KR102606229B1 - Selective recovery of lithium from ternary cathode active material of spent lithium ion batteries - Google Patents

Selective recovery of lithium from ternary cathode active material of spent lithium ion batteries Download PDF

Info

Publication number
KR102606229B1
KR102606229B1 KR1020200142057A KR20200142057A KR102606229B1 KR 102606229 B1 KR102606229 B1 KR 102606229B1 KR 1020200142057 A KR1020200142057 A KR 1020200142057A KR 20200142057 A KR20200142057 A KR 20200142057A KR 102606229 B1 KR102606229 B1 KR 102606229B1
Authority
KR
South Korea
Prior art keywords
lithium
active material
cathode active
leaching
waste cathode
Prior art date
Application number
KR1020200142057A
Other languages
Korean (ko)
Other versions
KR20220057137A (en
Inventor
김은영
장승규
배은옥
Original Assignee
코스모화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코스모화학 주식회사 filed Critical 코스모화학 주식회사
Priority to KR1020200142057A priority Critical patent/KR102606229B1/en
Publication of KR20220057137A publication Critical patent/KR20220057137A/en
Application granted granted Critical
Publication of KR102606229B1 publication Critical patent/KR102606229B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/08Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Abstract

본 발명은 삼원계 폐양극활물질로부터 리튬의 선택적 회수방법에 관한 것으로, (a) 산화제 수용액에서 폐양극활물질 분말의 리튬을 침출시키는 단계; (b) 상기 (a) 단계에서 수득한 리튬 침출 여액에 중화제를 첨가하여 리튬 외 불순물을 침전시켜 제거하는 단계; 및 (c) 상기 (b) 단계에서 불순물이 제거된 리튬 침출 여액을 가열농축 후, 탄산화하여, 탄산리튬으로 회수하는 리튬 회수 단계; 를 포함하여 경제적이고, 효율적으로 리튬(Li)뿐만 아니라 코발트(Co), 니켈(Ni), 망간(Mn)의 유가금속을 회수할 수 있다.The present invention relates to a method for selective recovery of lithium from a ternary waste cathode active material, comprising the steps of (a) leaching lithium from the waste cathode active material powder in an aqueous oxidizing agent solution; (b) adding a neutralizing agent to the lithium leaching filtrate obtained in step (a) to precipitate and remove impurities other than lithium; and (c) a lithium recovery step of heating and concentrating the lithium leach filtrate from which impurities have been removed in step (b), carbonating it, and recovering lithium carbonate; Including, it is possible to economically and efficiently recover valuable metals such as lithium (Li), as well as cobalt (Co), nickel (Ni), and manganese (Mn).

Description

삼원계 폐양극활물질로부터 리튬의 선택적 회수방법{Selective recovery of lithium from ternary cathode active material of spent lithium ion batteries}Selective recovery of lithium from ternary cathode active material of spent lithium ion batteries}

본 발명은 삼원계 폐양극활물질로부터 리튬의 선택적 회수 방법에 관한 것으로, 보다 상세하게는 니켈(Ni), 코발트(Co), 망간(Mn) 및 리튬(Li) 등을 포함하는 폐양극활물질분말로부터 리튬(Li)을 선택적으로 침출하여 제거함으로써 잔사에 포함된 코발트, 니켈, 망간을 용이하게 분리 회수하는 방법에 관한 것이다.The present invention relates to a method for selective recovery of lithium from a ternary waste cathode active material, and more specifically, to a method for selective recovery of lithium from a waste cathode active material powder containing nickel (Ni), cobalt (Co), manganese (Mn), and lithium (Li). This relates to a method for easily separating and recovering cobalt, nickel, and manganese contained in the residue by selectively removing lithium (Li) by leaching it.

리튬이차전지는 전기자동차와 전력저장시스템(ESS) 핵심부품으로써 환경오염이 없는 신재생에너지의 공급량이 확대됨에 따라 그 수요가 급격하게 증대되고 있다. 전기자동차 전지 등의 수요가 증가하면서 니켈(Ni)-코발트(Co)-망간(Mn)(NCM)계의 리튬이온전지(LIBs, Lithium Ion Batteries) 양극활물질의 생산량이 증가하는 추세이다.Lithium secondary batteries are a core component of electric vehicles and power storage systems (ESS), and the demand for them is rapidly increasing as the supply of new and renewable energy without environmental pollution increases. As demand for electric vehicle batteries increases, the production of nickel (Ni)-cobalt (Co)-manganese (Mn) (NCM) cathode active materials for lithium ion batteries (LIBs) is increasing.

이에 따라, 수명이 다한 전기자동차, 에너지저장장치(ESS) 등으로부터 발생된 리튬이차전지의 삼원계 양극활물질은 리튬(Li), 코발트(Co) 및 니켈(Ni)과 같은 고가의 유가금속을 함유하고 있으며, 이러한 유가금속을 회수하여 리튬이차전지 원료로 재순환하기 위한 효과적이고 경제적인 공정개발이 요구되고 있다. Accordingly, the ternary cathode active material of lithium secondary batteries generated from electric vehicles and energy storage systems (ESS) that have reached the end of their lifespan contains expensive metals such as lithium (Li), cobalt (Co), and nickel (Ni). There is a need to develop an effective and economical process to recover these valuable metals and recycle them as raw materials for lithium secondary batteries.

종래 폐양극활물질로부터 유가금속 회수를 위해 리튬이온전지 스크랩을 산성 용액에서 침출하여 망간 회수-코발트 회수-니켈 회수-리튬 회수의 단계적 회수공정을 통해 유가금속인 망간, 코발트, 니켈 및 리튬을 회수하고 있다.In order to recover valuable metals from conventional waste cathode active materials, lithium-ion battery scrap is leached in an acidic solution to recover valuable metals such as manganese, cobalt, nickel, and lithium through a step-by-step recovery process of manganese recovery, cobalt recovery, nickel recovery, and lithium recovery. there is.

그러나 이는, 리튬의 제거가 최종 단계이므로 리튬의 손실율이 높으며, 유가금속 각각을 고순도로 회수하는 공정으로 인해 제조원가가 상승하는 문제점이 있어왔다.However, since the removal of lithium is the final step, the loss rate of lithium is high, and the manufacturing cost increases due to the process of recovering each valuable metal with high purity.

또한, 종래 폐양극활물질을 비선택적 용해로 침출한 후, 불순물 제거-NCM 공침하여 Li 제거-황산 재용해의 단계를 통해 유가금속을 회수하고 있으나, 이는, 리튬의 제거가 최종 단계이므로 리튬의 손실율이 높으며, NCM 공침산물을 회수하기 위해 황산 재용해 및 불순물 제거 등 추가공정을 거쳐야 하므로 비경제적인 문제가 존재해 왔다.In addition, conventionally, after leaching waste cathode active material by non-selective dissolution, valuable metals are recovered through the steps of removing impurities, removing Li by co-precipitation with NCM, and redissolving in sulfuric acid. However, since the removal of lithium is the final step, the loss rate of lithium is low. It is high, and uneconomical problems have existed since additional processes such as sulfuric acid re-dissolution and impurity removal are required to recover NCM co-precipitation products.

