KR20230140992A - Effective metal recovering method from exhausted lithium secondary batteries - Google Patents

Effective metal recovering method from exhausted lithium secondary batteries Download PDF

Info

Publication number
KR20230140992A
KR20230140992A KR1020220039959A KR20220039959A KR20230140992A KR 20230140992 A KR20230140992 A KR 20230140992A KR 1020220039959 A KR1020220039959 A KR 1020220039959A KR 20220039959 A KR20220039959 A KR 20220039959A KR 20230140992 A KR20230140992 A KR 20230140992A
Authority
KR
South Korea
Prior art keywords
acid solution
leaching
active material
cathode active
metals
Prior art date
Application number
KR1020220039959A
Other languages
Korean (ko)
Inventor
서인석
권남
나단
윤백상
김용두
김재국
이한얼
Original Assignee
주식회사 한솔케미칼
전북대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한솔케미칼, 전북대학교산학협력단 filed Critical 주식회사 한솔케미칼
Priority to KR1020220039959A priority Critical patent/KR20230140992A/en
Publication of KR20230140992A publication Critical patent/KR20230140992A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/16Extraction of metal compounds from ores or concentrates by wet processes by leaching in organic solutions
    • C22B3/1608Leaching with acyclic or carbocyclic agents
    • C22B3/1616Leaching with acyclic or carbocyclic agents of a single type
    • C22B3/165Leaching with acyclic or carbocyclic agents of a single type with organic acids
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching

Abstract

본 발명은 폐리튬이차전지의 양극활물질로부터 유효한 금속 성분을 회수하기 위한 방법으로, 종래에 비해 낮은 농도의 아세트산과 황산의 혼합 산 용액을 사용하여 황산의 단독 사용과 유사한 수준의 침출 효율을 갖는 방법을 제공한다.The present invention is a method for recovering effective metal components from the cathode active material of waste lithium secondary batteries, using a mixed acid solution of acetic acid and sulfuric acid at a lower concentration than the conventional method, and has a leaching efficiency similar to that of sulfuric acid alone. provides.

Description

아세트산을 이용한 폐리튬이차전지의 유효금속 회수 방법 {Effective metal recovering method from exhausted lithium secondary batteries} Effective metal recovery method from exhausted lithium secondary batteries using acetic acid {Effective metal recovering method from exhausted lithium secondary batteries}

본 발명은 아세트산을 이용하여 폐리튬이차전지의 양극활물질로부터 유효금속을 회수하는 방법에 관한 것이다.The present invention relates to a method for recovering effective metals from the cathode active material of a waste lithium secondary battery using acetic acid.

최근 수십년 동안 리튬이차전지는 에너지 밀도, 출력 및 수명이 매우 뛰어난 에너지 저장 장치로, 다양한 현대 전기 및 전자 장치에 사용되고 있다. 예를 들어, 휴대 전화, 랩탑, 전기 및 하이브리드 차량, 보조 배터리 및 오프그리드 재생 에너지, 에너지 저장 시스템(ESS)과 같은 목적을 들 수 있다.In recent decades, lithium secondary batteries have been used in a variety of modern electrical and electronic devices as energy storage devices with excellent energy density, output, and lifespan. Examples include mobile phones, laptops, electric and hybrid vehicles, auxiliary batteries and off-grid renewable energy, and energy storage systems (ESS).

이와 같은 리튬이차전지의 사용이 증가하면서, 수명이 끝난 전지의 폐기물을 처리하는 문제가 대두되고 있다. 리튬이차전지를 단순 매립하는 경우 전해질과 금속 화합물이 느린 속도로 토양으로 침출되며 오염을 심하게 증가시킬 수 있기 때문에 심각한 토양 및 수질 오염을 유발할 수 있다.As the use of lithium secondary batteries increases, the problem of disposing of waste from batteries at the end of their lifespan is emerging. When lithium secondary batteries are simply buried, electrolytes and metal compounds leach into the soil at a slow rate and can significantly increase pollution, which can cause serious soil and water pollution.

방전된 리튬이차전지는 리튬(Li), 코발트(Co)와 같은 희귀한 금속을 포함하고 있으며, 리튬 또는 코발트를 포함하는 천연 광물은 많은 경우 폐리튬이차전지의 양극 활물질보다 많은 불순물을 포함하기도 한다. 따라서, 폐리튬이차전지의 양극 활물질 내의 금속을 회수하여 재활용하는 것으로 환경오염을 줄이는 한편 자원의 재활용 가능성을 크게 높일 수 있다.Discharged lithium secondary batteries contain rare metals such as lithium (Li) and cobalt (Co), and natural minerals containing lithium or cobalt often contain more impurities than the positive electrode active material of waste lithium secondary batteries. . Therefore, by recovering and recycling the metal in the positive electrode active material of a waste lithium secondary battery, environmental pollution can be reduced and the recycling possibility of resources can be greatly increased.

이와 같은 폐양극활물질로부터 금속을 회수하는 방법에 관한 관심이 높아지면서, 후속적인 열분해 또는 습식 제련 작업에 더하여 기계적 전처리가 필요한 방법이 주로 사용되고 있다.As interest in methods for recovering metals from such waste cathode active materials increases, methods that require mechanical pretreatment in addition to subsequent thermal decomposition or hydrometallurgical operations are mainly used.

또한, 황산을 이용한 금속의 침출을 사용하는 방법이 개발됨으로써, 현재 대부분의 회수 기술은 전술한 기술 중 어느 하나를 사용하고 있다.Additionally, with the development of a method using leaching of metals using sulfuric acid, most recovery technologies currently use one of the aforementioned technologies.

그러나, 이와 같은 당업계에 공지된 공정들 대부분은 높은 에너지를 필요로 하며, 유해 화학물질을 대량으로 사용하는 문제점이 있다. 이러한 유해 배출물은 공정 지속 가능성을 낮추기 때문에, 이러한 문제점을 해결하기 위해 광물 산을 대체하는 유기 산의 사용 방법이 점차 연구되고 있는 추세다. 유기 산은 광물 산에 비해 생분해성을 가지고, 유해 가스의 유출이 적으며, 충분히 희석되는 경우 수류로 배출하여도 큰 문제가 없는 장점이 있다.However, most of these processes known in the art require high energy and have the problem of using large amounts of hazardous chemicals. Because these hazardous emissions reduce the sustainability of the process, the use of organic acids to replace mineral acids is being increasingly studied to solve these problems. Organic acids have the advantage of being biodegradable compared to mineral acids, emitting less harmful gases, and, when sufficiently diluted, discharging into water without causing major problems.

(0001) 대한민국 등록특허공보 제10-2206952호 (2019. 04. 22.)(0001) Republic of Korea Patent Publication No. 10-2206952 (2019. 04. 22.) (0002) 대한민국 공개특허공보 제10-2020-0138496호 (2019. 05. 30.)(0002) Republic of Korea Patent Publication No. 10-2020-0138496 (2019. 05. 30.) (0003) 대한민국 등록특허공보 제10-2137174호 (2020. 02. 07.)(0003) Republic of Korea Patent Publication No. 10-2137174 (2020. 02. 07.)

상기와 같은 문제점을 해결하기 위하여 본 발명은 환경오염 우려가 적은 아세트산을 사용하여 황산의 사용량을 줄이는 한편 높은 수율로 리튬 이차전지의 폐양극활물질에 존재하는 유효금속을 회수하는 신규한 방법을 제공하는 것을 목적으로 한다.In order to solve the above problems, the present invention reduces the amount of sulfuric acid used by using acetic acid, which is less likely to pollute the environment, while providing a novel method for recovering effective metals present in the spent cathode active material of lithium secondary batteries with high yield. The purpose is to

상기 목적을 달성하기 위한 본 발명의 일 양태는 리튬 이차전지의 폐양극활물질에 존재하는 유효금속을 회수하는 방법에 관한 것이다.One aspect of the present invention for achieving the above object relates to a method for recovering effective metals present in waste cathode active material of a lithium secondary battery.

구체적으로, 폐양극활물질로부터 유효금속을 회수하는 방법은 아세트산 용액과 황산 용액을 혼합하되, 아세트산 용액 : 황산 용액의 몰 농도 비가 1 : 0.1 내지 5.0 이며, 동일한 부피를 갖는 두 용액을 혼합하여 산 용액을 제조하는 단계; 상기 산 용액 100 중량부에 대하여 과산화수소수를 1 내지 10 중량부 첨가하여 혼합 용액을 제조하는 단계; 및 폐양극활물질 분말을 혼합용액에 첨가하고 교반 및 가열하여 유효금속을 침출시켜 침출 용액을 제조하는 단계;를 포함하는 것일 수 있다.Specifically, the method for recovering effective metals from waste cathode active material is to mix an acetic acid solution and a sulfuric acid solution, where the molar concentration ratio of the acetic acid solution: sulfuric acid solution is 1: 0.1 to 5.0, and mix the two solutions with the same volume to form an acid solution. manufacturing a; Preparing a mixed solution by adding 1 to 10 parts by weight of hydrogen peroxide to 100 parts by weight of the acid solution; and adding waste cathode active material powder to the mixed solution and stirring and heating to leach the effective metal to prepare a leaching solution.

상기 산 용액 내 화학종의 몰 농도 합은 0.5M 이상일 수 있다.The sum of molar concentrations of chemical species in the acid solution may be 0.5M or more.

이때, 상기 아세트산 용액 및 상기 황산 용액의 농도는 적어도 0.1M 이상인 것을 특징으로 하는 것일 수 있다.At this time, the concentration of the acetic acid solution and the sulfuric acid solution may be at least 0.1M or more.

이와 같은 아세트산 용액 및 황산 용액을 혼합함으로써 상기 산 용액의 pH는 0.1 내지 1.5인 것을 특징으로 할 수 있다.By mixing such an acetic acid solution and a sulfuric acid solution, the pH of the acid solution may be 0.1 to 1.5.

상기 폐양극활물질은 리튬, 니켈 및 코발트 중 어느 하나 이상과, 망간, 알루미늄 및 철 중 어느 하나 이상을 유효금속으로써 포함하는 것으로, 바람직하게는 리튬을 포함하며, 니켈, 코발트 및 망간을 더 포함하는 것일 수 있다.The waste positive electrode active material contains one or more of lithium, nickel, and cobalt, and one or more of manganese, aluminum, and iron as effective metals, preferably containing lithium, and further containing nickel, cobalt, and manganese. It may be.

전술한 바와 같은 산 용액을 사용하는 경우 50 ~ 120℃의 온도를 유지하며 교반을 수행함으로써 유효금속의 침출이 발생할 수 있다.When using an acid solution as described above, leaching of effective metals may occur by performing stirring while maintaining a temperature of 50 to 120°C.

이러한 침출 과정을 통해 침출 용액 내에 상기 유효금속이 적어도 하나 이상이 포함될 수 있다.Through this leaching process, at least one of the effective metals may be included in the leaching solution.

이때, 상기 침출 용액에 있어서, 하기 식 1로 표기되는 유효금속의 침출 효율이 80% 이상인 특징을 가질 수 있다.At this time, the leaching solution may have the characteristic of having a leaching efficiency of 80% or more of effective metals represented by Equation 1 below.

[식 1][Equation 1]

유효금속의 침출효율(%)=(침출 용액으로 추출된 유효금속의 총량)/(폐양극활물질 내 유효금속의 총량) * 100Leaching efficiency of active metals (%) = (Total amount of active metals extracted with leaching solution)/(Total amount of active metals in waste cathode active material) * 100

(이때, 상기 유효금속은 리튬, 니켈, 코발트, 망간, 알루미늄 및 철 중 선택되는 어느 하나인 금속이다.)(At this time, the effective metal is any one selected from lithium, nickel, cobalt, manganese, aluminum, and iron.)

상기 유효금속의 총량은 ICP(Inductively Coupled Plasma)법 및 MS(Mass Spectrometry)와 같은 분석법으로 관측되는 것일 수 있다.The total amount of effective metals may be observed by analysis methods such as ICP (Inductively Coupled Plasma) and MS (Mass Spectrometry).

본 발명은 전술한 바와 같은 방법으로 유효금속을 침출한 이후, 상기 침출 용액을 건조하여 분말화하는 단계를 더 포함할 수 있으며, 상기 침출 용액을 건조하는 방법은 통상적으로 수행되는 열풍 건조, 진공 건조, 분무 건조, 동결 건조 및 감압 건조 중 선택되는 1종의 방법으로 수행되는 것일 수 있다.The present invention may further include the step of drying the leaching solution into powder after leaching the effective metal by the method described above, and the method of drying the leaching solution is conventionally performed, such as hot air drying or vacuum drying. , may be performed by one method selected from spray drying, freeze drying, and reduced pressure drying.

본 발명은 아세트산을 사용하여 리튬 이차전지용 폐양극활물질의 유효금속을 회수하는 신규한 방법에 관한 것으로, 아세트산과 황산이 혼합된 산 용액을 사용함으로써 황산으로 인한 환경오염을 경감할 수 있으면서도 회수 효율이 높아 경제적인 장점을 갖는다.The present invention relates to a novel method for recovering effective metals from waste cathode active materials for lithium secondary batteries using acetic acid. By using an acid solution mixed with acetic acid and sulfuric acid, environmental pollution due to sulfuric acid can be reduced while the recovery efficiency is improved. It is high and has economic advantages.

이하, 본 발명에 따른 리튬 이차전지의 폐양극활물질에 존재하는 유효금속을 회수하는 방법에 대하여 상세히 설명한다. 다음에 소개하는 도면들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 예로써 제공하는 것이다. 따라서, 본 발명은 이하 제시되는 도면들에 한정되지 않고 다른 형태로 구체화될 수도 있으며, 이하 제시되는 도면들은 본 발명의 사상을 명확히 하기 위해 과장되어 도시될 수 있다. 이때, 본 발명에서 사용하는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.Hereinafter, a method for recovering effective metals present in the waste cathode active material of a lithium secondary battery according to the present invention will be described in detail. The drawings introduced below are provided as examples so that the idea of the present invention can be sufficiently conveyed to those skilled in the art. Accordingly, the present invention is not limited to the drawings presented below and may be embodied in other forms, and the drawings presented below may be exaggerated to clarify the spirit of the present invention. At this time, if there is no other definition in the technical and scientific terms used in the present invention, they have the meanings commonly understood by those skilled in the art in the technical field to which this invention pertains, and the present invention is described in the following description and accompanying drawings. Descriptions of known functions and configurations that may unnecessarily obscure the gist of are omitted.

본 발명은 리튬 이차전지의 폐양극활물질에 존재하는 유효금속을 회수하는 방법에 관한 것으로, 아세트산 용액 : 황산 용액을 혼합한 산 용액을 개시하며, 폐양극활물질 내의 유효금속이 상기 산 용액으로 침출되는 현상을 이용한다.The present invention relates to a method for recovering effective metals present in the waste cathode active material of a lithium secondary battery. Disclosed is an acid solution mixed with an acetic acid solution and a sulfuric acid solution, wherein the effective metals in the waste cathode active material are leached into the acid solution. Take advantage of the phenomenon.

