KR20200142723A - Method For Fabricating Multi Surface Field Solar Cell - Google Patents

Method For Fabricating Multi Surface Field Solar Cell Download PDF

Info

Publication number
KR20200142723A
KR20200142723A KR1020190069920A KR20190069920A KR20200142723A KR 20200142723 A KR20200142723 A KR 20200142723A KR 1020190069920 A KR1020190069920 A KR 1020190069920A KR 20190069920 A KR20190069920 A KR 20190069920A KR 20200142723 A KR20200142723 A KR 20200142723A
Authority
KR
South Korea
Prior art keywords
oxide film
wafer
doping
emitter
solar cell
Prior art date
Application number
KR1020190069920A
Other languages
Korean (ko)
Inventor
안홍길
Original Assignee
주식회사 생길에너지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 생길에너지 filed Critical 주식회사 생길에너지
Priority to KR1020190069920A priority Critical patent/KR20200142723A/en
Publication of KR20200142723A publication Critical patent/KR20200142723A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0684Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells double emitter cells, e.g. bifacial solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention is to provide a method for fabricating a multi-electric field emitter solar cell in which the surface sheet resistance is increased to decrease a recombination rate, and at the same time, increase the thickness of an emitter layer. According to the present invention, provided is a method of fabricating a multi-electric field emitter solar cell for forming an emitter on a wafer, which comprises: a doping step of applying heat to the wafer to diffuse a dopant from one surface of the wafer in an inward direction; an oxide film forming step of forming a low-temperature oxide film on one surface of the wafer by applying heat to the wafer at a temperature lower than that of the doping step for a set time; and an oxide film removal step of removing the low-temperature oxide film.

Description

멀티 전계 에미터 태양전지 제조 방법 {Method For Fabricating Multi Surface Field Solar Cell}Method For Fabricating Multi Surface Field Solar Cell {Method For Fabricating Multi Surface Field Solar Cell}

본 발명은 멀티 전계 에미터 태양전지 제조 방법에 관한 것으로, 에미터(emitter) 층이 복수 회 형성된 멀티 전계 에미터 태양전지 제조 방법에 관한 것이다.The present invention relates to a method of manufacturing a multi-electric field emitter solar cell, and to a method of manufacturing a multi-electric field emitter solar cell in which an emitter layer is formed a plurality of times.

최근 석유나 석탄과 같은 기존 에너지 자원의 고갈이 예측되면서 이들을 대체할 대체 에너지에 대한 관심이 높아지고 있다. 그 중에서도 태양 전지는 태양 에너지로부터 전기 에너지를 생성하는 전지로서, 친환경적이고 에너지원인 태양에너지가 무한할 뿐만 아니라 수명이 길다는 장점이 있다.Recently, as the depletion of existing energy resources such as oil and coal is predicted, interest in alternative energy to replace them is increasing. Among them, a solar cell is a cell that generates electric energy from solar energy, and has the advantage of being eco-friendly and having an infinite energy source, as well as a long lifespan.

일반적으로 태양전지는 반도체를 사용하여 광자(photon)의 에너지를 전기적 에너지로 전환하는 광기전력 효과를 이용한 것으로서, p형 반도체와 n형 반도체를 접합시킨 p-n 접합(junction)을 형성하여 만든다. 이때 p-n 접합부에 입사하는 빛 에너지에 의해 반도체의 내부에서는 전자와 정공이 발생하며, 이러한 전자와 정공은 내부의 전계에 의해 각각 n형 및 p형의 반도체층으로 이동하여 양쪽의 두 전극에 축적된다. 이 두 전극을 전기적으로 연결하면 도선에는 전류가 흐르게 되며 외부에서는 이를 전력으로 이용할 수 있게 된다.In general, a solar cell is a photovoltaic effect that converts photon energy into electrical energy using a semiconductor, and is made by forming a p-n junction in which a p-type semiconductor and an n-type semiconductor are bonded. At this time, electrons and holes are generated inside the semiconductor by the light energy incident on the pn junction, and these electrons and holes move to the n-type and p-type semiconductor layers respectively by the internal electric field and are accumulated in both electrodes. . When these two electrodes are electrically connected, a current flows through the wire, and it can be used as electric power from the outside.

여기서 n형 및 p형 반도체층은 에미터(emitter)를 형성함으로써 만들 수 있는데, 에미터는 베이스 층과 접합하여 전계(electric field)를 발생하고, 입사광에 의해 발생한 전자의 이동 통로이며, 전면전극과 연결된다. 에미터는 반도체 웨이퍼에 불순물(dopant)을 주입하여 형성되며, 도핑의 정도와 횟수에 따른 에미터의 특성에 따라 태양전지의 효율이 크게 달라지게 된다.Here, the n-type and p-type semiconductor layers can be made by forming an emitter, where the emitter is bonded to the base layer to generate an electric field, and is a path for electrons generated by incident light. Connected. The emitter is formed by implanting a dopant into a semiconductor wafer, and the efficiency of a solar cell varies greatly depending on the characteristics of the emitter according to the degree and frequency of doping.

도 1은 일반적인 표면 도핑농도, 도핑면저항, 에미터 두께의 상관관계를 도시한 그래프이다. 이를 참조하면, 표면 도핑농도가 높아질수록, 불순물 함유량이 높아 도핑면저항이 낮아지게 된다. 또한 확산 도핑 시, 에미터 두께는 표면 도핑농도가 높아질수록 두꺼워지게 된다.1 is a graph showing a correlation between a general surface doping concentration, a doping surface resistance, and an emitter thickness. Referring to this, the higher the surface doping concentration is, the higher the impurity content is, the lower the doping surface resistance. In addition, during diffusion doping, the emitter thickness becomes thicker as the surface doping concentration increases.

그런데 높은 도핑을 하여 도핑면저항이 낮아지면 입사광에 의해 발생한 전자를 쉽게 잃어버리는 재결합(Recombination)의 문제가 발생한다. 따라서 재결합을 최소화하기 위해서는 도핑면저항을 낮출 필요가 있다. 또한 에미터 층의 두께가 얇은 경우 발전에 이용할 수 있는 빛의 주파수 범위가 한정되게 되므로, 발전 효율을 높이기 위해서는 불순물을 웨이퍼 내부로 깊이 확산시켜 에미터를 두껍게 형성하는 것이 유리하다.However, when the doping surface resistance is lowered due to high doping, a problem of recombination occurs in which electrons generated by incident light are easily lost. Therefore, in order to minimize recombination, it is necessary to lower the doped surface resistance. In addition, when the thickness of the emitter layer is thin, the frequency range of light that can be used for power generation is limited. In order to increase power generation efficiency, it is advantageous to deeply diffuse the impurities into the wafer to form a thick emitter.

그런데 에미터 층은 도핑농도가 높을수록 두껍게 형성되므로, 에미터 층이 두꺼우면 도핑면저항이 낮아 재결합률이 높아지고, 도핑면저항을 높이기 위해 도핑농도를 낮추면 에미터가 얇아지는 문제점이 있다.However, since the emitter layer is formed thicker as the doping concentration is higher, there is a problem that the recombination rate increases due to low doping surface resistance when the emitter layer is thick, and the emitter becomes thinner when the doping concentration is lowered to increase the doping surface resistance.

본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위한 것으로서, 구체적으로는 표면 면저항을 높여 재결합률을 낮추면서, 동시에 에미터 층의 두께를 두껍게 하는 멀티 전계 에미터 태양전지 제조 방법을 제공하는 것을 목적으로 한다. 나아가 또한 표면 면저항이 높고 에미터 층이 두꺼운 최적의 공법을 적용한 멀티 전계 에미터 태양전지 제조 방법을 제공하는 것을 목적으로 한다.The present invention is to solve the problems of the prior art as described above, and specifically, to provide a method for manufacturing a multi-electric field emitter solar cell in which the thickness of the emitter layer is increased while increasing the surface resistance to lower the recombination rate. The purpose. Further, it is an object of the present invention to provide a method for manufacturing a multi-electric field emitter solar cell using an optimal method of high surface resistance and a thick emitter layer.

본 발명의 실시예는 상기와 같은 과제를 해결하고자, 웨이퍼에 에미터를 형성하는 멀티 전계 에미터 태양전지 제조 방법에 있어서, 웨이퍼에 열을 가하여 상기 웨이퍼의 일면으로부터 내부 방향으로 도펀트를 확산시키는 도핑 단계; 상기 도핑 단계보다 낮은 온도로 상기 웨이퍼에 설정된 시간동안 열을 가하여 상기 웨이퍼 일면에 저온산화막을 형성시키는 산화막 형성 단계; 및 상기 저온산화막을 제거하는 산화막 제거 단계; 를 포함하는 것을 특징으로 하는 멀티 전계 에미터 태양전지 제조 방법을 제공한다.In an embodiment of the present invention, in a method of manufacturing a multi-electric field emitter solar cell in which an emitter is formed on a wafer, in order to solve the above problems, doping is applied to diffuse a dopant from one side of the wafer in an inward direction by applying heat to the wafer. step; An oxide film forming step of forming a low-temperature oxide film on one surface of the wafer by applying heat to the wafer at a temperature lower than that of the doping step for a set time; And removing the oxide film to remove the low temperature oxide film. It provides a method for manufacturing a multi-electric field emitter solar cell comprising a.

또한 본 발명은 상기 도핑 단계, 산화막 형성 단계 및 산화막 제거 단계를 복수 회 반복하는 것을 특징으로 한다.In addition, the present invention is characterized in that the doping step, the oxide film formation step, and the oxide film removal step are repeated a plurality of times.

또한 상기 웨이퍼는 결정질 또는 비결정질 실리콘이며, 상기 도핑 단계는 800℃ 이상으로 열을 가하며, 상기 산화막 형성 단계는 600℃ 이상 800℃ 미만으로 열을 가하는 것을 특징으로 한다. 더욱 바람직하게는 상기 산화막 형성 단계는, 650℃ 이상 750℃ 이하로 열을 가하는 것을 특징으로 한다.In addition, the wafer is crystalline or amorphous silicon, the doping step is characterized in that heat is applied to 800°C or higher, and the oxide film forming step is to apply heat to 600°C or more and less than 800°C. More preferably, the step of forming the oxide film is characterized in that heat is applied to 650°C or more and 750°C or less.

또한 상기 산화막 형성 단계는, 1시간 이상 2시간 이하로 열을 가하는 것을 특징으로 한다.In addition, the step of forming the oxide film is characterized in that heat is applied for 1 hour or more and 2 hours or less.

또한 상기 도핑 단계의 도핑면저항보다, 상기 산화막 형성 단계의 도핑면저항이 20Ω/sq 이상 커지도록 상기 산화막 형성 단계의 온도 및 시간을 유지하는 것을 특징으로 한다.In addition, the temperature and time of the oxide layer forming step are maintained so that the doped sheet resistance of the oxide layer forming step is greater than 20 Ω/sq or more than the doping sheet resistance of the doping step.

이상에서 살펴본 바와 같은 본 발명의 과제해결 수단에 의하면 다음과 같은 사항을 포함하는 다양한 효과를 기대할 수 있다. 다만, 본 발명이 하기와 같은 효과를 모두 발휘해야 성립되는 것은 아니다.According to the problem solving means of the present invention as described above, various effects including the following can be expected. However, the present invention is not established when all of the following effects are exhibited.

본 발명에 따르면 도핑 온도보다 낮은 온도를 가하여 저온산화막을 형성할 때에 도펀트가 웨이퍼의 더욱 깊숙한 곳으로 확산되어 에미터의 두께가 두꺼워지므로, 다양한 주파수 영역의 빛을 이용할 수 있다. 또한 웨이퍼 표면의 도핑면저항이 저온산화막 형성 전과 비교하여 20Ω/sq 이상 증가되기 때문에 전자의 재결합률이 낮아진다.According to the present invention, when a low temperature oxide film is formed by applying a temperature lower than the doping temperature, the dopant diffuses deeper into the wafer to increase the thickness of the emitter, so that light in various frequency ranges can be used. In addition, since the doped surface resistance of the wafer surface is increased by 20 Ω/sq or more compared to before formation of the low-temperature oxide film, the recombination rate of electrons is lowered.

즉, 본 발명은 에미터의 두께를 두껍게 형성함과 동시에 도핑면저항은 높이는 효과가 있다. 따라서 종래 도핑면저항이 높은 대신 에미터가 얇거나, 에미터가 두꺼운 대신 도핑면저항이 낮았던 경우와 비교할 때, 광전 효율이 19.5% 에 달하게 되어 매우 유리한 효과가 있다.That is, the present invention has the effect of increasing the doped surface resistance while forming a thick emitter. Therefore, compared with the case where the conventional doped surface resistance is high but the emitter is thin, or the doped surface resistance is low instead of the thick emitter, the photoelectric efficiency reaches 19.5%, which is very advantageous.

한편, 태양전지 후면에 에너지 유출방지막을 추가해 출력손실을 줄이고 태양전지 내 흡수율을 높여 발전 효율을 높이는 PERC(passivated emitter and rear contact) 기술과 비교하더라도, 비용이 저렴하고, 도핑면저항, 에미터 두께 특성도 양호한 결과를 보인다. 일반적으로 PERC 적용 시, 도핑면저항 80~100Ω/sq, 에미터 두께 0.27㎛이나, 본 발명 적용 시, 도핑면저항 120Ω/sq 이상, 에미터 두께 0.4㎛ 이상이 형성된다. 또한 본 발명의 경우 기존의 BSF(back surface field) 라인을 그대로 이용할 수 있어, 저항의 CTM(cell to module) 손실이 더 작은 유리한 효과가 있다.On the other hand, even compared to PERC (passivated emitter and rear contact) technology, which increases power generation efficiency by reducing output loss by adding an energy leakage prevention film to the rear of the solar cell and increasing the absorption rate in the solar cell, the cost is low, and the doped surface resistance and emitter thickness characteristics are low. Also shows good results. In general, when PERC is applied, a doped sheet resistance of 80 to 100 Ω/sq and an emitter thickness of 0.27 μm are applied, but when the present invention is applied, a doping sheet resistance of 120 Ω/sq or more and an emitter thickness of 0.4 μm or more are formed. In addition, in the case of the present invention, an existing back surface field (BSF) line can be used as it is, and thus, a cell to module (CTM) loss of resistance is less advantageous.

도 1은 일반적인 표면 도핑농도, 도핑면저항, 에미터 두께의 상관관계를 도시한 그래프,
도 2는 본 발명으로 제조한 태양전지의 종단면을 나타내는 단면 사시도,
도 3은 본 발명 멀티 전계 에미터 태양전지 제조 방법의 순서도,
도 4는 도 3의 각 공정을 개략적으로 나타내는 개략도이다.
1 is a graph showing a correlation between a general surface doping concentration, a doping surface resistance, and an emitter thickness.
Figure 2 is a cross-sectional perspective view showing a longitudinal section of the solar cell manufactured by the present invention,
3 is a flow chart of a method for manufacturing a multi-electric field emitter solar cell according to the present invention,
4 is a schematic diagram schematically showing each step of FIG. 3.

이하, 도면을 참조하여 본 발명의 구체적인 실시예를 상세히 설명한다.Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.

도 2는 본 발명으로 제조한 태양전지의 종단면을 나타내는 단면 사시도, 도 3은 본 발명 멀티 전계 에미터 태양전지 제조 방법의 순서도, 도 4는 도 3의 각 공정을 개략적으로 나타내는 개략도이다.2 is a cross-sectional perspective view showing a longitudinal cross-section of a solar cell manufactured by the present invention, FIG. 3 is a flow chart of a method for manufacturing a multi-electric field emitter solar cell according to the present invention, and FIG. 4 is a schematic diagram schematically showing each step of FIG. 3.

이들 도면에 도시된 바와 같이, 본 발명은 웨이퍼(10)에 도펀트를 확산시켜 에미터(50)를 형성하는 태양전지의 제조 방법에 관한 것이다. 태양전지는 전면에 에미터(50)가 형성된 웨이퍼(10), 전면을 커버하며 빛이 반사되는 것을 방지하는 반사방지막(20, SiN), 반사방지막의 전면에 복수 개 이격되어 형성되는 전면전극(30, Ag), 웨이퍼(10) 후면을 커버하는 후면전극(40, Al)을 포함한다. 본 발명의 경우 에미터(50)는 복수의 층으로 형성될 수 있으며, 그 예로서 도 2와 같이 1차 도핑, 2차 도핑, 3차 도핑에 따라 제1에미터층(53), 제2에미터층(52), 제3에미터층(51)을 형성할 수 있다.As shown in these figures, the present invention relates to a method of manufacturing a solar cell in which a dopant is diffused on a wafer 10 to form an emitter 50. The solar cell includes a wafer 10 having an emitter 50 formed thereon, an antireflection film 20 (SiN) that covers the entire surface and prevents light from being reflected, and a front electrode formed by being spaced apart from the front surface of the antireflection film. 30, Ag), and a rear electrode 40 (Al) covering the rear surface of the wafer 10. In the case of the present invention, the emitter 50 may be formed of a plurality of layers. As an example, as shown in FIG. 2, the first emitter layer 53 and the second emitter layer 53 and the second emitter are formed according to primary doping, secondary doping, and tertiary doping. The emitter layer 52 and the third emitter layer 51 may be formed.

태양전지는 실리콘 웨이퍼(10)에 에미터(50)를 형성하여 p-n 접합을 형성하고, 전면에 반사방지막으로 커버한 후, 양 면에 전극을 프린팅하여 하나의 전지 셀을 형성하고, 전지 셀을 복수 개 배치하여 모듈화함으로써 제조될 수 있다. 일반적인 경우 웨이퍼(10)에 불순물(도펀트, dopant)을 도핑하고, 도핑 시 형성되는 산화막을 에칭하여 제거함으로써 에미터(50)를 형성하는데, 본 발명은 이와 달리 도핑 후 저온산화막을 형성하는 산화막 형성 단계(S12, S22, S32)를 포함하는 것을 특징으로 한다. 즉, 본 발명은 에미터(50)를 형성하는 것과 관련된 것으로서 이외의 구성에 대한 설명은 생략한다.In the solar cell, an emitter 50 is formed on a silicon wafer 10 to form a pn junction, covered with an antireflection film on the entire surface, and then printed electrodes on both sides to form one battery cell. It can be manufactured by placing a plurality of them into a module. In general, the wafer 10 is doped with impurities (dopants, dopants), and the oxide film formed during doping is etched to remove the emitter 50, but the present invention forms an oxide film that forms a low-temperature oxide film after doping. It characterized in that it includes steps (S12, S22, S32). That is, the present invention relates to forming the emitter 50, and a description of other configurations is omitted.

본 발명은 웨이퍼(10)에 열을 가하여 웨이퍼(10)의 일면으로부터 내부 방향으로 도펀트를 확산시키는 도핑 단계(S11, S21, S31), 도핑 단계(S11, S21, S31)보다 낮은 온도로 상기 웨이퍼(10)에 설정된 시간동안 열을 가하여 상기 웨이퍼(10) 일면에 저온산화막을 형성시키는 산화막 형성 단계(S12, S22, S32), 에칭으로 저온산화막을 제거하는 산화막 제거 단계(S13, S23, S33)를 포함하여 에미터(50)를 형성한다.The present invention applies heat to the wafer 10 to diffuse a dopant from one side of the wafer 10 in an inward direction (S11, S21, S31), and the wafer at a temperature lower than that of the doping steps (S11, S21, S31). An oxide film forming step (S12, S22, S32) of forming a low temperature oxide film on one surface of the wafer 10 by applying heat for a time set in (10), an oxide film removing step of removing the low temperature oxide film by etching (S13, S23, S33) Including to form the emitter 50.

산화막 형성 단계(S12, S22, S32)에서, 저온으로 열을 가함으로써 도펀트가 웨이퍼(10) 내측으로 더욱 확산되게 되어 에미터(50)가 두꺼워지며, 표면에는 저온산화막이 형성되게 된다. 저온산화막은 웨이퍼(10) 표면의 도펀트 고농도 구역에 일정 부분 침투하며 형성된다. 이후, 산화막 제거 단계(S13, S23, S33)에서 저온산화막을 제거하면 동시에 웨이퍼(10) 표면의 도핑농도가 높은 구역이 제거되며, 따라서 도핑면저항이 작아질 수 있다.In the oxide film forming steps (S12, S22, S32), by applying heat at a low temperature, the dopant is further diffused into the wafer 10 so that the emitter 50 becomes thicker, and a low-temperature oxide film is formed on the surface. The low-temperature oxide film is formed by partially penetrating the region of the high dopant concentration on the surface of the wafer 10. Thereafter, when the low-temperature oxide film is removed in the oxide film removal steps S13, S23, and S33, a region having a high doping concentration on the surface of the wafer 10 is simultaneously removed, so that the doping surface resistance may be reduced.

산화막 형성 단계(S12, S22, S32)는 도핑면저항이 도핑 단계(S11, S21, S31)의 도핑면저항이 일정 수준 이상증가될 때까지 온도 및 시간을 유지함이 바람직하다. 또는 온도 및 시간을 조정하며 반복진행 하는 것도 가능하다. 또한 본 발명은 상기 도핑 단계(S11, S21, S31), 산화막 형성 단계(S12, S22, S32) 및 산화막 제거 단계(S13, S23, S33)를 복수 회 반복하는 것을 특징으로 한다. 본 출원인은 1시간동안 800℃ 미만에서 열처리하는 경우 도핑면저항이 20Ω/sq 이상 증가하는 것을 확인하였다.In the oxide film formation steps S12, S22, S32, it is preferable to maintain the temperature and time until the doping surface resistance increases by a certain level or more in the doping surface resistance of the doping steps S11, S21, S31. Alternatively, it is possible to repeat the process by adjusting the temperature and time. In addition, the present invention is characterized in that the doping steps (S11, S21, S31), the oxide film formation steps (S12, S22, S32), and the oxide film removal steps (S13, S23, S33) are repeated a plurality of times. The present applicant has confirmed that the doping surface resistance increases by 20Ω/sq or more when heat treatment at less than 800°C for 1 hour.

최근 도핑면저항은 90~100Ω/sq를 목표로 태양전지 셀을 제조하고 있으나, 본 발명은 110Ω/sq 이상의 값을 갖는 것이 가능하게 한 것으로, 전지 셀의 필요 스펙에 맞추어 공정을 진행, 반복할 수 있다. 일반적으로 즉, 도핑 단계(S11, S21, S31), 산화막 형성 단계(S12, S22, S32), 산화막 제거 단계(S13, S23, S33)의 반복 횟수와, 산화막 형성 단계(S12, S22, S32)에서의 온도 및 시간 유지 정도를 정할 수 있다. Recently, a solar cell is manufactured with a target of 90 to 100 Ω/sq of doping surface resistance, but the present invention makes it possible to have a value of 110 Ω/sq or more, and the process can be performed and repeated according to the required specifications of the battery cell. have. In general, that is, the number of repetitions of the doping steps (S11, S21, S31), the oxide film formation steps (S12, S22, S32), the oxide film removal steps (S13, S23, S33), and the oxide film formation steps (S12, S22, S32). The degree of maintenance of temperature and time in

이하에서는 각 단계를 더욱 상세하게 설명한다.Hereinafter, each step will be described in more detail.

도핑 단계(S11, S21, S31)는 불순물을 웨이퍼(10)에 주입시키기 위한 것으로, 확산 또는 이온 주입 방식으로 이루어질 수 있다. 반도체의 p-n 접합을 형성하기 위함이며, 도핑의 한가지 예로 석영관 전기로에서 도펀트가 포함된 혼합가스를 주입하고, 고온처리를 하는 방식을 들 수 있다. 이 고온처리 시의 온도는, 결정질 또는 비결정질 실리콘(Si)웨이퍼(10)의 경우 800 내지 1200℃, 갈륨비소(GaAs) 웨이퍼(10)의 경우 600 내지 1000℃가 된다. 확산의 경우 불순물 원자를 웨이퍼(10) 표면에 위치시키고, 고온처리를 통해 불순물 원자를 웨이퍼(10) 표면에서 내부로 확산시킬 수 있다.The doping steps S11, S21, and S31 are for implanting impurities into the wafer 10 and may be performed by diffusion or ion implantation. This is to form a p-n junction of a semiconductor, and an example of doping is a method of injecting a mixed gas containing a dopant in a quartz tube electric furnace and performing high-temperature treatment. The temperature during the high-temperature treatment is 800 to 1200°C for the crystalline or amorphous silicon (Si) wafer 10, and 600 to 1000°C for the gallium arsenide (GaAs) wafer 10. In the case of diffusion, impurity atoms are placed on the surface of the wafer 10 and the impurity atoms can be diffused from the surface of the wafer 10 to the inside through high temperature treatment.

이 때 도핑 농도는 웨이퍼(10) 표면으로부터 내부 방향으로 갈수록 점차적으로 감소하는 양상을 띄게 된다. 나아가 도핑 단계(S11, S21, S31)에서 불순물을 웨이퍼(10)에 확산시키는 공정은, 상술한 바와 같이 도핑 농도가 높으면 에미터(50) 두께는 두꺼워지나 면저항이 낮아져 재결합률이 증가하하게 되며, 반대로 도핑 농도가 낮으면 에미터(50) 두께가 얇아져 광전효율이 낮아지는 문제가 있다. 이러한 문제는 이후의 산화막 형성 공정 및 산화막 제거 공정을 통해 해결할 수 있다.At this time, the doping concentration gradually decreases from the surface of the wafer 10 toward the inside. Further, in the process of diffusing impurities into the wafer 10 in the doping steps S11, S21, S31, as described above, when the doping concentration is high, the thickness of the emitter 50 increases, but the sheet resistance decreases, thereby increasing the recombination rate. On the contrary, when the doping concentration is low, the thickness of the emitter 50 becomes thin, resulting in a problem of lowering the photoelectric efficiency. This problem can be solved through a subsequent oxide film formation process and an oxide film removal process.

산화막 형성 단계(S12, S22, S32)는 도핑 단계(S11, S21, S31)보다 낮은 온도로 웨이퍼(10)를 열처리한다. 도핑 단계(S11, S21, S31)와 같이 전기 튜브 로(furnace) 내부에 웨이퍼(10)를 두고 열을 가할 수 있다. 이때 온도는 실리콘 웨이퍼(10)의 경우 800℃ 미만에서 진행한다. 도핑 온도와 중첩되는 범위, 즉 800℃ 이상에서 진행하는 경우, 도핑 후에 형성 된 산화막 내에 불순물이 존재하여 자가확산(self diffusion)이 일어나 웨이퍼(10) 표면의 농도가 증가하기 때문이다.In the oxide film forming steps S12, S22, and S32, the wafer 10 is heat-treated at a temperature lower than that of the doping steps S11, S21, and S31. As in the doping steps S11, S21, and S31, the wafer 10 may be placed inside the electric tube furnace and heat may be applied. In this case, the temperature proceeds below 800°C in the case of the silicon wafer 10. This is because when the doping temperature is overlapped, that is, at 800° C. or higher, impurities exist in the oxide film formed after doping and self diffusion occurs, thereby increasing the concentration of the wafer 10 surface.

또한 산화막 형성 단계(S12, S22, S32)는 600℃ 이상으로 열을 가한다. 600℃ 미만으로 열처리를 하는 경우 확산에 필요한 에너지가 부족하여 불순물이 웨이퍼(10) 내부에서 확산될 수 없어 에미터(50) 두께나 표면의 면저항에 영향을 줄 수 없기 때문이다.In addition, in the oxide film forming steps S12, S22, S32, heat is applied to 600°C or higher. This is because when the heat treatment is performed at less than 600° C., the energy required for diffusion is insufficient and impurities cannot diffuse inside the wafer 10, and thus the thickness of the emitter 50 or the sheet resistance of the surface cannot be affected.

본 발명의 산화막 형성 단계(S12, S22, S32)는 일반적인 반도체 기판의 열처리와 다른 것이다. 일반적인 열처리의 경우 웨이퍼(10)의 레이어를 증착시켜 결함을 최소화 하기 위한 것이며, 본 발명은 도핑 후 불순물의 증착 없이 웨이퍼(10) 표며 농도를 낮추며 에미터(50)를 두껍게 형성하기 위한 것이다. 또한 일반적인 반도체 기판의 열처리의 경우 증착을 위해 800℃ 이상의 고온에서 진행되며, 산소를 분위기가스로 사용하는데, 본 발명의 경우 800℃ 미만의 저온에서 분위기가스 없이 일반 대기를 사용하여 진행되는 차이점이 있다. The oxide film forming steps (S12, S22, S32) of the present invention are different from heat treatment of a general semiconductor substrate. In the case of general heat treatment, a layer of the wafer 10 is deposited to minimize defects, and the present invention is to form a thick emitter 50 while lowering the surface and concentration of the wafer 10 without deposition of impurities after doping. In addition, in the case of heat treatment of a general semiconductor substrate, it is carried out at a high temperature of 800°C or higher for deposition, and oxygen is used as an atmosphere gas, but in the case of the present invention, there is a difference that proceeds using a general atmosphere without atmospheric gas at a low temperature of less than 800°C. .

한편 산화막 형성 단계(S12, S22, S32)에서 열이 가해지는 동안 불순물은 웨이퍼(10)에 더욱 깊숙한 곳으로 침투되고, 웨이퍼(10) 표면에는 저온산화막이 형성된다. 이 때 저온산화막은 일부가 웨이퍼(10)의 불순물 농도가 높은 부분에 침투된다. Meanwhile, while heat is applied in the oxide film forming steps S12, S22 and S32, impurities penetrate deeper into the wafer 10, and a low-temperature oxide film is formed on the surface of the wafer 10. At this time, a portion of the low-temperature oxide film penetrates into the portion of the wafer 10 with a high impurity concentration.

따라서 산화막 형성 단계(S12, S22, S32) 이후에는 산화막 제거 단계(S13, S23, S33)를 진행한다. 산화막 제거 단계(S13, S23, S33)는 웨이퍼(10)를 불산(HF)에 담그는 Wet Etching 방식을 사용할 수 있다. 불산은 실리콘 웨이퍼(10)에 형성된 산화막(SiO2)을 제거하며, 이 단계는 보통 1분 정도의 짧은 시간 내에 진행되는 것이 바람직하다.Therefore, after the oxide film forming steps S12, S22, and S32, the oxide film removing steps S13, S23, and S33 are performed. In the oxide removal steps S13, S23, and S33, a wet etching method in which the wafer 10 is immersed in hydrofluoric acid (HF) may be used. Hydrofluoric acid removes the oxide film (SiO 2 ) formed on the silicon wafer 10, and this step is preferably performed within a short time, usually about 1 minute.

산화막 제거 단계(S13, S23, S33)를 통해 도핑 단계(S11, S21, S31) 및 저온 산화막 형성 단계(S12, S22, S32)에서 형성된 산화막이 제거되며, 웨이퍼(10) 표면의 불순물이 높은 영역의 불순물 또한 산화막과 함께 제거될 수 있다. 따라서 웨이퍼(10) 표면의 농도가 낮아지며 면저항이 증가할 수 있다.The oxide film formed in the doping step (S11, S21, S31) and the low-temperature oxide film formation step (S12, S22, S32) is removed through the oxide film removal steps (S13, S23, S33), and the area of the wafer 10 with high impurities The impurities of can also be removed together with the oxide film. Therefore, the concentration of the surface of the wafer 10 is lowered, and sheet resistance may increase.

도 3은 목표 면저항에 도달할 때 까지 도핑 및 산화막 형성, 제거를 반복하여 진행할 수 있음을 나타내는 순서도이며, 도 4는 도 3의 도핑 단계(S11, S21, S31), 산화막 형성 단계(S12, S22, S32) 진행 시 웨이퍼 에미터(50)의 변화를 도시한 것이다. 도 4에서 편의상 저온산화막이 형성되고 제거되는 것은 도시하지 않았으나, 도면상 웨이퍼(10)의 상면에 저온산화막이 형성될 것이다.3 is a flow chart showing that doping, oxide film formation, and removal can be repeatedly performed until the target sheet resistance is reached, and FIG. 4 is a doping step (S11, S21, S31) and oxide film formation steps (S12, S22) of FIG. , S32) shows the change of the wafer emitter 50 during progress. In FIG. 4, for convenience, a low-temperature oxide film is formed and removed, but a low-temperature oxide film will be formed on the upper surface of the wafer 10 in the drawing.

먼저, 1차 도핑 단계(S11)를 거치면 웨이퍼의 표면에서 불순물이 확산되나, 표면의 불순물 농도는 높으며 에미터(151)의 두께는 얇게 형성된다. 이후 산화막 형성 단계(S12)를 통해 불순물을 웨이퍼(10) 내부로 확산시키면 표면의 불순물 농도는 낮아지며 에미터(152)의 두께는 더욱 두꺼워진다.First, when the first doping step S11 is performed, impurities are diffused from the surface of the wafer, but the impurity concentration on the surface is high and the thickness of the emitter 151 is formed to be thin. Thereafter, when the impurities are diffused into the wafer 10 through the oxide film forming step S12, the impurity concentration on the surface is lowered and the thickness of the emitter 152 becomes thicker.

이후 2차 도핑 단계(S21)를 통해 표면에 불순물이 주입되어 에미터(251)가 2층으로 형성되며, 이후 산화막 형성 단계(S22)를 거치면 에미터(252)의 전체 두께는 더욱 두꺼워지게 된다. 그리고 웨이퍼(10) 표면의 불순물 농도는 2차 도핑 단계(S21)를 거친 후보다 낮아지며, 산화막 형성 단계의 온도, 유지 시간에 따라 1차 도핑 단계(S11)를 거쳤을 때보다도 더 낮아질 수 있다.Thereafter, impurities are implanted on the surface through the second doping step (S21) to form two layers of the emitter 251, and after the oxide film formation step (S22), the total thickness of the emitter 252 becomes thicker. . In addition, the impurity concentration on the surface of the wafer 10 may be lower than after passing through the second doping step S21, and may be lower than when passing through the first doping step S11 according to the temperature and holding time of the oxide film forming step.

이후 3차 도핑 단계(S31)에서 다시 웨이퍼(10) 표면에 불순물이 주입되어 에미터(351)가 3층으로 형성되며, 이후 산화막 형성 단계(S32)를 진행하면 에미터(352)의 전체 두께는 더욱 두꺼워지며, 웨이퍼(10) 표면의 불순물 농도는 낮아지게 된다.After that, in the third doping step (S31), impurities are injected into the surface of the wafer 10 again to form the emitter 351 into three layers, and when the oxide film formation step (S32) is performed, the total thickness of the emitter 352 Becomes thicker, and the impurity concentration on the surface of the wafer 10 decreases.

아래의 표는 산화막 형성 단계(S12, S22, S32)에서 온도와 시간을 달리하여 실험한 데이터이다. 도핑 농도 별로, 온도는 600℃ 내지 800℃ 범위 내, 시간은 1시간 내지 3시간 범위 내에서 실험하였다. 여기서 도핑면저항은 도핑 단계(S11, S21, S31)에서의 도핑 농도를 의미하며, 저온산화막 형성 후 면저항은 산화막 형성 단계(S12, S22, S32) 및 산화막 제거 단계(S13, S23, S33)를 거친 후의 웨이퍼(10) 표면의 면저항을 의미한다.The table below shows data from experiments at different temperatures and times in the oxide film formation steps (S12, S22, S32). For each doping concentration, the temperature was tested within the range of 600°C to 800°C, and the time was within the range of 1 hour to 3 hours. Here, the doping sheet resistance refers to the doping concentration in the doping steps (S11, S21, S31), and the sheet resistance after formation of the low-temperature oxide film is subjected to the oxide film forming steps (S12, S22, S32) and the oxide film removing steps (S13, S23, S33). It means the sheet resistance of the surface of the later wafer 10.

ㄱ. 도핑면저항 77Ω/sqG. Doped surface resistance 77Ω/sq

도핑면저항(Ω/sq)Doped surface resistance (Ω/sq) 온도(℃)Temperature(℃) 시간(hour)Hour 저온산화막 형성 후 면저항(Ω/sq)Sheet resistance (Ω/sq) after low-temperature oxide film formation 77 ± 577 ± 5 800800 1One 8080 22 7676 33 7272 750750 1One 109109 22 130130 33 140140 700700 1One 108108 22 128128 33 147147 650650 1One 106106 22 120120 33 123123 600600 1One 9999 22 110110 33 110110

ㄴ. 도핑면저항 82Ω/sqN. Doped sheet resistance 82Ω/sq

도핑면저항(Ω/sq)Doped surface resistance (Ω/sq) 온도(℃)Temperature(℃) 시간(hour)Hour 저온산화막 형성 후 면저항(Ω/sq)Sheet resistance (Ω/sq) after low-temperature oxide film formation 82 ± 582 ± 5 800800 1One 8585 22 8080 33 7575 750750 1One 114114 22 127127 33 139139 700700 1One 107107 22 124124 33 144144 650650 1One 108108 22 124124 33 126126 600600 1One 104104 22 116116 33 117117

ㄷ. 도핑면저항 92Ω/sqC. Doped surface resistance 92Ω/sq

도핑면저항(Ω/sq)Doped surface resistance (Ω/sq) 온도(℃)Temperature(℃) 시간(hour)Hour 저온산화막 형성 후 면저항(Ω/sq)Sheet resistance (Ω/sq) after low-temperature oxide film formation 92 ± 592 ± 5 800800 1One 9898 22 8585 33 8282 750750 1One 120120 22 144144 33 152152 700700 1One 109109 22 130130 33 149149 650650 1One 114114 22 127127 33 135135 600600 1One 105105 22 114114 33 114114

위 표를 보면, 모든 도핑면저항에서 800℃로 열처리를 하는 경우 산화막 형성 시간 증가에 따라 면저항이 감소하는 것을 알 수 있다. 이는 상술한 바와 같이 자가확산 영향으로 표면농도가 증가하기 때문으로 볼 수 있다.From the table above, it can be seen that the sheet resistance decreases as the oxide film formation time increases when heat treatment is performed at 800°C at all doped sheet resistance. As described above, it can be seen that the surface concentration increases due to the self-diffusion effect.

또한 600℃ 내지 750℃로 열처리를 하는 경우 산화막 형성 시간 증가에 따라 면저항이 증가하는 것을 알 수 있는데, 이는 저온산화막이 웨이퍼 표면의 불순물 고농도지역으로 침투되고, 저온산화막이 제거 될 때 고농도의 불순물이 함께 제거되기 때문이다. 또한 도핑 온도보다 낮은 온도에서는 산화막 내에서 자가확산이 일어나지 않으며, 웨이퍼(10) 내부의 불순물만이 웨이퍼(10) 내측 방향으로 확산된다.In addition, in the case of heat treatment at 600°C to 750°C, it can be seen that the sheet resistance increases as the oxide film formation time increases. Because they are removed together. In addition, at a temperature lower than the doping temperature, self-diffusion does not occur in the oxide film, and only impurities inside the wafer 10 are diffused toward the inside of the wafer 10.

나아가 650℃, 700℃, 750℃로 실험한 경우 더욱 뚜렷하게 면저항 증가 효과가 있는 것을 알 수 있다. 또한 1 내지 2시간 동안 면저항이 빠르게 증가하며, 열처리 시간이 2시간을 초과하여 길어질수록 면저항이 증가하나, 증가 속도는 작아지는 것을 알 수 있다.Furthermore, it can be seen that the effect of increasing sheet resistance is more pronounced when the experiment is conducted at 650°C, 700°C, and 750°C. In addition, it can be seen that the sheet resistance increases rapidly for 1 to 2 hours, and the sheet resistance increases as the heat treatment time exceeds 2 hours, but the increase rate decreases.

이상의 설명은 본 발명의 기술사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형 가능한 것으로, 본 발명의 보호범위는 아래의 청구범위에 의하여 해석되어야하며, 그와 동등한 범위 내에 있는 모든 기술사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those of ordinary skill in the art to which the present invention pertains are capable of various modifications and variations without departing from the essential characteristics of the present invention. The scope of protection should be interpreted by the following claims, and all technical ideas within the scope equivalent thereto should be construed as being included in the scope of the present invention.

10 : 웨이퍼 20 : 반사방지막
30 : 전면전극 40 : 후면전극
50, 151, 152, 251, 252, 351, 352 : 에미터
51 : 제1에미터층 52 : 제2에미터층
53 : 제3에미터층
S11, S21, S31 : 도핑 단계
S12, S22, S32 : 산화막 형성 단계
S13, S23, S33 : 산화막 제거 단계
10: wafer 20: anti-reflection film
30: front electrode 40: rear electrode
50, 151, 152, 251, 252, 351, 352: emitter
51: first emitter layer 52: second emitter layer
53: third emitter layer
S11, S21, S31: doping step
S12, S22, S32: oxide film formation step
S13, S23, S33: oxide film removal step

Claims (4)

웨이퍼에 에미터를 형성하는 멀티 전계 에미터 태양전지 제조 방법에 있어서,
웨이퍼에 열을 가하여 상기 웨이퍼의 일면으로부터 내부 방향으로 도펀트를 확산시키는 도핑 단계;
상기 도핑 단계보다 낮은 온도로 상기 웨이퍼에 설정된 시간동안 열을 가하여 상기 웨이퍼 일면에 저온산화막을 형성시키는 산화막 형성 단계; 및
상기 저온산화막을 제거하는 산화막 제거 단계;
를 포함하는 것을 특징으로 하는 멀티 전계 에미터 태양전지 제조 방법.
In the method of manufacturing a multi-electric field emitter solar cell for forming an emitter on a wafer,
A doping step of applying heat to the wafer to diffuse a dopant from one surface of the wafer in an inward direction;
An oxide film forming step of forming a low-temperature oxide film on one surface of the wafer by applying heat to the wafer at a lower temperature than the doping step for a set time; And
An oxide film removal step of removing the low temperature oxide film;
Method for manufacturing a multi-electric field emitter solar cell comprising a.
제1항에 있어서,
상기 도핑 단계, 산화막 형성 단계 및 산화막 제거 단계를 복수 회 반복하는 것을 특징으로 하는 멀티 전계 에미터 태양전지 제조 방법.
The method of claim 1,
The method of manufacturing a multi-electric field emitter solar cell, characterized in that repeating the doping step, the oxide film formation step, and the oxide film removal step a plurality of times.
제1항에 있어서,
상기 웨이퍼는 결정질 또는 비결정질 실리콘이며,
상기 도핑 단계는 800℃ 이상으로 열을 가하며,
상기 산화막 형성 단계는 600℃ 이상 800℃ 미만으로 열을 가하는 것을 특징으로 하는 멀티 전계 에미터 태양전지 제조 방법.
The method of claim 1,
The wafer is crystalline or amorphous silicon,
In the doping step, heat is applied to 800° C. or higher,
In the step of forming the oxide film, a method of manufacturing a multi-electric field emitter solar cell, characterized in that heat is applied at 600°C or more and less than 800°C.
제3항에 있어서,
상기 산화막 형성 단계는, 650℃ 이상 750℃ 이하로 열을 가하는 것을 특징으로 하는 멀티 전계 에미터 태양전지 제조 방법.
The method of claim 3,
In the step of forming the oxide film, a method of manufacturing a multi-electric field emitter solar cell, characterized in that heat is applied to 650°C or more and 750°C or less.
KR1020190069920A 2019-06-13 2019-06-13 Method For Fabricating Multi Surface Field Solar Cell KR20200142723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190069920A KR20200142723A (en) 2019-06-13 2019-06-13 Method For Fabricating Multi Surface Field Solar Cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190069920A KR20200142723A (en) 2019-06-13 2019-06-13 Method For Fabricating Multi Surface Field Solar Cell

Publications (1)

Publication Number Publication Date
KR20200142723A true KR20200142723A (en) 2020-12-23

Family

ID=74089607

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190069920A KR20200142723A (en) 2019-06-13 2019-06-13 Method For Fabricating Multi Surface Field Solar Cell

Country Status (1)

Country Link
KR (1) KR20200142723A (en)

Similar Documents

Publication Publication Date Title
KR101225978B1 (en) Sollar Cell And Fabrication Method Thereof
KR100927725B1 (en) Solar cell and manufacturing method thereof
US8921968B2 (en) Selective emitter solar cells formed by a hybrid diffusion and ion implantation process
JP5058184B2 (en) Method for manufacturing photovoltaic device
KR101680036B1 (en) Solar cell and method for manufacturing the same
JP6692865B2 (en) Method of manufacturing solar cell
KR101474008B1 (en) Method for preparing of solar cell using plasma-surface-treatment
KR20140140200A (en) Solar cell and method for manufacturing the same
KR20130126301A (en) Solar cell, method for manufacturing dopant layer, and method for manufacturing solar cell
KR20170019597A (en) Solar cell and manufacturing method thereof
KR100995654B1 (en) Solar cell and method for manufacturing the same
KR101024322B1 (en) Method of manufacturing wafer for solar cell, a wafer for solar cell manufactured by the method and method of manufacturing solar cell using the wafer
KR101223021B1 (en) Method of preparing solar cell and solar cell
KR101300803B1 (en) Solar cell of doping layer fabrication method using solid phase epitaxy
US20200176626A1 (en) Solar cell and method for manufacturing the same
KR20200142723A (en) Method For Fabricating Multi Surface Field Solar Cell
KR101437162B1 (en) Method for preparing of solar cell using plasma-surface-treatment
WO2016098368A1 (en) Method for producing photovoltaic device
JP2018170379A (en) Semiconductor device, solar cell, and manufacturing method of solar cell
TW202404111A (en) Back-contact solar cell comprising passivated contacts, and manufacturing method
KR20090054732A (en) Method for preparing of solar cell using plasma-surface-treatment
KR102156059B1 (en) Method for manufacturing solar cell
JP2016119346A (en) Photovoltaic device and manufacturing method thereof
KR20210068763A (en) Bulk Multi Emitter Solar Cell and Manufacturing Method Thereof
KR20130008913A (en) Solar cell of doping layer fabrication method using solid phase epitaxy

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application