게다가, 종래 폐양극활물질로부터 리튬만을 선택적 회수하기 위해 수소, 활성탄, Na2CO3 등으로 600oC 이상에서 건식 환원열처리를 수행하고, 습식으로 수 침출하는 건식(환원열처리)-습식(수침출)의 단계적 공정을 이용하고 있으나, 이는 또한 공정이 복잡하며, 리튬을 회수하기 위한 에너지 소모가 크다는 문제점이 있어왔다.In addition, in order to selectively recover only lithium from conventional waste cathode active materials, dry reduction heat treatment is performed at over 600 o C with hydrogen, activated carbon, Na 2 CO 3 , etc., and wet water leaching is performed. ) is used in a step-by-step process, but this also has the problem that the process is complicated and energy consumption to recover lithium is large.

따라서, 폐양극활물질에서 습식공정에 의한 리튬의 선택적 제거 혹은 회수를 선행함으로써 리튬이 제거된 삼원계 물질 즉 코발트, 니켈, 망간이 포함된 잔사로부터 경제적이고 효율적으로 코발트, 니켈 등 유가금속을 회수할 수 있는 공정의 필요성이 요구되고 있는 실정이다.Therefore, by prioritizing the selective removal or recovery of lithium from waste cathode active materials through a wet process, it is possible to economically and efficiently recover valuable metals such as cobalt and nickel from the residue containing lithium-removed ternary materials, that is, cobalt, nickel, and manganese. There is a need for a process that can be used.

1. 대한민국 공개특허 제10-2013-0071838호(2013.07.01. 공개)1. Republic of Korea Patent Publication No. 10-2013-0071838 (published on July 1, 2013)

본 발명의 목적은 폐양극활물질로부터 고순도의 리튬 회수를 선행하고, 이의 잔사로부터 코발트, 니켈, 망간과 같은 유가금속을 회수할 수 있는 삼원계 폐양극활물질로부터 리튬의 선택적 회수방법 및 코발트(Co), 니켈(Ni), 망간(Mn)의 유가금속 회수방법을 제공하는 데에 있다.The purpose of the present invention is to advance the recovery of high-purity lithium from waste cathode active material, and to selectively recover lithium from ternary waste cathode active material, which can recover valuable metals such as cobalt, nickel, and manganese from its residue, and cobalt (Co) The purpose is to provide a method for recovering valuable metals such as nickel (Ni) and manganese (Mn).

상기 목적을 달성하기 위하여, 본 발명은 (a) 산화제 수용액에서 폐양극활물질 분말의 리튬을 침출시키는 단계; (b) 상기 (a) 단계에서 수득한 리튬 침출 여액에 중화제를 첨가하여 리튬 외 불순물을 침전시켜 제거하는 단계; 및 (c) 상기 (b) 단계에서 불순물이 제거된 리튬 침출 여액을 가열농축 후, 탄산화하여, 탄산리튬으로 회수하는 리튬 회수 단계; 를 포함하는 폐양극활물질로부터 리튬의 선택적 회수방법을 제공한다.In order to achieve the above object, the present invention includes the steps of (a) leaching lithium from waste cathode active material powder in an oxidizing agent aqueous solution; (b) adding a neutralizing agent to the lithium leaching filtrate obtained in step (a) to precipitate and remove impurities other than lithium; and (c) a lithium recovery step of heating and concentrating the lithium leach filtrate from which impurities have been removed in step (b), carbonating it, and recovering lithium carbonate; Provides a method for selective recovery of lithium from a waste cathode active material containing.

또한, 본 발명은 상기 (a) 단계의 리튬 침출액에서 분리된 잔사와 상기 (b) 단계에서 침전된 리튬 외 불순물을 포함한 조성물로부터 코발트(Co), 니켈(Ni), 망간(Mn)의 유가금속을 회수하는 단계를 포함하는 폐양극활물질로부터 삼원계 유가금속 회수방법을 제공한다.In addition, the present invention provides valuable metals such as cobalt (Co), nickel (Ni), and manganese (Mn) from a composition containing the residue separated from the lithium leachate in step (a) and impurities other than lithium precipitated in step (b). Provides a method for recovering ternary valuable metals from waste cathode active material, including the step of recovering.

본 발명에 따른 삼원계(니켈(Ni)-코발트(Co)-망간(Mn); NCM) 폐양극활물질로부터 리튬의 선택적 회수방법은 폐양극활물질의 침출공정을 통해 고순도의 리튬을 선택적으로 회수하는 단계를 선행함으로써 낮은 리튬 손실율로 고순도의 리튬을 수득할 수 있다.The method of selective recovery of lithium from the ternary system (nickel (Ni)-cobalt (Co)-manganese (Mn); NCM) waste cathode active material according to the present invention selectively recovers high-purity lithium through a leaching process of the waste cathode active material. By preceding the steps, high purity lithium can be obtained with a low lithium loss rate.

또한, 상기 리튬 회수 공정으로부터 얻어진 리튬이 제거된 잔사로부터 코발트, 니켈, 망간과 같은 유가금속을 회수할 수 있어, 경제적이고, 효율적으로 리튬(Li)뿐만 아니라 코발트(Co), 니켈(Ni), 망간(Mn)의 유가금속을 회수할 수 있다.In addition, valuable metals such as cobalt, nickel, and manganese can be recovered from the lithium-removed residue obtained from the lithium recovery process, economically and efficiently producing not only lithium (Li), but also cobalt (Co), nickel (Ni), The valuable metal manganese (Mn) can be recovered.

도 1은 본 발명에 따른 폐양극활물질분말로부터 유가금속을 분리회수하는 방법의 개략 흐름도를 나타낸 도면이다.
도 2는 본 발명에 따른 폐양극활물질분말로부터 리튬을 선택적으로 분리회수방법의 개략 흐름도를 나타낸 도면이다.
도 3은 본 발명에 사용된 폐양극활물질분말의 XRD 분석결과를 나타낸 도면이다.
도 4는 리튬의 선택적 침출 후(1차 침출), 잔사의 XRD 분석결과를 나타낸 도면이다.
Figure 1 is a schematic flowchart of a method for separating and recovering valuable metals from waste cathode active material powder according to the present invention.
Figure 2 is a schematic flowchart showing a method for selectively separating and recovering lithium from waste cathode active material powder according to the present invention.
Figure 3 is a diagram showing the results of XRD analysis of the waste cathode active material powder used in the present invention.
Figure 4 is a diagram showing the XRD analysis results of the residue after selective leaching of lithium (primary leaching).

이하에서는 본 발명은 구체적으로 설명한다.Hereinafter, the present invention will be described in detail.

본 발명자들은 폐양극활물질분말을 산화제에 침출한 후, 리튬 침출 여액의 불순물 제거 및 탄산화하는 습식공정을 수행함으로써 고순도의 리튬만을 선택적으로 선행 회수할 수 있으며, 리튬이 제거된 잔사로부터 코발트, 니켈, 망간과 같은 유가금속을 회수할 수 있어, 고순도의 리튬, 코발트, 니켈, 망간의 유가금속을 경제적이고, 효율적으로 회수할 수 있으므로 리튬이차전지의 양극활물질로서 다시 재생하여 이용될 수 있음을 밝혀내어 본 발명을 완성하였다.The present inventors can selectively recover only high-purity lithium by leaching waste cathode active material powder in an oxidizing agent and then performing a wet process to remove impurities and carbonate the lithium leaching filtrate, and from the residue from which lithium has been removed, cobalt, nickel, It was discovered that valuable metals such as manganese can be recovered economically and efficiently, and thus they can be recycled and used as cathode active materials for lithium secondary batteries. The present invention has been completed.