상기 폐양극활물질은 리튬, 니켈 및 코발트 중 어느 하나 이상과, 망간, 알루미늄 및 철 중 어느 하나 이상을 유효금속으로써 포함하는 것으로, 바람직하게는 리튬을 포함하며, 니켈, 코발트 및 망간을 더 포함하는 것일 수 있다.The waste positive electrode active material contains one or more of lithium, nickel, and cobalt, and one or more of manganese, aluminum, and iron as effective metals, preferably containing lithium, and further containing nickel, cobalt, and manganese. It may be.

상기 산 용액은 아세트산 용액 및 황산 용액의 혼합액으로, 아세트산 용액과 황산 용액을 혼합하되, 아세트산 용액 : 황산 용액의 몰 농도 비가 1 : 0.1 내지 5.0 이며, 동일한 부피를 갖는 두 용액을 혼합하는 것을 특징으로 한다. 이때, 바람직하게는 아세트산 용액 : 황산 용액의 몰 농도 비가 1 : 0.25 내지 5.0, 더욱 바람직하게는 0.25 초과 2.5 이하일 수 있다.The acid solution is a mixed solution of an acetic acid solution and a sulfuric acid solution, and the acetic acid solution and the sulfuric acid solution are mixed, wherein the molar concentration ratio of the acetic acid solution and the sulfuric acid solution is 1:0.1 to 5.0, and the two solutions having the same volume are mixed. do. At this time, the molar concentration ratio of the acetic acid solution to the sulfuric acid solution may be preferably 1:0.25 to 5.0, more preferably greater than 0.25 and less than or equal to 2.5.

상기 산 용액을 구성하는 아세트산 및 황산 용액은 서로 독립적으로 구성될 수 있으며, 보다 바람직하게는 상기 산 용액 내 화학종의 몰 농도 합은 0.5 M 이상일 수 있다.The acetic acid and sulfuric acid solutions constituting the acid solution may be composed independently of each other, and more preferably, the sum of molar concentrations of chemical species in the acid solution may be 0.5 M or more.

상기 화학종들의 농도의 총합이 높을수록 침출 효율이 극대화될 수 있으나, 1.0 M에서 리튬, 니켈, 코발트 및 망간의 침출 효율이 모두 95% 이상으로, 농도의 증가에 따른 침출 효율의 향상폭이 미미하므로, 상기 화학종의 농도의 상한은 2.0 M, 바람직하게는 1.5 M, 더욱 바람직하게는 1.0 M일 수 있다.The higher the total concentration of the above chemical species, the higher the leaching efficiency. However, at 1.0 M, the leaching efficiencies of lithium, nickel, cobalt, and manganese are all over 95%, so the improvement in leaching efficiency as the concentration increases is minimal. Therefore, the upper limit of the concentration of the chemical species may be 2.0 M, preferably 1.5 M, and more preferably 1.0 M.

또한, 상기 화학종들의 농도의 총합은 0.5 M 이상인 것이 바람직하며, 이보다 낮은 경우 침출 효율이 급격하게 낮아져 좋지 않다. 이때, 바람직하게는 0.6 M 이상, 더욱 바람직하게는 0.6 M을 초과하는 것이 좋을 수 있다.In addition, it is preferable that the total concentration of the above chemical species is 0.5 M or more, and if it is lower than this, the leaching efficiency is drastically lowered, which is not good. At this time, it may be desirable to preferably exceed 0.6 M, and more preferably exceed 0.6 M.

이때, 아세트산 용액 및 황산 용액의 농도는 서로 독립적으로 자유롭게 조절할 수 있으나, 바람직하게는 0.1 ~ 1.5 M인 것이 좋으며, 바람직하게는 0.1 ~ 1.0M, 더욱 바람직하게는 0.2 ~ 1.0 M일 수 있다.At this time, the concentrations of the acetic acid solution and the sulfuric acid solution can be freely adjusted independently of each other, but are preferably 0.1 to 1.5 M, preferably 0.1 to 1.0 M, and more preferably 0.2 to 1.0 M.

상기 산 용액을 구성하는 아세트산 또는 황산 용액의 몰 농도가 0.1M 미만인 경우에는 침출 효율이 매우 낮아 바람직하지 않다.If the molar concentration of the acetic acid or sulfuric acid solution constituting the acid solution is less than 0.1M, the leaching efficiency is very low and is not desirable.

상기 산 용액을 구성하는 황산 용액의 몰 농도가 높을수록 침출효율이 높을 수 있으나, 황산 용액의 농도가 1.5 M을 초과하는 경우 폐액으로 인한 환경오염 문제가 발생할 수 있으며, 효율의 증가량 대비 원자재 비용 및 처리 비용이 증가하여 좋지 않다.The higher the molar concentration of the sulfuric acid solution constituting the acid solution, the higher the leaching efficiency. However, if the concentration of the sulfuric acid solution exceeds 1.5 M, problems with environmental pollution due to waste liquid may occur, and the cost of raw materials and This is not good as processing costs increase.

이를 위해 상기 아세트산 용액 및 상기 황산 용액의 농도는 적어도 0.1 M 이상인 것을 특징으로 하는 것일 수 있다. 이때, 아세트산 용액의 농도는 바람직하게는 0.2 M 이상일 수 있고, 더욱 바람직하게는 0.3 M 이상일 수 있다. 또한, 황산 용액의 농도는 바람직하게는 0.2 M 이상, 더욱 바람직하게는 0.3 M 이상일 수 있다.To this end, the concentrations of the acetic acid solution and the sulfuric acid solution may be at least 0.1 M or more. At this time, the concentration of the acetic acid solution may be preferably 0.2 M or more, and more preferably 0.3 M or more. Additionally, the concentration of the sulfuric acid solution may be preferably 0.2 M or more, more preferably 0.3 M or more.

이와 같은 조건으로 아세트산 용액 및 황산 용액을 혼합함으로써 상기 산 용액의 pH는 0.1 내지 1.5일 수 있다. 이때, 바람직하게는 pH가 1.3 이하, 더욱 바람직하게는 1.0 이하일 수 있다.By mixing the acetic acid solution and the sulfuric acid solution under these conditions, the pH of the acid solution may be 0.1 to 1.5. At this time, the pH may be preferably 1.3 or less, more preferably 1.0 or less.

본 발명에서는 유효금속의 침출효율을 극대화하기 위해 전술한 산 용액에 더하여 과산화수소를 더 첨가한 침출 용액을 제공한다.The present invention provides a leaching solution in which hydrogen peroxide is added in addition to the acid solution described above in order to maximize the leaching efficiency of effective metals.

구체적으로, 상기 산 용액 100 중량부에 대하여 과산화수소를 1 내지 10 중량부 첨가함으로써 침출 용액을 제조하는 것일 수 있다. 이때, 바람직하게는 3 내지 10 중량부, 더욱 바람직하게는 5 내지 10 중량부를 첨가하는 것일 수 있다.Specifically, the leaching solution may be prepared by adding 1 to 10 parts by weight of hydrogen peroxide to 100 parts by weight of the acid solution. At this time, preferably 3 to 10 parts by weight, more preferably 5 to 10 parts by weight, may be added.

종래 황산을 사용하는 침출 용액은 과산화수소가 황산과 반응하여 퍼옥시일황산(H2SO5)가 생성되기 때문에 과산화수소의 양을 증가시키가 어려우나, 본 발명에서는 아세트산을 사용함으로써 과산화수소의 양을 증가시켜 침출효율을 향상할 수 있다.In the conventional leaching solution using sulfuric acid, it is difficult to increase the amount of hydrogen peroxide because hydrogen peroxide reacts with sulfuric acid to produce peroxymonosulfuric acid (H 2 SO 5 ), but in the present invention, the amount of hydrogen peroxide is increased by using acetic acid. Leaching efficiency can be improved.

본 발명은 전술한 침출 용액을 사용함으로써 폐양극활물질로부터 유효금속을 회수하는 방법에 관한 것으로, 구체적인 과정은 아세트산 용액과 황산 용액을 혼합하되, 아세트산 용액 : 황산 용액의 몰 농도 비가 1 : 0.1 내지 5.0 이며, 동일한 부피를 갖는 두 용액을 혼합하여 산 용액을 제조하는 단계; 상기 산 용액 100 중량부에 대하여 과산화수소수를 1 내지 10 중량부 첨가하여 침출 용액을 제조하는 단계; 및 폐양극활물질 분말을 침출 용액에 첨가하고 교반 및 가열하여 유효금속을 침출시켜 침출 용액을 제조하는 단계;를 포함하는 것일 수 있다.The present invention relates to a method for recovering effective metals from waste cathode active material by using the above-described leaching solution. The specific process involves mixing an acetic acid solution and a sulfuric acid solution, and the molar concentration ratio of the acetic acid solution:sulfuric acid solution is 1:0.1 to 5.0. and preparing an acid solution by mixing two solutions having the same volume; Preparing a leaching solution by adding 1 to 10 parts by weight of hydrogen peroxide to 100 parts by weight of the acid solution; And it may include the step of adding waste cathode active material powder to the leaching solution and stirring and heating to leach the effective metal to prepare the leaching solution.

상기 산 용액에 관한 것은 전술한 바와 같으므로 중복되는 설명은 생략한다.Since the acid solution is the same as described above, redundant description will be omitted.

전술한 바와 같은 산 용액을 사용하는 경우 50 ~ 120℃의 온도를 유지하며 교반을 수행함으로써 유효금속의 침출이 발생할 수 있으며, 이러한 침출 과정을 통해 침출 용액 내에 상기 유효금속이 적어도 하나 이상이 포함될 수 있다.When using an acid solution as described above, leaching of effective metals may occur by stirring while maintaining a temperature of 50 to 120°C, and through this leaching process, at least one or more of the effective metals may be included in the leaching solution. there is.

더욱 구체적으로, 전술한 침출 용액은 하기 식 1로 표기되는 유효금속의 침출 효율이 80% 이상인 특징을 가질 수 있다.More specifically, the above-described leaching solution may have the characteristic of leaching efficiency of effective metals expressed by Equation 1 below of 80% or more.

[식 1][Equation 1]

유효금속의 침출효율(%)=(침출 용액으로 추출된 유효금속의 총량)/(폐양극활물질 내 유효금속의 총량) * 100Leaching efficiency of active metals (%) = (Total amount of active metals extracted with leaching solution)/(Total amount of active metals in waste cathode active material) * 100

(이때, 상기 유효금속은 리튬, 니켈, 코발트, 망간, 알루미늄 및 철 중 선택되는 어느 하나인 금속이다.)(At this time, the effective metal is any one selected from lithium, nickel, cobalt, manganese, aluminum, and iron.)

바람직한 일 예시로 상기 폐양극활물질이 LiNixCoyMnzO2인 경우, 유효금속은 리튬, 니켈, 코발트 및 망간이며, 침출 용액 내에 상기 유효금속이 각 성분의 총량 대비 80% 이상, 바람직하게는 85% 이상, 더욱 바람직하게는 90% 이상 침출될 수 있다.As a preferred example , when the waste cathode active material is LiNi Can be leached by more than 85%, more preferably by more than 90%.

상기 유효금속의 총량은 ICP(Inductively Coupled Plasma)법 및 MS(Mass Spectrometry)와 같은 분석법으로 관측되는 것일 수 있다.The total amount of effective metals may be observed by analysis methods such as ICP (Inductively Coupled Plasma) and MS (Mass Spectrometry).

본 발명은 전술한 바와 같은 방법으로 유효금속을 침출한 이후, 상기 침출 용액을 건조하여 분말화하는 단계를 더 포함할 수 있으며, 상기 침출 용액을 건조하는 방법은 통상적으로 수행되는 열풍 건조, 진공 건조, 분무 건조, 동결 건조 및 감압 건조 중 선택되는 1종의 방법으로 수행되는 것일 수 있다.The present invention may further include the step of drying the leaching solution into powder after leaching the effective metal by the method described above, and the method of drying the leaching solution is conventionally performed, such as hot air drying or vacuum drying. , may be performed by one method selected from spray drying, freeze drying, and reduced pressure drying.

이하, 실시예를 통해 본 발명에 따른 리튬 이차전지의 폐양극활물질에 존재하는 유효금속을 회수하는 방법에 대하여 더욱 상세히 설명한다. 다만 하기 실시예는 본 발명을 상세히 설명하기 위한 하나의 참조일 뿐 본 발명이 이에 한정되는 것은 아니며, 여러 형태로 구현될 수 있다.Hereinafter, a method for recovering effective metals present in the waste cathode active material of a lithium secondary battery according to the present invention will be described in more detail through examples. However, the following examples are only a reference for explaining the present invention in detail, and the present invention is not limited thereto, and may be implemented in various forms.

또한, 달리 정의되지 않은 한, 모든 기술적 용어 및 과학적 용어는 본 발명이 속하는 당업자 중 하나에 의해 일반적으로 이해되는 의미와 동일한 의미를 갖는다. 본원에서 설명에 사용되는 용어는 단지 특정 실시예를 효과적으로 기술하기 위함이고 본 발명을 제한하는 것으로 의도되지 않는다. 또한, 명세서에서 특별히 기재하지 않은 첨가물의 단위는 중량%일 수 있다.Additionally, unless otherwise defined, all technical and scientific terms have the same meaning as commonly understood by one of ordinary skill in the art to which this invention pertains. The terminology used in the description herein is merely to effectively describe particular embodiments and is not intended to limit the invention. Additionally, the unit of additives not specifically described in the specification may be weight percent.

[실시예 1][Example 1]

1.0 M 아세트산 용액 50 mL와 1.0 M 황산 용액 50 mL를 혼합하여 산 용액을 제조한 다음, 과산화수소를 5 중량%가 되도록 첨가하여 침출 용액을 제조하였다.An acid solution was prepared by mixing 50 mL of a 1.0 M acetic acid solution and 50 mL of a 1.0 M sulfuric acid solution, and then hydrogen peroxide was added to 5% by weight to prepare a leaching solution.

다음으로, 양극활물질 5 g을 침출 용액에 넣고 침출을 수행하였다. 이후 침출이 완료된 용액에서 고형분을 제거하였다.Next, 5 g of the positive electrode active material was added to the leaching solution and leaching was performed. Afterwards, solid content was removed from the solution in which leaching was completed.

[실시예 2 내지 18][Examples 2 to 18]

아세트산 용액과 황산 용액의 몰 농도를 표 1과 같이 달리한 것 외 모든 과정을 실시예 1과 동일하게 수행하였다.All procedures were performed in the same manner as in Example 1 except that the molar concentrations of the acetic acid solution and the sulfuric acid solution were changed as shown in Table 1.

[비교예 1 내지 7][Comparative Examples 1 to 7]

아세트산 용액과 황산 용액의 몰 농도를 표 1과 같이 달리한 것 외 모든 과정을 실시예 1과 동일하게 수행하였다.All procedures were performed in the same manner as in Example 1 except that the molar concentrations of the acetic acid solution and the sulfuric acid solution were changed as shown in Table 1.

아세트산 용액의
몰 농도 (M)
acetic acid solution
Molarity (M)
황산 용액의
몰 농도 (M)
of sulfuric acid solution
Molarity (M)
산 용액의
몰 농도 (M)
of acid solution
Molarity (M)
아세트산 : 황산 몰 농도비Acetic acid:sulfuric acid molar concentration ratio
실시예 1Example 1 1.01.0 1.01.0 1.01.0 1.001.00 실시예 2Example 2 1.01.0 0.80.8 0.90.9 0.800.80 실시예 3Example 3 1.01.0 0.60.6 0.80.8 0.600.60 실시예 4Example 4 1.01.0 0.40.4 0.70.7 0.400.40 실시예 5Example 5 1.01.0 0.20.2 0.60.6 0.200.20 실시예 6Example 6 0.80.8 1.01.0 0.90.9 1.251.25 실시예 7Example 7 0.80.8 0.80.8 0.80.8 1.001.00 실시예 8Example 8 0.80.8 0.60.6 0.70.7 0.750.75 실시예 9Example 9 0.80.8 0.40.4 0.60.6 0.500.50 실시예 10Example 10 0.60.6 1.01.0 0.80.8 1.671.67 실시예 11Example 11 0.60.6 0.80.8 0.70.7 1.331.33 실시예 12Example 12 0.60.6 0.60.6 0.60.6 1.001.00 실시예 13Example 13 0.60.6 0.40.4 0.50.5 0.670.67 실시예 14Example 14 0.40.4 1.01.0 0.70.7 2.502.50 실시예 15Example 15 0.40.4 0.80.8 0.60.6 2.002.00 실시예 16Example 16 0.40.4 0.60.6 0.50.5 1.501.50 실시예 17Example 17 0.20.2 1.01.0 0.60.6 5.005.00 실시예 18Example 18 0.20.2 0.80.8 0.50.5 4.004.00 비교예 1Comparative Example 1 0.80.8 0.20.2 0.50.5 0.250.25 비교예 2Comparative Example 2 0.60.6 0.20.2 0.40.4 0.330.33 비교예 3Comparative Example 3 0.40.4 0.40.4 0.40.4 1.001.00 비교예 4Comparative Example 4 0.40.4 0.20.2 0.30.3 0.500.50 비교예 5Comparative Example 5 0.20.2 0.60.6 0.30.3 3.003.00 비교예 6Comparative Example 6 0.20.2 0.40.4 0.30.3 2.002.00 비교예 7Comparative Example 7 0.20.2 0.20.2 0.20.2 1.001.00

[특성 평가 방법][Characteristic evaluation method]

A. ICP(Ion Coupled Plasma)를 통한 침출 용액 분석A. Leaching solution analysis using ICP (Ion Coupled Plasma)

고형분이 제거된 침출 용액의 성분을 ICP를 통해 분석하였다. 분석된 성분 및 양극활물질에 존재하는 이론적 성분을 비교하였다.The components of the leaching solution from which solids were removed were analyzed through ICP. The analyzed components and the theoretical components present in the cathode active material were compared.

리튬(Li)Lithium (Li) 이론적 함량 (ppm)Theoretical content (ppm) 침출량 (ppm)Leaching amount (ppm) 침출 효율 (%)Leaching efficiency (%) 실시예 1Example 1 3061 3061 2905 2905 94.8994.89 실시예 2Example 2 3068 3068 2884 2884 93.9993.99 실시예 3Example 3 3112 3112 2886 2886 92.7392.73 실시예 4Example 4 3135 3135 2818 2818 89.9089.90 실시예 5Example 5 3200 3200 2632 2632 82.2582.25 실시예 6Example 6 3063 3063 2871 2871 93.7493.74 실시예 7Example 7 3086 3086 2853 2853 92.4592.45 실시예 8Example 8 3137 3137 2865 2865 91.3491.34 실시예 9Example 9 3145 3145 2778 2778 88.3388.33 실시예 10Example 10 3046 3046 2793 2793 91.7191.71 실시예 11Example 11 3070 3070 2802 2802 91.2691.26 실시예 12Example 12 3128 3128 2844 2844 90.9090.90 실시예 13Example 13 3185 3185 2752 2752 86.3886.38 실시예 14Example 14 2995 2995 2717 2717 90.7090.70 실시예 15Example 15 3074 3074 2694 2694 87.6487.64 실시예 16Example 16 3133 3133 2515 2515 80.2980.29 실시예 17Example 17 3059 3059 2664 2664 87.1087.10 실시예 18Example 18 3047 3047 2457 2457 80.6580.65 비교예 1Comparative Example 1 31613161 21182118 67.0167.01 비교예 2Comparative Example 2 31683168 18891889 59.6159.61 비교예 3Comparative Example 3 31383138 21772177 69.3869.38 비교예 4Comparative Example 4 31823182 13361336 42.0042.00 비교예 5Comparative Example 5 31423142 21422142 68.1868.18 비교예 6Comparative Example 6 31483148 18011801 57.2257.22 비교예 7Comparative Example 7 31663166 868868 27.4127.41

표 2를 참조하면, 산 용액의 몰 농도가 0.5 M 이상인 실시예 1 내지 실시예 18의 리튬 침출 효율이 모두 80% 이상으로 우수한 것을 알 수 있다. 단, 산 용액의 몰 농도가 0.5 M이지만, 아세트산과 황산의 몰 농도 비율이 1:0.25 인 비교예 1은 침출 효율이 67.01 %로 좋지 않았고, 산 용액의 몰 농도가 0.5 M 미만인 비교예 2 내지 7은 침출 효율이 70 % 미만으로 좋지 않았다.Referring to Table 2, it can be seen that the lithium leaching efficiencies of Examples 1 to 18 where the molar concentration of the acid solution was 0.5 M or more were all excellent at 80% or more. However, although the molar concentration of the acid solution was 0.5 M, Comparative Example 1 where the molar concentration ratio of acetic acid and sulfuric acid was 1:0.25 had a poor leaching efficiency of 67.01%, and Comparative Examples 2 to 2 where the molar concentration of the acid solution was less than 0.5 M. 7 had poor leaching efficiency of less than 70%.

니켈(Ni)Nickel (Ni) 이론적 함량 (ppm)Theoretical content (ppm) 침출량 (ppm)Leaching amount (ppm) 침출 효율 (%)Leaching efficiency (%) 실시예 1Example 1 1556215562 1491314913 95.8295.82 실시예 2Example 2 15596 15596 14805 14805 94.9394.93 실시예 3Example 3 15821 15821 14814 14814 93.6493.64 실시예 4Example 4 15936 15936 14622 14622 91.7591.75 실시예 5Example 5 16265 16265 13785 13785 84.7584.75 실시예 6Example 6 15571 15571 14850 14850 95.3795.37 실시예 7Example 7 15687 15687 14756 14756 94.0794.07 실시예 8Example 8 15946 15946 14830 14830 93.0093.00 실시예 9Example 9 15989 15989 14313 14313 89.5289.52 실시예 10Example 10 15483 15483 14496 14496 93.6293.62 실시예 11Example 11 15608 15608 14531 14531 93.1093.10 실시예 12Example 12 15902 15902 14651 14651 92.1392.13 실시예 13Example 13 16192 16192 14191 14191 87.6487.64 실시예 14Example 14 15226 15226 14057 14057 92.3292.32 실시예 15Example 15 15628 15628 14249 14249 91.1791.17 실시예 16Example 16 15926 15926 13497 13497 84.7584.75 실시예 17Example 17 15548 15548 14232 14232 91.5491.54 실시예 18Example 18 15487 15487 13511 13511 87.2487.24 비교예 1Comparative Example 1 16071 16071 11461 11461 71.3271.32 비교예 2Comparative Example 2 16106 16106 10582 10582 65.7065.70 비교예 3Comparative Example 3 15951 15951 12398 12398 77.7377.73 비교예 4Comparative Example 4 16173 16173 7650 7650 47.3047.30 비교예 5Comparative Example 5 15973 15973 12513 12513 78.3478.34 비교예 6Comparative Example 6 16004 16004 9956 9956 62.2162.21 비교예 7Comparative Example 7 16096 16096 5306 5306 32.9732.97

표 3을 참조하면, 산 용액의 몰 농도가 0.5 M 이상인 실시예 1 내지 실시예 18의 니켈 침출 효율이 모두 80% 이상으로 우수한 것을 알 수 있다. 단, 산 용액의 몰 농도가 0.5 M이지만, 아세트산과 황산의 몰 농도 비율이 1:0.25 인 비교예 1은 침출 효율이 71.32 %로 좋지 않았고, 산 용액의 몰 농도가 0.5 M 미만인 비교예 2 내지 7은 침출 효율이 80 % 미만으로 좋지 않았다.Referring to Table 3, it can be seen that the nickel leaching efficiencies of Examples 1 to 18 where the molar concentration of the acid solution was 0.5 M or more were all excellent at 80% or more. However, although the molar concentration of the acid solution was 0.5 M, Comparative Example 1 where the molar concentration ratio of acetic acid and sulfuric acid was 1:0.25 had a poor leaching efficiency of 71.32%, and Comparative Examples 2 to 2 where the molar concentration of the acid solution was less than 0.5 M. 7 had poor leaching efficiency of less than 80%.

코발트(Co)Cobalt (Co) 이론적 함량 (ppm)Theoretical content (ppm) 침출량 (ppm)Leaching amount (ppm) 침출 효율 (%)Leaching efficiency (%) 실시예 1Example 1 53125312 50835083 95.6995.69 실시예 2Example 2 53235323 50425042 94.7294.72 실시예 3Example 3 54005400 50835083 94.1494.14 실시예 4Example 4 54395439 49424942 90.8690.86 실시예 5Example 5 55525552 45504550 81.9681.96 실시예 6Example 6 53155315 50365036 94.7794.77 실시예 7Example 7 53545354 49944994 93.2793.27 실시예 8Example 8 54435443 50205020 92.2392.23 실시예 9Example 9 54575457 48264826 88.4488.44 실시예 10Example 10 52855285 49334933 93.3593.35 실시예 11Example 11 53275327 49164916 92.2992.29 실시예 12Example 12 54285428 49574957 91.3291.32 실시예 13Example 13 55275527 48014801 86.8786.87 실시예 14Example 14 51975197 47714771 91.8091.80 실시예 15Example 15 53345334 48084808 90.1390.13 실시예 16Example 16 54365436 45244524 83.2283.22 실시예 17Example 17 53075307 48174817 90.7790.77 실시예 18Example 18 52865286 44704470 84.5684.56 비교예 1Comparative Example 1 54855485 37453745 68.2868.28 비교예 2Comparative Example 2 54975497 33963396 61.7861.78 비교예 3Comparative Example 3 54445444 39503950 72.5672.56 비교예 4Comparative Example 4 55205520 24822482 44.9644.96 비교예 5Comparative Example 5 54525452 40594059 74.4674.46 비교예 6Comparative Example 6 54625462 33043304 60.4860.48 비교예 7Comparative Example 7 54945494 18251825 33.2233.22

표 4를 참조하면, 산 용액의 몰 농도가 0.5 M 이상인 실시예 1 내지 실시예 18의 코발트 침출 효율이 모두 80% 이상으로 우수한 것을 알 수 있다. 단, 산 용액의 몰 농도가 0.5 M이지만, 아세트산과 황산의 몰 농도 비율이 1:0.25 인 비교예 1은 침출 효율이 68.28 %로 좋지 않았고, 산 용액의 몰 농도가 0.5 M 미만인 비교예 2 내지 7은 침출 효율이 75 % 미만으로 좋지 않았다.Referring to Table 4, it can be seen that the cobalt leaching efficiencies of Examples 1 to 18 where the molar concentration of the acid solution was 0.5 M or more were all excellent at 80% or more. However, although the molar concentration of the acid solution was 0.5 M, Comparative Example 1, where the molar concentration ratio of acetic acid and sulfuric acid was 1:0.25, had a poor leaching efficiency of 68.28%, and Comparative Examples 2 to 2 where the molar concentration of the acid solution was less than 0.5 M. 7 had poor leaching efficiency of less than 75%.

망간(Mn)Manganese (Mn) 이론적 함량 (ppm)Theoretical content (ppm) 침출량 (ppm)Leaching amount (ppm) 침출 효율 (%)Leaching efficiency (%) 실시예 1Example 1 47134713 45104510 95.7095.70 실시예 2Example 2 47234723 44834483 94.9194.91 실시예 3Example 3 47914791 44774477 93.4393.43 실시예 4Example 4 48264826 43944394 91.0491.04 실시예 5Example 5 49264926 40674067 82.5782.57 실시예 6Example 6 47164716 44694469 94.7794.77 실시예 7Example 7 47514751 44644464 93.9693.96 실시예 8Example 8 48294829 44804480 92.7792.77 실시예 9Example 9 48424842 42864286 88.5288.52 실시예 10Example 10 46894689 43784378 93.3693.36 실시예 11Example 11 47274727 43844384 92.7592.75 실시예 12Example 12 48164816 44104410 91.5791.57 실시예 13Example 13 49044904 42734273 87.1387.13 실시예 14Example 14 46114611 42564256 92.3092.30 실시예 15Example 15 47334733 42884288 90.6090.60 실시예 16Example 16 48234823 40514051 83.9983.99 실시예 17Example 17 47094709 42804280 90.8890.88 실시예 18Example 18 46904690 40554055 86.4686.46 비교예 1Comparative Example 1 48674867 34253425 70.3770.37 비교예 2Comparative Example 2 48784878 30563056 62.6562.65 비교예 3Comparative Example 3 48314831 37013701 76.6176.61 비교예 4Comparative Example 4 48984898 22412241 45.7545.75 비교예 5Comparative Example 5 18381838 37473747 77.4677.46 비교예 6Comparative Example 6 48474847 29802980 61.4961.49 비교예 7Comparative Example 7 48754875 17371737 35.6435.64

표 5를 참조하면, 산 용액의 몰 농도가 0.5 M 이상인 실시예 1 내지 실시예 18의 망간의 침출 효율이 모두 80% 이상으로 우수한 것을 알 수 있다. 단, 산 용액의 몰 농도가 0.5 M이지만, 아세트산과 황산의 몰 농도 비율이 1:0.25 인 비교예 1은 침출 효율이 70.37 %로 좋지 않았고, 산 용액의 몰 농도가 0.5 M 미만인 비교예 2 내지 7은 침출 효율이 80 % 미만으로 좋지 않았다.Referring to Table 5, it can be seen that the manganese leaching efficiencies of Examples 1 to 18 where the molar concentration of the acid solution was 0.5 M or more were all excellent at 80% or more. However, although the molar concentration of the acid solution was 0.5 M, Comparative Example 1 where the molar concentration ratio of acetic acid and sulfuric acid was 1:0.25 had a poor leaching efficiency of 70.37%, and Comparative Examples 2 to 2 where the molar concentration of the acid solution was less than 0.5 M. 7 had poor leaching efficiency of less than 80%.

B. ICP(Ion Coupled Plasma)를 통한 황산 내 침출 용액 분석B. Analysis of leaching solution in sulfuric acid using ICP (Ion Coupled Plasma)

[비교예 8][Comparative Example 8]

2.0 M 농도의 황산 용액 100 mL를 산 용액으로 사용하고, 과산화수소를 1 중량%가 되도록 첨가하여 침출 용액을 제조하였다.A leaching solution was prepared by using 100 mL of a 2.0 M sulfuric acid solution as an acid solution and adding hydrogen peroxide to 1% by weight.

다음으로, 양극활물질 5 g을 침출 용액에 넣고 침출을 수행하였다. 침출이 완료된 용액에서 고형분을 제거하였다.Next, 5 g of the positive electrode active material was added to the leaching solution and leaching was performed. Solid content was removed from the solution in which leaching was completed.

[비교예 9][Comparative Example 9]

황산 용액의 농도를 1.0 M로 달리한 것 외 모든 과정을 비교예 8과 동일하게 수행하였다.All processes were performed in the same manner as in Comparative Example 8 except that the concentration of the sulfuric acid solution was changed to 1.0 M.

비교예 8 및 9의 고형분이 제거된 침출 용액의 성분을 ICP를 통해 분석하였다. 분석된 성분 및 양극활물질에 존재하는 이론적 성분을 비교하였다.The components of the leaching solutions from which solids were removed in Comparative Examples 8 and 9 were analyzed through ICP. The analyzed components and the theoretical components present in the cathode active material were compared.

리튬(Li)Lithium (Li) 이론적 함량 (ppm)Theoretical content (ppm) 침출량 (ppm)Leaching amount (ppm) 침출 효율 (%)Leaching efficiency (%) 실시예 12Example 12 3128 3128 2844 2844 90.9090.90 비교예 8Comparative Example 8 29372937 26682668 90.8390.83 비교예 9Comparative Example 9 31663166 25712571 81.1881.18

니켈(Ni)Nickel (Ni) 이론적 함량 (ppm)Theoretical content (ppm) 침출량 (ppm)Leaching amount (ppm) 침출 효율 (%)Leaching efficiency (%) 실시예 12Example 12 15902 15902 14651 14651 92.1392.13 비교예 8Comparative Example 8 1493214932 1375713757 92.1392.13 비교예 9Comparative Example 9 1609616096 1340913409 83.3183.31

코발트(Co)Cobalt (Co) 이론적 함량 (ppm)Theoretical content (ppm) 침출량 (ppm)Leaching amount (ppm) 침출 효율 (%)Leaching efficiency (%) 실시예 12Example 12 54285428 49574957 91.3291.32 비교예 8Comparative Example 8 50975097 46524652 91.2891.28 비교예 9Comparative Example 9 54945494 45214521 82.2982.29

망간(Mn)Manganese (Mn) 이론적 함량 (ppm)Theoretical content (ppm) 침출량 (ppm)Leaching amount (ppm) 침출 효율 (%)Leaching efficiency (%) 실시예 12Example 12 48164816 44104410 91.5791.57 비교예 8Comparative Example 8 45224522 41394139 91.5391.53 비교예 9Comparative Example 9 48754875 40414041 82.9082.90

표 6 내지 9를 참조하면, 2.0 M 황산을 사용한 비교예 9와 아세트산 0.6 M, 황산 0.6 M을 혼합한 산 용액을 사용한 실시예 12의 침출 효율이 유사한 것을 알 수 있다.Referring to Tables 6 to 9, it can be seen that the leaching efficiencies of Comparative Example 9 using 2.0 M sulfuric acid and Example 12 using a mixed acid solution of 0.6 M acetic acid and 0.6 M sulfuric acid were similar.

또한, 비교예 9의 경우 모든 유효금속의 침출 효율이 80 % 초반으로 실시예 12에 비해 크게 낮은 것을 알 수 있다.In addition, in the case of Comparative Example 9, the leaching efficiency of all effective metals was in the low 80%, which was significantly lower than that of Example 12.

즉, 종래 고농도 황산을 사용함으로써 침출 효율을 극대화시키던 방법에 비하여, 본 발명은 황산을 적게 사용하면서도 종래의 방법과 유사한 수준의 침출 효율을 낼 수 있는 것을 알 수 있다.That is, compared to the conventional method of maximizing leaching efficiency by using high-concentration sulfuric acid, the present invention can produce a similar level of leaching efficiency as the conventional method while using less sulfuric acid.

이상과 같이 특정된 사항들과 한정된 실시예를 통해 본 발명을 설명하였으나, 이는 본 발명의 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. Although the present invention has been described through specific details and limited examples as described above, these are provided only to facilitate an overall understanding of the present invention, and the present invention is not limited to the above examples, and the field to which the present invention pertains is not limited to the above-described examples. Those skilled in the art can make various modifications and variations from this description.

따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.Accordingly, the spirit of the present invention should not be limited to the described embodiments, and the scope of the patent claims described below as well as all modifications that are equivalent or equivalent to the scope of this patent claim shall fall within the scope of the spirit of the present invention. .

Claims (10)

아세트산 용액과 황산 용액을 혼합하되, 아세트산 용액 : 황산 용액의 몰 농도 비가 1 : 0.1 내지 5.0 인 두 용액을 혼합하여 산 용액을 제조하는 단계;
상기 산 용액 100 중량부에 대하여 과산화수소수를 1 내지 10 중량부 첨가하여 혼합 용액을 제조하는 단계; 및
폐양극활물질 분말을 혼합용액에 첨가하고 교반 및 가열하여 유효금속을 침출시켜 침출 용액을 제조하는 단계;
를 포함하는 폐양극활물질로부터 유효금속을 회수하는 방법.
Preparing an acid solution by mixing an acetic acid solution and a sulfuric acid solution, mixing the two solutions at a molar concentration ratio of acetic acid solution:sulfuric acid solution of 1:0.1 to 5.0;
Preparing a mixed solution by adding 1 to 10 parts by weight of hydrogen peroxide to 100 parts by weight of the acid solution; and
Preparing a leaching solution by adding waste cathode active material powder to the mixed solution and stirring and heating to leach the effective metal;
A method for recovering effective metals from waste cathode active material containing.
제1항에 있어서,
상기 산 용액의 농도가 0.5 M 이상인 폐양극활물질로부터 유효금속을 회수하는 방법.
According to paragraph 1,
A method for recovering effective metals from waste cathode active material where the concentration of the acid solution is 0.5 M or more.
제1항에 있어서,
상기 아세트산 용액의 농도는 적어도 0.1M 이상이며, 1.5 M 이하인 것을 특징으로 하는 폐양극활물질로부터 유효금속을 회수하는 방법.
According to paragraph 1,
A method for recovering effective metals from a spent cathode active material, characterized in that the concentration of the acetic acid solution is at least 0.1 M and 1.5 M or less.
제1항에 있어서,
상기 황산 용액의 농도는 적어도 0.1M 이상이며, 1.5 M 이하인 것을 특징으로 하는 폐양극활물질로부터 유효금속을 회수하는 방법.
According to paragraph 1,
A method for recovering effective metals from waste cathode active material, wherein the concentration of the sulfuric acid solution is at least 0.1M and 1.5M or less.
제1항에 있어서,
상기 산 용액의 pH는 0.1 내지 1.5인 것을 특징으로 하는 폐양극활물질로부터 유효금속을 회수하는 방법.
According to paragraph 1,
A method for recovering effective metals from waste cathode active material, characterized in that the pH of the acid solution is 0.1 to 1.5.
제1항에 있어서,
상기 폐양극활물질은 리튬, 니켈 및 코발트 중 어느 하나 이상과, 망간, 알루미늄 및 철 중 어느 하나 이상을 유효금속으로써 포함하는 것으로, 상기 침출 용액 내에 상기 유효금속을 적어도 하나 이상을 포함하는 것인 폐양극활물질로부터 유효금속을 회수하는 방법.
According to paragraph 1,
The waste cathode active material contains at least one of lithium, nickel, and cobalt, and at least one of manganese, aluminum, and iron as an effective metal, and the waste cathode active material contains at least one of the effective metals in the leaching solution. Method for recovering effective metals from cathode active materials.
제7항에 있어서,
상기 침출 용액에 있어서, 하기 식 1로 표기되는 유효금속의 침출 효율이 80% 이상인 것을 특징으로 하는 폐양극활물질로부터 유효금속을 회수하는 방법.
[식 1]
유효금속의 침출효율(%)=(침출 용액으로 추출된 유효금속의 중량)/(폐양극활물질 내 유효금속의 중량) * 100
(이때, 상기 유효금속은 리튬, 니켈, 코발트, 망간, 알루미늄 및 철 중 선택되는 어느 하나인 금속이다.)
In clause 7,
A method for recovering effective metals from a waste cathode active material, characterized in that, in the leaching solution, the leaching efficiency of the effective metals represented by the following formula 1 is 80% or more.
[Equation 1]
Leaching efficiency of active metals (%) = (Weight of active metals extracted with leaching solution)/(Weight of active metals in waste cathode active material) * 100
(At this time, the effective metal is any one selected from lithium, nickel, cobalt, manganese, aluminum, and iron.)
제1항에 있어서,
상기 침출은 50 ~ 120℃의 온도를 유지하며 수행하는 것인 폐양극활물질로부터 유효금속을 회수하는 방법.
According to paragraph 1,
A method for recovering effective metals from waste cathode active material, wherein the leaching is performed while maintaining a temperature of 50 to 120°C.
제1항에 있어서,
상기 침출 용액을 건조하여 분말화하는 단계를 더 포함하는 폐양극활물질로부터 유효금속을 회수하는 방법.
According to paragraph 1,
A method for recovering effective metals from waste cathode active material, further comprising the step of drying the leaching solution and powdering it.
제9항에 있어서,
상기 침출 용액을 건조하는 방법은 열풍 건조, 진공 건조, 분무 건조, 동결 건조 및 감압 건조 중 선택되는 1종의 방법으로 수행되는 폐양극활물질로부터 유효금속을 회수하는 방법.
According to clause 9,
The method of drying the leaching solution is a method of recovering effective metals from waste cathode active material, which is performed by one method selected from hot air drying, vacuum drying, spray drying, freeze drying, and reduced pressure drying.
KR1020220039959A 2022-03-30 2022-03-30 Effective metal recovering method from exhausted lithium secondary batteries KR20230140992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220039959A KR20230140992A (en) 2022-03-30 2022-03-30 Effective metal recovering method from exhausted lithium secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220039959A KR20230140992A (en) 2022-03-30 2022-03-30 Effective metal recovering method from exhausted lithium secondary batteries

Publications (1)

Publication Number Publication Date
KR20230140992A true KR20230140992A (en) 2023-10-10

Family

ID=88292142

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220039959A KR20230140992A (en) 2022-03-30 2022-03-30 Effective metal recovering method from exhausted lithium secondary batteries

Country Status (1)

Country Link
KR (1) KR20230140992A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102137174B1 (en) 2020-02-07 2020-07-27 전북대학교산학협력단 Critical metal recovering method from exhausted lithium ion batteries
KR20200138496A (en) 2019-05-30 2020-12-10 안동대학교 산학협력단 Extraction and composition technology of metals from waste secondary battery using eco-friendly organic acid
KR102206952B1 (en) 2019-04-22 2021-01-25 코스모에코켐(주) Manufacturing Method of Mixed Metal Compounds for Preparing Precursors from Waste Cathode Active Material Powders

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102206952B1 (en) 2019-04-22 2021-01-25 코스모에코켐(주) Manufacturing Method of Mixed Metal Compounds for Preparing Precursors from Waste Cathode Active Material Powders
KR20200138496A (en) 2019-05-30 2020-12-10 안동대학교 산학협력단 Extraction and composition technology of metals from waste secondary battery using eco-friendly organic acid
KR102137174B1 (en) 2020-02-07 2020-07-27 전북대학교산학협력단 Critical metal recovering method from exhausted lithium ion batteries

Similar Documents

Publication Publication Date Title
CN106848471B (en) Mixed acid leaching and recovery method of waste lithium ion battery anode material
CN102390863B (en) Method for regenerating lithium titanate serving as anode material of waste lithium ion battery
CN107955879A (en) A kind of method of valuable element in recycling waste lithium ion battery electrode material
KR102249266B1 (en) Method of recovery of nickel and cobalt
CN101899576A (en) Method for recycling lead from lead-acid battery paste
CN109179359A (en) A method of extracting lithium and ferric phosphate from LiFePO4 waste material
KR20210075502A (en) Method for recovering valuable metals from cathodic active material of used lithium battery
CN113930618A (en) Method for leaching nickel, cobalt and manganese from waste lithium batteries by using deep eutectic solvent
CN110311186A (en) A method of recycling valuable element from waste and old lithium ion battery
CN113802002A (en) Method for recovering valuable metals in lithium battery by wet process
CN113322376B (en) Method for recovering valuable metals from waste lithium ion battery active materials
CN112607712A (en) Method for preparing lithium sulfide by using metal lithium
CN114421045A (en) Method for closed-loop recovery of retired power battery by using low-viscosity green solvent
CN104577104B (en) Regeneration method of positive material lithium manganate waste of lithium ion battery
CN113415813A (en) Method for recovering lithium nickel cobalt manganese from waste ternary battery material
CN104600389A (en) Method for recycling metal from spent lithium ion battery of lithium manganate anode material
CN112723330A (en) Preparation method and application of iso-phospho-ferromanganese iron phosphate
KR101589738B1 (en) Method of preparing positive active material precursor
KR101314635B1 (en) Method of recycling cobalt from cobalt containing wastes
KR20230140992A (en) Effective metal recovering method from exhausted lithium secondary batteries
CN115744857B (en) Method for preparing lithium iron phosphate positive electrode material by directional circulation of waste lithium iron phosphate battery
KR101396918B1 (en) Cobalt laeching solution for cobalt containing wastes and recycling method for cobalt using the same
CN100519786C (en) Method for extracting indium-zinc alloy from waste mercury-free alkaline zinc-manganese dioxide battery
CN115304059A (en) Recycling treatment method for retired battery carbon slag
CN104638244B (en) The technique that sodium ion battery electrode material is prepared with ammonium jarosite and Chalcanthitum