KR20200123659A - Manufacturing Method of Mixed Metal Compounds for Preparing Precursors from Waste Cathode Active Material Powders - Google Patents

Manufacturing Method of Mixed Metal Compounds for Preparing Precursors from Waste Cathode Active Material Powders Download PDF

Info

Publication number
KR20200123659A
KR20200123659A KR1020190046841A KR20190046841A KR20200123659A KR 20200123659 A KR20200123659 A KR 20200123659A KR 1020190046841 A KR1020190046841 A KR 1020190046841A KR 20190046841 A KR20190046841 A KR 20190046841A KR 20200123659 A KR20200123659 A KR 20200123659A
Authority
KR
South Korea
Prior art keywords
active material
filtrate
material powder
mixed metal
cathode active
Prior art date
Application number
KR1020190046841A
Other languages
Korean (ko)
Other versions
KR102206952B1 (en
Inventor
김은영
김태영
장승규
배은옥
Original Assignee
코스모에코켐(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코스모에코켐(주) filed Critical 코스모에코켐(주)
Priority to KR1020190046841A priority Critical patent/KR102206952B1/en
Publication of KR20200123659A publication Critical patent/KR20200123659A/en
Application granted granted Critical
Publication of KR102206952B1 publication Critical patent/KR102206952B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/30Alkali metal phosphates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)

Abstract

A method for manufacturing a mixed metal compound for manufacturing a precursor from a waste positive electrode active material powder comprises the following steps: leaching the waste positive electrode active material powder with an acidic leaching agent by using at least one reducing agent among H_2O_2, SO_2, Na_2S_2O_5, NaHSO_3, Na_2SO_3, KHSO_3, K_2SO_3, FeSO_4, H_2S, ascorbic acid, and glucose; (b) conducting a reaction by adding a positive electrode active material powder to the leached filtrate at a high liquid ratio of 100 to 150 (g/L); (c) removing hydroxide compounds of copper (Cu), aluminum (Al), and iron (Fe) at pH 6.3 to 6.5 by adding an alkali agent containing at least one of NaOH and KOH to the reacted filtrate; (d) adding an alkali agent containing at least one of sodium carbonate (Na_2CO_3), sodium hydroxide (NaOH), and potassium hydroxide (KOH) to the filtrate from which hydroxide compounds of (Cu), aluminum (Al), and iron (Fe) have been removed to coprecipitate nickel (Ni)-cobalt (Co)-manganese (Mn); and washing the coprecipitated coprecipitate with water, and dissolving the washed coprecipitate in a sulfuric acid solution to manufacture a complex sulfate solution containing the mixed metal compound. A sulfuric acid compound of the present invention can be reused in a precursor manufacturing process, thereby having an effect of improving economic efficiency.

Description

폐양극활물질분말로부터 전구체 제조를 위한 혼합금속화합물의 제조방법{Manufacturing Method of Mixed Metal Compounds for Preparing Precursors from Waste Cathode Active Material Powders}Manufacturing Method of Mixed Metal Compounds for Preparing Precursors from Waste Cathode Active Material Powders}

본 발명은 폐양극활물질분말로부터 전구체 제조를 위한 혼합금속화합물의 제조방법에 관한 것으로서, 보다 상세하게는 폐리튬이차전지의 삼원계 양극활물질로부터 얻은 폐양극활물질분말을 이용하여 양극활물질용 전구체 제조에 사용되는 혼합금속화합물을 획득할 수 있는 폐양극활물질분말로부터 전구체 제조를 위한 혼합금속화합물의 제조방법에 관한 것이다.The present invention relates to a method for preparing a mixed metal compound for preparing a precursor from a waste cathode active material powder, and more particularly, to prepare a precursor for a cathode active material by using the waste cathode active material powder obtained from a ternary cathode active material of a waste lithium secondary battery. It relates to a method for producing a mixed metal compound for preparing a precursor from a waste cathode active material powder capable of obtaining a mixed metal compound to be used.

최근 들어, 글로벌 주요국가들의 자동차 연비 규정과 이산화탄소 배출량 허용기준강화로 인해 전기자동차의 보급이 확대되고 있다. 또한, 신재생에너지 활용의 극대화에 필수적인 에너지저장시스템(ESS)의 필요에 따라 이차전지 활용산업 및 시장의 폭발적인 확대가 예상된다. 가령, 리튬이차전지 중 양극활물질은 총 제조비용의 35% 이상의 높은 비율을 차지하고 있으며, 특히, Ni-Co-Mn(NCM)계 양극활물질의 사용량이 증가하는 추세이다. 따라서 폐기되는 리튬이차전지로부터 폐양극활물질에 포함된 유가금속을 회수하는 공정은 희소금속 및 전략광물로 지정된 코발트, 리튬 등의 금속을 회수할 수 있을 뿐만 아니라 자원재활용 측면에서도 매우 중요한 과제이다.In recent years, the spread of electric vehicles is expanding due to the strengthening of automobile fuel economy regulations and carbon dioxide emission standards in major global countries. In addition, according to the need for an energy storage system (ESS), which is essential for maximizing the use of new and renewable energy, the secondary battery utilization industry and market are expected to expand explosively. For example, among lithium secondary batteries, the positive electrode active material accounts for a high proportion of 35% or more of the total manufacturing cost, and in particular, the amount of Ni-Co-Mn (NCM)-based positive electrode active material is increasing. Therefore, the process of recovering the valuable metals contained in the waste cathode active material from the discarded lithium secondary battery is a very important task in terms of resource recycling as well as recovering rare metals and metals such as cobalt and lithium designated as strategic minerals.

공개특허공보 제10-2017-0061206호에는 폐 양극재에서 전구체 원료의 회수방법이 제시되어 있으나, 리튬의 회수방법 및 음극재로 일반적으로 존재하는 구리 등의 불순물에 대한 제거 공정이 제시되어 있지 않다. 그리고 기존의 습식처리 방법인 용매추출공정은 니켈, 코발트, 망간화합물로 각각 분리하여 회수하여야 하므로 경제적이지 못한 문제가 있다.Public Patent Publication No. 10-2017-0061206 proposes a method of recovering precursor raw materials from a waste cathode material, but does not present a method of recovering lithium and a process for removing impurities such as copper, which are generally present as an anode material. . In addition, since the solvent extraction process, which is a conventional wet treatment method, has to be separated and recovered into nickel, cobalt, and manganese compounds, it is not economical.

따라서, 본 발명의 목적은 폐리튬이차전지로부터 발생되는 폐양극활물질분말을 경제적인 방법을 통하여 전구체 원료로 사용 가능한 양극활물질을 회수 및 제조할 수 있는 폐양극활물질분말로부터 전구체 제조를 위한 혼합금속화합물의 제조방법을 제공하는 것이다.Accordingly, an object of the present invention is a mixed metal compound for preparing a precursor from a waste cathode active material powder capable of recovering and manufacturing a cathode active material that can be used as a precursor raw material through an economical method of waste cathode active material powder generated from a waste lithium secondary battery. It is to provide a method of manufacturing.

또한, 본 발명의 목적은 전구체 원료인 혼합금속화합물의 물성에 영향을 미치는 리튬 성분을 최대한 배제할 수 있는 폐양극활물질분말로부터 전구체 제조를 위한 혼합금속화합물의 제조방법을 제공하는 것이다.In addition, an object of the present invention is to provide a method for preparing a mixed metal compound for preparing a precursor from a waste cathode active material powder capable of excluding lithium components that affect the physical properties of the mixed metal compound as a precursor raw material as much as possible.

상기 본 발명의 목적을 달성하기 위한 폐양극활물질분말로부터 전구체 제조를 위한 혼합금속화합물의 제조방법은, (a) 산성 침출제 및 상기 폐양극활물질분말을 H2O2, SO2, Na2S2O5, NaHSO3, Na2SO3, KHSO3, K2SO3, FeSO4, H2S, 아스코르브산(ascorbic acid), 글루코스(glucose) 중 적어도 어느 하나의 환원제를 이용하여 상기 폐양극활물질분말을 침출시키는 단계; (b) 침출된 여액에 고액비 100 ~ 150(g/L)로 양극활물질분말을 추가로 투입하여 반응시키는 단계; (c) 반응된 여액에 NaOH, KOH 중 적어도 하나를 포함하는 알칼리제를 투입하여 pH 6.3 ~ 6.5에서 구리(Cu), 알루미늄(Al), 철(Fe)의 수산화화합물을 제거하는 단계; (d) 구리(Cu), 알루미늄(Al), 철(Fe)의 수산화화합물이 제거된 상기 여액에 탄산나트륨(Na2CO3)이나 수산화나트륨(NaOH), 수산화칼륨(KOH) 중 적어도 하나를 포함하는 알칼리제를 투입하여 니켈(Ni)-코발트(Co)-망간(Mn)을 공침시키는 단계; 및 (e) 공침된 공침물을 물로 세척하며, 세척된 공침물을 황산용액에 용해시켜 상기 혼합금속화합물을 포함하는 복합 황산염 용액을 제조하는 단계를 포함한다. 폐리튬이차전지로부터 발생되는 폐양극활물질분말을 기존의 습식처리 방법인 용매추출공정을 통한 니켈, 코발트, 망간화합물로 각각 분리하여 회수하지 않고 공침산물을 황산에 재용해한다. 이에 최종 수득된 니켈, 코발트, 및 망간 등이 다양한 몰비 조성을 갖는 황산화합물은 니켈, 코발트, 망간 등의 몰비를 조정하여 전구체 제조공정에 재사용될 수 있다.The method for preparing a mixed metal compound for preparing a precursor from the waste cathode active material powder for achieving the object of the present invention includes (a) an acidic leachant and the waste cathode active material powder as H 2 O 2 , SO 2 , Na 2 S 2 O 5 , NaHSO 3 , Na 2 SO 3 , KHSO 3 , K 2 SO 3 , FeSO 4 , H 2 S, ascorbic acid, glucose (glucose) using at least one reducing agent of the lung anode Leaching the active material powder; (b) reacting by additionally adding positive electrode active material powder at a high-liquid ratio of 100 to 150 (g/L) to the leached filtrate; (c) removing a hydroxide compound of copper (Cu), aluminum (Al), and iron (Fe) at pH 6.3 to 6.5 by adding an alkali agent containing at least one of NaOH and KOH to the reacted filtrate; (d) The filtrate from which hydroxide compounds of copper (Cu), aluminum (Al), and iron (Fe) have been removed contains at least one of sodium carbonate (Na 2 CO 3 ), sodium hydroxide (NaOH), and potassium hydroxide (KOH) Co-precipitation of nickel (Ni)-cobalt (Co)-manganese (Mn) by introducing an alkali agent; And (e) washing the coprecipitated product with water, and dissolving the washed coprecipitate in a sulfuric acid solution to prepare a complex sulfate solution containing the mixed metal compound. The waste anode active material powder generated from the waste lithium secondary battery is separated into nickel, cobalt, and manganese compounds through a solvent extraction process, which is a conventional wet treatment method, and the co-precipitate is re-dissolved in sulfuric acid without recovery. Accordingly, the finally obtained sulfuric acid compound having various molar ratio compositions such as nickel, cobalt, and manganese can be reused in the precursor manufacturing process by adjusting the molar ratio of nickel, cobalt, and manganese.