본 발명의 폐양극활물질분말은 제조공정상 불량품이거나 폐기되는 리튬이차전지용 양극 활물질로부터 얻은 것으로, 특히 Ni-Co-Mn(NCM) 삼원계 폐양극활물질을 이용한다. 수집된 폐양극활물질은 배소 및 소정의 분말화 과정을 거쳐 폐양극활물질 분말 상태로 준비된다. 폐양극활물질분말에는, 니켈(Ni), 코발트(Co), 망간(Mn), 리튬(Li) 외에 미량의 알루미늄(Al), 구리(Cu), 철(Fe), 칼슘(Ca) 등 여러 성분이 혼합되어 있다.The waste cathode active material powder of the present invention is obtained from cathode active materials for lithium secondary batteries that are defective or discarded during the manufacturing process, and in particular, Ni-Co-Mn (NCM) ternary waste cathode active material is used. The collected waste cathode active material is prepared in the form of waste cathode active material powder through roasting and a predetermined powdering process. Waste cathode active material powder contains various components such as nickel (Ni), cobalt (Co), manganese (Mn), and lithium (Li), as well as trace amounts of aluminum (Al), copper (Cu), iron (Fe), and calcium (Ca). This is mixed.

본 발명의 폐양극활물질로부터 리튬의 선택적 회수방법은, 폐양극활물질분말을 산화제에 침출한 후, 리튬 침출 여액의 불순물 제거 및 탄산화하는 습식공정을 수행함으로써 고순도의 리튬만을 선택적으로 선행 회수하는 과정을 포함한다. The selective recovery method of lithium from waste cathode active material of the present invention involves leaching waste cathode active material powder in an oxidizing agent, followed by a wet process to remove impurities and carbonate the lithium leaching filtrate, thereby selectively recovering only high-purity lithium. Includes.

이후, 리튬이 제거된 잔사로부터 침출 및 불순물 제거의 공정을 수행하면 코발트, 니켈, 망간과 같은 유가금속 또한 회수할 수 있다.Afterwards, by performing a leaching and impurity removal process from the residue from which lithium has been removed, valuable metals such as cobalt, nickel, and manganese can also be recovered.

구체적으로, 본 발명은 (a) 산화제 수용액에서 폐양극활물질분말의 리튬을 침출시키는 단계; (b) 상기 (a) 단계에서 수득한 리튬 침출 여액에 중화제를 첨가하여 리튬 외 불순물을 침전시켜 제거하는 단계; 및 (c) 상기 (b) 단계에서 불순물이 제거된 리튬 침출 여액을 가열농축 후, 탄산화하여, 탄산리튬으로 회수하는 리튬 회수 단계; 를 포함하는 폐양극활물질로부터 리튬의 선택적 회수방법을 제공한다. 도 2는 본 발명에 따른 리튬의 선택적 회수방법을 나타낸 흐름도로서, 이를 바탕으로 이하 상세하게 설명한다.Specifically, the present invention includes the steps of (a) leaching lithium from waste cathode active material powder in an oxidizing agent aqueous solution; (b) adding a neutralizing agent to the lithium leaching filtrate obtained in step (a) to precipitate and remove impurities other than lithium; and (c) a lithium recovery step of heating and concentrating the lithium leach filtrate from which impurities have been removed in step (b), carbonating it, and recovering lithium carbonate; Provides a method for selective recovery of lithium from a waste cathode active material containing. Figure 2 is a flowchart showing a method for selective recovery of lithium according to the present invention, which will be described in detail below.

먼저, 상기 (a) 단계는 산화제 수용액에서 폐양극활물질분말의 리튬을 침출시키는 단계이다.First, step (a) is a step of leaching lithium from the waste cathode active material powder in an oxidizing agent aqueous solution.

상기 폐양극활물질분말은 산화제에 의해 층상구조의 결정격자가 붕괴 또는 변형되어 리튬의 선택적 용해를 가능하게 한다.In the waste cathode active material powder, the crystal lattice of the layered structure is collapsed or transformed by an oxidizing agent, thereby enabling selective dissolution of lithium.

상기 산화제로는 KMnO4, Na2S2O8, O3, NaClO3로 이루어진 군에서 하나 이상 선택되나, 바람직하게는 과망간산칼륨(KMnO4)을 이용하여 최적 반응온도, pH, 반응시간 고액비의 조건에서 반응시켜 수행하는 것이 바람직하다.The oxidizing agent is one or more selected from the group consisting of KMnO 4 , Na 2 S 2 O 8 , O 3 , and NaClO 3 , but preferably potassium permanganate (KMnO 4 ) is used to determine the optimal reaction temperature, pH, reaction time, and solid-liquid ratio. It is preferable to carry out the reaction under the following conditions.

상기 최적 반응온도는 30 내지 90 ℃의 온도범위가 바람직하며, 반응온도 30 oC 이하에서는 망간의 산화반응이 활발하지 않아 코발트, 니켈 등 유가금속 침출율이 상승하여 리튬에 대한 선택성이 떨어지고, 90 oC 이상에서는 물의 증발반응 및 가열에 소비되는 에너지 비용이 상승하여 바람직하지 않다.The optimal reaction temperature is preferably in the range of 30 to 90 ° C. At a reaction temperature of 30 ° C or lower, the oxidation reaction of manganese is not active, so the leaching rate of valuable metals such as cobalt and nickel increases, and the selectivity for lithium decreases. Above o C, the energy cost for water evaporation reaction and heating increases, which is not desirable.

또한, 최적 pH는 2 내지 10의 범위가 바람직하며, 수침출 pH가 10 이상일 경우 망간의 산화반응 속도가 느려 리튬의 침출율이 낮고, pH 2 이하에서는 중화에 소요되는 알칼리제의 첨가량이 증가하여 경제적이지 못한 단점이 있다. 여기서 pH는 H2SO4, HCl, HNO3 로 이루어진 군에서 하나 이상 선택되어 조절될 수 있다.In addition, the optimal pH is preferably in the range of 2 to 10. If the water leaching pH is more than 10, the oxidation reaction rate of manganese is slow and the lithium leaching rate is low, and if the pH is less than 2, the amount of alkaline agent added for neutralization increases, making it economical. There is a downside to this. Here, the pH can be adjusted by selecting one or more from the group consisting of H 2 SO 4 , HCl, and HNO 3 .

또한, 최적 반응시간은 1 내지 4시간 범위가 바람직하며, 4시간 이상으로 증가할 경우 조업시간 증가에 비해 침출율 향상이 크지 않으므로 바람직하지 않다.In addition, the optimal reaction time is preferably in the range of 1 to 4 hours, and if it increases to more than 4 hours, it is not desirable because the improvement in leaching rate is not significant compared to the increase in operating time.

또한, 폐양극활물질분말과 산화제 수용액은 고액비 5 내지 20의 범위가 바람직하며, 고액비 L/S 20이상일 경우, 침출액 내 리튬의 농도가 감소하여 리튬을 농축하는데 소요되는 에너지 비용이 증가하며, L/S 5이하이면 리튬의 농도가 13 g/L 이상으로 증가하여 침출 반응보다 리튬의 침전반응이 우세하여 용해속도가 현저히 느려지는 문제점이 있다.In addition, the waste cathode active material powder and the oxidizing agent aqueous solution preferably have a solid-liquid ratio in the range of 5 to 20. When the solid-liquid ratio L/S is 20 or more, the concentration of lithium in the leachate decreases, increasing the energy cost required to concentrate lithium, If L/S is 5 or less, the concentration of lithium increases to 13 g/L or more, and the precipitation reaction of lithium dominates the leaching reaction, causing a problem in that the dissolution rate is significantly slowed.

상기 (b) 단계는 (a) 단계의 리튬 침출액으로부터 침출액을 여과하고 수득한 리튬 침출 여액에 중화제를 첨가하여 리튬 외 불순물을 침전시켜 제거하는 단계이다.Step (b) is a step in which impurities other than lithium are precipitated and removed by filtering the lithium leaching solution from step (a) and adding a neutralizing agent to the obtained lithium leaching filtrate.

상기 리튬 침출 여액으로부터 리튬을 제외한 불순물(Cu, Al, Ca 등)의 제거를 위해 알칼리 중화제를 첨가할 수 있으며, 상기 중화제는 NaOH, NH4OH, Na2CO3, K2CO3, CaO, CaCO3, MgCO3, MgO로 이루어진 군에서 하나 이상 선택되나, 바람직하게는 탄산나트륨(Na2CO3)을 이용하여 pH 9-10의 범위로 조절하는 것이 바람직하다.An alkaline neutralizer may be added to remove impurities (Cu, Al, Ca, etc.) other than lithium from the lithium leaching filtrate, and the neutralizer may be NaOH, NH 4 OH, Na 2 CO 3 , K 2 CO 3 , CaO, One or more is selected from the group consisting of CaCO 3 , MgCO 3 and MgO, but preferably the pH is adjusted to the range of 9-10 using sodium carbonate (Na 2 CO 3 ).

상기와 같이 중화제를 이용하여 중화 후, 수득한 침전물에는 Cu, Al, Ca 외 코발트, 니켈, 망간 등이 포함되어 있다. 이때, 니켈, 코발트, 망간침전물의 성상은 알칼리제의 종류에 따라 달라지며, 주로 탄산화물((Co-Ni-Mn)CO3)이나 수산화물((Co-Ni-Mn)(OH)2) 공침산물로 수득될 수 있다.After neutralization using a neutralizing agent as described above, the obtained precipitate contains cobalt, nickel, manganese, etc. in addition to Cu, Al, and Ca. At this time, the properties of nickel, cobalt, and manganese precipitates vary depending on the type of alkaline agent, mainly carbonate ((Co-Ni-Mn)CO 3 ) or hydroxide ((Co-Ni-Mn)(OH) 2 ) co-precipitation. Can be obtained with water.

상기 (c) 단계는 (b) 단계에서 불순물을 제거한 리튬 침출 여액을 가열농축 후, 탄산화하여, 탄산리튬으로 회수하는 리튬 회수 단계이다.Step (c) is a lithium recovery step in which the lithium leach filtrate from which impurities have been removed in step (b) is concentrated by heating, carbonated, and recovered as lithium carbonate.

상기 가열농축은 50 내지 95 oC의 온도로 이루어지는 것을 특징으로 하며, 바람직하게는 90 oC의 온도로 수행할 수 있다.The heating concentration is characterized in that it is carried out at a temperature of 50 to 95 o C, and can preferably be performed at a temperature of 90 o C.

또한, 상기 탄산화는 Na2CO3, K2CO3, CaCO3, MgCO3로 이루어진 군에서 하나 이상 선택하여 첨가하는 것을 특징으로 하며, 바람직하게는 탄산나트륨(Na2CO3)을 리튬 1몰 대비 1몰 내지 1.5몰 농도로 첨가하여 탄산리튬을 회수할 수 있다.In addition, the carbonation is characterized by adding one or more selected from the group consisting of Na 2 CO 3 , K 2 CO 3 , CaCO 3 and MgCO 3 , preferably sodium carbonate (Na 2 CO 3 ) compared to 1 mole of lithium. Lithium carbonate can be recovered by adding it at a concentration of 1 mole to 1.5 mole.

이후, 탄산리튬 내 공침된 나트륨 제거를 위해 고액비(탄산리튬과 물; L/S) 3:1 비율로 2회 수세척을 수행하여 고순도의 리튬을 회수할 수 있다.Afterwards, to remove sodium co-precipitated in lithium carbonate, high-purity lithium can be recovered by performing water washing twice at a solid-liquid ratio (lithium carbonate and water; L/S) of 3:1.

또한, 본 발명은 상기 (a) 단계의 리튬 침출액에서 분리된 잔사와 상기 (b) 단계에서 침전된 리튬 외 불순물을 포함한 조성물로부터 코발트(Co), 니켈(Ni), 망간(Mn)의 유가금속을 회수하는 단계를 포함하는 폐양극활물질로부터 삼원계 유가금속 회수방법을 제공한다. 도 1 및 도 2는 본 발명에 따른 리튬의 선택적 회수방법을 나타낸 흐름도이다.In addition, the present invention provides valuable metals such as cobalt (Co), nickel (Ni), and manganese (Mn) from a composition containing the residue separated from the lithium leachate in step (a) and impurities other than lithium precipitated in step (b). Provides a method for recovering ternary valuable metals from waste cathode active material, including the step of recovering. Figures 1 and 2 are flowcharts showing a method for selective recovery of lithium according to the present invention.

상기 코발트(Co), 니켈(Ni), 망간(Mn)의 유가금속을 회수하는 단계는 (a) 단계의 리튬 침출액에서 분리된 잔사와 상기 (b) 단계에서 침전된 리튬 외 불순물을 포함한 조성물로부터 침출반응, 불순물 제거 반응 등 코발트(Co), 니켈(Ni), 망간(Mn)의 유가금속을 회수할 수 있는 방법이라면 제한 없이 모두 이용 가능하다.The step of recovering valuable metals such as cobalt (Co), nickel (Ni), and manganese (Mn) is obtained from a composition containing the residue separated from the lithium leachate in step (a) and impurities other than lithium precipitated in step (b). Any method that can recover valuable metals such as cobalt (Co), nickel (Ni), and manganese (Mn), such as leaching reaction and impurity removal reaction, can be used without limitation.

상기 (a) 단계의 리튬 침출액으로부터 침출액을 여과하고 수득한 리튬이 제거된 잔사는 MnO2, LiCoO2, LiNiO2 을 포함하며, 상기 (b) 단계에서 침전된 리튬 외 불순물은 코발트, 니켈, 망간 가수분해 산물인 탄산화물((Co-Ni-Mn)CO3)이나 수산화물((Co-Ni-Mn)(OH)2) 공침산물을 포함하는 것을 특징으로 한다.The lithium-free residue obtained by filtering the lithium leachate in step (a) includes MnO 2 , LiCoO 2 , and LiNiO 2 , and impurities other than lithium precipitated in step (b) include cobalt, nickel, and manganese. It is characterized in that it contains carbonate ((Co-Ni-Mn)CO 3 ) or hydroxide ((Co-Ni-Mn)(OH) 2 ) co-precipitation products, which are hydrolysis products.

따라서, 본 발명은 삼원계 폐양극활물질로부터 습식공정으로 리튬을 고농도로 선택적으로 침출하여 회수할 수 있으며, 리튬이 제거된 침출 잔사로부터 기존 공정보다 단순하고 경제적인 방법으로 리튬을 제외한 삼원계 유가금속 즉, 니켈, 코발트, 망간 등을 회수할 수 있다.Therefore, the present invention can recover lithium by selectively leaching it at a high concentration from a ternary waste cathode active material through a wet process, and recover ternary valuable metals excluding lithium from the lithium-removed leaching residue in a simpler and more economical method than the existing process. That is, nickel, cobalt, manganese, etc. can be recovered.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention in more detail, and it is understood by those skilled in the art that the scope of the present invention is not limited by these examples according to the gist of the present invention. It will be self-evident.

[실시예][Example]

[표 1]은 실험에 사용된 폐NCM 양극활물질의 원료조성 일례를 나타낸다.[Table 1] shows an example of the raw material composition of the waste NCM cathode active material used in the experiment.

삼원계 양극활물질 원료조성Ternary cathode active material raw material composition 원소element CoCo NiNi MnMn CuCu CaCa AlAl FeFe LiLi LOI(%)LOI(%) 함량(wt%)Content (wt%) 11.2211.22 25.9525.95 9.409.40 0.400.40 0.010.01 0.710.71 0.430.43 5.735.73 4.44.4

LOI; Loss on IgnitionLOI; Loss on Ignition

[[ 실시예Example 1: One: 리튬침출Lithium leaching ]]

본 발명에서 리튬을 침출하기 위해 제안한 반응은 다음과 같다.The reaction proposed for leaching lithium in the present invention is as follows.

산화제로 첨가되는 과망간산칼륨(KMnO4)의 경우, 하기 반응식과 같이 산성조건에서 NCM 양극활물질에 포함된 망간(3가)으로부터 전자 3개를 얻어 4가 상태의 망간산화물, MnO2로 전환되며, 이때 삼원계 양극활물질 Li(Ni,Co,Mn)O2의 층상구조 결정 격자가 일부 붕괴 되거나 변형되어 리튬의 선택적 용해가 가능한 환경이 조성된다.In the case of potassium permanganate (KMnO 4 ) added as an oxidizing agent, it is converted into tetravalent manganese oxide, MnO 2 , by obtaining 3 electrons from manganese (trivalent) contained in the NCM positive electrode active material under acidic conditions as shown in the reaction equation below, At this time, the layered crystal lattice of the ternary cathode active material Li(Ni,Co,Mn)O 2 is partially collapsed or deformed, creating an environment in which selective dissolution of lithium is possible.

[반응식][Reaction formula]

2MnO4 - + 2H+ + 3Mn2O3 = 8MnO2 (s) + H2O2MnO 4 - + 2H + + 3Mn 2 O 3 = 8MnO 2 (s) + H 2 O

(KMnO4 1mol당 3개의 전자 소모)(3 electrons consumed per 1 mol of KMnO 4 )

(KMnO4 1mol당 4mol의 MnO2 생성)( 4 mol of MnO 2 produced per 1 mol of KMnO 4)

이때, 상기 반응의 부반응으로 하기 부반응식과 같이 망간이 일부 용해될 수 있다.At this time, as a side reaction of the above reaction, manganese may be partially dissolved as shown in the side reaction equation below.

[부반응식][Side reaction equation]

MnO4 - + 8H+ + 5e- = Mn2 + + 4H2OMnO 4 - + 8H + + 5e - = Mn 2 + + 4H 2 O

하기 침출실험의 반응변수는 반응온도, 산화제의 농도, 고액비 등을 변화시켜 최적화시켰으며, pH 조절을 위해 황산을 사용하고, 반응온도의 영향 외에 반응온도는 70 oC 조건에서 실험을 진행하였다.The reaction variables of the following leaching experiment were optimized by changing the reaction temperature, concentration of oxidizing agent, solid-liquid ratio, etc. Sulfuric acid was used to adjust pH, and in addition to the influence of reaction temperature, the experiment was conducted under conditions of 70 o C. .

1-1. 반응온도 영향1-1. Reaction temperature effect

폐NCM 양극활물질의 반응온도 변화에 따른 리튬의 침출 거동을 조사하였다. 하기 표 2의 반응온도에 따른 침출거동(침출액 조성, 단위: mg/L)에서 반응온도가 25 oC일 때 리튬의 농도는 4,449 mg/L로 약 77%의 침출율을 나타내었으나, 코발트, 니켈, 망간의 침출율도 동시에 증가하는 경향을 나타내었으며, 70 oC로 상승함에 따라 리튬의 침출율은 86%까지 향상되었으며, 망간 및 코발트의 침출율이 상대적으로 감소하는 경향을 나타내었다.The leaching behavior of lithium according to change in reaction temperature of waste NCM cathode active material was investigated. In the leaching behavior according to the reaction temperature in Table 2 below (leaching liquid composition, unit: mg/L), when the reaction temperature was 25 o C, the concentration of lithium was 4,449 mg/L, showing a leaching rate of about 77%, but cobalt, The leaching rates of nickel and manganese also tended to increase at the same time, and as the temperature increased to 70 o C, the leaching rates of lithium improved to 86%, and the leaching rates of manganese and cobalt tended to relatively decrease.

(단위: mg/L)(Unit: mg/L) 반응온도(oC)Reaction temperature ( o C) CoCo NiNi MnMn CuCu CaCa AlAl FeFe LiLi 2525 2,2652,265 6,6966,696 2,3262,326 NDN.D. 3.03.0 129.2129.2 NDN.D. 4,4494,449 7070 1,7301,730 6,3676,367 8.88.8 NDN.D. 2.92.9 111.2111.2 NDN.D. 4,7824,782

1-2. 산화제(1-2. Oxidizing agent ( KMnOKMnO 44 ) 첨가량 ) Added amount

과망간산칼륨(KMnO4)을 산화제로 사용하여 수용액 중 산화제 첨가량에 따른 리튬의 침출거동(침출액 조성, 단위: mg/L)을 하기 표 3에 나타내었다. 산화제 첨가당량이 증가함에 따라 리튬의 침출율은 1 당량일 때, 83%에서 2 당량일 때 96%까지 향상되었다. 한편, 1 당량의 산화제를 첨가하였을 때, 코발트 및 니켈의 침출율은 각각 22%와 44%까지 침출되어 리튬의 선택성이 다소 감소하는 경향을 나타내었으며, 1.5당량 이상에서 코발트 및 니켈의 침출율은 각각 9%와 23%로 감소하였다.Using potassium permanganate (KMnO 4 ) as an oxidizing agent, the leaching behavior of lithium (leaching solution composition, unit: mg/L) according to the amount of oxidizing agent added in the aqueous solution is shown in Table 3 below. As the amount of oxidizing agent added increased, the lithium leaching rate improved from 83% at 1 equivalent to 96% at 2 equivalents. On the other hand, when 1 equivalent of oxidizing agent was added, the leaching rates of cobalt and nickel were leached up to 22% and 44%, respectively, showing a tendency for the selectivity of lithium to decrease somewhat. At more than 1.5 equivalents, the leaching rates of cobalt and nickel were 22% and 44%, respectively. decreased to 9% and 23%, respectively.

(단위: mg/L)(Unit: mg/L) 산화제 당량Oxidizing agent equivalent CoCo NiNi MnMn CuCu CaCa AlAl FeFe LiLi 1One 2,7732,773 10,57010,570 0.80.8 NDN.D. 1.91.9 129.2129.2 NDN.D. 4,5324,532 1.51.5 1,7301,730 6,3676,367 8.88.8 NDN.D. 2.92.9 111.2111.2 NDN.D. 4,9824,982 22 1,1941,194 6,0356,035 0.50.5 NDN.D. 2.92.9 147.5147.5 NDN.D. 5,4905,490

1-3. 1-3. 수침출water leaching pH 변화 pH changes

수침출 pH 변화에 따른 리튬의 침출 거동(침출액 조성, 단위: mg/L)을 조사하였다. 양극활물질분말을 물과 혼합한 경우 pH 11 이상으로 알칼리성을 나타내었으며, 산성으로 pH를 낮추기 위해 황산을 첨가하였다. 하기 표 4에 나타낸 바와 같이 수침출 pH가 감소할수록, 즉 산성영역으로 갈수록 리튬의 침출율이 증가하여, pH 2.5에서 리튬의 침출율은 96%까지 향상되었다.The leaching behavior of lithium (leaching liquid composition, unit: mg/L) according to changes in water leaching pH was investigated. When the positive electrode active material powder was mixed with water, it showed alkalinity above pH 11, and sulfuric acid was added to lower the pH to acidic. As shown in Table 4 below, as the water leaching pH decreases, that is, toward the acidic region, the lithium leaching rate increases, and at pH 2.5, the lithium leaching rate improves to 96%.

이는, 일반적으로 산성과 알칼리 영역에서 산화제와 양극활물질 내 망간의 반응이 하기와 같이 진행될 것으로 예측되며, 산성영역으로 갈수록 산화력이 증가하는 경향을 가지기 때문에 산화력이 우수한 산성영역에서 리튬의 침출율이 향상된 것으로 판단된다. In general, it is expected that the reaction between the oxidizing agent and the manganese in the cathode active material will proceed as follows in acidic and alkaline areas, and since the oxidizing power tends to increase toward the acidic area, the lithium leaching rate is improved in the acidic area with excellent oxidizing power. It is judged that

(산성영역) MnO4 - + 4H+ + 3e- = MnO2 (s) + 2H2O, Eo = 1.70V(Acidic region) MnO 4 - + 4H + + 3e - = MnO 2 (s) + 2H 2 O, E o = 1.70V

(알칼리영역) MnO4 - + 2H2O + 3e- = MnO2 (s) + 4OH-, Eo = 0.59V(Alkaline region) MnO 4 - + 2H 2 O + 3e - = MnO 2 (s) + 4OH - , E o = 0.59V

(단위: mg/L)(Unit: mg/L) pHpH CoCo NiNi MnMn CuCu CaCa AlAl FeFe LiLi 10.510.5 4.44.4 2.52.5 NDN.D. NDN.D. NDN.D. NDN.D. NDN.D. 1,5051,505 5.05.0 NDN.D. 1,6271,627 0.180.18 NDN.D. 3.83.8 NDN.D. NDN.D. 3,6293,629 2.52.5 1,1941,194 6,0356,035 0.50.5 NDN.D. 2.92.9 147.5147.5 NDN.D. 5,4905,490

1-4. 1-4. 고액비high cost 변화 change

수침출의 고액비(폐 NCM과 수용액) 변화에 따른 리튬의 침출거동(침출액 조성, 단위: mg/L)을 나타내었다. 고액비가 10에서 5로 감소함에 따라 리튬의 침출율은 86%에서 83%로, 코발트의 침출율은 13%에서 5%로 감소하였으며, 니켈의 침출율은 변화없었다.The leaching behavior of lithium (leaching solution composition, unit: mg/L) according to changes in the solid-liquid ratio (waste NCM and aqueous solution) of water leaching was shown. As the solid-liquid ratio decreased from 10 to 5, the lithium leaching rate decreased from 86% to 83%, the cobalt leaching rate decreased from 13% to 5%, and the nickel leaching rate did not change.

(단위: mg/L)(Unit: mg/L) 고액비(L/S)High liquid ratio (L/S) CoCo NiNi MnMn CuCu CaCa AlAl FeFe LiLi 1010 1,7301,730 6,3676,367 8.88.8 NDN.D. NDN.D. 111.2111.2 NDN.D. 4,7824,782 55 1,3911,391 16,63016,630 0.50.5 NDN.D. 9.99.9 192.6192.6 NDN.D. 10,85010,850

따라서, 실시예 1에 따라 과망간산칼륨(KMnO4)을 산화제로 이용하여 폐 NCM 양극활물질로부터 리튬을 침출했을 때, 반응온도 70℃, 2 당량의 산화제, pH 2.5, 고액비(L/S) 5의 조건에서 리튬의 침출율은 96%이상으로 회수할 수 있었으며, 기타 유가금속 즉, 코발트, 니켈 및 망간의 침출율은 28%이하로 낮아 선택적으로 리튬을 회수할 수 있음을 확인하였다. 리튬과 함께 침출된 코발트, 니켈 등은 하기 중화공정(실시예 3)을 통해 선택적으로 회수 가능하였다.Therefore, when lithium was leached from waste NCM positive electrode active material using potassium permanganate (KMnO 4 ) as an oxidizing agent according to Example 1, reaction temperature was 70°C, 2 equivalents of oxidizing agent, pH 2.5, solid-liquid ratio (L/S) was 5. Under the conditions, the leaching rate of lithium could be recovered at more than 96%, and the leaching rate of other valuable metals, that is, cobalt, nickel, and manganese, was low at less than 28%, confirming that lithium could be selectively recovered. Cobalt, nickel, etc. leached together with lithium could be selectively recovered through the following neutralization process (Example 3).

[[ 실시예Example 2: 2: 잔사residue 분석] analyze]

상기 실시예 1에 따른 리튬 침출후 감압여과를 통해 분리한 잔사를 XRD(X-ray diffraction)로 분석하였다. After lithium leaching according to Example 1, the residue separated through reduced pressure filtration was analyzed by XRD (X-ray diffraction).

리튬의 침출후 회수된 잔사의 XRD 분석결과를 도 4에 나타내었다. 도 3의 원시료 조성 Li(NixCoyMnz)O2과 비교하여, 망간의 경우 대부분 이산화망간(MnO2)로 전환된 것을 볼 수 있으며, 코발트와 니켈의 경우 각각 LiCoO2와 LiNiO2로 리튬과 결합된 형태로 잔존하는 것으로 분석되었다.The XRD analysis results of the residue recovered after leaching of lithium are shown in Figure 4. Compared to the raw material composition Li ( Ni It was analyzed that it remained in a form combined with lithium.

[[ 실시예Example 3: 불순물 제거] 3: Removal of impurities]

상기 실시예 1과 같이 리튬 침출액에 리튬을 제외한 불순물(Co, Ni, Al 등) 제거를 위해 Li 침출여액(pH 2.2) 1L 용액에 Na2CO3 40g을 첨가하여 pH 9~10 범위로 중화하였다. 중화 후, 리튬은 손실 없이 99.9%로 수득하였으며, 수득한 침전물은 여액에 포함된 코발트와 니켈이 포함된 탄산화물로, 이는 상기 실시예 2와 같이 리튬 침출후 분리한 잔사와 함께 처리하여 손실 없이 코발트, 니켈, 망간 등의 유가금속 회수가능 하였다.As in Example 1, in order to remove impurities (Co, Ni, Al, etc.) other than lithium in the lithium leach solution, 40 g of Na 2 CO 3 was added to 1 L of the Li leach filtrate (pH 2.2) and neutralized to a pH range of 9 to 10. . After neutralization, lithium was obtained at 99.9% without loss, and the obtained precipitate was a carbonate containing cobalt and nickel contained in the filtrate, which was treated with the residue separated after lithium leaching as in Example 2 above and was recovered without loss. It was possible to recover valuable metals such as cobalt, nickel, and manganese.

(단위: mg/L) (Unit: mg/L) 구분division CoCo NiNi MnMn CuCu CaCa AlAl FeFe LiLi pHpH 침출여액Leach filtrate 972972 5,3285,328 211211 0.080.08 3.13.1 58.158.1 NDN.D. 5,3345,334 2.22.2 중화후After neutralization 0.20.2 NDN.D. 0.40.4 NDN.D. 55 NDN.D. NDN.D. 5,3305,330 9.39.3

[[ 실시예Example 4: 4: 탄산리튬lithium carbonate 회수] collect]

상기 실시예 3과 같이 리튬 침출여액 중화후, 90 oC 온도에서 가열 농축하고, Na2CO3를 리튬의 농도기준으로 1.5 당량까지 첨가하여 탄산리튬을 회수하였다. 회수된 탄산리튬 내 공침된 나트륨을 제거하기 위해 90 oC에서 고액비(탄산리튬과 물; L/S) 3:1 비율로 2회 수세척 후 98.4% 순도의 탄산리튬을 회수하였다.After neutralizing the lithium leach filtrate as in Example 3, it was concentrated by heating at a temperature of 90 o C, and Na 2 CO 3 was added up to 1.5 equivalents based on the concentration of lithium to recover lithium carbonate. To remove coprecipitated sodium in the recovered lithium carbonate, lithium carbonate with 98.4% purity was recovered after washing twice with water at 90 o C at a solid-liquid ratio (lithium carbonate and water; L/S) of 3:1.

구분division CoCo NiNi MnMn CuCu CaCa AlAl FeFe NaNa LiLi 탄산리튬 내
성분
(mg/kg)
Lithium carbonate
ingredient
(mg/kg)
NDN.D. NDN.D. 1.71.7 NDN.D. 8686 NDN.D. NDN.D. 8,0608,060 184,800184,800

본 발명은 삼원계 폐양극활물질로부터 습식공정으로 리튬을 고농도로 선택적으로 침출하여 회수할 수 있으며, 리튬이 제거된 침출 잔사로부터 기존 공정보다 단순하고 경제적인 방법으로 리튬을 제외한 삼원계 유가금속 즉, 니켈, 코발트, 망간 등을 회수할 수 있다.The present invention can recover lithium by selectively leaching it at a high concentration from a ternary waste cathode active material through a wet process, and ternary valuable metals excluding lithium, i.e., Nickel, cobalt, manganese, etc. can be recovered.

Claims (12)

(a) 산화제 수용액에서 폐양극활물질 분말의 리튬을 침출시키는 단계;
(b) 상기 (a) 단계에서 수득한 리튬 침출 여액에 중화제를 첨가하여 리튬 외 불순물을 침전시켜 제거하는 단계; 및
(c) 상기 (b) 단계에서 불순물이 제거된 리튬 침출 여액을 가열농축 후, 탄산화하여, 탄산리튬으로 회수하는 리튬 회수 단계; 를 포함하고,
상기 산화제 수용액은 산(acid) 수용액 내 추가적인 산화제인 KMnO4, Na2S2O8, O3, 및 NaClO3로 이루어진 군에서 하나 이상을 포함하고,
상기 추가적인 산화제는 리튬 1당량 기준 1.5당량 이상 포함되고,
상기 폐양극활물질 분말은 층상계 활물질을 포함하고, 상기 산화제에 의해 층상 구조의 결정격자가 붕괴 또는 변형되는 것인 폐양극활물질로부터 리튬의 선택적 회수방법.
(a) leaching lithium from the waste cathode active material powder in an oxidizing agent aqueous solution;
(b) adding a neutralizing agent to the lithium leaching filtrate obtained in step (a) to precipitate and remove impurities other than lithium; and
(c) a lithium recovery step of heating and concentrating the lithium leach filtrate from which impurities have been removed in step (b), carbonating it, and recovering lithium carbonate; Including,
The aqueous oxidizing agent solution includes at least one from the group consisting of KMnO 4 , Na 2 S 2 O 8 , O 3 , and NaClO 3 , which are additional oxidizing agents in an aqueous acid solution,
The additional oxidizing agent is contained in an amount of 1.5 equivalents or more based on 1 equivalent of lithium,
The waste cathode active material powder includes a layered active material, and the crystal lattice of the layered structure is collapsed or transformed by the oxidizing agent.
삭제delete 제 1항에 있어서,
상기 중화제는 NaOH, NH4OH, Na2CO3, K2CO3, CaO, CaCO3, MgCO3, MgO로 이루어진 군에서 하나 이상 선택되는 것을 특징으로 하는 폐양극활물질로부터 리튬의 선택적 회수방법.
According to clause 1,
The neutralizing agent is a selective recovery method of lithium from a spent cathode active material, characterized in that at least one selected from the group consisting of NaOH, NH 4 OH, Na 2 CO 3 , K 2 CO 3 , CaO, CaCO 3 , MgCO 3 , and MgO.
제 1항에 있어서,
상기 (a) 단계는 30 내지 90 ℃의 온도에서 침출하는 것을 특징으로 하는 폐양극활물질로부터 리튬의 선택적 회수방법.
According to clause 1,
Step (a) is a method for selective recovery of lithium from waste cathode active material, characterized in that leaching at a temperature of 30 to 90 ° C.
제 1항에 있어서,
상기 (a) 단계는 pH 2 내지 7에서 침출하는 것을 특징으로 하는 폐양극활물질로부터 리튬의 선택적 회수방법.
According to clause 1,
Step (a) is a selective recovery method of lithium from waste cathode active material, characterized in that leaching at pH 2 to 7.
제 5항에 있어서,
상기 pH는 H2SO4, HCl, HNO3 로 이루어진 군에서 하나 이상 선택되어 조절하는 것을 특징으로 하는 폐양극활물질로부터 리튬의 선택적 회수방법.
According to clause 5,
The pH is H 2 SO 4 , HCl, HNO 3 A selective recovery method of lithium from a spent cathode active material, characterized in that one or more selected from the group consisting of and controlled.
제 1항에 있어서,
상기 (a) 단계는 1 내지 4시간 동안 침출하는 것을 특징으로 하는 폐양극활물질로부터 리튬의 선택적 회수방법.
According to clause 1,
Step (a) is a method for selective recovery of lithium from waste cathode active material, characterized in that leaching for 1 to 4 hours.
제 1항에 있어서,
상기 (a) 단계에서 폐양극활물질 분말과 산화제 수용액은 고액비 (mg/L) 5 내지 20으로 침출하는 것을 특징으로 하는 폐양극활물질로부터 리튬의 선택적 회수방법.
According to clause 1,
A method for selective recovery of lithium from waste cathode active material, characterized in that in step (a), the waste cathode active material powder and the oxidizing agent aqueous solution are leached at a solid-liquid ratio (mg/L) of 5 to 20.
제 1항에 있어서,
상기 (c) 단계에서 탄산화는 Na2CO3, K2CO3, CaCO3, MgCO3로 이루어진 군에서 하나 이상 선택하여 리튬농도 대비 1에서 1.5 당량으로 첨가하는 것을 특징으로 하는 폐양극활물질로부터 리튬의 선택적 회수방법.
According to clause 1,
In step (c), carbonation is performed by selecting at least one from the group consisting of Na 2 CO 3 , K 2 CO 3 , CaCO 3 , and MgCO 3 and adding lithium from the waste cathode active material in an amount of 1 to 1.5 equivalents relative to the lithium concentration. Selective recovery method.
청구항 1항의 (a) 단계의 리튬 침출액에서 분리된 잔사와 청구항 1항의 (b) 단계에서 침전된 리튬 외 불순물을 포함한 조성물로부터 코발트(Co), 니켈(Ni), 망간(Mn)의 유가금속을 회수하는 단계를 포함하는 폐양극활물질로부터 삼원계 유가금속 회수방법.Valuable metals such as cobalt (Co), nickel (Ni), and manganese (Mn) are extracted from the residue separated from the lithium leachate in step (a) of claim 1 and the composition containing impurities other than lithium precipitated in step (b) of claim 1. A method for recovering ternary valuable metals from waste cathode active material including the step of recovering. 제 10항에 있어서,
상기 (a) 단계의 리튬 침출액에서 분리된 잔사는 MnO2, LiCoO2, LiNiO2 을 포함하는 것을 특징으로 하는 폐양극활물질로부터 삼원계 유가금속 회수방법.
According to clause 10,
The residue separated from the lithium leachate in step (a) is a method for recovering ternary valuable metals from a waste cathode active material, characterized in that it contains MnO 2 , LiCoO 2 , and LiNiO 2 .
제 10항에 있어서,
상기 (b) 단계에서 침전된 리튬 외 불순물은 탄산화물((Co-Ni-Mn)CO3)이나 수산화물((Co-Ni-Mn)(OH)2)을 포함하는 것을 특징으로 하는 폐양극활물질로부터 삼원계 유가금속 회수방법.

According to clause 10,
Impurities other than lithium precipitated in step (b) are waste cathode active materials, characterized in that they include carbonate ((Co-Ni-Mn)CO 3 ) or hydroxide ((Co-Ni-Mn)(OH) 2 ). Method for recovering ternary valuable metals.

KR1020200142057A 2020-10-29 2020-10-29 Selective recovery of lithium from ternary cathode active material of spent lithium ion batteries KR102606229B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200142057A KR102606229B1 (en) 2020-10-29 2020-10-29 Selective recovery of lithium from ternary cathode active material of spent lithium ion batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200142057A KR102606229B1 (en) 2020-10-29 2020-10-29 Selective recovery of lithium from ternary cathode active material of spent lithium ion batteries

Publications (2)

Publication Number Publication Date
KR20220057137A KR20220057137A (en) 2022-05-09
KR102606229B1 true KR102606229B1 (en) 2023-11-23

Family

ID=81582325

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200142057A KR102606229B1 (en) 2020-10-29 2020-10-29 Selective recovery of lithium from ternary cathode active material of spent lithium ion batteries

Country Status (1)

Country Link
KR (1) KR102606229B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102631721B1 (en) * 2021-11-30 2024-02-01 코스모화학 주식회사 Selective recovery of lithium from ternary cathode active material of spent lithium ion batteries

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019153562A (en) * 2018-03-06 2019-09-12 Jx金属株式会社 Lithium carbonate production method and lithium carbonate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101345559B1 (en) 2011-12-21 2014-01-02 한국기초과학지원연구원 Recovery method of lithium using electrochemistry process
CN107431256A (en) * 2015-11-24 2017-12-01 伍斯特理工学院 Method and apparatus for recycling Li-ion batteries piles

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019153562A (en) * 2018-03-06 2019-09-12 Jx金属株式会社 Lithium carbonate production method and lithium carbonate

Also Published As

Publication number Publication date
KR20220057137A (en) 2022-05-09

Similar Documents

Publication Publication Date Title
KR101682217B1 (en) A Method Of Manufacturing A Lithium Carbonate With High Purity By Recycling A Lithium From A Anode Material Of Used Lithium Ion Secondary Battery
CN111278998A (en) Method for recovering cobalt, lithium and other metals from spent lithium-based batteries and other feeds
JP6721799B2 (en) Nitrate process for producing transition metal hydroxide precursors
EP2597164B1 (en) Method for separating nikel and cobalt from active materials contained in spent nickel-hydrogen battery
CN112142077A (en) Method for preparing battery-grade lithium carbonate and iron phosphate by recycling lithium iron phosphate positive electrode waste
EP3904546B1 (en) Process for recovering components from alkaline batteries
KR102154599B1 (en) Method for Separation and Recovery of Valuable Metals from Cathode Active Material
KR102206952B1 (en) Manufacturing Method of Mixed Metal Compounds for Preparing Precursors from Waste Cathode Active Material Powders
KR102132120B1 (en) A recycling method for the spent lithium ion secondary battery using carbon dioxide
JP7232119B2 (en) Method for processing lithium-ion battery waste and method for producing sulfate
KR102442036B1 (en) Method for recovery of manganese compounds from cathode active material of waste lithium ion battery
CN111278997A (en) Method for producing cobalt and related oxides from various feed materials
KR100644902B1 (en) High-rate recovery of valuable metals such as cobalt and lithium from waste lithium secondary batteries
CN114477240A (en) Preparation method of battery-grade lithium hydroxide
KR102016817B1 (en) A Method Of Preparing A Precursor Material By Recycling A Wasted Lithium Secondary Battery Cathode Material
KR102606229B1 (en) Selective recovery of lithium from ternary cathode active material of spent lithium ion batteries
KR101438272B1 (en) Method for recovering metal from electrode material
JP6459797B2 (en) Method and apparatus for recovering raw material for producing ferronickel from waste nickel metal hydride battery
KR102631721B1 (en) Selective recovery of lithium from ternary cathode active material of spent lithium ion batteries
KR101553388B1 (en) Method of recovering effective metal material from positive electrode scrab
KR20240049385A (en) Method and equipment for recovering metal from black mass
KR20230081900A (en) Selective recovery of valuable metal from cathode active material of spent lithium ion batteries
US20240102127A1 (en) Process for cathode active material precursor preparation
KR102612151B1 (en) Method for producing manganese sulfate from by-products of zinc smelting process
KR102561212B1 (en) Preparing method of complex sulphate soultion from waste electrode material of lithium ion secondary batteries

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant