리된 그리드 제조 방법을 통해 제조된 제품을 말한다.The conventional product, which will be described later, refers to a product manufactured through a grid manufacturing method of applying an active material used in a lead acid battery (BX80) manufactured by the applicant, and the improved product is manufactured in a high temperature region lead acid battery through the manufacturing method of the present invention. Refers to a product manufactured through a gold-plated grid manufacturing method.

구분division 종래품Conventional products 개선품Improvement RCRC 125min125min 138min138min CCACCA 635A635A 700A700A C20C20 80Ah80Ah 88Ah88Ah 내구성(SAE J2801)Durability (SAE J2801) 274 Cycle274 Cycle 304 Cycle304 Cycle

상기 표 1은 종래의 제조방법을 이용한 납축전지와 본 발명의 제조방법을 이용하여 제조한 납축전지의 성능 시험결과로서, 내구성이 종래품의 경우, 274 cycle을 나타냈으며, 개선품의 경우, 304 Cycle을 나타내고 있다.(도 2 참조)Table 1 shows the performance test results of a lead acid battery using a conventional manufacturing method and a lead acid battery manufactured using the manufacturing method of the present invention. In the case of a conventional product, durability was 274 cycles, and in the case of an improved product, 304 cycles were used. (See Fig. 2)

따라서, 종래의 종래품보다 내구성이 11% 향상되었음을 실험을 통해 확인할 수 있었다.Therefore, it was confirmed through experiments that the durability was improved by 11% over the conventional products.

1) 보유용량 (RC : Reserve Capacity)1) Reserve Capacity (RC)

보유용량 RC는 만충전 완료 후 1시간 이상 방치한 다음 25℃에서 25A의 방전전류로 방전종지전압 10.5V 도달 시까지의 방전가능지속시간을 측정하는 것으로, 예를 들면 이는 차량에 있어서 시동이 정지된 상태 등에서 부하를 작동시키는데 어느 시간까지 최소한의 기능을 발휘할 수 있는가에 대한 척도가 된다.Retention capacity RC measures the dischargeable duration until discharge end voltage reaches 10.5 V at 25 ° C. with a discharge current of 25 A after standing for 1 hour or more after full charge is completed. For example, it stops starting in a vehicle. It is a measure of how long the minimum function can be achieved to operate the load in conditions.

시험결과, 표 1에서 보는 바와 같이, 본 발명에 따른 금 도금 Grid로 제품을 제작하였을 경우, 보유용량(RC)은 135 ~ 140분으로, 정확하게는 138분으로 종래품에 대비하여 10%의 성능향상 효과를 보임으로써 금도금 Grid가 보유용량에 대한 긍정적인 영향을 주었음을 알 수 있었다.As a result of the test, as shown in Table 1, when the product was manufactured with a gold-plated grid according to the present invention, the holding capacity (RC) is 135 to 140 minutes, and precisely 138 minutes, 10% performance compared to the conventional product. By showing the improvement, it was found that the gold-plated grid had a positive effect on the holding capacity.

2) 저온시동전류(CCA : Cold Cranking Ampere)2) Cold Cranking Ampere (CCA)

일반적으로 축전지의 급속방전 특성은 -10℃이하에서 급속히 저하되는데, 저온시동전류(CCA)는 저온에서의 자동차 시동능력을 평가하기 위한 고율방전시험으로서, 만충전 완료 후 -18℃에서 630A로 30초 방전시의 전압을 측정한다. In general, the rapid discharge characteristic of a battery rapidly decreases below -10 ℃, and the low-temperature starting current (CCA) is a high-rate discharge test for evaluating the starting ability of a vehicle at low temperatures. The voltage at the time of ultra-discharge is measured.

이 시험에 있어서는 30초 때의 전압이 7.2V이상 요구되며, 높을수록 성능이 우수한 것으로 평가된다. In this test, a voltage of 30 seconds or more is required at 7.2 V or higher, and the higher the performance, the better the performance.

본 발명에서는 (30초 전압÷6-0.2)×630의 보정식을 사용하여 CCA를 계산하였다.In the present invention, CCA was calculated using a correction formula of (30 sec voltage ÷ 6-0.2) x 630.

시험결과, 표 1에서 도시한 바와 같이, 30초 전압은 7.70V ~ 7.82V, 환산 CCA는 680A ~ 700A으로, 정확하게는 700A로 기존제품에 대비하여 10%의 성능향상 효과를 보임으로써 금도금 Grid로 제품을 제작하였을 경우 저온시동전류에 대한 긍정적인 영향을 주었음을 알 수 있었다.As shown in Table 1, the 30-second voltage is 7.70V to 7.82V, the converted CCA is 680A to 700A, and it is exactly 700A, which is a gold plating grid by showing a 10% performance improvement effect compared to existing products. It was found that when the product was manufactured, it had a positive effect on the low-temperature starting current.

3) 20 시간율 용량(AH)3) 20 hour rate capacity (AH)

이는 저율방전 특성을 알아보기 위한 것으로, 축전지 용량에 대해 비교적 적은 전류인 3.75A로 연속 방전시켜, 전압이 10.5V에 도달할 때까지의 방전용량(AH)을 측정하는 것이다. This is to find out the low-rate discharge characteristics, and is to continuously discharge at 3.75A, which is a relatively small current for the battery capacity, to measure the discharge capacity (AH) until the voltage reaches 10.5V.

시험 결과, 85AH ~ 90AH로, 정확하게는 88AH로 기존제품에 대비하여 4%의 성능향상 효과를 보임으로써, 금도금 그리드로 제품을 제작하였을 경우에 20 시간율 용량(AH)에 대한 긍정적인 영향을 주었음을 알 수 있었다.As a result of the test, 85AH ~ 90AH, exactly 88AH, showing a 4% performance improvement effect compared to the existing product, which has a positive effect on the 20 hour rate capacity (AH) when the product is manufactured with a gold-plated grid. I could see.

4) 수명 검증 시험(SAE J2801, Cycle)4) Life test (SAE J2801, Cycle)

미국 자동차 기술자 협회 규격에 따라 75℃환경에서 수명을 검증한 그래프(J2801)로서, 상기 시험 규격은 납축전지가 고온(75℃)에서 충전/방전을 반복하여 수명이 종지될 때까지의 사이클을 측정하는 시험 방법이다. As a graph (J2801) of verifying life in an environment of 75 ° C according to the American Society of Automotive Engineers, the test standard measures the cycle until the life of the lead-acid battery is repeatedly charged / discharged at high temperature (75 ° C). It is a test method.

(1사이클 : 25A 18초 방전, 14.2V[최대 25A] 정전압 30분 충전- 5회 반복시 1Cycle)(1 cycle: 25A 18 sec discharge, 14.2V [max 25A] constant voltage 30 min charge-1 cycle after 5 repetitions)

본 시험은 1주 동안 34회 반복하며, 그 후 56시간 정치 후 200A 고율로 방전하여 30초 시점에서의 전압을 측정함으로써 배터리의 상태를 판정한다. This test was repeated 34 times for one week, and after standing for 56 hours, discharged at a high rate of 200 A to measure the voltage at the time of 30 seconds to determine the state of the battery.

30초 시점의 전압이 7.2V 이상이면 배터리를 온전한 상태로 판정하여 위의 싸이클을 반복하며, 7.2V 이하이면 배터리를 수명종지로 판정하여, 시험을 중단한다. If the voltage at 30 seconds is 7.2V or more, the battery is judged to be in an intact state, and the above cycle is repeated. If it is 7.2V or less, the battery is judged to be at the end of its life and the test is stopped.

시험 결과, 종래품에 대비하여 수명에서 11% 향상되는 효과를 보임으로써 금 도금 Grid로 제품을 제작하였을 경우, 수명 증가에 대한 긍정적인 영향을 주었음을 알수있다.As a result of the test, it can be seen that when the product was manufactured with a gold plating grid by showing an effect of 11% improvement in life compared to the conventional product, it had a positive effect on the increase in life.

상기와 같은 제조 방법을 통해, 전기 전도도 향상, 기존 합금(또는 금속) 보다 낮은 밀도로 경량화 기대, 금속과의 반응 생성물 억제로 내 부식성 향상 효과를 제공하게 된다.Through the above manufacturing method, the electrical conductivity is improved, the weight is expected to be reduced to a density lower than that of the existing alloy (or metal), and the corrosion resistance is improved by suppressing the reaction product with the metal.

특히, 고온 내구성 향상 효과를 제공함으로써, 고온 지역용 납축전지를 제공할 수 있게 된다.In particular, by providing a high temperature durability improvement effect, it is possible to provide a lead acid battery for a high temperature region.

상기와 같은 내용의 본 발명이 속하는 기술분야의 당업자는 본 발명의 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시 예들은 모든 면에서 예시된 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. Those of ordinary skill in the art to which the present invention pertains to the above contents can understand that the present invention may be implemented in other specific forms without changing the technical spirit or essential features of the present invention. Therefore, the embodiments described above are exemplified in all respects and should be understood as non-limiting.

S100 : 납그리드제조단계
S200 : 금도금층형성단계
S300 : 납도금피막층형성단계
S100: Lead grid manufacturing step
S200: Gold plating layer formation step
S300: Lead plating film layer formation step

Claims (5)

고온 지역용 납축전지 제작을 위한 금 도금처리된 그리드 제조 방법에 있어서,
기판인 납 그리드를 제조하는 납그리드제조단계(S100);와
상기 납 그리드 표면에 진공 증착기를 이용하여 금으로 진공 증착하여 금 도금층을 형성하는 금도금층형성단계(S200);와
상기 형성된 금 도금층에 납도금 피막층을 형성시키는 납도금피막층형성단계(S300);를 포함함으로써, 금 도금 그리드를 제공하는 것을 특징으로 하는 고온 지역용 납축전지 제작을 위한 금 도금처리된 그리드 제조 방법.
In the method of manufacturing a gold-plated grid for the production of lead-acid batteries for high-temperature areas,
Lead grid manufacturing step of manufacturing a lead grid as a substrate (S100); And
A gold plating layer forming step (S200) of forming a gold plating layer by vacuum deposition with gold on a vacuum surface of the lead grid; and
By including a lead plating film layer forming step (S300) of forming a lead plating film layer on the formed gold plating layer, by providing a gold plating grid, gold plating process grid manufacturing method for producing a lead acid battery for a high temperature region.
제 1항에 있어서,
상기 납도금피막층형성단계(S300)는,
니켈, 은, 동, 인듐, 코발트 중에서 선택되는 하나 또는 둘 이상을 0.1 ~ 8.0% 공석 혼합시켜 제조한 경질 도금을 진공 증착기를 이용하여 진공 증착하는 것을 특징으로 하는 고온 지역용 납축전지 제작을 위한 금 도금처리된 그리드 제조 방법.
According to claim 1,
The lead plating film layer forming step (S300),
Gold for high-temperature area lead-acid battery production, characterized by vacuum deposition of a hard plating prepared by mixing 0.1 to 8.0% vacancy by mixing one or two or more selected from nickel, silver, copper, indium, and cobalt Method of manufacturing a plated grid.
제 1항에 있어서,
상기 금 도금 그리드는,
배합된 양극 활물질 혼합물에 도포되는 것을 특징으로 하는 고온 지역용 납축전지 제작을 위한 금 도금처리된 그리드 제조 방법.
According to claim 1,
The gold plating grid,
Method for manufacturing a gold-plated grid for the production of lead acid batteries for high temperature regions, characterized in that they are applied to the blended positive electrode active material mixture.
제 1항에 있어서,
상기 고온 지역용 납축전지 제작을 위한 금 도금처리된 그리드 제조 방법에 의해,
제조된 납축전지의 보유 용량이 80Ah의 용량일 경우,
수명은 274 싸이클에서 304 ~ 315 싸이클로 11 ~ 15%의 내구성 향상을 제공할 수 있는 것을 특징으로 하는 고온 지역용 납축전지 제작을 위한 금 도금처리된 그리드 제조 방법.
According to claim 1,
By the method of manufacturing a gold-plated grid for the production of lead-acid batteries for high temperature areas,
When the capacity of the manufactured lead acid battery is 80 Ah,
The life span is from 274 cycles to 304 to 315 cycles, which can provide an 11 to 15% improvement in durability. A method of manufacturing a gold-plated grid for the production of lead-acid batteries for high-temperature areas.
제 1항의 제조 방법에 의해,
제조된 금 도금처리된 그리드를 포함하고 있는 납축전지.

By the manufacturing method of claim 1,
A lead acid battery containing a manufactured gold plated grid.

KR1020180126017A 2018-10-22 2018-10-22 Manufacture of gold-plated grid for the production of lead-acid batteries for high temperature regions and lead acid battery KR20200045224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180126017A KR20200045224A (en) 2018-10-22 2018-10-22 Manufacture of gold-plated grid for the production of lead-acid batteries for high temperature regions and lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180126017A KR20200045224A (en) 2018-10-22 2018-10-22 Manufacture of gold-plated grid for the production of lead-acid batteries for high temperature regions and lead acid battery

Publications (1)

Publication Number Publication Date
KR20200045224A true KR20200045224A (en) 2020-05-04

Family

ID=70732769

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180126017A KR20200045224A (en) 2018-10-22 2018-10-22 Manufacture of gold-plated grid for the production of lead-acid batteries for high temperature regions and lead acid battery

Country Status (1)

Country Link
KR (1) KR20200045224A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113607595A (en) * 2021-07-14 2021-11-05 浙江南都电源动力股份有限公司 Detection method of green plate corrosion layer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100483246B1 (en) 2000-11-09 2005-04-15 가부시키가이샤 유아사코오포레이션 Negative electrode active material, process for its production and lead storage battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100483246B1 (en) 2000-11-09 2005-04-15 가부시키가이샤 유아사코오포레이션 Negative electrode active material, process for its production and lead storage battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113607595A (en) * 2021-07-14 2021-11-05 浙江南都电源动力股份有限公司 Detection method of green plate corrosion layer

Similar Documents

Publication Publication Date Title
Hoang et al. Sustainable gel electrolyte containing Pb2+ as corrosion inhibitor and dendrite suppressor for the zinc anode in the rechargeable hybrid aqueous battery
KR102105992B1 (en) Manufacturing method of lead plate for lead battery with high conductivity graphene fiber and lead acid battery
CN102484245A (en) Method for producing negative plate for use in lead-acid battery and lead-acid battery
Czerwiński et al. New high-energy lead-acid battery with reticulated vitreous carbon as a carrier and current collector
Czerwiński et al. Positive plate for carbon lead-acid battery
KR20200045225A (en) PE material short circuit prevention device
KR20200045224A (en) Manufacture of gold-plated grid for the production of lead-acid batteries for high temperature regions and lead acid battery
JP2002141066A (en) Control valve type lead acid battery
KR100756274B1 (en) Method for preparing cathode pole plate of lead storage battery
KR102225198B1 (en) Manufacturing method of active material for lead-acid battery using Diatomaceous earth fiber
KR102091237B1 (en) Method for manufacturing grid for lead acid battery employing corrosion inhibitor and lead acid battery
JP2959560B1 (en) Electrode for alkaline storage battery, method for producing the same, and alkaline storage battery
KR102196991B1 (en) Method for manufacturing anode active material for lead-acid battery employing high conductivity black phosphorus
KR102103287B1 (en) Manufacturing method of active material for lead acid battery using CNT coating fiber
KR20210023239A (en) Manufacturing method of lead plate for lead acid battery using water-soluble nonwoven fabric
KR102424563B1 (en) Porous graphene-coated Pb@C nanoparticle catalyst electrode plate manufacturing method
KR102424556B1 (en) Method for manufacturing a substrate for a lead acid battery with increased surface area
KR102617642B1 (en) A method of manufacturing a rug for a lead acid battery with a nano ceramic coating layer applied to prevent rug corrosion in a lead acid battery substrate
KR102225220B1 (en) Lead Acid Battery Boards Including Low Resistance Wire Patterns
KR20230045811A (en) Grid manufacturing method for lead acid battery using lead coating
KR102305183B1 (en) Method for patterning the surface of polar plates for lead acid batteries
KR102658470B1 (en) Electrode plate manufacturing method for lead-acid battery using hydrophilic fiber
KR102580194B1 (en) Electrode plate manufacturing method for lead-acid battery with increased active material adhesion and improved electrical conductivity by applying a conductive paste nonwoven fabric with added graphite
KR102305192B1 (en) Manufacturing method of active material for lead-acid battery Addition of Deep groove on the surface polyester fiber
KR20210012758A (en) Manufacturing method of lead plate for lead battery with high conductivity graphene fiber and lead acid battery

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application