여기서, 상기 (a) 단계 이전에 상기 폐양극활물질분말을 500℃이상으로 배소하는 단계; 상기 (d) 단계에서의 공침물 외의 여액 내의 리튬(Li)을 25℃ ~ 90℃에서 회수하는 단계; 및 상기 (b) 단계 이후 NaF 혹은 NH4F를 포함하는 불소화합물을 첨가하여 상기 여액에서 칼슘(Ca)을 CaF2로 제거하는 단계를 더 포함하면 배소온도가 증가함에따라 침출율이 증가하며, 리튬을 회수할 수 있고, 칼슘을 제거할 수 있어 바람직하다.Here, the step of roasting the waste cathode active material powder at 500°C or higher before step (a); Recovering lithium (Li) in the filtrate other than the coprecipitate in step (d) at 25°C to 90°C; And adding a fluorine compound containing NaF or NH 4 F after the step (b) to remove calcium (Ca) from the filtrate with CaF 2 , the leaching rate increases as the roasting temperature increases, Lithium can be recovered and calcium can be removed, which is preferable.

그리고 상기 (a) 단계의 침출시키는 단계는, 상기 환원제 첨가량은 상기 폐양극활물질분말 내 포함된 (코발트(Co) + 니켈(Ni) + 망간(Mn))을 환원하는데 필요한 환원제 당량 대비 0.4 ~ 0.7의 비율로 첨가하며, 상기 산성 침출제의 농도는 상기 침출된 여액 내 포함된 (코발트(Co) + 니켈(Ni) + 망간(Mn))의 몰농도 대비 1.5 ~ 2배의 몰농도로 조절하여 침출 후 여액의 pH가 0.7 ~ 1.5이 되도록 조절하며, 침출반응온도는 50 ~ 95℃이면 (코발트(Co) + 니켈(Ni) + 망간(Mn))의 침출속도가 증가될 수 있어 바람직하다.And in the leaching step of step (a), the amount of the reducing agent added is 0.4 to 0.7 compared to the equivalent amount of the reducing agent required to reduce (cobalt (Co) + nickel (Ni) + manganese (Mn)) contained in the waste cathode active material powder. And the concentration of the acidic leachant is adjusted to a molar concentration of 1.5 to 2 times the molar concentration of (cobalt (Co) + nickel (Ni) + manganese (Mn)) contained in the leached filtrate. After leaching, the pH of the filtrate is adjusted to be 0.7 to 1.5, and if the leaching reaction temperature is 50 to 95°C, the leaching rate of (cobalt (Co) + nickel (Ni) + manganese (Mn)) can be increased, which is preferable.

여기서, 상기 (d) 단계의 공침시키는 단계는, 반응온도 25±2℃에서 수행되고, 상기 알칼리제가 수산화물일 경우 망간(Mn)이 회수될 수 있는 pH 9.5 ~ 10에서 수행되며, 상기 알칼리제가 탄산화합물일경우 니켈(Ni)이 최종적으로 회수될 수 있는 pH 8 ~ 9이하의 범위에서 수행되도록 하면 동시에 니켈(Ni)-코발트(Co)-망간(Mn)을 공침시킬 수 있어 바람직하다.Here, the coprecipitation of step (d) is performed at a reaction temperature of 25±2° C., and when the alkali agent is a hydroxide, it is performed at a pH of 9.5 to 10 at which manganese (Mn) can be recovered, and the alkali agent is carbonated. In the case of a compound, it is preferable that nickel (Ni) can be co-precipitated at the same time when nickel (Ni) is carried out in a pH range of 8 to 9 or less that can be finally recovered.

그리고 상기 복합 황산염 용액을 제조하는 단계는, 상기 공침물에 공존하는 나트륨(Na)과 리튬(Li)을 제거하기 위한 수세온도는 25℃ ~ 50℃ 에서 상기 공침물 대비 고액비 500 ~ 1,000(g/L)의 비율로 적어도 2회 이상 수세척하는 단계; 및 상기 복합 황산염 용액이 pH 3.5 ~ 4가 되도록 환원제를 첨가하는 단계를 포함하면 회수된 니켈(Ni)-코발트(Co)-망간(Mn)의 공침물 중 일부 산화되어 3가 상태로 존재할 수 있는 공침물을 환원제를 이용하여 제거할 수 있어 바람직하다.And the step of preparing the complex sulfate solution, the water washing temperature for removing the sodium (Na) and lithium (Li) co-existing in the coprecipitate is 25 ℃ ~ 50 ℃ solid-liquid ratio to the coprecipitate 500 ~ 1,000 (g Water washing at least two times at a rate of /L); And adding a reducing agent so that the complex sulfate solution has a pH of 3.5 to 4, some of the recovered coprecipitates of nickel (Ni)-cobalt (Co)-manganese (Mn) are oxidized to exist in a trivalent state. It is preferable because the coprecipitate can be removed using a reducing agent.

여기서, 상기 (b) 단계의 반응시키는 단계는, 상기 폐양극활물질분말을 상기 침출액이 pH 3.0 ~ 3.5가 되도록 투입하며, 반응온도 50 ~ 70℃에서 0.5 ~ 1시간 수행하면 불순물인 철(Fe), 구리(Cu), 알루미늄(Al) 등을 수산화물로 제거할 수 있어 바람직하다.Here, in the step of reacting in step (b), the waste cathode active material powder is added so that the leachate has a pH of 3.0 to 3.5, and iron (Fe), which is an impurity, is performed at a reaction temperature of 50 to 70° C. for 0.5 to 1 hour. , Copper (Cu), aluminum (Al), etc. can be removed with a hydroxide, which is preferable.

본 발명에 따르면 폐리튬이차전지로부터 발생되는 폐양극활물질분말을 기존의 습식처리 방법인 용매추출공정을 통한 니켈, 코발트, 망간화합물로 각각 분리하여 회수하지 않고 공침산물을 황산에 재용해한다. 이에 최종 수득된 니켈, 코발트, 및 망간 등이 다양한 몰비 조성을 갖는 황산화합물은 니켈, 코발트, 망간 등의 몰비를 조정하여 전구체 제조공정에 재사용될 수 있어 경제성이 향상되는 효과가 있다.According to the present invention, the waste cathode active material powder generated from the waste lithium secondary battery is separated into nickel, cobalt, and manganese compounds through a solvent extraction process, which is a conventional wet treatment method, and the co-precipitate is redissolved in sulfuric acid without recovery. Accordingly, the finally obtained sulfuric acid compound having various molar ratio compositions, such as nickel, cobalt, and manganese, can be reused in the precursor manufacturing process by adjusting the molar ratio of nickel, cobalt, and manganese, thereby improving economic efficiency.

폐양극활물질분말을 500℃이상으로 배소하여 배소온도가 증가함에따라 침출율이 증가하며, 공침물 외의 여액 내의 리튬(Li)을 회수할 수 있고, 중화 단계 이후 여액에서 칼슘(Ca)을 제거할 수 있는 효과가 있다.By roasting the waste cathode active material powder above 500℃, the leaching rate increases as the roasting temperature increases, and lithium (Li) in the filtrate other than the coprecipitate can be recovered, and calcium (Ca) can be removed from the filtrate after the neutralization step. It can have an effect.

환원제 첨가량은 환원제 당량 대비 0.4 ~ 0.7의 비율로 첨가하며, 산성 침출제의 농도는 (코발트(Co) + 니켈(Ni) + 망간(Mn))의 몰농도 대비 1.5 ~ 2배의 몰농도로 조절하여 침출 후 여액의 pH가 0.7 ~ 1.5이 되도록 조절하며, 침출반응온도를 50 ~ 95℃로 하면 (코발트(Co) + 니켈(Ni) + 망간(Mn))의 침출속도가 증가될 수 있는 효과가 있다.The amount of reducing agent is added in a ratio of 0.4 to 0.7 relative to the equivalent of the reducing agent, and the concentration of the acidic leachant is adjusted to a molar concentration of 1.5 to 2 times the molar concentration of (cobalt (Co) + nickel (Ni) + manganese (Mn)). So that the pH of the filtrate is 0.7 ~ 1.5 after leaching, and the leaching rate of (cobalt (Co) + nickel (Ni) + manganese (Mn)) can be increased if the leaching reaction temperature is 50 ~ 95℃. There is.

반응온도 25±2℃, 알칼리제가 수산화물일 경우 망간(Mn)이 회수될 수 있는 pH 9.5 ~ 10, 알칼리제가 탄산화합물일경우 니켈(Ni)이 최종적으로 회수될 수 있는 pH 8 ~ 9이하의 범위에서 수행되도록 하여 동시에 니켈(Ni)-코발트(Co)-망간(Mn)을 공침시킬 수 있는 효과가 있다.The reaction temperature is 25±2℃, in the range of pH 9.5 to 10 where manganese (Mn) can be recovered when the alkali agent is a hydroxide, and pH 8 to 9 or less where nickel (Ni) can be finally recovered when the alkali is a carbonate compound. At the same time, nickel (Ni)-cobalt (Co)-manganese (Mn) can be co-precipitated.

