KR20210017162A - Manufacturing method of active material for lead acid battery using Multi walled CNT - Google Patents

Manufacturing method of active material for lead acid battery using Multi walled CNT Download PDF

Info

Publication number
KR20210017162A
KR20210017162A KR1020190095985A KR20190095985A KR20210017162A KR 20210017162 A KR20210017162 A KR 20210017162A KR 1020190095985 A KR1020190095985 A KR 1020190095985A KR 20190095985 A KR20190095985 A KR 20190095985A KR 20210017162 A KR20210017162 A KR 20210017162A
Authority
KR
South Korea
Prior art keywords
active material
efb
manufacturing
walled cnt
negative electrode
Prior art date
Application number
KR1020190095985A
Other languages
Korean (ko)
Inventor
최석모
이응래
양지수
Original Assignee
주식회사 한국아트라스비엑스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한국아트라스비엑스 filed Critical 주식회사 한국아트라스비엑스
Priority to KR1020190095985A priority Critical patent/KR20210017162A/en
Publication of KR20210017162A publication Critical patent/KR20210017162A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • H01M4/20Processes of manufacture of pasted electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/627Expanders for lead-acid accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to a method for manufacturing an anode active material for an enhanced flooded battery (EFB) to which a multi-walled CNT is applied and, more particularly, to a method for manufacturing an anode active material for an EFB to which a multi-walled CNT is applied which adds the multi-walled CNT to an expander inputted into an EFB anode at the time of manufacturing the anode active material to increase electrical conductivity, thereby improving durability and performance of the EFB.

Description

Multi walled CNT를 적용한 EFB용 음극 활물질 제조 방법{Manufacturing method of active material for lead acid battery using Multi walled CNT}Manufacturing method of active material for lead acid battery using Multi-walled CNT {Manufacturing method of active material for lead acid battery using Multi-walled CNT}

본 발명은 Multi walled CNT를 적용한 EFB용 음극 활물질 제조 방법에 관한 것으로서, 더욱 상세하게는 EFB 음극에 음극 활물질 제조시에 투입되는 Expander에 Multi walled CNT를 추가하여 전기전도도를 증가시켜 EFB(Enhanced Flooded Battery)의 내구성과 성능을 향상시킬 수 있는 Multi walled CNT를 적용한 EFB용 음극 활물질 제조 방법에 관한 것이다.The present invention relates to a method of manufacturing a negative electrode active material for EFB using a multi-walled CNT, and more particularly, an enhanced flooded battery (EFB) by adding a multi-walled CNT to an expander that is used when manufacturing a negative active material to an EFB negative electrode to increase electrical conductivity. ). It relates to a method of manufacturing an anode active material for EFB using multi-walled CNT that can improve durability and performance.

현재 납축전지 활물질 메커니즘은 활물질에 물리적 강도 및 황산과의 반응 표면적 확보를 위하여 폴리에스터 계열 화이버를 첨가하고 있다.Currently, a lead acid battery active material mechanism is adding polyester-based fibers to the active material to secure physical strength and reaction surface area with sulfuric acid.

통상적으로 납축전지 활물질에 0.8 ~ 5 데니어의 섬도를 갖고, 1 ~ 10 mm 길이의 폴리에스터 계열의 화이버를 첨가하는데 이러한 섬유(화이버)는 내산성과 내산화성이 우수한 특징이 있다. Typically, polyester-based fibers having a fineness of 0.8 to 5 denier and a length of 1 to 10 mm are added to the lead acid battery active material, and these fibers (fibers) have excellent acid resistance and oxidation resistance.

이때, 첨가되는 유기합성 단섬유는 통상적으로 원형 단면 형태를 가지며, 길이는 2 ~ 10mm 정도이다.At this time, the organic synthetic staple fiber added has a generally circular cross-sectional shape, and the length is about 2 to 10 mm.

유기합성 단섬유의 성분은 내산성 및 내산화성이 우수한 폴리프로필렌, 폴리에스테르, 모드아크릴 계열이 주종을 이루고 있다.The components of organic synthetic staple fibers are mainly polypropylene, polyester, and modacrylic, which have excellent acid resistance and oxidation resistance.

종래 기술인 대한민국특허등록번호 제10-0603908호인 "축전지용 극판 및 그 제조 방법"은 활물질 표면에 섬유 필라멘트가 박히도록 섬유강화 종이를 압력을 가해 부착하고 표면의 요철부에 활물질을 충전하여서 되는 극판 제조 방법을 개시한다. In the related art of Korean Patent Registration No. 10-0603908, "electrode plate for storage battery and its manufacturing method", the electrode plate is manufactured by attaching fiber-reinforced paper by applying pressure so that fiber filaments are stuck on the surface of the active material, and filling the active material in the irregularities of the surface. The method is disclosed.

상기한 종래 대한민국등록특허는 "축전지용 극판 및 그 제조 방법"에 관한 것으로서 축전지의 극판은 전기가 흐르는 통로 역할을 하는 기판에 전기 화학적 활성을 갖는 활물질이 도포되고, 그 활물질 표면에 섬유강화 종이를 부착 또는 압착하는 단계에서 섬유강화종이의 섬유 필라멘트가 일정 깊이로 박히도록 압력을 가해 부착하고, 섬유강화종이의 표면 요철부에 활물질이 충전되어 그 결착표면적을 증대시킴으로서, 기판으로부터 활물질이 탈리되는 것을 방지하고, 나아가, 섬유강화종이의 다공성으로 인한 극판의 초기고율방전 특성을 향상시키고 또한 섬유강화종이의 섬유필라멘트 조직의 안정된 지지력과 내산성으로 인한 활물질을 잘 보유하고 지지함으로서 축전지의 수명을 연장시키는 기술에 관한 것이다. The above-described conventional Korean registered patent relates to "electrode plate for storage battery and its manufacturing method". The electrode plate of the storage battery is coated with an active material having electrochemical activity on a substrate serving as a passage through which electricity flows, and fiber-reinforced paper is applied to the surface of the active material. In the attaching or pressing step, pressure is applied so that the fibrous filaments of the fibrous reinforced paper are stuck to a certain depth, and the active material is filled in the surface irregularities of the fibrous reinforced paper to increase the binding surface area, thereby preventing the active material from being separated from the substrate. In addition, a technology that improves the initial high-rate discharge characteristics of the electrode plate due to the porosity of the fiber-reinforced paper, and also extends the life of the battery by holding and supporting the active material due to the stable support and acid resistance of the fiber-reinforced paper. It is about.

지금까지 납축전지용 그리드 합금으로 납(Pb)-칼슘(Ca)-주석(Sn)계 합금을 사용해 왔으나 이러한 합금구성만으로는 가혹한 사용환경(고온 및 과충전 현상)에 충분히 대응하지 못해 그리드의 부식이나 부식의 성장(growth)으로 인한 변형이 발생하여 납축전지의 수명이 짧아지고 있는 것이 문제로 지적되고 있다. Until now, lead (Pb)-calcium (Ca)-tin (Sn)-based alloys have been used as grid alloys for lead-acid batteries, but this alloy composition alone does not sufficiently cope with the harsh use environment (high temperature and overcharging phenomenon), so the corrosion or corrosion of the grid. It has been pointed out as a problem that the life of the lead acid battery is shortened due to deformation caused by the growth of the battery.

이에 따라 그리드의 내부식성, 기계적 강도 개선 및 성장 변형의 억제가 요구되고 있다.Accordingly, it is required to improve the corrosion resistance and mechanical strength of the grid and to suppress the growth deformation.

한편, 종래의 납축전지의 활물질은 일반적으로 연분(鉛粉)과 황산수용액을 기본으로 하며, 양극과 음극 특성에 따라서 기타 첨가제를 배합한 후, 혼합하여 활물질을 만든다. Meanwhile, the active material of a conventional lead acid battery is generally based on lead powder and an aqueous sulfuric acid solution, and other additives are mixed according to the characteristics of the positive electrode and the negative electrode, and then mixed to make an active material.

이렇게 만들어진 활물질은 기판에 바르는 작업인 도포 작업을 거쳐, 양/음극 특성에 따라 숙성공정 및 건조공정을 거친 후, 준비된 양극판과 음극판을 여러 장 교호로 중첩하며, 이때, 극판 간에 전기적 단락을 방지하기 위하여 비전도성 격리판을 설치하여, 양극판과 음극판 및 격리판이 극판군(群)을 이루도록 구성되어 있다. The active material thus made is applied to the substrate, undergoes a aging process and a drying process according to the characteristics of the positive and negative electrodes, and then alternately overlaps the prepared positive and negative plates, and at this time, to prevent an electrical short between the electrode plates. For this purpose, a non-conductive separator is installed, and a positive electrode plate, a negative electrode plate, and a separator are configured to form an electrode plate group.

극판군은 축전지 용량에 따라 여러 개가 직렬로 접속되어 전조안에 수용된다. According to the capacity of the storage battery, several electrode plate groups are connected in series and are accommodated in the roll.

상기 수용된 극판군은 전기적인 성질을 가질 수 있도록 초충전인 화성공정을 거치게 되는데, 이때 양극판의 활물질은 이산화납(PbO2)이 형성되고 특성상, 산화된 납의 미립자가 무수히 결합되어 있으며 다공성이 풍부하여 입자간을 전해액이 자유로이 확산, 침투하도록 되어 있다. The received electrode plate group undergoes a conversion process, which is supercharged so as to have electrical properties.At this time, lead dioxide (PbO2) is formed in the active material of the positive electrode plate, and due to its characteristics, numerous particles of oxidized lead are combined and the porosity is abundant. The electrolyte is designed to freely diffuse and penetrate the liver.

또한, 음극판의 활물질은 해면상납(海綿狀鉛, Pb)으로 역시 다공성과 반응성이 풍부하여 전해액이 자유로이 확산, 침투하도록 된 것이다. In addition, the active material of the negative electrode plate is spongy lead (Pb), which is also rich in porosity and reactivity, so that the electrolyte can freely diffuse and penetrate.

이렇게 만들어진 제품은 비로소 시장에서 사용할 수 있게 되는 것이다.The product made in this way can be used in the market.

또한, 초충전 과정을 원활히 하며, 제품의 내구성을 향상시키기 위하여 극성별로 별도의 숙성 및 건조공정을 거치게 된다. In addition, in order to facilitate the super charging process and improve the durability of the product, separate aging and drying processes are performed for each polarity.

양극판의 숙성공정은 제품의 내구성을 증대시키는 중요한 공정으로서 스팀(steam)의 뜨거운 온도(약 70 ~ 100℃)와 수분(습도 99%이상)으로 활물질의 구성성분인 납(Pb)을 산화납(PbO)으로 변화시킬 뿐만 아니라, 활물질의 결정구조를 변화시킨다. The aging process of the positive electrode plate is an important process to increase the durability of the product, and lead (Pb), a constituent of the active material, is converted into lead (Pb) as a component of the active material at the hot temperature (about 70 ~ 100℃) and moisture (humidity of 99%) of steam. PbO), but also changes the crystal structure of the active material.

음극판은 별도 공정 없이 자연 상태에서 방치하면 숙성 및 건조를 동시에 할 수 있다. The negative electrode plate can be aged and dried at the same time if left in its natural state without any separate process.

하지만, 충분한 숙성 및 건조가 이루어지지 않으면 극판군을 형성하는 조립과정에서 극판과 극판끼리 달라붙으며, 수분이 존재하여 활물질의 내구력이 떨어져 기판사이에 박혀 있는 활물질은 조그마한 충격에도 손쉽게 떨어지게 된다. However, if sufficient maturation and drying are not performed, the electrode plate and the electrode plate adhere to each other during the assembly process of forming the electrode plate group, and the durability of the active material decreases due to the presence of moisture, so that the active material embedded between the substrates easily falls even under a small impact.

이와 같은 과정을 거쳐 만들어진 납축전지는 충,방전의 횟수가 증가함에 따라 납과 황산의 반응에 의해서 활물질은 기판에서 더욱 쉽게 떨어지게 되며, 떨어진 활물질들은 더 이상 반응에 참가할 수 없기 때문에, 결국 납축전지의 성능을 저하시켜 납축전지의 수명을 통상 1~2년에 불과하게 만들었다.As the number of times of charge and discharge increases, the active material falls more easily from the substrate by the reaction of lead and sulfuric acid, and the fallen active materials can no longer participate in the reaction. By degrading the performance, the life of the lead acid battery is usually only 1 to 2 years.

따라서, 납 축전지 내구성과 성능을 향상시킬 수 있는 제조 공정이 요구되고 있는 실정이다.Accordingly, there is a demand for a manufacturing process capable of improving the durability and performance of lead storage batteries.

종래의 기술로서, '음극활물질 및 그 제조방법 그리고 납축전지'는 리그닌이 납분말에 첨가되어 이루어지는 것을 특징으로 하는 음극(負極) 활물질에 관한 기술을 개시한 바 있다. As a conventional technique, the'cathode active material and its manufacturing method and lead acid battery' have disclosed a technique related to an anode active material characterized in that lignin is added to lead powder.

그러나, 상기의 기술은 활물질의 수명을 향상시킨 효과는 기대하기는 어려웠다.However, it was difficult to expect the above technology to have an effect of improving the life of the active material.

대한민국특허등록번호 제10-0483246호Korean Patent Registration No. 10-0483246

따라서, 본 발명은 상기 종래의 문제점을 해소하기 위해 안출된 것으로,Therefore, the present invention was devised to solve the above conventional problems,

EFB 음극에 음극 활물질 제조시에 투입되는 Expander에 Multi walled CNT를 추가하여 전기전도도를 증가시켜 EFB(Enhanced Flooded Battery)의 내구성과 성능을 향상시킬 수 있는 Multi walled CNT를 적용한 EFB용 음극 활물질 제조 방법을 제공하고자 한다.EFB negative electrode active material manufacturing method for EFB using multi-walled CNT that can improve the durability and performance of EFB (Enhanced Flooded Battery) by adding multi-walled CNT to the expander that is used when manufacturing the negative electrode active material. I want to provide.

본 발명이 해결하고자 하는 과제를 달성하기 위하여, 본 발명의 일실시예에 따른 Multi walled CNT를 적용한 EFB용 음극 활물질 제조 방법은,In order to achieve the problem to be solved by the present invention, a method of manufacturing a negative active material for EFB using a multi-walled CNT according to an embodiment of the present invention,

EFB(=Enhanced Flooded Battery)의 음극 제작시 활물질 혼합 공정에서,In the active material mixing process when manufacturing the negative electrode of EFB (=Enhanced Flooded Battery),

첨가제 혼합물에 Multi walled CNT를 첨가하여 음극 활물질 혼합물을 제조하기 위한 MultiwalledCNT첨가음극활물질혼합물제조단계(S100);와Multiwalled CNT-added cathode active material mixture manufacturing step (S100) for preparing a negative electrode active material mixture by adding multi-walled CNT to the additive mixture; and

상기 제조된 혼합물을 숙성 건조시켜 EFB의 음극판용 활물질을 제조하기 위한 음극판용활물질제조단계(S200);를 포함됨으로써, 납 축전지 내구성과 성능을 향상시키기 위한 과제를 해결하게 되는 것이다.By aging and drying the prepared mixture, a negative electrode plate active material manufacturing step (S200) for preparing an EFB negative electrode plate active material (S200); By including, the problem for improving the durability and performance of the lead storage battery is solved.

본 발명인 Multi walled CNT를 적용한 EFB용 음극 활물질 제조 방법을 통해, EFB 음극에 음극 활물질 제조시에 투입되는 Expander에 Multi walled CNT를 추가하여 전기전도도를 증가시켜 EFB(Enhanced Flooded Battery)의 내구성과 성능을 향상시킬 수 있는 효과를 제공하게 된다.Through the method of manufacturing an anode active material for EFB using the multi-walled CNT according to the present invention, the durability and performance of EFB (Enhanced Flooded Battery) are improved by adding multi-walled CNT to the expander that is used when manufacturing the anode active material to the EFB anode to increase electrical conductivity. It provides an effect that can be improved.

도 1은 본 발명의 일실시예에 따른 Multi walled CNT를 적용한 EFB용 음극 활물질 제조 방법의 공정도이다.
도 2는 본 발명의 일실시예에 따른 Multi walled CNT를 적용한 EFB용 음극 활물질 제조 방법에 사용되는 Multi walled CNT에 존재하는 p-orbital의 π-bonding을 나타낸 예시도이다.
도 3은 본 발명의 일실시예에 따른 Multi walled CNT를 적용한 EFB용 음극 활물질 제조 방법에서 제조된 개선품과 종래품를 비교한 그래프로서, 미국 자동차 기술자 협회 규격에 따라 고온 환경에서 수명을 검증한 그래프 도면이다.
도 4는 본 발명의 일실시예에 따른 Multi walled CNT를 적용한 EFB용 음극 활물질 제조 방법에서 제조된 개선품과 종래품를 비교한 그래프로서, 충전수입성 시험 그래프 도면이다.
1 is a flowchart of a method of manufacturing a negative electrode active material for EFB using multi-walled CNT according to an embodiment of the present invention.
FIG. 2 is an exemplary diagram showing π-bonding of p-orbital present in a multi-walled CNT used in a method of manufacturing a negative electrode active material for EFB to which a multi-walled CNT is applied according to an embodiment of the present invention.
3 is a graph comparing improved products and conventional products manufactured in the method of manufacturing an anode active material for EFB using a multi-walled CNT according to an embodiment of the present invention, and verifying the lifespan in a high-temperature environment according to the American Automobile Engineers Association standard It is a drawing.
4 is a graph comparing an improved product and a conventional product manufactured in the method of manufacturing a negative electrode active material for EFB to which a multi-walled CNT according to an embodiment of the present invention is applied, and is a graph showing a charge importability test.

본 발명의 일실시예에 따른 Multi walled CNT를 적용한 EFB용 음극 활물질 제조 방법은,A method of manufacturing a negative electrode active material for EFB using multi-walled CNT according to an embodiment of the present invention,

EFB(=Enhanced Flooded Battery)의 음극 제작시 활물질 혼합 공정에서,In the active material mixing process when manufacturing the negative electrode of EFB (=Enhanced Flooded Battery),

첨가제 혼합물에 Multi walled CNT를 첨가하여 음극 활물질 혼합물을 제조하기 위한 MultiwalledCNT첨가음극활물질혼합물제조단계(S100);와Multiwalled CNT-added cathode active material mixture manufacturing step (S100) for preparing a negative electrode active material mixture by adding multi-walled CNT to the additive mixture; and

상기 제조된 혼합물을 숙성 건조시켜 납축전지의 음극판용 활물질을 제조하기 위한 음극판용활물질제조단계(S200);를 포함하는 것을 특징으로 한다.And a negative electrode plate active material manufacturing step (S200) for preparing an active material for a negative electrode plate of a lead acid battery by aging and drying the prepared mixture.

이때, 상기 음극 활물질 혼합물에서의 Multi walled CNT의 함량은,At this time, the content of the multi-walled CNT in the negative active material mixture,

Carbon, Lignin, BaSO4 를 포함하고 있는 expander 대비 1wt% 를 첨가하는 것을 특징으로 한다.It is characterized by adding 1wt% of expander containing Carbon, Lignin, BaSO 4 .

이때, 상기 Multi walled CNT를 적용한 EFB용 음극 활물질 제조 방법에 의해,At this time, by the method of manufacturing an anode active material for EFB using the multi-walled CNT,

제조된 EFB의 보유 용량이 80Ah ~ 87Ah의 용량일 경우,When the holding capacity of the manufactured EFB is 80Ah ~ 87Ah,

수명은 1,920 싸이클에서 2,304 ~ 2,400 싸이클로 20% ~ 25% 범위 내의 내구성 향상을 제공할 수 있는 것을 특징으로 한다.The lifetime is characterized by being able to provide durability improvement within the range of 20% to 25% from 2,304 to 2,400 cycles at 1,920 cycles.

따라서, 상기 본 발명의 제조 방법에 의해,Therefore, by the manufacturing method of the present invention,

Multi walled CNT를 적용한 납축전지용 음극 활물질을 포함하고 있는 EFB를 제공할 수 있게 되는 것이다.It is possible to provide an EFB containing a negative active material for lead-acid batteries using multi-walled CNT.

이하, 본 발명에 의한 Multi walled CNT를 적용한 EFB용 음극 활물질 제조 방법의 실시예를 통해 상세히 설명하도록 한다.Hereinafter, it will be described in detail through examples of a method for manufacturing an anode active material for EFB to which a multi-walled CNT is applied according to the present invention.

도 1은 본 발명의 일실시예에 따른 Multi walled CNT를 적용한 EFB용 음극 활물질 제조 방법의 공정도이다.1 is a flowchart of a method of manufacturing a negative electrode active material for EFB using multi-walled CNT according to an embodiment of the present invention.

도 1에 도시한 바와 같이, 본 발명인 Multi walled CNT를 적용한 EFB용 음극 활물질 제조 방법은, As shown in Fig. 1, the method of manufacturing a negative electrode active material for EFB using the multi-walled CNT of the present invention,

EFB(=Enhanced Flooded Battery)의 음극 제작시 활물질 혼합 공정에서,In the active material mixing process when manufacturing the negative electrode of EFB (=Enhanced Flooded Battery),

첨가제 혼합물에 Multi walled CNT를 첨가하여 음극 활물질 혼합물을 제조하기 위한 MultiwalledCNT첨가음극활물질혼합물제조단계(S100);와Multiwalled CNT-added cathode active material mixture manufacturing step (S100) for preparing a negative electrode active material mixture by adding multi-walled CNT to the additive mixture; and

상기 제조된 혼합물을 숙성 건조시켜 납축전지의 음극판용 활물질을 제조하기 위한 음극판용활물질제조단계(S200);를 포함하게 된다.And a negative electrode plate active material manufacturing step (S200) for preparing an active material for a negative electrode plate of a lead acid battery by aging and drying the prepared mixture.

본 발명은 EFB 음극에 음극 활물질 제조시에 투입되는 Expander에 Multi walled CNT를 추가하여 전기전도도를 증가시켜 EFB(Enhanced Flooded Battery)의 내구성과 성능을 향상시키는 것이다.The present invention is to improve the durability and performance of an EFB (Enhanced Flooded Battery) by increasing the electrical conductivity by adding a multi-walled CNT to an expander that is used when manufacturing an anode active material in an EFB anode.

종래 리튬 이온전지는 활물질 간의 결합력을 증가시키기 위해서 분자량이 높아 선결착을 중심으로 하는 PVdF(유기계) 또는 점결착을 중심으로 하는 CMC(수계) 등의 바인더를 사용하고 있었다.Conventional lithium ion batteries have used a binder such as PVdF (organic) centered on pre-bonding or CMC (aqueous system) centered on point binding due to high molecular weight in order to increase the bonding force between active materials.

그러나, 납축전지의 업체들은 현재 활물질간의 결합력을 증가시키기 위해서 Powder type의 물질이 아닌 Polyester 기반의 Fiber를 사용하고 있었다.However, manufacturers of lead-acid batteries are currently using polyester-based fiber rather than a powder-type material to increase the bonding strength between active materials.

Polyester 기반의 Fiber의 경우, 전도성을 가지고 있지 않기 때문에 내구성과 성능 향상을 기대하기가 어려웠다.In the case of polyester-based fiber, it was difficult to expect improved durability and performance because it does not have conductivity.

따라서, 본 발명에서는 EFB(=Enhanced Flooded Battery)의 음극 제작시 활물질 혼합 공정에서, 첨가제 혼합물에 Multi walled CNT를 첨가하여 음극 활물질 혼합물을 제조하여 이를 적용하기 때문에 Multi walled CNT에 의해 전기 전도성을 가지게 되었고, 전체 활물질 이용률 증가 및 방전량 대비 충전량의 향상을 가져오게 되었다.Therefore, in the present invention, in the active material mixing process when manufacturing the negative electrode of EFB (=Enhanced Flooded Battery), multi-walled CNTs are added to the additive mixture to prepare and apply the negative active material mixture, so that the multi-walled CNTs have electrical conductivity. In addition, the overall active material utilization rate was increased and the charging amount compared to the discharge amount was improved.

결과적으로 음극 활물질의 효율을 향상시키며, 충전 수입성의 향상을 얻을 수 있다는 것을 실험을 통해 확인하였다.As a result, it was confirmed through an experiment that the efficiency of the negative electrode active material can be improved and the charging acceptance can be improved.

구체적으로 다시 설명하면, 종래 활물질의 주성분인 연분과 황산 수용액 등 극판의 특성에 따른 첨가제와 Carbon, Lignin, BaSO4 를 포함하고 있는 expander에 추가적으로 Multi walled CNT를 일정비율 첨가함으로써, 도전성 성질을 추가함으로써 종래의 EFB(=Enhanced Flooded Battery) 대비 5% 이상의 기초성능 향상과 25% 내구성 향상을 시킬 수 있다는 점을 발견하고, 확인시험을 거쳐 본 발명을 완성하기에 이른 것이다. Specifically, by adding a certain ratio of multi-walled CNTs to an expander containing Carbon, Lignin, BaSO 4 and additives according to the characteristics of the electrode plate, such as lead powder and sulfuric acid aqueous solution, which are the main components of the conventional active material, Compared to the conventional EFB (=Enhanced Flooded Battery), it was found that it was possible to improve basic performance by more than 5% and improve durability by 25%, and the present invention was completed through confirmation tests.

다음은 제조단계에 대하여 구체적으로 설명하도록 하겠다.Next, the manufacturing steps will be described in detail.

상기 MultiwalledCNT첨가음극활물질혼합물제조단계(S100)는 EFB(=Enhanced Flooded Battery)의 음극 제작시 활물질 혼합 공정에서, 첨가제 혼합물에 Multi walled CNT를 첨가하여 음극 활물질 혼합물을 제조하기 위한 공정이다.The multiwalled CNT-added negative electrode active material mixture manufacturing step (S100) is a process for preparing a negative electrode active material mixture by adding multi-walled CNT to the additive mixture in the active material mixing process when manufacturing the negative electrode of EFB (=Enhanced Flooded Battery).

구체적으로, 배터리 화성 및 충, 방전 시 제품 내에서 방출되는 에너지가 감소된다. Specifically, the energy emitted in the product is reduced during battery formation and charging and discharging.

왜냐하면, 내부 저항의 감소로 전자 이동간에 손실되는 에너지량이 줄어들기 때문이다. This is because the decrease in internal resistance reduces the amount of energy lost during electron transfer.

도 2에 도시한 바와 같이, Multi Walled CNT란, 다량의 Carbon으로 이어져 있는 Tube 형태의 물질이 다중벽으로 되어있는 것을 뜻한다. As shown in FIG. 2, the multi-walled CNT means that a tube-type material connected with a large amount of carbon is made of multiple walls.

Multi walled CNT는 탄소 p-orbital간의 π-bonding내 에서 conjugation된 π-electron들의 이동도가 매우 높으므로 전기전도도가 모든 금속류 보다 10,000배 이상 높다. Multi-walled CNTs have very high mobility of π-electrons conjugated in π-bonding between carbon p-orbitals, so their electrical conductivity is more than 10,000 times higher than that of all metals.

Pb에 비해서는 약 106 배 이상 높기 때문에 소량으로도 전자 이동의 Jumper circuit과 같은 역할을 수행하게 되는 것이다.Since it is about 10 6 times higher than that of Pb, it plays the same role as a jumper circuit for electron transfer even with a small amount.

또한, Multi walled CNT에 반해 Single walled CNT는 전도도가 높고 제품의 품질이 좋으나, 대량 생산이 현재로서는 불가능하다.In addition, compared to multi-walled CNTs, single-walled CNTs have high conductivity and good product quality, but mass production is currently impossible.

그러므로 저가 대량 생산이 가능한 Multi walled CNT의 적용이 가격경쟁력이(0.1$/g) 높으므로 EFB(=Enhanced Flooded Battery)에 적용하는데 문제가 없다.Therefore, there is no problem in applying to EFB (=Enhanced Flooded Battery) because the price competitiveness (0.1$/g) of the multi-walled CNT, which can be mass produced at low cost, is high.

이후, 상기 음극판용활물질제조단계(S200)는 제조된 혼합물을 숙성 건조시켜 납축전지의 음극판용 활물질을 제조하기 위한 공정이다.Thereafter, the negative electrode plate active material manufacturing step (S200) is a process for preparing an active material for a negative electrode plate of a lead acid battery by aging and drying the prepared mixture.

이렇게 만들어진 음극 활물질은 기판에 바르는 작업인 도포 작업을 거쳐, 양/음극 특성에 따라 숙성공정 및 건조공정을 거친 후, 준비된 양극판과 음극판을 여러 장 교호로 중첩하며, 이때, 극판 간에 전기적 단락을 방지하기 위하여 비전도성 격리판을 설치하여, 양극판과 음극판 및 격리판이 극판군(群)을 이루도록 구성되어 있다. The negative active material thus made is applied to the substrate, undergoes a aging process and a drying process according to the characteristics of the positive/negative electrode, and then alternately overlaps the prepared positive and negative electrodes, and prevents electrical short between the electrodes. In order to do so, a non-conductive separator is installed, and a positive electrode plate, a negative electrode plate, and a separator are configured to form an electrode plate group.

극판군은 축전지 용량에 따라 여러 개가 직렬로 접속되어 전조안에 수용된다. According to the capacity of the storage battery, several electrode plate groups are connected in series and are accommodated in the roll.

또한, 상기 음극 활물질 혼합물에서의 Multi walled CNT의 함량은,In addition, the content of the multi-walled CNT in the negative active material mixture,

Carbon, Lignin, BaSO4 를 포함하고 있는 expander 대비 1wt% 를 첨가하는 것을 특징으로 한다.It is characterized by adding 1wt% of expander containing Carbon, Lignin, BaSO 4 .

일반적으로 음극 활물질에 투입되는 유기합성 단섬유는 전지 활물질의 기계적 강도를 증가시킬 목적으로, 활물질에 첨가하게 된다. In general, short organic synthetic fibers added to the negative active material are added to the active material for the purpose of increasing the mechanical strength of the battery active material.

재질은 전해액인 황산수용액에 대한 내산성을 고려하여, 폴리프로필렌이나 폴리에스테르 및 모드아크릴계열이 사용되고 있다. As for the material, polypropylene, polyester, and modacrylic are used in consideration of acid resistance to an aqueous sulfuric acid solution, which is an electrolyte.

사용되는 유기합성 단 섬유는, 직접방사법으로 제조되는 통상적인 합성 단섬유의 사양인 원형 단면를 지니며, 2 ~ 5 데니어(직경은 약 12 ~ 20 마이크로미터)의 섬도를 갖으며, 길이는 2 ~ 10밀리미터이다. The organic synthetic short fibers used have a circular cross section, which is the specification of conventional synthetic short fibers manufactured by direct spinning, and have a fineness of 2 to 5 denier (diameter is about 12 to 20 micrometers), and the length is 2 to It is 10 millimeters.

혼합시 투입되는 양은 0.1 ~ 0.5 wt% 로, 이를 통해 최종적인 전극 활물질의 기계적 강도를 향상시켜 진동 및 충방전에 의한 활물질의 수축 팽창으로 인해 활물질 구조가 파괴되는 현상을 억제하게 된다. The amount added during mixing is 0.1 ~ 0.5 wt%, thereby improving the mechanical strength of the final electrode active material, thereby suppressing the destruction of the active material structure due to contraction and expansion of the active material due to vibration and charge/discharge.

그러나, 상기한 유기합성 단 섬유는 전도성을 가지고 있기 않기 때문에 본 발명에서와 같이, Multi walled CNT를 추가하게 되면 전기 전도성을 가질 수 있으며, 전체 활물질 이용률 증가 및 방전량 대비 충전량의 향상을 가져올 수 있어 EFB(=Enhanced Flooded Battery)의 내구성 향상과 수명 향상을 제공할 수 있게 된다.However, since the aforementioned organic synthetic short fibers do not have conductivity, as in the present invention, if multi-walled CNTs are added, they can have electrical conductivity, and increase the total active material utilization rate and increase the amount of charge compared to the amount of discharge. EFB (=Enhanced Flooded Battery) durability improvement and lifespan improvement can be provided.

따라서, 상기한 특성을 지니는 Multi walled CNT를 본 발명에서 도입하게 된 것이며, 활물질에 첨가제로 Multi walled CNT를 사용함으로써, 활물질의 반응면적의 극대화와 전기 전도도를 증가시키는 효과를 제공하게 된다.Therefore, the multi-walled CNT having the above-described characteristics was introduced in the present invention, and by using the multi-walled CNT as an additive to the active material, the effect of maximizing the reaction area of the active material and increasing the electrical conductivity is provided.

위에서 상술한 바와 같이 본 발명의 효과를 파악하기 위해 일반적으로 음극활물질을 도포한 후 극판과 스트랍을 결합한 납축전지와 본 발명의 Multi walled CNT를 첨가한 음극 활물질을 도포한 후 극판과 스트랍을 결합한 납축전지에 대한 기초성능 및 수명시험을 하되, 후속 공정인 조립, 화성 등의 공정을 통해 최종적인 80Ah의 용량을 갖는 제품을 제작하였으며, 고온에서의 수명을 검증하기 위해 SAE J240 규격에 따라 수명 시험을 진행하였다. As described above, in order to grasp the effect of the present invention, in general, after applying the negative electrode active material, the lead acid battery in which the electrode plate and the strap are combined, and the negative electrode active material containing the multi-walled CNT of the present invention are applied, and then the electrode plate and the strap are applied. Basic performance and lifespan tests for the combined lead acid battery were performed, but a product with a final capacity of 80Ah was produced through subsequent processes such as assembly and chemical conversion, and the lifespan according to SAE J240 standard to verify the lifespan at high temperatures. The test was carried out.

후술하는 종래품이라 함은, 출원인이 제조하는 EFB에 사용하는 활물질을 도포한 후, 극판과 스트랍을 결합한 납축전지를 말하며, 개선품은 Multi walled CNT를 첨가한 음극 활물질을 도포한 후 극판과 스트랍을 결합한 EFB를 말한다.The conventional product to be described later refers to a lead acid battery in which an electrode plate and a strap are combined after applying the active material used in the EFB manufactured by the applicant, and the improved product is the electrode plate and the strip after applying the negative active material to which the multi-walled CNT is added. It refers to the EFB that combines Rob.

시험결과 보유용량에서 87Ah의 용량과 수명이 2,400사이클에서 종지되었으며, 이는 종래품 대비 보유용량에서 6%, 수명에서는 25% 향상되었다.As a result of the test, the capacity and lifespan of 87Ah in the holding capacity ended at 2,400 cycles, which was improved by 6% in the holding capacity and 25% in the lifespan compared to the conventional product.

이에 대한 실험 자료는 후술하도록 하겠다.Experimental data on this will be described later.

도 3은 본 발명의 일실시예에 따른 Multi walled CNT를 적용한 EFB용 음극 활물질 제조 방법에서 제조된 개선품과 종래품를 비교한 그래프로서, 미국 자동차 기술자 협회 규격에 따라 고온 환경에서 수명을 검증한 그래프 도면이다.3 is a graph comparing improved products and conventional products manufactured in the method of manufacturing an anode active material for EFB using a multi-walled CNT according to an embodiment of the present invention, and verifying the lifespan in a high-temperature environment according to the American Automobile Engineers Association standard It is a drawing.

상기 시험 규격은 EFB가 고온(75℃)에서 충전/방전을 반복하여 수명이 종지될 때까지의 사이클을 측정하는 시험 방법이다. The test standard is a test method for measuring the cycle until the end of its life by repeatedly charging/discharging the EFB at a high temperature (75°C).

(1사이클 : 25A 4분 방전, 14.8V[최대 25A] 정전압 10분 충전) (1 cycle: 25A 4 minutes discharge, 14.8V [max 25A] constant voltage 10 minutes charge)

본 시험은 1주 동안 480회 반복하며, 그 후 56시간 정치 후, 630A 고율로 방전하여 30초 시점에서의 전압을 측정함으로써 EFB의 상태를 판정한다. This test is repeated 480 times for one week, and then, after standing for 56 hours, discharged at a high rate of 630A and the voltage at the time point of 30 seconds is measured to determine the state of the EFB.

30초 시점의 전압이 7.2V 이상이면 배터리를 온전한 상태로 판정하여 위의 싸이클을 반복하며, 7.2V 이하이면 배터리를 수명 종지로 판정하여, 시험을 중단한다.If the voltage at the time of 30 seconds is more than 7.2V, the battery is judged as intact and the above cycle is repeated. If it is less than 7.2V, the battery is judged as the end of its life and the test is stopped.

<시험예><Test Example>

후술하는 종래품이라 함은, 출원인이 제조하는 EFB에 사용하는 활물질을 도포한 후, 극판과 스트랍을 결합한 납축전지를 말하며, 개선품은 Multi walled CNT를 첨가한 음극 활물질을 도포한 후 극판과 스트랍을 결합한 EFB를 말한다.The conventional product to be described later refers to a lead acid battery in which an electrode plate and a strap are combined after applying the active material used in the EFB manufactured by the applicant, and the improved product is the electrode plate and the strip after applying the negative active material to which the multi-walled CNT is added. It refers to the EFB that combines Rob.

구분division 종래품Conventional product 개선품Improvement RCRC 118min118min 125min125min CCACCA 622A622A 640A640A C20C20 82Ah82Ah 87Ah87Ah 내구성(SAE J240)Durability (SAE J240) 1,920 Cycle1,920 Cycle 2,400 Cycle2,400 Cycle

상기 표 1은 종래의 EFB와 위 개선품을 이용하여 제조한 EFB의 성능 시험결과로서, 내구성이 종래품의 경우, 1,920 cycle을 나타냈으며, 개선품의 경우, 2,400 Cycle을 나타내고 있다.(도 3 참조)Table 1 above shows the performance test results of the conventional EFB and the EFB manufactured using the above improved products, showing 1,920 cycles in the case of the conventional product with durability, and 2,400 cycles in the case of the improved product (see Fig. 3).

따라서, 종래의 종래품보다 내구성이 25% 향상되었음을 실험을 통해 확인할 수 있었다.Therefore, it was confirmed through an experiment that the durability was improved by 25% compared to the conventional conventional product.

1) 보유용량 (RC : Reserve Capacity)1) Reserve Capacity (RC)

보유용량 RC는 만충전 완료 후 1시간 이상 방치한 다음 25℃에서 25A의 방전전류로 방전종지전압 10.5V 도달 시까지의 방전가능지속시간을 측정하는 것으로서, 예를 들면, 이는 차량에 있어서, 시동이 정지된 상태 등에서 부하를 작동시키는데 어느 시간까지 최소한의 기능을 발휘할 수 있는가에 대한 척도가 된다. Retention capacity RC measures the duration of discharge possible until the discharge end voltage reaches 10.5V with a discharge current of 25A at 25℃ after leaving for 1 hour or more after completion of full charge. For example, this It is a measure of how long the minimum function can be exhibited to operate the load in a stopped state, etc.

시험결과, 표 1에서 보는 바와 같이, 본 발명에 따른 Multi walled CNT를 첨가한 음극 활물질을 도포하여 제조하였을 경우, 보유용량(RC)은 126 ~ 130분으로, 정확하게는 125분으로 기존 종래품에 대비하여 6%의 성능 향상 효과를 보임으로써, Multi walled CNT를 적용한 납축전지용 음극 활물질이 보유용량에 대한 긍정적인 영향을 주었음을 알 수 있었다.As a result of the test, as shown in Table 1, when prepared by applying the negative active material to which the multi-walled CNT according to the present invention is added, the holding capacity (RC) is 126 to 130 minutes, and is precisely 125 minutes, compared to the existing conventional products. In contrast, by showing a 6% performance improvement effect, it was found that the negative active material for lead-acid batteries to which the multi-walled CNT was applied had a positive effect on the holding capacity.

2) 저온시동전류(CCA : Cold Cranking Ampere)2) Low temperature starting current (CCA: Cold Cranking Ampere)

일반적으로 축전지의 급속방전 특성은 -10℃이하에서 급속히 저하되는데, 저온시동전류(CCA)는 저온에서의 자동차 시동능력을 평가하기 위한 고율방전시험으로서, 만충전 완료 후 -18℃에서 630A로 30초 방전시의 전압을 측정한다. In general, the rapid discharge characteristics of a storage battery rapidly deteriorate below -10℃. The low-temperature starting current (CCA) is a high-rate discharge test for evaluating the starting ability of a vehicle at low temperatures. Measure the voltage at the time of initial discharge

이 시험에 있어서는 30초 때의 전압이 7.2V이상 요구되며, 높을수록 성능이 우수한 것으로 평가된다. In this test, the voltage at 30 seconds is required to be more than 7.2V, and the higher it is, the better the performance is evaluated.

본 발명에서는 (30초 전압÷6-0.2)×630의 보정식을 사용하여 CCA를 계산하였다.In the present invention, the CCA was calculated using a correction formula of (30 second voltage ÷ 6-0.2) × 630.

시험결과, 표 1에서 보는 바와 같이, 30초 전압은 7.15V ~ 7.22V, 환산 CCA는 650A ~ 660A로, 정확하게는 640A로서 종래품에 대비하여 4 %의 성능향상 효과를 보임으로써, Multi walled CNT를 적용한 납축전지용 음극 활물질이 저온시동전류에 대한 긍정적인 영향을 주었음을 알 수 있었다. As a result of the test, as shown in Table 1, the voltage for 30 seconds is 7.15V ~ 7.22V, and the converted CCA is 650A ~ 660A, and it is precisely 640A, showing a 4% performance improvement effect compared to the conventional product It was found that the negative active material for lead-acid batteries to which is applied had a positive effect on the low-temperature starting current.

3) 20 시간율 용량(AH)3) 20 hour rate capacity (AH)

이는 저율방전 특성을 알아보기 위한 것으로, EFB 용량에 대해 비교적 적은 전류인 3.75A로 연속 방전시켜, 전압이 10.5V에 도달할 때까지의 방전용량(AH)을 측정하는 것이다. This is to find out the low rate discharge characteristics, by continuously discharging at 3.75A, which is a relatively small current for the EFB capacity, and measuring the discharge capacity (AH) until the voltage reaches 10.5V.

시험 결과, 85AH ~ 89AH로, 정확하게는 87AH로 기존제품에 대비하여 6%의 성능향상 효과를 보임으로써, Multi walled CNT를 적용한 EFB용 활물질이 20 시간율 용량(AH)에 대한 긍정적인 영향을 주었음을 알 수 있었다.As a result of the test, 85AH ~ 89AH, precisely 87AH, showed a 6% performance improvement effect compared to the existing product, so that the active material for EFB applied with multi-walled CNT had a positive effect on the 20 hour rate capacity (AH). I could see that it was.

4) 수명 검증 시험(SAE J240, Cycle)4) Life verification test (SAE J240, Cycle)

미국 자동차 기술자 협회 규격에 따라 75℃ 환경에서 수명을 검증한 그래프(SAE J240)로서, 상기 시험 규격은 EFB가 고온(75℃)에서 충전/방전을 반복하여 수명이 종지될 때까지의 사이클을 측정하는 시험 방법이다. As a graph (SAE J240) that verifies the lifespan in a 75°C environment according to the standards of the American Association of Automobile Engineers, the test standard measures the cycle until the end of its life by repeating charging/discharging at a high temperature (75°C) of the EFB. It is a test method.

(1사이클 : 25A 4분 방전, 14.8V[최대 25A] 정전압 10분 충전)(1 cycle: 25A 4 minutes discharge, 14.8V [max 25A] constant voltage 10 minutes charge)

본 시험은 1주 동안 480회 반복하며, 그 후 56시간 정치 후 630A 고율로 방전하여 30초 시점에서의 전압을 측정함으로써 배터리의 상태를 판정한다. This test is repeated 480 times for one week, and then, after standing for 56 hours, discharge at a high rate of 630A and measure the voltage at the time point of 30 seconds to determine the state of the battery.

30초 시점의 전압이 7.2V 이상이면 배터리를 온전한 상태로 판정하여 위의 싸이클을 반복하며, 7.2V 이하이면 배터리를 수명종지로 판정하여, 시험을 중단한다. If the voltage at the time of 30 seconds is more than 7.2V, the battery is judged as intact and the above cycle is repeated. If it is less than 7.2V, the battery is judged as the end of life and the test is stopped.

시험 결과, 도 3에서 보는 것과 같이 종래품에 대비하여 수명에서 25% 향상 효과를 보임으로써, Multi walled CNT를 적용한 EFB 활물질이 수명 증가에 대한 긍정적인 영향을 주었음을 알 수 있었다.As a result of the test, as shown in FIG. 3, it was found that the EFB active material to which the multi-walled CNT was applied had a positive effect on the increase of the lifespan by showing a 25% improvement in the lifespan compared to the conventional product.

5) 충전수입성 시험 (CA: Charge Acceptance test)5) Charge acceptance test (CA: Charge Acceptance test)

만충전된 시료를 상온(25±2℃)에서 5시간율 전류(70Ah 기준 17.5A)로 2.5시간 방전한 후, 0±2℃ 온도에서 12시간이상 방치한다. After discharging a fully charged sample for 2.5 hours at room temperature (25±2℃) with a 5-hour rate current (17.5A based on 70Ah), leave it for 12 hours or more at 0±2℃.

이후 정전압 14.4V±0.1V으로 충전하여 충전 10분때 전류를 측정한다. After that, charge it with a constant voltage of 14.4V±0.1V and measure the current for 10 minutes.

시험결과, 전지전도도 및 충전 효율이 높아 개선품이 종래품 대비 10분 정도에 전류가 32% 증대되었음을 알 수 있었다.(도 4 참조)As a result of the test, it was found that the current of the improved product increased by 32% in about 10 minutes compared to the conventional product due to high battery conductivity and charging efficiency (see FIG. 4).

구분division 시간time 종래품Conventional product 개선품Improvement




충전수입성





Rechargeable income
1분1 min 27.2527.25 28.1728.17
2분2 minutes 24.2124.21 26.9826.98 3분3 minutes 22.1422.14 26.2226.22 4분4 minutes 21.2521.25 25.5225.52 5분5 minutes 20.1120.11 24.8324.83 6분6 minutes 19.3519.35 23.9423.94 7분7 minutes 18.7418.74 23.4623.46 8분8 minutes 17.6817.68 22.7922.79 9분9 minutes 17.0417.04 22.3722.37 10분10 minutes 16.4316.43 21.7821.78

상기와 같은 제조 방법을 통해, EFB 음극에 음극 활물질 제조시에 투입되는 Expander에 Multi walled CNT를 추가하여 전기전도도를 증가시켜 EFB(Enhanced Flooded Battery)의 내구성과 성능을 향상시킬 수 있는 효과를 제공하게 된다.Through the above-described manufacturing method, multi-walled CNTs are added to the expander that is used when manufacturing the negative electrode active material in the EFB negative electrode to increase the electrical conductivity, thereby providing the effect of improving the durability and performance of the EFB (Enhanced Flooded Battery). do.

상기와 같은 내용의 본 발명이 속하는 기술분야의 당업자는 본 발명의 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시 예들은 모든 면에서 예시된 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. Those skilled in the art to which the present invention with the above contents pertains will be able to understand that the present invention can be implemented in other specific forms without changing the technical spirit or essential features of the present invention. Therefore, the embodiments described above are exemplified in all respects and should be understood as non-limiting.

S100 : MultiwalledCNT첨가음극활물질혼합물제조단계
S200 : 음극판용활물질제조단계
S100: Multiwalled CNT additive cathode active material mixture manufacturing step
S200: manufacturing step of active material for negative electrode plate

Claims (4)

Multi walled CNT를 적용한 EFB용 음극 활물질 제조 방법에 있어서,
EFB(=Enhanced Flooded Battery)의 음극 제작시 활물질 혼합 공정에서,
첨가제 혼합물에 Multi walled CNT를 첨가하여 음극 활물질 혼합물을 제조하기 위한 MultiwalledCNT첨가음극활물질혼합물제조단계(S100);와
상기 제조된 혼합물을 숙성 건조시켜 납축전지의 음극판용 활물질을 제조하기 위한 음극판용활물질제조단계(S200);를 포함하는 것을 특징으로 하는 Multi walled CNT를 적용한 EFB용 음극 활물질 제조 방법.
In the method of manufacturing an anode active material for EFB applying multi-walled CNT,
In the active material mixing process when manufacturing the negative electrode of EFB (=Enhanced Flooded Battery),
Multiwalled CNT-added cathode active material mixture manufacturing step (S100) for preparing a negative electrode active material mixture by adding multi-walled CNT to the additive mixture; and
A negative electrode active material manufacturing step (S200) for preparing an active material for a negative electrode plate of a lead-acid battery by aging and drying the prepared mixture. A method for preparing a negative electrode active material for EFB using multi-walled CNT, comprising:
제 1항에 있어서,
상기 음극 활물질 혼합물에서의 Multi walled CNT의 함량은,
Carbon, Lignin, BaSO4 를 포함하고 있는 expander 대비 1wt% 를 첨가하는 것을 특징으로 하는 Multi walled CNT를 적용한 EFB용 음극 활물질 제조 방법.
The method of claim 1,
The content of the multi-walled CNT in the negative active material mixture,
A method of manufacturing an anode active material for EFB using multi-walled CNT, characterized in that 1 wt% of an expander containing Carbon, Lignin, and BaSO 4 is added.
제 1항에 있어서,
상기 Multi walled CNT를 적용한 EFB용 음극 활물질 제조 방법에 의해,
제조된 EFB의 보유 용량이 80Ah ~ 87Ah의 용량일 경우,
수명은 1,920 싸이클에서 2,304 ~ 2,400 싸이클로 20% ~ 25% 범위 내의 내구성 향상을 제공할 수 있는 것을 특징으로 하는 Multi walled CNT를 적용한 EFB용 음극 활물질 제조 방법.
The method of claim 1,
By the method of manufacturing an anode active material for EFB using the multi-walled CNT,
When the holding capacity of the manufactured EFB is 80Ah ~ 87Ah,
A method for manufacturing an anode active material for EFB using multi-walled CNT, characterized in that it can provide durability improvement within the range of 20% to 25% from 1,920 cycles to 2,304 to 2,400 cycles.
제 1항의 제조 방법에 의해,
Multi walled CNT를 적용한 납축전지용 음극 활물질을 포함하고 있는 EFB.

By the manufacturing method of claim 1,
EFB containing negative active material for lead acid battery applied with multi-walled CNT.

KR1020190095985A 2019-08-07 2019-08-07 Manufacturing method of active material for lead acid battery using Multi walled CNT KR20210017162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190095985A KR20210017162A (en) 2019-08-07 2019-08-07 Manufacturing method of active material for lead acid battery using Multi walled CNT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190095985A KR20210017162A (en) 2019-08-07 2019-08-07 Manufacturing method of active material for lead acid battery using Multi walled CNT

Publications (1)

Publication Number Publication Date
KR20210017162A true KR20210017162A (en) 2021-02-17

Family

ID=74732117

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190095985A KR20210017162A (en) 2019-08-07 2019-08-07 Manufacturing method of active material for lead acid battery using Multi walled CNT

Country Status (1)

Country Link
KR (1) KR20210017162A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100483246B1 (en) 2000-11-09 2005-04-15 가부시키가이샤 유아사코오포레이션 Negative electrode active material, process for its production and lead storage battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100483246B1 (en) 2000-11-09 2005-04-15 가부시키가이샤 유아사코오포레이션 Negative electrode active material, process for its production and lead storage battery

Similar Documents

Publication Publication Date Title
KR102105992B1 (en) Manufacturing method of lead plate for lead battery with high conductivity graphene fiber and lead acid battery
KR102225198B1 (en) Manufacturing method of active material for lead-acid battery using Diatomaceous earth fiber
CN102484245A (en) Method for producing negative plate for use in lead-acid battery and lead-acid battery
KR20180045327A (en) Manufacturing method of active material for lead-acid battery
US20150298987A1 (en) Active materials for lead acid battery
KR20180045244A (en) Plate for lead storage battery and manufacturing method of it
KR20190048304A (en) Method of manufacturing anode active material of lead-acid battery using single wall carbon nanotube
KR102424570B1 (en) Method for manufacturing electrode plate of lead acid battery with improved adhesion between active materials by adding aqueous SBR-CMC
KR102225190B1 (en) Manufacturing method of positive electrode active material for lead acid battery using Water based binder
KR100756274B1 (en) Method for preparing cathode pole plate of lead storage battery
JP2002141066A (en) Control valve type lead acid battery
KR20230161284A (en) A method of manufacturing an electrode plate for a lead-acid battery coated with an anode active material including a silicon-carbon composite
KR102196991B1 (en) Method for manufacturing anode active material for lead-acid battery employing high conductivity black phosphorus
KR20210017162A (en) Manufacturing method of active material for lead acid battery using Multi walled CNT
KR102103287B1 (en) Manufacturing method of active material for lead acid battery using CNT coating fiber
KR20210034314A (en) Manufacturing method of positive electrode active material for lead acid battery using porous titanium
KR101737320B1 (en) Manufacturing method of active material for lead-acid battery
KR102225186B1 (en) Method for manufacturing anode active material for lead-acid battery using hollow spiral carbon fiber
KR102305192B1 (en) Manufacturing method of active material for lead-acid battery Addition of Deep groove on the surface polyester fiber
KR102233128B1 (en) Manufacturing method of active material for lead acid battery containing bimetallic structured fiber
KR20210023239A (en) Manufacturing method of lead plate for lead acid battery using water-soluble nonwoven fabric
KR102204985B1 (en) Method for manufacturing VRLA cell including hydrophilic pressure-bonded spun lace nonwoven fabric and RLA battery
KR102305189B1 (en) Method for manufacturing anode active material for lead-acid battery using schwarzite
KR102305183B1 (en) Method for patterning the surface of polar plates for lead acid batteries
KR20210012758A (en) Manufacturing method of lead plate for lead battery with high conductivity graphene fiber and lead acid battery

Legal Events

Date Code Title Description
E601 Decision to refuse application