회수된 니켈(Ni)-코발트(Co)-망간(Mn)의 공침물 중 일부 산화되어 3가상태로 존재할 수 있는 공침물을 환원제를 이용하여 제거할 수 있는 효과가 있다.There is an effect of removing some of the recovered nickel (Ni)-cobalt (Co)-manganese (Mn) co-precipitates that may exist in a trivalent state due to oxidation using a reducing agent.

폐양극활물질분말을 침출액이 pH 3.0 ~ 3.5가 되도록 투입하며, 반응온도 50 ~ 70℃에서 0.5 ~ 1시간 수행하며, 반응온도 50 ~ 70℃에서 0.5 ~ 1시간 수행하는 1차 중화 과정과, 1차 중화 여액에 상온 조건에서 알칼리제를 투입하여 pH 4.5 ~ 6.5로 하는 2차 중화 과정을 거쳐, 불순물인 철(Fe), 구리(Cu), 알루미늄(Al) 등을 수산화물로 제거할 수 있는 효과가 있다.The waste cathode active material powder is added so that the leachate becomes pH 3.0 to 3.5, and the reaction temperature is 50 to 70°C for 0.5 to 1 hour, and the reaction temperature is 50 to 70°C for 0.5 to 1 hour. It has the effect of removing impurities such as iron (Fe), copper (Cu), and aluminum (Al) as hydroxide through the secondary neutralization process of pH 4.5 ~ 6.5 by adding an alkali agent to the secondary neutralization filtrate at room temperature. have.

도 1은 본 발명에 따른 폐양극활물질분말로부터 전구체 제조를 위한 혼합금속화합물의 개략제조흐름도.
도 2는 상세제조흐름도.
1 is a schematic flow chart of the production of a mixed metal compound for preparing a precursor from a waste cathode active material powder according to the present invention.
Figure 2 is a detailed manufacturing flow chart.

이하, 첨부된 도면들을 참조하면서 본 발명의 바람직한 실시 예에 따른 폐양극활물질분말로부터 전구체 제조를 위한 혼합금속화합물의 제조방법을 상세히 설명한다.Hereinafter, a method of preparing a mixed metal compound for preparing a precursor from a waste cathode active material powder according to a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

본 발명의 폐양극활물질분말은 폐기되는 리튬이온전지용 삼원계양극활물질로부터 얻은 것으로, 특히 Ni-Co-Mn(NCM) 삼원계 폐양극활물질을 이용한다. 수집된 폐양극활물질은 소정의 분말화 과정을 거쳐 폐양극활물질분말 상태로 준비된다. 폐양극활물질분말에는, 니켈(Ni), 코발트(Co), 망간(Mn), 리튬(Li) 외에 알미늄(Al), 구리(Cu), 철(Fe), 칼슘(Ca) 등 여러 성분이 혼합되어 있다.The waste cathode active material powder of the present invention is obtained from a discarded ternary cathode active material for lithium ion batteries, and in particular, a Ni-Co-Mn (NCM) ternary anode active material is used. The collected waste cathode active material is prepared in a waste cathode active material powder state through a predetermined powdering process. In the waste cathode active material powder, various components such as aluminum (Al), copper (Cu), iron (Fe), and calcium (Ca) are mixed in addition to nickel (Ni), cobalt (Co), manganese (Mn), and lithium (Li). Has been.

본 발명의 혼합금속화합물 제조방법은, 도 1 및 도 2에 나타난 바와 같이, 준비된 폐양극활물질분말을 환원제와 함께 산침출하고, 침출된 여액 내의 금속성 불순물을 제거하도록 1, 2차 중화침전하고, 중화된 여액을 알칼리 침전에 의해 니켈, 코발트, 망간 등을 포함하는 삼원계 화합물로 공침하고, 공침된 공침물을 황산에 재용해하여 혼합금속화합물의 수산화물을 얻는 과정을 포함한다. 여기서 산침출 과정에서 폐양극활물질을 배소하여 이용할 수 있으며, 공침물의 황산 재용해 과정에 앞서서 리튬 성분을 먼저 회수할 수 있다. 이하에서 각 과정을 도 1의 본 발명에 따른 폐양극활물질분말로부터 전구체 제조를 위한 혼합금속화합물의 개략제조흐름도와 도 2의 상세흐름도에 근거하여 구체적으로 설명한다.In the method for preparing a mixed metal compound of the present invention, as shown in Figs. 1 and 2, the prepared waste anode active material powder is acid-leached with a reducing agent, and first and second neutralization precipitation is performed to remove metallic impurities in the leached filtrate, The neutralized filtrate is co-precipitated with a ternary compound including nickel, cobalt, manganese, etc. by alkali precipitation, and the co-precipitate is redissolved in sulfuric acid to obtain a hydroxide of a mixed metal compound. Here, the waste cathode active material can be roasted and used in the acid leaching process, and the lithium component can be recovered first prior to the sulfuric acid re-dissolution process of the coprecipitate. Hereinafter, each process will be described in detail based on a schematic manufacturing flow chart of a mixed metal compound for preparing a precursor from the waste cathode active material powder according to the present invention of FIG. 1 and a detailed flow chart of FIG. 2.

폐양극활물질분말을 500℃이상으로 배소한다. 소정의 가열 기구를 통한 폐양극활물질의 배소 과정에 의해 공침물의 침출 효율을 증대할 수 있으며, 제조 환경에 따라서는 배소 과정을 거치지 않을 수도 있다.Roast the waste anode active material powder above 500℃. The leaching efficiency of the co-precipitate may be increased by the roasting process of the waste positive electrode active material through a predetermined heating mechanism, and the roasting process may not be performed depending on the manufacturing environment.

산성 침출제 및 H2O2, SO2, Na2S2O5, NaHSO3, Na2SO3, KHSO3, K2SO3, FeSO4, H2S, 아스코르브산(ascorbic acid), 글루코스(glucose) 중 적어도 어느 하나의 환원제를 이용하여 폐양극활물질분말을 침출시킨다. 환원제 첨가량은 폐양극활물질분말 내 포함된 (코발트(Co) + 니켈(Ni) + 망간(Mn))을 환원하는데 필요한 환원제 당량 대비 0.4 ~ 0.7의 비율로 첨가하며, 산성 침출제의 농도는 침출된 여액 내 포함된 (코발트(Co) + 니켈(Ni) + 망간(Mn))의 몰농도 대비 1.5 ~ 2배의 몰농도로 조절하여 침출 후 여액의 pH가 0.7 ~ 1.5이 되도록 조절하며, 침출반응온도는 50 ~ 95℃이다. 폐전지 등에서 수집되는 삼원계 양극활물질(Li(NixCoyMnz)O2)(x+y+z = 1)은 물리적인 분리공정에 의하여 전지케이스, 분리막, 양극(Al), 음극(Cu) 등을 제거한 것이 바람직하다. 산성 침출제로는 황산, 염산, 질산 등의 무기산이나, 구연산(ctric acid), 아세트산(acetic acid), 말산(malic acid), 카복실산(carboxylic acid) 등의 유기산을 사용할 수 있다. 염산이나 질산의 경우, 반응중 Cl2(g)나 NOx(g)의 생성에 의한 환원분위기가 조성되며, 황산 및 유기산의 경우 추가로 환원제를 첨가해서 환원분위기를 조성할 수 있다.Acid leachants and H 2 O 2 , SO 2 , Na 2 S 2 O 5 , NaHSO 3 , Na 2 SO 3 , KHSO 3 , K 2 SO 3 , FeSO 4 , H 2 S, ascorbic acid, glucose The waste cathode active material powder is leached using at least one reducing agent among (glucose). The reducing agent is added in a ratio of 0.4 to 0.7 compared to the equivalent of reducing agent required to reduce (cobalt (Co) + nickel (Ni) + manganese (Mn)) contained in the waste cathode active material powder, and the concentration of the acidic leachant is The pH of the filtrate after leaching is adjusted to be 0.7 ~ 1.5 by adjusting the molar concentration of 1.5 to 2 times the molar concentration of (cobalt (Co) + nickel (Ni) + manganese (Mn)) contained in the filtrate, and leaching reaction The temperature is 50 ~ 95 ℃. The ternary cathode active material (Li(Ni x Co y Mn z )O 2 )(x+y+z = 1) collected from waste batteries is physically separated from the battery case, separator, positive electrode (Al), negative electrode ( It is preferable to remove Cu) and the like. As the acidic leaching agent, inorganic acids such as sulfuric acid, hydrochloric acid, and nitric acid, or organic acids such as citric acid, acetic acid, malic acid, and carboxylic acid may be used. In the case of hydrochloric acid or nitric acid, a reducing atmosphere is formed by the generation of Cl 2 (g) or NO x (g) during the reaction, and in the case of sulfuric acid and organic acids, a reducing atmosphere can be created by adding a reducing agent.

침출단계에서 반응온도는 50 ~ 95℃인 것이 바람직하다. 반응온도가 50℃미만일때는 침출반응속도가 느려서 침출효율이 떨어지고 95℃ 이상일 때는 대기압조건에서 수용액의 증발반응이 활발하여 침출효율이 떨어지고, 에너지 비용도 증가한다. 또한, 침출제로 사용된 유기산이나 무기산의 농도는 상기 용액내 니켈(Ni)+코발트(Co)+망간(Mn)의 몰농도 대비 1.5 이상 2배 이하의 몰농도로 조절하여 침출후 여액의 pH가 0.7내지 1.5이 되도록 조절하는 것이 바람직하다. 산농도가 높으면 Fick's law에 의해 확산에 의한 침출속도가 빨라질 수 있으나 다음단계의 중화에 소모되는 알칼리제의 사용량이 증가하고 산농도가 낮으면 반대로 침출속도가 느려 반응시간이 길어질 수 있다.The reaction temperature in the leaching step is preferably 50 ~ 95 ℃. When the reaction temperature is less than 50℃, the leaching reaction rate is slow and the leaching efficiency decreases. When the reaction temperature is higher than 95℃, the evaporation reaction of the aqueous solution is active under atmospheric pressure, so the leaching efficiency decreases and the energy cost increases. In addition, the concentration of the organic or inorganic acid used as the leaching agent is adjusted to a molar concentration of 1.5 or more and less than 2 times the molar concentration of nickel (Ni) + cobalt (Co) + manganese (Mn) in the solution, so that the pH of the filtrate after leaching is It is preferable to adjust it to be 0.7 to 1.5. If the acid concentration is high, the leaching rate due to diffusion may be increased by Fick's law, but the amount of alkali agent consumed in the next step of neutralization increases, and if the acid concentration is low, the leaching rate is slow, and the reaction time may be lengthened.

침출된 여액에 고액비 100 ~ 150(g/L)로 양극활물질분말을 추가로 투입하여 반응시킨다. 이에 따라 침출된 여액은 1차 중화되며, 이후의 중화 과정에서 알칼리제 소모를 절감할 수 있고, 불순물 중 특히 철(Fe) 성분 제거에 바람직할 수 있다. 여기에서 추가되는 폐양극활물질분말을 침출 여액이 pH 3.0 ~ 3.5가 되도록 투입하며, 반응온도 50 ~ 70℃에서 0.5 ~ 1시간 수행한다.The positive electrode active material powder is additionally added to the leached filtrate at a high-liquid ratio of 100 to 150 (g/L) and reacted. Accordingly, the leached filtrate is first neutralized, and consumption of an alkali agent can be reduced in a subsequent neutralization process, and may be particularly preferable for removing iron (Fe) components among impurities. The waste cathode active material powder added here is added so that the leaching filtrate has a pH of 3.0 to 3.5, and the reaction temperature is carried out for 0.5 to 1 hour at 50 to 70°C.

여액의 1차 중화 이후에 여액 내 칼슘(Ca)의 농도가 높을 경우, NaF와 NH4F를 포함하는 불소화합물을 첨가하여 여액에서 칼슘(Ca)을 CaF2로 제거한다. 여액 내 칼슘의 농도에 따라 이 과정은 생략될 수 있다.If the concentration of calcium (Ca) in the filtrate is high after the first neutralization of the filtrate, a fluorine compound containing NaF and NH 4 F is added to remove calcium (Ca) from the filtrate as CaF 2 . Depending on the concentration of calcium in the filtrate, this process may be omitted.

1차 중화에 의해 반응된 여액에 수산화나트륨(NaOH), 수산화칼륨(KOH) 중 적어도 하나를 포함하는 알칼리제를 투입하여 pH 6.3 ~ 6.5에서 구리(Cu), 알루미늄(Al), 철(Fe)의 수산화화합물을 제거한다. 이에 따라 여액은 2차 중화되어 불순물이 제거되며, 본 2차 중화는 25±2℃ 내외의 상온에서 수행될 수 있으며, pH는 4.5 이상 6.5 이하로 조절하는 것이 구리(Cu), 알루미늄(Al) 성분 제거에 바람직할 수 있다. 또한, 1차 중화 과정이 환원조건 상태여서 일부 잔존하고 있던 Fe(II) 형태의 철(Fe) 성분이 2차 중화 과정에서 구리, 알루미늄 성분과 함께 제거될 수 있다An alkali agent containing at least one of sodium hydroxide (NaOH) and potassium hydroxide (KOH) is added to the filtrate reacted by the first neutralization, and copper (Cu), aluminum (Al), and iron (Fe) at pH 6.3 to 6.5 Removes hydroxide compounds. Accordingly, the filtrate is secondary neutralized to remove impurities, this secondary neutralization can be carried out at room temperature around 25±2℃, and the pH is adjusted to be greater than or equal to 4.5 and less than or equal to 6.5. Copper (Cu), aluminum (Al) It may be desirable for component removal. In addition, since the first neutralization process is in a reducing condition, some remaining iron (Fe) components in the form of Fe (II) may be removed together with copper and aluminum components during the secondary neutralization process.

1차 중화 및 2차 중화에 의해 불순물인 구리(Cu), 알루미늄(Al), 철(Fe)의 수산화화합물이 제거된 여액에 탄산나트륨(Na2CO3)이나 수산화나트륨(NaOH), 수산화칼륨(KOH) 중 적어도 하나를 포함하는 알칼리제를 투입하여 니켈(Ni)-코발트(Co)-망간(Mn)을 공침시킨다. 본 공침 과정은 반응온도 25±2℃ 내외의 상온에서 수행되고, 알칼리제가 수산화물일 경우 망간(Mn)이 회수될 수 있는 pH 9.5 ~ 10 범위에서 수행되며, 알칼리제가 탄산화합물일 경우 니켈(Ni)이 최종적으로 회수될 수 있는 pH 8 ~ 9 범위에서 수행되도록 한다.In the filtrate from which hydroxide compounds of copper (Cu), aluminum (Al), and iron (Fe), which are impurities, have been removed by primary and secondary neutralization, sodium carbonate (Na 2 CO 3 ), sodium hydroxide (NaOH), potassium hydroxide ( An alkali agent containing at least one of KOH) is added to co-precipitate nickel (Ni)-cobalt (Co)-manganese (Mn). This coprecipitation process is carried out at room temperature within 25±2℃ of the reaction temperature, and in the range of pH 9.5 to 10 where manganese (Mn) can be recovered when the alkali agent is a hydroxide, nickel (Ni) when the alkali is a carbonate compound. This should be carried out in a pH range of 8 to 9 that can be finally recovered.

공침물이 회수되면 잔존 여액 내의 리튬(Li)을 25℃ ~ 90℃에서 회수한다. 공침물 회수 후의 여액에는 상당한 농도의 리튬이 잔존하므로 제3인산나트륨(Na3PO4)를 첨가하여 인산리튬(Li3PO4)로 형태로 리튬 성분을 회수할 수 있다.When the coprecipitate is recovered, lithium (Li) in the remaining filtrate is recovered at 25°C to 90°C. Since a considerable concentration of lithium remains in the filtrate after recovery of the coprecipitate, trisodium phosphate (Na 3 PO 4 ) is added to recover the lithium component in the form of lithium phosphate (Li 3 PO 4 ).

한편, 공침물에 공존하는 나트륨(Na)과 리튬(Li)을 제거하기 위한 수세척을 수행하며, 수세온도는 25℃ ~ 50℃ 에서 습케익상태로 회수된 공침물의 고액비가 500 ~ 1,000(g/L)인 비율로 적어도 2회 이상 수세척한다. 수세척에 의해 공침물은 습케익 형태로 회수되며, 습케익의 수분 함량은 75 ~ 80% 정도이다. 리튬(Li)은 양극활물질 제조에 필수적이지만, 전구체 제조 과정에서는 리튬 성분이 공침물 내에 잔존할 경우 전구체 원료가 되는 혼합금속화합물의 입도 분포 등 물성에 영향을 미치므로 가능한 배제되는 것이 바람직하다. 이에 따라 후속의 전구체로 합성되는 혼합금속화합물 형성에 앞서서 리튬(Li) 성분을 제거한다.On the other hand, water washing is performed to remove sodium (Na) and lithium (Li) co-existing in the co-precipitate, and the water washing temperature is between 25°C and 50°C and the solid-liquid ratio of the recovered coprecipitate in a wet cake state is 500 ~ 1,000 (g Wash with water at least twice at a rate of /L). The co-precipitates are recovered in the form of wet cakes by washing with water, and the moisture content of the wet cakes is about 75 to 80%. Lithium (Li) is essential for the production of the positive electrode active material, but in the precursor production process, if the lithium component remains in the coprecipitate, it is preferable to be excluded as much as possible because it affects physical properties such as particle size distribution of the mixed metal compound used as the precursor material. Accordingly, the lithium (Li) component is removed prior to formation of the mixed metal compound synthesized as a subsequent precursor.

수세된 습케익 형태의 공침물을 황산 용액으로 용해하여 형성되는 복합 황산염 용액이 pH 3.5 ~ 4가 되도록 환원제를 첨가하여 혼합금속화합물을 포함하는 복합 황산염 용액을 제조한다. 본 용해는 반응온도 25±2℃ 내외의 상온에서 수행되며 용해 시에 앞에서 회수된 니켈(Ni)-코발트(Co)-망간(Mn)의 공침물 중 일부는 산화되어 3가 상태로 존재할 수 있으므로 일부 산화된 공침물을 적량의 환원제를 이용하여 제거한다.A reducing agent is added so that a complex sulfate solution formed by dissolving the washed wet cake-shaped coprecipitate with a sulfuric acid solution is pH 3.5 to 4 to prepare a complex sulfate solution containing a mixed metal compound. This dissolution is carried out at room temperature within the reaction temperature of 25±2℃, and some of the coprecipitates of nickel (Ni)-cobalt (Co)-manganese (Mn) recovered earlier during dissolution may be oxidized and exist in a trivalent state. Some oxidized coprecipitates are removed using an appropriate amount of reducing agent.

공침물이 황산 용액에 용해되어 니켈, 코발트, 및 망간 입자들로 구성된 황산화합물은 니켈, 코발트, 망간 등의 몰비를 조정하여 전구체를 제조한다.The coprecipitate is dissolved in a sulfuric acid solution to prepare a precursor by adjusting the molar ratio of nickel, cobalt, and manganese to a sulfuric acid compound composed of nickel, cobalt, and manganese particles.

[실시예][Example]

[표 1]은 실험에 사용된 니켈(Ni)-코발트(Co)-망간(Mn) NCM계 양극활물질분말의 원료조성 일례이다.[Table 1] is an example of the raw material composition of the nickel (Ni)-cobalt (Co)-manganese (Mn) NCM-based positive electrode active material powder used in the experiment.

NCM계 원료조성(wt.%)NCM-based raw material composition (wt.%) NCMNCM CoCo CuCu FeFe MnMn CaCa AlAl NiNi LiLi LOILOI wt.%wt.% 10.6710.67 2.72.7 0.140.14 11.7711.77 0.030.03 0.110.11 29.8629.86 6.066.06 2.42.4

(LOI = Loss on Ignition)(LOI = Loss on Ignition)

[공정 1: 산침출][Step 1: Acid leaching]

산종류Mountain type 및 환원제 종류 변화 And reducing agent type change

하기 [표 2]는 상기 [표 1]의 조성을 가진 분말 상태의 양극활물질로부터 산 종류(황산, 구연산), 환원제 종류(H2O2, Na2S2O5)를 변경하여 침출율을 비교한 결과이다. 황산과 구연산으로 양극활물질의 고액비 100(g/l), 과산화수소를 환원제로 사용하여 80℃, 2시간동안 침출했을 때 니켈의 침출율이 구연산에서는 황산에 대비하여 92%로 낮았으나, 코발트와 망간의 침출율은 양쪽이 유사한 경향을 나타내었다. 또한, 황산침출조건에서 환원제를 과산화수소(H2O2), 메타중아황산소다(Na2S2O5)로 비교하였을 때 동일 당량 대비 과산화수소에 의한 코발트와 망간의 침출율이 뛰어남을 볼 수 있다. 산성 침출제로 유기산인 구연산을 사용하였을 때 침출 후 pH가 6.3으로 약 알칼리성을 나타내어 후속의 중화 및 침전에 사용되는 알칼리제의 사용을 절감할 수 있는 이점이 있다.The following [Table 2] compares the leaching rate by changing the acid type (sulfuric acid, citric acid) and reducing agent type (H 2 O 2 , Na 2 S 2 O 5 ) from the powdery positive electrode active material having the composition of [Table 1]. One result. When leaching for 2 hours at 80℃ using a solid-liquid ratio of 100 (g/l) of the positive electrode active material with sulfuric acid and citric acid and hydrogen peroxide as a reducing agent, the leaching rate of nickel in citric acid was 92% lower than that of sulfuric acid, but cobalt and The manganese leaching rate showed similar trends in both. In addition, when comparing the reducing agent with hydrogen peroxide (H 2 O 2 ) and sodium metabisulfite (Na 2 S 2 O 5 ) under the sulfuric acid leaching conditions, it can be seen that the leaching rate of cobalt and manganese by hydrogen peroxide is excellent compared to the same equivalent weight. . When citric acid, which is an organic acid, is used as an acidic leaching agent, the pH after leaching is 6.3, which is weakly alkaline, so there is an advantage in that the use of an alkali agent used for subsequent neutralization and precipitation can be reduced.

산종류 및 환원제 종류에 따른 침출율Leach rate according to acid type and reducing agent type 산종류Mountain type 환원제reducing agent 산농도
(M)
Acid concentration
(M)
반응시간(hr)Reaction time (hr) 온도
(℃)
Temperature
(℃)
pHpH Co(g/L)Co(g/L) Ni(g/L)Ni(g/L) Mn(g/L)Mn(g/L)
황산Sulfuric acid H2O2 H 2 O 2 2.02.0 22 8080 1.51.5 10.610.6 29.829.8 10.510.5 황산Sulfuric acid Na2S2O5 Na 2 S 2 O 5 2.02.0 22 8080 0.70.7 9.69.6 27.927.9 8.88.8 구연산Citric acid H2O2 H 2 O 2 1One 22 8080 6.36.3 10.510.5 24.524.5 10.910.9

배소온도에At roasting temperature 따른 Follow 침출율Leaching rate 변화 change

[표 3]은 양극활물질의 배소온도를 500℃부터 100℃단위로 700℃까지 변화시키면서 1시간 배소 후 양극활물질을 메타중아황산소다(Na2S2O5)를 환원제로 사용하여 황산조건에서 침출효율을 비교한 결과이다. 배소온도가 높아질수록 탄소, 분리막 등 유기물의 감소에 의한 무게감량도 증가하였고, 이에 의한 NCM 삼원계 양극활물질의 환원작용도 활발해져 동일한 환원제(Na2S2O5)량을 첨가하였을 때 배소온도가 증가함에 따라 침출율이 증가하는 경향을 나타내었다.[Table 3] shows the cathode active material in sulfuric acid conditions using sodium metabisulfite (Na 2 S 2 O 5 ) as a reducing agent after 1 hour roasting while changing the roasting temperature of the cathode active material from 500℃ to 700℃ in units of 100℃. This is the result of comparing the leaching efficiency. As the roasting temperature increased, the weight loss increased due to the decrease of organic matter such as carbon and separator, and the reduction effect of the NCM ternary cathode active material became active, so that when the same amount of reducing agent (Na 2 S 2 O 5 ) was added, the roasting temperature increased. As it increased, the leaching rate tended to increase.

배소온도에 따른 침출율 Leach rate according to roasting temperature 배소온도(℃)Roasting temperature (℃) 무게감량(%)Weight loss(%) 농도(g/L)Concentration (g/L) 침출율(%)Leach rate (%) CoCo MnMn NiNi LiLi CoCo MnMn NiNi LiLi 없음none 없음none 9.69.6 8.88.8 27.927.9 6.56.5 82.382.3 69.069.0 83.483.4 98.098.0 500500 4.934.93 10.510.5 10.010.0 31.631.6 6.46.4 86.686.6 81.781.7 85.385.3 97.297.2 600600 5.635.63 11.911.9 11.311.3 35.935.9 6.56.5 88.288.2 82.382.3 89.189.1 98.098.0 700700 5.805.80 12.712.7 12.012.0 36.536.5 6.46.4 95.495.4 93.393.3 95.395.3 98.098.0

[공정 2: 불순물 제거][Step 2: Removal of impurities]

침출공정 후 1차 중화단계에서는 알칼리제 소모를 절감하고 NCM 삼원계 양극활물질을 여액내 농축하기위해 양극활물질분말을 추가로 투입하여 pH 3.2로 조절하였다. 이에 따라 구리(Cu), 알루미늄(Al)에 비하여 철(Fe) 성분이 효과적으로 제거된다. 1차 중화단계에서는 고액비(mg/mL) 10의 비율로 양극활물질분말을 첨가하고, 반응온도 70℃에서 1시간 반응하였다. In the first neutralization step after the leaching process, in order to reduce the consumption of alkali agents and to concentrate the NCM ternary cathode active material in the filtrate, an additional cathode active material powder was added to adjust the pH to 3.2. Accordingly, iron (Fe) components are effectively removed compared to copper (Cu) and aluminum (Al). In the first neutralization step, the cathode active material powder was added at a ratio of 10 to a solid-liquid ratio (mg/mL), and the reaction was performed at a reaction temperature of 70°C for 1 hour.

이후 2차 중화단계에서 1차 중화여액을 상온에서 수산화나트륨(NaOH)을 첨가하여 pH 6.5까지 상승시켜 구리(Cu), 알루미늄(Al), 철(Fe) 등의 불순물을 수산화물로 제거하였다. 한편, 2차 중화시 pH를 4.5까지 조절할 경우, 불순물인 구리와 알루미늄이 각각 154 ppm과 92ppm으로 용액속에 상당량 존재하기 때문에 중화시 pH를 4.5이상 6.5이하로 조절하는 것이 바람직하다. 이에 따라 여액은 2차 중화되어 불순물이 제거되며, 본 2차 중화는 25±2℃ 내외의 상온에서 수행될 수 있으며, 구리(Cu), 알루미늄(Al) 성분과 함께 1차 중화 과정이 환원조건 상태여서 일부 잔존하고 있던 Fe(II) 형태의 철(Fe) 성분이 2차 중화 과정에서 제거될 수 있다.Then, in the second neutralization step, the first neutralization filtrate was raised to pH 6.5 by adding sodium hydroxide (NaOH) at room temperature to remove impurities such as copper (Cu), aluminum (Al), and iron (Fe) as hydroxide. On the other hand, when the pH is adjusted to 4.5 during the secondary neutralization, since copper and aluminum, which are impurities, are present in the solution at 154 ppm and 92 ppm, respectively, it is preferable to adjust the pH to 4.5 or more and 6.5 or less. Accordingly, the filtrate is secondary neutralized to remove impurities, and this secondary neutralization can be carried out at room temperature around 25±2℃, and the primary neutralization process along with copper (Cu) and aluminum (Al) components is a reduction condition. Fe (II) form of iron (Fe) component that has been partially remaining in the state can be removed during the secondary neutralization process.

중화공정(불순물 제거)Neutralization process (impurity removal) 단위 (mg/L)Unit (mg/L) pHpH FeFe CuCu AlAl MgMg CaCa LiLi CoCo MnMn NiNi 1차 중화1st neutralization 3.23.2 48.648.6 1,2061,206 481481 5.95.9 9.29.2 10,49010,490 15,02015,020 13,93013,930 43,84043,840 2차 중화Secondary neutralization 4.54.5 1616 154154 9292 2.22.2 8.68.6 10,08010,080 13,63013,630 12,79012,790 39,74039,740 6.56.5 NDND NDND 0.20.2 2.12.1 5.75.7 9,9759,975 12,85012,850 11,36011,360 37,80037,800

(ND: Not Detected)(ND: Not Detected)

[공정 3: 삼원계 공침물 회수 및 수세척][Step 3: Recovery of ternary co-precipitates and washing with water]

불순물이 제거된 여액에 탄산나트륨(Na2CO3)이나 수산화나트륨(NaOH), 수산화칼륨(KOH) 등 알칼리제를 투입하여 니켈(Ni)-코발트(Co)-망간(Mn)을 공침하여 회수하는 공정이다. 반응온도는 25℃ 내외의 상온에서 수행하고 알칼리제가 수산화물일 경우 망간이 회수될 수 있는 pH 9.5부터 10.5까지, 알칼리제가 탄산화합물일경우 니켈이 최종적으로 회수될 수 있는 pH 8 이상 9 이하의 범위에서 수행한다(그래프 1, 2). The process of co-precipitation of nickel (Ni)-cobalt (Co)-manganese (Mn) by adding alkali agents such as sodium carbonate (Na 2 CO 3 ), sodium hydroxide (NaOH), potassium hydroxide (KOH), etc. to the filtrate from which impurities have been removed. to be. The reaction temperature is carried out at room temperature around 25℃ and in the range of pH 9.5 to 10.5 where manganese can be recovered when the alkali agent is a hydroxide, and between pH 8 and 9 or less at which nickel can be finally recovered when the alkali agent is a carbonate compound. Perform (Graphs 1 and 2).

[그래프 1] Metal-Hydroxide의 용해도(25℃, 1atm)[Graph 1] Solubility of Metal-Hydroxide (25℃, 1atm)

Figure pat00001
Figure pat00001

[그래프 2] Metal-Carbonate의 용해도(25℃, 1atm) [Graph 2] Solubility of Metal-Carbonate (25℃, 1atm)

Figure pat00002
Figure pat00002

[표 5]와 [표 6]은 불순물 제거를 위한 중화공정 후 삼원계 양극활물질로 니켈, 코발트, 망간을 탄산염과 수산화물로 각각 공침시켜 회수한 후, 공침물로부터 리튬과 나트륨 등의 불순물 제거를 위해 수세척을 수행한 결과이다. [표 5]에 제시된 탄산염으로 공침 시 최종 pH는 9로 조절 후 상온에서 약 1시간 반응시키고 여과 후 용액 내 회수대상인 니켈, 코발트, 망간의 농도는 100ppm 미만이었으며, 이들 중 탄산염으로 용해도가 가장 높은 니켈의 농도가 98ppm으로 가장 높았다. 회수된 공침물은 총 4회의 수세척을 수행하였으며 수세횟수가 증가할수록 리튬과 나트륨의 용액 내 농도(수세효율)가 감소하였다. 한편, [표 6]에 제시된 수산화물 공침의 경우, pH를 9.5까지 조절하여 상온에서 공침반응을 진행하였으며, 여과 후 코발트, 니켈, 망간의 총 농도는 여액내 10ppm내외로 손실율이 탄산염 공침보다 낮았다. 또한, 수세공정중 니켈, 코발트, 망간의 손실이 탄산염보다 상대적으로 적었으며, 리튬과 나트륨만 선택적으로 제거되는 경향을 나타내었다.[Table 5] and [Table 6] show that nickel, cobalt, and manganese as ternary cathode active materials are recovered by co-precipitation with carbonate and hydroxide, respectively, after the neutralization process for impurities removal, and then the removal of impurities such as lithium and sodium from the coprecipitates. This is the result of performing water washing. When coprecipitation with carbonates shown in [Table 5], the final pH was adjusted to 9, reacted at room temperature for about 1 hour, and after filtration, the concentrations of nickel, cobalt and manganese to be recovered in the solution were less than 100 ppm. Among them, carbonates with the highest solubility The nickel concentration was the highest at 98ppm. The recovered coprecipitate was washed with water four times, and the concentration of lithium and sodium in the solution (washing efficiency) decreased as the number of washings increased. Meanwhile, in the case of the hydroxide coprecipitation shown in [Table 6], the coprecipitation reaction was performed at room temperature by adjusting the pH to 9.5. After filtration, the total concentration of cobalt, nickel, and manganese was about 10 ppm in the filtrate, and the loss rate was lower than that of carbonate coprecipitation. In addition, loss of nickel, cobalt, and manganese during the washing process was relatively lower than that of carbonate, and only lithium and sodium were selectively removed.

NCM탄산염-수세척NCM carbonate-water washing 구분division 구분division CoCo FeFe MnMn NiNi CaCa AlAl LiLi NaNa 단위unit NCMCO3침전NCMCO 3 precipitation 여액Filtrate 1414 NDND 4141 9898 22 0.30.3 6,1886,188 35,31035,310 ppmppm NCMCO3 cakeNCMCO 3 cake 1차수세1st washing NDND NDND 5.25.2 3030 0.10.1 0.010.01 1,8051,805 11,94011,940 2차수세2nd washing NDND NDND 2.82.8 NDND 0.10.1 0.010.01 443443 3,8503,850 3차수세3rd washing 3333 NDND NDND NDND 0.10.1 0.010.01 135135 1,1341,134 4차수세4th washing NDND NDND 3.23.2 NDND 0.10.1 0.010.01 6363 523523

NCM수산화물-수세척NCM hydroxide-water washing 구분division 구분division CoCo CuCu FeFe MnMn MgMg CaCa AlAl NiNi NaNa LiLi 단위unit NCM(OH)2침전NCM(OH) 2 precipitation 여액Filtrate 3 3 ND ND ND ND 9 9 1 One 31 31 ND ND 1.0 1.0 19,360 19,360 6,627 6,627 ppmppm NCM(OH)2 cakeNCM(OH) 2 cake 1차수세1st washing 2 2 ND ND ND ND 11.0 11.0 4.6 4.6 54 54 ND ND 2.7 2.7 5,896 5,896 1,3011,301 2차수세2nd washing 1 One ND ND ND ND 16.0 16.0 ND ND 25 25 ND ND ND ND 1,840 1,840 345 345

[공정 4: 황산재용해][Step 4: Re-dissolving sulfuric acid]

삼원계 NCM탄산염/수산화물 공침후 수세과정을 거쳐 회수된 습케익을 일부 산화된 코발트, 망간, 니켈 등을 환원하기 위해 소량의 환원제로 과산화수소를 첨가해 황산으로 재용해 시켜 복합 황산염 용액을 제조하였다. [표 7]에 제시된 황산염용액의 분석결과에서 알 수 있듯이 회수대상인 코발트, 망간, 니켈을 제외한 불순물로 나트륨의 경우 5,000ppm이하, 리튬 400 ppm이하의 전구체 요구 사양을 만족하는 수준으로 회수되었다. A complex sulfate solution was prepared by adding hydrogen peroxide as a small amount of reducing agent and re-dissolving it with sulfuric acid in order to reduce some oxidized cobalt, manganese, nickel, etc. of the wet cake recovered through water washing after coprecipitation of ternary NCM carbonate/hydroxide. As can be seen from the analysis results of the sulfate solution shown in [Table 7], the impurities excluding cobalt, manganese, and nickel to be recovered were recovered to a level that satisfies the required specifications of the precursor of less than 5,000 ppm of sodium and 400 ppm of lithium.

NCM탄산염/수산화물-황산재용해NCM carbonate/hydroxide-sulfuric acid re-dissolution 구분division pHpH CoCo CuCu FeFe MnMn MgMg CaCa AlAl NiNi NaNa SiSi LiLi 단위unit NCMCO3황산용해NCMCO 3 sulfuric acid dissolution 3.03.0 17,19017,190 NDND NDND 16,29016,290 NDND 2525 4.44.4 47,76047,760 474474 NDND 2727 ppmppm NCM(OH)2황산용해NCM(OH) 2 sulfuric acid dissolution 3.93.9 17,216 17,216 ND ND ND ND 10,774 10,774 0.02 0.02 3.0 3.0 0.4 0.4 51,250 51,250 301 301 NDND 6161

[공정 5: 리튬 회수][Step 5: Lithium recovery]

[표 5]와 [표 6]에서 NCMCO3와 NCM(OH)2로 공침후 여액에 잔존하는 리튬의 농도는 약 6,100 ~ 6,600ppm으로 상당히 농축된 양으로 존재한다. 이로부터 리튬을 회수하기위해 리튬의 농도기준 약 1.2 당량의 제3인산나트륨(Na3PO4)을 첨가하여 반응온도 70℃에서 1시간 반응 후 회수한 리튬은 [표 8]에 나타난 바와 같이 16wt%로 회수되었으며 리튬농도 기준으로 인산리튬(Li3PO4)으로 환산한 경우 약 89%의 순도로 회수하였다. 리튬 회수 후 여액 내 남아있는 리튬의 농도는 약 455ppm정도로 공침후 여액으로부터 리튬은 93%이상 회수가능하였다.In [Table 5] and [Table 6], the concentration of lithium remaining in the filtrate after coprecipitation with NCMCO 3 and NCM(OH) 2 is about 6,100 ~ 6,600 ppm, which is present in a fairly concentrated amount. In order to recover lithium from this, lithium recovered after 1 hour reaction at a reaction temperature of 70°C by adding about 1.2 equivalents of tribasic sodium phosphate (Na 3 PO 4 ) based on the concentration of lithium is 16wt, as shown in [Table 8]. %, and when converted to lithium phosphate (Li 3 PO 4 ) based on lithium concentration, it was recovered with a purity of about 89%. After lithium recovery, the concentration of lithium remaining in the filtrate was about 455ppm, and more than 93% of lithium could be recovered from the filtrate after coprecipitation.

Li3PO4회수Li 3 PO 4 recovery 구분division pHpH 반응온도Reaction temperature Li3PO4 회수(단위: mg/kg)Li 3 PO 4 recovery (unit: mg/kg) 여액내 Li (mg/L)Li in filtrate (mg/L) NaNa MgMg CaCa LiLi Li3PO4 Li 3 PO 4 1111 7070 24,60024,600 0.70.7 0.60.6 160,100160,100 455455

상기의 폐양극활물질분말로부터 전구체 제조를 위한 혼합금속화합물의 제조방법으로 인하여, 폐리튬이차전지로부터 발생되는 폐양극활물질분말을 기존의 습식처리 방법인 용매추출공정을 통한 니켈, 코발트, 망간화합물로 각각 분리하여 회수하지 않고 이들의 공침물로 회수한 후 해당 공침물을 황산에 재용해한다. 이에 최종 수득된 니켈, 코발트, 및 망간 등이 다양한 몰비 조성을 갖는 황산화합물은 니켈, 코발트, 망간 등의 몰비를 조정하여 전구체 제조공정에 재사용될 수 있어 경제성이 향상된다. Due to the method of manufacturing a mixed metal compound for preparing a precursor from the waste cathode active material powder, the waste anode active material powder generated from the waste lithium secondary battery is converted to nickel, cobalt, and manganese compounds through a solvent extraction process, which is a conventional wet treatment method. They are not separated and recovered, but are recovered as their co-precipitate, and the co-precipitate is redissolved in sulfuric acid. Accordingly, the finally obtained sulfuric acid compound having various molar ratio compositions, such as nickel, cobalt, and manganese, can be reused in the precursor manufacturing process by adjusting the molar ratio of nickel, cobalt, and manganese, thereby improving economic efficiency.

또한, 본 발명에 따라서, 폐양극활물질분말을 500℃이상으로 배소하여 배소온도가 증가함에 따라 침출율이 증가하며, 공침물 외의 여액 내의 리튬(Li)을 회수할 수 있고, 중화 단계 이후의 여액에서 칼슘(Ca)을 제거할 수 있다.In addition, according to the present invention, the leaching rate increases as the roasting temperature increases by roasting the waste cathode active material powder at 500°C or more, and lithium (Li) in the filtrate other than the coprecipitate can be recovered, and the filtrate after the neutralization step Calcium (Ca) can be removed from

또한, 본 발명에 따라, 산침출 과정에서의 환원제 첨가량은 환원제 당량 대비 0.4 ~ 0.7의 비율로 첨가하며, 산성 침출제의 농도는 (코발트(Co) + 니켈(Ni) + 망간(Mn))의 몰농도 대비 1.5 ~ 2배의 몰농도로 조절하여 침출 후 여액의 pH가 0.7 ~ 1.5이 되도록 조절하며, 침출반응온도를 50 ~ 95℃로 하면 (코발트(Co) + 니켈(Ni) + 망간(Mn))의 침출속도가 증가될 수 있다. In addition, according to the present invention, the amount of the reducing agent added in the acid leaching process is added in a ratio of 0.4 to 0.7 relative to the equivalent of the reducing agent, and the concentration of the acidic leaching agent is (cobalt (Co) + nickel (Ni) + manganese (Mn)). Adjust the molar concentration to 1.5 ~ 2 times the molar concentration to adjust the pH of the filtrate after leaching to be 0.7 ~ 1.5, and if the leaching reaction temperature is 50 ~ 95 ℃ (cobalt (Co) + nickel (Ni) + manganese ( The leaching rate of Mn)) can be increased.

또한, 본 발명에 따라, 공침 과정에서 반응온도 25±2℃, 알칼리제가 수산화물일 경우 망간(Mn)이 회수될 수 있는 pH 9.5 ~ 10, 알칼리제가 탄산화합물일경우 니켈(Ni)이 최종적으로 회수될 수 있는 pH 8 ~ 9이하의 범위에서 수행되도록 하여 동시에 니켈(Ni)-코발트(Co)-망간(Mn)을 공침시킬 수 있다. In addition, according to the present invention, in the course of coprecipitation, the reaction temperature is 25±2℃, when the alkali agent is a hydroxide, the pH 9.5 to 10 at which manganese (Mn) can be recovered, and when the alkali agent is a carbonate compound, nickel (Ni) is finally recovered. It is possible to perform in a pH range of 8 to 9 or less so that nickel (Ni)-cobalt (Co)-manganese (Mn) can be co-precipitated at the same time.

또한, 본 발명에 따라, 공침 과정을 거쳐 회수된 니켈(Ni)-코발트(Co)-망간(Mn)의 공침물 중 일부 산화되어 3가 상태로 존재할 수 있는 공침물을 환원제를 이용하여 제거할 수 있다. In addition, according to the present invention, some of the co-precipitates of nickel (Ni)-cobalt (Co)-manganese (Mn) recovered through the co-precipitation process are partially oxidized to remove the co-precipitates that may exist in a trivalent state using a reducing agent. I can.

또한, 본 발명에 따라, 산침출 과정을 거쳐 생성된 침출 여액에 폐양극활물질분말을 침출 여액이 pH 3.0 ~ 3.5가 되도록 투입하며, 반응온도 50 ~ 70℃에서 0.5 ~ 1시간 수행하는 1차 중화 과정과, 1차 중화 여액에 상온 조건에서 알칼리제를 투입하여 pH 4.5 ~ 6.5로 하는 2차 중화 과정을 거쳐, 불순물인 철(Fe), 구리(Cu), 알루미늄(Al) 등을 수산화물로 제거할 수 있다. In addition, according to the present invention, the waste anode active material powder is added to the leaching filtrate generated through the acid leaching process so that the leaching filtrate has a pH of 3.0 to 3.5, and the first neutralization is performed at a reaction temperature of 50 to 70°C for 0.5 to 1 hour. Through the process and a second neutralization process of pH 4.5 ~ 6.5 by adding an alkali agent to the first neutralization filtrate at room temperature, impurities such as iron (Fe), copper (Cu), and aluminum (Al) are removed as hydroxide. I can.

또한, 본 발명에 따라, 기존의 용매추출공정에 비하여 경제적이고 효율적으로 유가금속을 회수할 수 있으며, 리튬의 경우 용매추출공정의 회수 농도(Li < 3g/L)에 비하여 훨씬 높은 농도(Li > 7g/L)로 회수하여 부수적으로 리튬의 회수율 증대 및 농축 공정의 소요 비용을 절감할 수 있다.In addition, according to the present invention, it is possible to recover valuable metals economically and efficiently compared to the conventional solvent extraction process, and in the case of lithium, a much higher concentration (Li> than the recovery concentration (Li <3g/L) of the solvent extraction process) 7g/L), it is possible to consequently increase the recovery rate of lithium and reduce the cost of the concentration process.

Claims (6)

폐양극활물질분말로부터 전구체 제조를 위한 혼합금속화합물의 제조방법에 있어서,
(a) 산성 침출제 및 H2O2, SO2, Na2S2O5, NaHSO3, Na2SO3, KHSO3, K2SO3, FeSO4, H2S, 아스코르브산(ascorbic acid), 글루코스(glucose) 중 적어도 어느 하나의 환원제를 이용하여 상기 폐양극활물질분말을 침출시키는 단계;
(b) 침출된 여액에 고액비 100 ~ 150(g/L)로 양극활물질분말을 추가로 투입하여 반응시키는 단계;
(c) 반응된 여액에 NaOH, KOH 중 적어도 하나를 포함하는 알칼리제를 투입하여 pH 6.3 ~ 6.5에서 구리(Cu), 알루미늄(Al), 철(Fe)의 수산화화합물을 제거하는 단계;
(d) 구리(Cu), 알루미늄(Al), 철(Fe)의 수산화화합물이 제거된 상기 여액에 탄산나트륨(Na2CO3)이나 수산화나트륨(NaOH), 수산화칼륨(KOH) 중 적어도 하나를 포함하는 알칼리제를 투입하여 니켈(Ni)-코발트(Co)-망간(Mn)을 공침시키는 단계; 및
(e) 공침된 공침물을 물로 세척하며, 세척된 공침물을 황산용액에 용해시켜 상기 혼합금속화합물을 포함하는 복합 황산염 용액을 제조하는 단계를 포함하는 것을 특징으로 하는 혼합금속화합물의 제조방법.
In the method for producing a mixed metal compound for preparing a precursor from waste cathode active material powder,
(a) Acidic leachants and H 2 O 2 , SO 2 , Na 2 S 2 O 5 , NaHSO 3 , Na 2 SO 3 , KHSO 3 , K 2 SO 3 , FeSO 4 , H 2 S, ascorbic acid ), leaching the waste cathode active material powder using at least one reducing agent of glucose;
(b) reacting by additionally adding positive electrode active material powder at a high-liquid ratio of 100 to 150 (g/L) to the leached filtrate;
(c) removing a hydroxide compound of copper (Cu), aluminum (Al), and iron (Fe) at pH 6.3 to 6.5 by adding an alkali agent containing at least one of NaOH and KOH to the reacted filtrate;
(d) The filtrate from which hydroxide compounds of copper (Cu), aluminum (Al), and iron (Fe) have been removed contains at least one of sodium carbonate (Na 2 CO 3 ), sodium hydroxide (NaOH), and potassium hydroxide (KOH) Co-precipitation of nickel (Ni)-cobalt (Co)-manganese (Mn) by introducing an alkali agent; And
(e) washing the co-precipitate with water, and dissolving the washed co-precipitate in a sulfuric acid solution to prepare a complex sulfate solution containing the mixed metal compound.
제 1 항에 있어서,
상기 (a) 단계 이전에 상기 폐양극활물질분말을 500℃이상으로 배소하는 단계;
상기 (d) 단계에서의 공침물 외의 여액 내의 리튬(Li)을 25℃ ~ 90℃에서 회수하는 단계; 및
상기 (b) 단계 이후 NaF와 NH4F를 포함하는 불소화합물을 첨가하여 상기 여액에서 칼슘(Ca)을 CaF2로 제거하는 단계를 더 포함하는 것을 특징으로 하는 혼합금속화합물의 제조방법.
The method of claim 1,
Roasting the waste cathode active material powder at 500°C or higher before step (a);
Recovering lithium (Li) in the filtrate other than the coprecipitate in step (d) at 25°C to 90°C; And
After the step (b), adding a fluorine compound containing NaF and NH 4 F to remove calcium (Ca) from the filtrate with CaF 2 A method for producing a mixed metal compound, characterized in that it further comprises.
제 1 항에 있어서,
상기 (a) 단계의 침출시키는 단계는,
상기 환원제 첨가량은 상기 폐양극활물질분말 내 포함된 (코발트(Co) + 니켈(Ni) + 망간(Mn))을 환원하는데 필요한 환원제 당량 대비 0.4 ~ 0.7의 비율로 첨가하며, 상기 산성 침출제의 농도는 상기 침출된 여액 내 포함된 (코발트(Co) + 니켈(Ni) + 망간(Mn))의 몰농도 대비 1.5 ~ 2배의 몰농도로 조절하여 침출 후 여액의 pH가 0.7 ~ 1.5이 되도록 조절하며, 침출반응온도는 50 ~ 95℃인 것을 특징으로 하는 혼합금속화합물의 제조방법.
The method of claim 1,
The leaching of step (a),
The amount of the reducing agent added is added in a ratio of 0.4 to 0.7 relative to the equivalent amount of the reducing agent required to reduce (cobalt (Co) + nickel (Ni) + manganese (Mn)) contained in the waste cathode active material powder, and the concentration of the acidic leachant Is adjusted to a molar concentration of 1.5 to 2 times the molar concentration of (cobalt (Co) + nickel (Ni) + manganese (Mn)) contained in the leached filtrate so that the pH of the filtrate after leaching is 0.7 ~ 1.5 And, the leaching reaction temperature is 50 ~ 95 ℃ method for producing a mixed metal compound, characterized in that.
제 1 항에 있어서,
상기 (d) 단계의 공침시키는 단계는,
반응온도 25±2℃에서 수행되고,
상기 알칼리제가 수산화물일 경우 망간(Mn)이 회수될 수 있는 pH 9.5 ~ 10에서 수행되며, 상기 알칼리제가 탄산화합물일경우 니켈(Ni)이 최종적으로 회수될 수 있는 pH 8 ~ 9이하의 범위에서 수행되도록 하는 것을 특징으로 하는 혼합금속화합물의 제조방법.
The method of claim 1,
The coprecipitation of step (d),
It is carried out at a reaction temperature of 25±2℃,
When the alkali agent is a hydroxide, it is carried out at a pH of 9.5 to 10 where manganese (Mn) can be recovered, and when the alkali is a carbonic acid compound, it is carried out at a pH of 8 to 9 or less at which nickel (Ni) can be finally recovered. Method for producing a mixed metal compound, characterized in that to be.
제 1 항에 있어서,
상기 (e) 단계의 복합 황산염 용액을 제조하는 단계는,
상기 공침물에 공존하는 나트륨(Na)과 리튬(Li)을 제거하기 위한 수세온도는 25℃ ~ 50℃ 에서 상기 공침물의 고액비가 500 ~ 1,000(g/L)인 비율로 적어도 2회 이상 수세척하는 단계; 및
상기 복합 황산염 용액이 pH 3.5 ~ 4가 되도록 환원제를 첨가하는 단계를 포함하는 것을 특징으로 하는 혼합금속화합물의 제조방법.
The method of claim 1,
The step of preparing the complex sulfate solution of step (e),
The water washing temperature for removing sodium (Na) and lithium (Li) co-existing in the co-precipitate is washed with water at least two times at a rate of 500 to 1,000 (g/L) of the co-precipitate at a high-liquid ratio of 500 to 1,000 (g/L) at 25°C to 50°C Step to do; And
A method for producing a mixed metal compound comprising the step of adding a reducing agent to the complex sulfate solution to a pH of 3.5 to 4.
제 1 항에 있어서,
상기 (b) 단계의 반응시키는 단계는,
상기 폐양극활물질분말을 상기 침출액이 pH 3.0 ~ 3.5가 되도록 투입하며, 반응온도 50 ~ 70℃에서 0.5 ~ 1시간 수행하는 것을 특징으로 하는 혼합금속화합물의 제조방법.
The method of claim 1,
The step of reacting in step (b),
The waste cathode active material powder is added so that the leachate has a pH of 3.0 to 3.5, and the method for producing a mixed metal compound is performed at a reaction temperature of 50 to 70°C for 0.5 to 1 hour.
KR1020190046841A 2019-04-22 2019-04-22 Manufacturing Method of Mixed Metal Compounds for Preparing Precursors from Waste Cathode Active Material Powders KR102206952B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190046841A KR102206952B1 (en) 2019-04-22 2019-04-22 Manufacturing Method of Mixed Metal Compounds for Preparing Precursors from Waste Cathode Active Material Powders

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190046841A KR102206952B1 (en) 2019-04-22 2019-04-22 Manufacturing Method of Mixed Metal Compounds for Preparing Precursors from Waste Cathode Active Material Powders

Publications (2)

Publication Number Publication Date
KR20200123659A true KR20200123659A (en) 2020-10-30
KR102206952B1 KR102206952B1 (en) 2021-01-25

Family

ID=73048020

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190046841A KR102206952B1 (en) 2019-04-22 2019-04-22 Manufacturing Method of Mixed Metal Compounds for Preparing Precursors from Waste Cathode Active Material Powders

Country Status (1)

Country Link
KR (1) KR102206952B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102324910B1 (en) * 2021-02-05 2021-11-12 (주)새빗켐 Manufacturing method of precursor raw material from disposed cathode material of lithium secondary battery
KR102378751B1 (en) * 2021-07-06 2022-03-25 한국지질자원연구원 Method for recovering high value resources from lithium waste solution and fluoride waste solution
WO2022252602A1 (en) * 2021-05-31 2022-12-08 广东邦普循环科技有限公司 Method for safely leaching waste battery and application
KR20230136850A (en) * 2022-03-20 2023-09-27 전성호 Method of extracting lithium carbonate from mixtures containing lithium
CN116845410A (en) * 2023-07-25 2023-10-03 湖南德景源科技有限公司 Method for recycling valuable metals from waste ternary lithium battery
WO2024177632A1 (en) * 2023-02-23 2024-08-29 Ascend Elements, Inc. Microstructure tuning of cathode material
KR102702390B1 (en) * 2023-10-31 2024-09-05 (주)에코프로머티리얼즈 A method for recovering residual valuable metals from wastewater generated in the precursor manufacturing process for cathode active materials

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230140992A (en) 2022-03-30 2023-10-10 주식회사 한솔케미칼 Effective metal recovering method from exhausted lithium secondary batteries
KR20240117297A (en) 2023-01-25 2024-08-01 주식회사 한솔케미칼 Valuable metal recovering method from exhausted lithium secondary batteries by using the maleic acid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110060089A (en) * 2009-11-30 2011-06-08 한국지질자원연구원 Method for producing cmb catalyst recycled with lithium ion battery and ternary cathode materials
JP2014156649A (en) * 2013-02-18 2014-08-28 Jx Nippon Mining & Metals Corp Metal recovery method from waste positive electrode material and waste battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110060089A (en) * 2009-11-30 2011-06-08 한국지질자원연구원 Method for producing cmb catalyst recycled with lithium ion battery and ternary cathode materials
JP2013512345A (en) * 2009-11-30 2013-04-11 韓国地質資源研究院 Method for producing CMB liquid phase catalyst from lithium ion battery and ternary positive electrode active material
JP2014156649A (en) * 2013-02-18 2014-08-28 Jx Nippon Mining & Metals Corp Metal recovery method from waste positive electrode material and waste battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102324910B1 (en) * 2021-02-05 2021-11-12 (주)새빗켐 Manufacturing method of precursor raw material from disposed cathode material of lithium secondary battery
WO2022252602A1 (en) * 2021-05-31 2022-12-08 广东邦普循环科技有限公司 Method for safely leaching waste battery and application
KR102378751B1 (en) * 2021-07-06 2022-03-25 한국지질자원연구원 Method for recovering high value resources from lithium waste solution and fluoride waste solution
WO2023282564A1 (en) * 2021-07-06 2023-01-12 한국지질자원연구원 High value-added method for resource recovery from lithium sludge and fluoride sludge
KR20230136850A (en) * 2022-03-20 2023-09-27 전성호 Method of extracting lithium carbonate from mixtures containing lithium
WO2024177632A1 (en) * 2023-02-23 2024-08-29 Ascend Elements, Inc. Microstructure tuning of cathode material
CN116845410A (en) * 2023-07-25 2023-10-03 湖南德景源科技有限公司 Method for recycling valuable metals from waste ternary lithium battery
CN116845410B (en) * 2023-07-25 2024-03-15 湖南德景源科技有限公司 Method for recycling valuable metals from waste ternary lithium battery
KR102702390B1 (en) * 2023-10-31 2024-09-05 (주)에코프로머티리얼즈 A method for recovering residual valuable metals from wastewater generated in the precursor manufacturing process for cathode active materials

Also Published As

Publication number Publication date
KR102206952B1 (en) 2021-01-25

Similar Documents

Publication Publication Date Title
KR102206952B1 (en) Manufacturing Method of Mixed Metal Compounds for Preparing Precursors from Waste Cathode Active Material Powders
EP4286325A1 (en) Method for resource recycling of nickel-iron alloy and use thereof
KR102154599B1 (en) Method for Separation and Recovery of Valuable Metals from Cathode Active Material
CN109088115B (en) Method for preparing ternary cathode material by recycling waste lithium ion battery cathode material
KR101682217B1 (en) A Method Of Manufacturing A Lithium Carbonate With High Purity By Recycling A Lithium From A Anode Material Of Used Lithium Ion Secondary Battery
JP2023522088A (en) Comprehensive recovery and utilization method for used lithium iron phosphate batteries
JP5632169B2 (en) Method for producing lithium concentrate from lithium-containing liquid and method for producing lithium carbonate
CN112410556B (en) Method for recovering waste lithium iron phosphate powder
KR102606229B1 (en) Selective recovery of lithium from ternary cathode active material of spent lithium ion batteries
CN113880063B (en) Aluminum removal method for phosphorus iron slag after lithium extraction of waste lithium iron phosphate and preparation method for battery grade iron phosphate
CN111180819B (en) Preparation method of battery-grade Ni-Co-Mn mixed solution and battery-grade Mn solution
CN115448279B (en) Method for preparing battery grade ferric phosphate material by recycling lithium-extracted ferrophosphorus slag
CN114214517A (en) Method for removing fluorine in lithium battery anode leaching solution
JP2019153562A (en) Lithium carbonate production method and lithium carbonate
CN112723330A (en) Preparation method and application of iso-phospho-ferromanganese iron phosphate
CN114506834A (en) Treatment method of waste lithium iron phosphate powder and carbon-coated lithium iron phosphate
GB2625449A (en) Recovery method for spent lithium battery materials
CN111137869A (en) Preparation method of lithium iron phosphate
KR102667133B1 (en) Method for recovering valuable metals from spent cathodic active material
CN118145611A (en) Method for recycling lithium iron phosphate lithium extraction slag
KR101839460B1 (en) High-purity lithium carbonate recovery method from solution Containing Lithium
EP3006580B1 (en) Method for producing nickel-containing acidic solution
CN114572953A (en) Method for removing metal impurities in ferrous phosphate acidic solution and application
KR20230136948A (en) Selective recovery method of valuable metals using solvent extraction from lithium secondary battery waste
CA3208933A1 (en) Process for cathode active material precursor preparation

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant