KR20200107337A - 신규 재조합 발현 벡터 및 이의 용도 - Google Patents

신규 재조합 발현 벡터 및 이의 용도 Download PDF

Info

Publication number
KR20200107337A
KR20200107337A KR1020190026310A KR20190026310A KR20200107337A KR 20200107337 A KR20200107337 A KR 20200107337A KR 1020190026310 A KR1020190026310 A KR 1020190026310A KR 20190026310 A KR20190026310 A KR 20190026310A KR 20200107337 A KR20200107337 A KR 20200107337A
Authority
KR
South Korea
Prior art keywords
nls
pdsred2
protein
amino acid
expression vector
Prior art date
Application number
KR1020190026310A
Other languages
English (en)
Other versions
KR102180619B1 (ko
Inventor
현성희
유희상
옥연정
이송희
Original Assignee
을지대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 을지대학교 산학협력단 filed Critical 을지대학교 산학협력단
Priority to KR1020190026310A priority Critical patent/KR102180619B1/ko
Publication of KR20200107337A publication Critical patent/KR20200107337A/ko
Application granted granted Critical
Publication of KR102180619B1 publication Critical patent/KR102180619B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/09Fusion polypeptide containing a localisation/targetting motif containing a nuclear localisation signal
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/60Fusion polypeptide containing spectroscopic/fluorescent detection, e.g. green fluorescent protein [GFP]

Landscapes

  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

본 발명은 서열번호 5로 기재되는 아미노산 서열로 구성되는 DsRed 단백질이 서열번호 6으로 기재되는 아미노산 서열로 구성되는 변형 다중 클로닝 사이트에 의해 암호화되는 폴리펩타이드(MCS)에 의해 서열번호 7로 기재되는 아미노산 서열로 구성되는 핵이동 신호(NLS)에 연결된 융합단백질을 암호화하는 폴리뉴클레오타이드를 포함하는, 상기 DsRed 형광단백질 또는 상기 DsRed 형광단백질에 연결되는 외래단백질의 핵내 이동용 발현벡터를 제공한다.

Description

신규 재조합 발현 벡터 및 이의 용도{Novel recombinant expression vectors and uses thereof}
본 발명은 신규 재조합 발현 벡터 및 이의 용도에 관한 것으로서, 더 상세하게는 핵이동 신호(NLS)를 갖는 신규 재조합 발현 벡터 및 이의 용도에 관한 것이다.
유전자 치료를 위한 비-바이러스성 벡터(non-viral vectors)의 개발에 있어서 세포 활동 조절을 위한 DNA로 핵이동은 세포 대사 및 질병 연구에 중요하다(Sebestyen MG et al., Nat Biotechnol. 16:80-85. 1998). DNA 수송(transport)에 대한 연구는 단백질과 RNA가 어떻게 핵으로 출입이 가능한지에 대한 이해가 높아짐에 따라 활발히 수행되었다(Mattaj IW et al., Ann Rev Biochem. 67:265-306. 1998). 많은 연구에서는 이미 핵이동 신호(NLS)를 사용하는데 특히, 액틴의 형성, 재구성, 세포의 부착 및 분화능 사이의 관계를 설명하기 위해 신호 전달 경로인(Plessner M et al., J Biol Chem. 290:11209-11216. 2015) p62/SQSTM이 사용되어왔다. 최근 연구에 따르면 인플루엔자 A 바이러스 핵단백질의 NLS가 세포 독성을 최소화하면서 바이러스를 활성화 시키도록 변형될 수 있음이 밝혀졌다(Nakada R et al., Sci Rep. 5:15055. 2015). NLS는 순환하는 종양 세포에서 발현되는 AR-V7 단백질 바이오 마커를 사용하여 전이성 전립선 암 치료에도 사용된다(Scher HI et al., Eur Urol. 71:874-882. 2017). 핵 수송 단백질에 결합하는 NLS 또는 수출 신호(export signals)를 포함하는 (또는 포함하는 단백질에 결합하는) 거대 분자(예컨대, karyopherin α 및 β)는 핵공(nuclear pore)을 통한 이동을 매개한다. 또한 바이러스성 단백질은 NLS를 포함하고 있으며, DNA가 핵으로 이동되는 기전은 활발히 연구되고 있다. 일반적으로 플라스미드에 삽입된 치료 유전자는 유익한 효과를 발휘하기 위해서는 세포질에서 핵으로 운반되어야 하는데 naked DNA(선형 또는 플라스미드)는 손상되지 않은 핵공을 통과할 수 있지만(Dowty ME et al., Proc Natl Acad Sci. 92:4572-4576. 1995), 상기 과정은 바이러스 게놈 및 핵친화성 단백질(karyophilic proteins)에 비해 비효율적이다.
상기 선행기술의 경우, NLS 연구에 사용된 벡터가 NLS 아미노산 서열의 3 ~ 6 반복(iterations)으로 구성되어 실험 결과에 영향을 주거나 오류를 일으키는 문제점이 존재한다.
본 발명은 상기와 같은 문제점을 포함하여 여러 문제점들을 해결하기 위한 것으로서, 단백질-단백질 상호작용, 유전자 치료 또는 약물 전달에 용이한 핵이동 신호(NLS)를 갖는 신규 재조합 발현 벡터 및 이의 용도를 제공하는 것을 목적으로 한다. 그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.
본 발명의 일 관점에 따르면, 서열번호 5로 기재되는 아미노산 서열로 구성되는 DsRed 단백질이 서열번호 6으로 기재되는 아미노산 서열로 구성되는, 변형 다중 클로닝 사이트에 의해 암호화되는 폴리펩타이드(MCS)에 의해 서열번호 7로 기재되는 아미노산 서열로 구성되는 핵이동 신호(NLS)에 연결된 융합단백질을 암호화하는 폴리뉴클레오타이드를 포함하는, 상기 DsRed 형광단백질 또는 상기 DsRed 형광단백질에 연결되는 외래단백질의 핵내 이동용 발현벡터가 제공된다.
본 발명의 다른 일 관점에 따르면, 발현벡터의 변이 다중 클로닝 사이트를 통해 외래단백질을 암호화하는 폴리뉴클레오타이드가 삽입된, 상기 외래단백질의 핵내 이동용 발현벡터가 제공된다.
본 발명의 다른 일 관점에 따르면, 상기 발현벡터를 숙주세포에 형질전환 시킨 형질 전환체가 제공된다.
본 발명의 다른 일 관점에 따르면, 발현벡터를 숙주세포 내로 형질전환하는 단계를 포함하는, 상기 외래단백질을 상기 숙주세포의 핵내에서 발현시키는 방법이 제공된다.
상기한 바와 같이 본 발명의 핵이동 신호(NLS)를 갖는 신규 재조합 발현 벡터는 유전자의 삽입을 용이하게 하도록 설계되어 다양한 세포주에서 사용할 수 있으며 핵에서 형광 단백질 발현을 시각적으로 확인할 수 있어 단백질-단백질 상호작용, 유전자 치료 또는 약물 전달, 세포치료를 위한 유전자 및 단백질의 연구에 활용할 수 있다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.
도 1은 pDsRed2-C1-wt 벡터의 개략적인 구조 및 MCS 영역을 나타내는 개요도이다. A: pDsRed2-C1-wt 벡터지도, B: pDsRed2-C1-wt MCS 영역.
도 2는 pDsRed2-C1-wt 벡터의 MCS 말단부에 NLS 서열을 위지치정돌연변이 및 삽입하여 재조합 발현 벡터를 제조하는 과정을 나타내는 개요도이다. NLS 서열은 pDsRed2-C1-wt의 핵산서열 중 1338 및 1339 위치 사이에 AAA AAG AAG CGC AAG CGC 서열이 삽입되었고, 1336CCG1338 서열은 1336AGG1338 서열로 돌연변이 되었다.
도 3은 본 발명의 변형 pDsRed2-C1-NLS 및 pDsRed2-C1-S100A10-NLS 벡터를 COS1(A~E) 세포 및 COS7(F~J) 세포에 형질전환 시킨 후 공초점 현미경(confocal microscopy)으로 관찰한 사진이다. (A)대조군, (B)pDsRed2-C1-wt, (C)pDsRed2-C1-NLS, (D)pDsRed2-C1-S100A10-wt, (E)pDsRed2-C1-S100A10-NLS, (F)대조군, (G)pDsRed2-C1-wt, (H)pDsRed2-C1-NLS, (I)pDsRed2-C1-S100A10-wt, (J)pDsRed2-C1-S100A10-NLS.
도 4a는 본 발명의 변형 pDsRed2-C1-NLS 및 pDsRed2-C1-S100A10-NLS 벡터를 COS1 세포에 형질전환 시킨 후 공초점 현미경(confocal microscopy)에 의한 형광 밀도를 분석한 그래프이다. (A)대조군, (B)pDsRed2-C1-wt, (C)pDsRed2-C1-NLS, (D)pDsRed2-C1-S100A10-wt, (E)pDsRed2-C1-S100A10-NLS.
도 4b는 본 발명의 변형 pDsRed2-C1-NLS 및 pDsRed2-C1-S100A10-NLS 벡터를 COS7 세포에 형질전환 시킨 후 공초점 현미경(confocal microscopy)에 의한 형광 밀도를 분석한 그래프이다. (F)대조군, (G)pDsRed2-C1-wt, (H)pDsRed2-C1-NLS, (I)pDsRed2-C1-S100A10-wt, (J)pDsRed2-C1-S100A10-NLS.
도 5는 본 발명의 변형 pDsRed2-C1-NLS 및 pDsRed2-C1-S100A10-NLS 벡터를 COS1 세포 및 COS7 세포에 형질전환 시킨 후 면역침전(Immunoprecipitation) 분석을 수행한 겔 사진이다. pDsRed2-C1-wt, pDsRed2-C1-NLS, pDsRed-C1-S100A10-wt 및 pDsRed2-C1-S100A10-NLS 벡터를 24시간 동안 각 세포에 형질전환 시킨 후 상기 세포를 용해시키고 DsRed, Karyopherin α2/β2 항체 및 A/G 비드를 사용하여 용해물에서 면역침전을 수행하였다.
도 6은 본 발명의 변형 pDsRed2-C1-NLS 및 pDsRed2-C1-S100A10-NLS 벡터를 COS1 세포 및 COS7 세포에 형질전환 시킨 후 세포 생존력(cell viability)을 분석한 그래프이다. (A)COS1 및 (B)COS7 세포에서 형질전환된 벡터의 세포 생존력을 분석하였고 값은 평균 ± SEM (n = 3)으로 나타내었으며, 세포 생존력의 백분율 감소로 표시하였다.
도 7은 본 발명의 변형 pDsRed2-C1-NLS 및 pDsRed2-C1-S100A10-NLS 벡터를 COS1 세포 및 COS7 세포에 형질전환 시킨 후 세포의 형질전환 효율(transfection efficiency)을 분석한 그래프이다. (A)COS1 및 (B) COS7 세포에서 형질전환된 벡터의 형질전환 효율을 분석하였고 값은 평균 ± SEM (n = 3)으로 나타내었으며 세포 효율의 백분율로 표시하였다.
용어의 정의:
본 문서에서 사용되는 "핵이동 신호(nuclear localization signal, NLS)"는 진핵세포에서 핵 내에 기능하는 단백질(핵단백질)이 합성장소인 세포질에서 핵막을 통과하여 핵 내부까지 수송되는 데 필요한 특정 아미노산 배열로 각각의 핵단백질이 그 1차구조상에 위치한다. SV40바이러스유전체의 T항원이라는 핵단백질에서 처음으로 동정되었다.
본 문서에서 사용되는 용어 "임포틴(importin)"은 다른 단백질 분자를 핵이동 신호(NLS)라고 불리는 특정한 인식배열에 결합하여 핵으로 이동시키는 단백질 종류 중 하나로, 세포질 단백질의 핵수송에 관여하는 인자(핵내수송인자)에 대한 총칭이다. 광의로는 임포틴 β 패밀리 중 단백질 핵 내 이동에 관여하는 분자와 임포틴α 패밀리분자를 포함한다.
발명의 상세한 설명:
본 발명의 일 관점에 따르면, 서열번호 5로 기재되는 아미노산 서열로 구성되는 DsRed 단백질이 서열번호 6으로 기재되는 아미노산 서열로 구성되는, 변형 다중 클로닝 사이트에 의해 암호화되는 폴리펩타이드(MCS)에 의해 서열번호 7로 기재되는 아미노산 서열로 구성되는 핵이동 신호(NLS)에 연결된 융합단백질을 암호화하는 폴리뉴클레오타이드를 포함하는, 상기 DsRed 형광단백질 또는 상기 DsRed 형광단백질에 연결되는 외래단백질의 핵내 이동용 발현벡터가 제공된다.
상기 발현벡터에 있어서, 상기 융합단백질은 서열번호 8로 기재되는 아미노산 서열로 구성될 수 있고 상기 MCS는 서열번호 9로 구성되는 아미노산 서열로 구성되는 폴리펩타이드의 아미노산인 프롤린이 아르기닌으로 치환된 것일 수 있다.
본 발명의 다른 일 관점에 따르면, 상기 발현벡터의 변이 다중 클로닝 사이트를 통해 외래단백질을 암호화하는 폴리뉴클레오타이드가 삽입된, 상기 외래단백질의 핵내 이동용 발현벡터가 제공된다.
이때 상기 외래단백질을 암호화하는 폴리뉴클레오타이드는 상기 MCS를 암호화하는 변이 다중 클로닝 사이트를 통해 삽입이 될 수 있다.
본 발명의 다른 일 관점에 따르면, 상기 발현벡터를 숙주세포에 형질전환 시킨 형질 전환체가 제공된다.
본 발명의 다른 일 관점에 따르면, 상기 발현벡터를 숙주세포 내로 형질전환하는 단계를 포함하는, 상기 외래단백질을 상기 숙주세포의 핵내에서 발현시키는 방법이 제공된다.
핵으로 수송하기 위한 핵이동 신호(NLS)는 단백질-단백질 상호작용 또는 유전자의 치료에 널리 사용되며 세포 대사 및 질병 연구 등 많은 분야에 널리 사용된다. 따라서 NLS 벡터 시스템은 효율적이고 안정적이며 명확한 수송 및 안전에 대한 우려를 해결하기 위해 점진적으로 개선되었다. 외래 DNA의 핵 진입 효율을 증가시키는 접근법은 DNA를 NLS에 연결시키는 것으로 몇몇 연구 그룹은 NLS와 DNA의 비공유 결합(non-covalent)이 DNA 핵 수송을 향상시킬 수 있다고 보고했다. 일반적으로 사용되는 NLS 벡터는 3 ~ 6 반복의 NLS로 구성되며 반복 없이 최소 서열을 갖는 새로 구성된 NLS 벡터보다 긴 NLS 서열을 가지므로 단백질수송 간에 세포질 및 핵결절 형성(tubercular nuclei)에 영향을 줄 가능성을 최소화한다.
또한 핵공(nuclear pore)의 구조는 핵 수송에 두 가지 크기 제한을 부과하는데(Pante N et al., Science. 273:1729-1732. 1996) 직경이 약 9-10 nm인 핵공의 채널은 50-60 kDa의 작은 용질 및 단백질은 자유롭게 확산 및 출입할 수 있게 한다(양쪽에 활성 유지 메커니즘이 있는 경우는 예외). 더 큰 단백질은 핵공의 중앙 채널을 통해 능동적으로 수송되도록 NLS를 필요로 한다. SV40 NLS peptide-conjugated BSA 또는 내인성 핵친화성 단백질인 nucleoplasmin으로 코팅한 경우 직경이 ~ 25 nm 미만인 콜로이드성 금 입자가 HeLa 세포의 핵으로 수송될 수 있다(Dworetzky SI et al., J Cell Biol. 107:1279-1287. 1988). 이전의 연구는 작은 단일 가닥 올리고 뉴클레오타이드가 핵으로 확산될 수 있음을 보여주었다(Hagstrom JE et al., J Cell Sci. 110:2323-2331. 1997). SV40 T 항원 NLS(NLS/NL)의 확장된 형태는 IgM(23, 24)과 같은 거대 분자의 핵 수송에 더 효율적이기 때문에 사용되었다. pDsRed2-C1-wt 벡터는 4.7 kb의 벡터 크기, 약 259 kDa의 RFP (Red Fluorescence Protein) 크기, 558nm의 최대 여기 및 583nm (Remington SJ et al., Nature Publishing Group; 2002)의 최대 방출을 갖는 적색 형광 단백질(RFP)을 발현한다. pDsRed2-C1-wt 벡터는 약 24시간(Bevis BJ et al., Nature Biotechnol. 20:83. 2002)의 짧은 성숙시간을 가지므로 짧은 시간 내에 많은 실험을 가능하게 한다. 따라서 NLS 벡터는 pDsRed2-C1-wt을 기반으로 새로 생성되었다.
본 발명의 신규 pDsRed2-C1-NLS 벡터는 상업적 pDsRed2-C1-wt 벡터의 다중 클로닝 사이트(MCS) 말단부에서 NLS 서열을 생성하였고, MCS 영역은 제한효소에 의해 원하는 유전자의 삽입을 용이하도록 설계되어 다양한 세포주에서 사용할 수 있으며 핵에서 형광 단백질 발현을 시각적으로 확인할 수 있다. 또한, 본 발명의 발현 벡터는 표적 단백질 간의 상보적인 결합을 확인할 수 있으며, 표적 단백질이 NLS 기전에 의해 수송되는지를 확인할 수 있다. 따라서 본 발명의 신규 pDsRed2-C1-NLS 벡터는 단백질-단백질 상호작용, 유전자 치료, 세포치료 또는 약물 전달을 위한 유전자 및 단백질의 연구에 활용될 수 있다.
이하, 실시예를 통하여 본 발명을 더 상세히 설명한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있는 것으로, 이하의 실시예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.
일반적 방법
세포배양 및 형질전환
본 발명자들은 COS1 및 COS7 세포(아프리카 녹색 원숭이 신장 상피 세포주)를 10%(v/v)의 열-비활성화된 우태아혈청 및 1000 U의 페니실린-스트렙토마이신(Gibco BRL, Grand Island, NY, USA)이 첨가된 Dulbecco's Modified Eagle Medium (DMEM; Welgene, Gyeongsan, South Korea)에서 배양하였다. 그 후 상기 세포를 10%(v/v) 우태아혈청 및 항생제가 첨가된 DMEM에서 유지시켰으며 37℃, 가습 대기(5% CO2) 조건에서 배양하였다. 그 후, COS1 및 COS7 세포를 제조사의 지시에 따라 Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA)을 사용하여 pDsRed2-C1-wt, pDsRed2-C1-NLS, pDsRed2-C1-S100A10-wt 및 pDsRed2-C1-S100A10-NLS로 형질전환 시켰고 분석 전 36시간 동안 배양하였다.
형광 현미경 및 이미지 분석
본 발명자들은 현미경 분석을 위해 COS1 및 COS7 세포를 4-웰 플레이트의 유리 커버 슬립에서 대략 75%의 세포 포화도(confluency)가 될 때까지 밤새 배양하였고 세포를 지시된 시간 동안 pDsRed2-C1-wt, pDsRed2-C1-NLS, pDsRed2-C1-S100A10-wt 및 pDsRed2-C1-S100A10-NLS로 형질전환하였다. 이어서 상기 세포를 PBS로 세척하였고 실온에서 15분 동안 4% 파라포름알데히드(Sigma-Aldrich, St. Louis, MO, USA)에 고정시켰으며 25℃에서 0.1% PBT(PBS + Triton X-100) 20분간 투과하였다. 간접 면역형광 염색을 위해, 상기 세포를 36℃에서 1시간 동안 5% 소 혈청 알부민으로 PBS에서 차단시킨 다음 세포를 1차 항체와 함께 4℃에서 16시간 동안 배양 한 후, 2차 항체 및 Hoechst 염색 용액과 함께 실온에서 90분 동안 반응시켰다. 마지막으로, 상기 세포를 DAKO 장착 배지(Sigma-Aldrich)의 슬라이드에 로딩하였다. 상기 슬라이드를 Carl Zeiss 공초점 현미경 시스템(Zeiss, Oberkochen, Germany)을 사용하여 시각화하기 전에 4℃에서 밤새도록 또는 그 이상 방치했다.
면역블로팅(Immunoblotting)
본 발명자들은 면역블로팅 분석을 위해 COS1 및 COS7 세포를 트립신-EDTA로 수획하였고 RIPA 완충액에서 용해시켰다. 그 후 BCA 키트(Pierce, Rockford, IL, USA)를 사용하여 단백질 농도를 측정하였고, 동량의 단백질을 SDS-런닝 버퍼의 12% SDS 겔 상에서 분리하였으며 PVDF 멤브레인(Invitrogen, Carlsbad, CA, USA)으로 전이시켰다. 상기 멤브레인을 PBS 중 5% 탈지유로 4℃에서 90분 동안 차단시킨 다음 1차 항체와 서양 고추냉이 퍼옥시다아제가 결합된 2차 항체로 면역블로팅을 수행하였다. 그 후 Immobilon Western Chemiluminescent HRP Substrate(Merck, Darmstadt, Germany)를 사용하여 반응성 밴드를 오토방사 필름(Kodak, Rochester, NY, USA)에서 시각화하였다.
면역침전(Immunoprecipitation)
본 발명자들은 상호-면역침전(co-immunoprecipitation) 실험을 위해, pDsRed2-C1-wt, pDsRed2-C1-NLS, pDsRed2-C1-S100A10-wt 및 pDsRed2-C1-S100A10-NLS 벡터를 Lipofectamine 3000(Invitrogen)을 사용하여 COS1 및 COS7 세포를 형질전환 시켰고 36시간 후, 트립신-EDTA로 세포를 수획하였으며 RIPA 완충액에서 용해시킨 다음, 밤새 배양하였다. 그 후 상기 용해물을 16000 x g에서 30분 동안 원심분리하였고 상등액을 항-DsRed(Santa Cruz Biotechnology, Santa Cruz, CA, USA) 또는 항-karyopherin α2(Santa Cruz Biotechnology) 또는 β2(Santa Cruz Biotechnology) 항체와 4℃에서 1시간 동안 결합시켰다. 상기 반응 후, 30 μL의 protein-A / G-agarose 비드(Santa Cruz Biotechnology)를 항체가 결합된 용해물에 첨가하고 4℃에서 밤새 반응시켰고 비드는 RIPA 완충액 1 mL로 매회 5분 동안 3회 세척하였다. 상기 생성된 비드-결합 면역 복합체(bead-bound immunocomplexes)를 표준 기법(Harlow E et al., New York: Cold Spring Harbor Laboratory. 579. 1988)에 따라 SDS-PAGE 및 웨스턴 블랏팅으로 분석하였다.
세포 생존율 분석
본 발명자들은 세포 생존율 분석을 위해서 COS1 및 COS7 세포(1.75 x 107 세포)를 60-mm 세포 배양 접시에 배양하였고 12 및 24시간에 pDsRed2-C1-wt, pDsRed2-C1-NLS, pDsRed2-C1-S100A10-wt 및 pDsRed2-C1-S100A10-NLS로 형질전환하였다. 상기 형질전환된 세포를 PBS로 1회 세척하였고, 0.05% 트립신-EDTA로 처리 후, 수획하였으며, PBS로 1회 세척하였다. 상기 수획한 세포를 PBS(20 μL)로 현탁시키고, Muse Count & Viability Reagent(450 μL)로 처리한 다음, 실온에서 5분 동안 반응시켰다. 그 후 상기 반응 샘플을 Muse Cell Analyzer(Merck Millipore, Darmstadt, Germany)를 사용하여 측정하였다.
유세포 분석(Flow cytometry)
본 발명자들은 형질전환 효율을 분석하기 위해 상기 실시예 7의 형질전환된 세포를 0.5 mL의 PBS에 재현탁 시켰다. 그 후, 형질전환 효율을 분석하기 위해 Guavaㄾ easyCyte Flow Cytometers(Merck Millipore)를 사용하여 유세포 분석을 수행하였다.
실시예 1: 플라스미드 고안 및 제작
1-1: pDsRed2- C1 -NLS 플라스미드 제조
본 발명자들은 서열번호 7로 기재되는 아미노산 서열로 구성되는 표준 핵이동 신호(NLS)를 암호화하는 핵산서열 및 pDsRed2-C1-wt의 MCS 일부 핵산서열을 포함하는 센스 올리고뉴클레오타이드(서열번호 1) 및 상기 올리고뉴클레오타이드에 상보적인 안티센스 올리고뉴클레오타이드(서열번호 2)로 구성된 이중가닥 핵산분자를 제조하고 pDsRed2-C1-wt(Clontech Laboratories, Inc., Palo Alto, CA, USA)를 주형으로 돌연변이 중합효소연쇄반응을 시행하여 pDsRed2-C1-NLS 플라스미드를 제조하였다(도 1). MCS의 변형을 최소화하여 벡터의 기능을 유지하고 삽입되는 NLS 서열을 짧게하여 MCS에 삽입되는 유전자의 단백질서열에 추가되는 아미노산의 서열을 최소화함으로써 삽입 유전자의 단백질 기능과 형태 변화를 최소화 하고자 하였다. 변형된 부분은 MCS 내의 코돈인 CCG(프롤린 암호화)를 AGG(아르기닌 암호화)로 치환하였으며 뒤 쪽에 6개의 아미노산으로 구성된 단일 NLS 아미노산 서열(KKKRKR, 서열번호 7)을 암호화하는 폴리뉴클레오타이드를 삽입하였다. 변형된 NLS의 작동은 pDsRed2-C1-wt과 pDsRed2-C1-NLS의 비교실험으로을 확인할 수 있다(도 2).
1-2: pDsRed2-C1-S100A10-NLS 플라미스미드의 제조
그런 다음, 본 발명자들은 하기 표 1에 기재된 프라이머(서열번호 3 및 4)를 사용하여 NLS 신호서열을 가지지 않는 S100A10 유전자를 증폭하고 제한효소 Xho I 및 Sal I을 이용하여 절단한 후, 상기 동일 제한효소로 MCS가 절단된 상기 실시예 1-1에서 제조된 pDsRed2-C1-NLS 플라스미드에 삽입함으로써, pDsRed2-C1-S100A10-NLS 플라스미드를 제조하였다. 상기 제조한 벡터 플라스미드를 Escherichia coli DH5α에 형질전환 시키고 카나마이신을 포함하는 Luria-Bertani(LB) 배지에서 37℃의 조건으로 24시간 동안 배양하였다. 이어서, AccuPrep Plasmid Mini Extraction Kit(Bioneer, Daejeon, Korea)를 사용하여 플라스미드 DNA를 추출하였다. 상기 플라스미드 제조에 사용한 프라이머를 포함하여 본 발명에서 사용한 프라이머에 대한 정보를 하기 표 1에 요약하였다.
프라이머 염기서열 정보
컨스트럭트 염기서열 (5' -> 3') 효소 핵위치 염기서열
pDsRed2-C1-NLS F GTC GAC GGT ACC GCG GGC AGG AAA AAG AAG CGC AAG CGC GGA TCC ACC GGA TCT + 1
pDsRed2-C1-NLS R TCT AGA TCC GGT GGA TCC GCG CTT GCG CTT CTT TTT CCT GCC CGC GGT ACC GTC + 2
S100A10 F GGA GCT CCT CGA GCA AGC TTC ATG CCA TCT CAA ATG XhoⅠ, Sal _ 3
S100A10 R GGC CAC CTA GGG CAG CTG CTT CTT TCC CTT CTG XhoⅠ, Sal _ 4
실시예 2: pDsRed2-C1-NLS 및 pDsRed2-C1-S100A10-NLS의 핵 전좌
본 발명자들은 본 발명의 벡터를 COS1(도 3A~3E) 세포 및 COS7(도 3F~3J) 세포에서 형질전환시킨 후, 공초점 레이저 스캐닝 현미경을 사용하여 핵 및 세포질에 위치한 pDsRed2-C1-wt(도 3B, 3G) 및 pDsRed2-C1-S100A10-wt(도 3D, 3I) 벡터를 평가하였다. pDsRed2-C1-NLS(도 3C, 3H) 및 pDsRed2-C1-S100A10-NLS (도 3E, 3J) 벡터는 세포 핵에서만 발견되었다. 세포는 벡터 서열에서의 NLS의 존재 유무와 형광량(intensity profile)의 결과에 따라 명확하게 구별될 수 있는데 형광 강도의 분석을 기반으로, 단백질은 핵과 세포질에서 분명히 구별되거나 동일한 위치에 위치함을 확인하였다(도 4a 및 4b).
실시예 3: 임포틴에 의한 변형 NLS 벡터의 핵 전좌
본 발명의 일 실시예에 따라 제조한 pDsRed-C1-NLS 및 pDsRed2-C1-S100A10-NLS 벡터는 각각의 NLS 메커니즘에 의해 임포틴 α(karyopherin α) 및 임포틴 β(karyopherinβ)와 결합 및 분리되는 과정에 의해 단백질을 운반하는 단일 NLS 서열을 포함한다. 본 발명자들은 COS1 및 COS7 세포를 pDsRed2-C1-wt, pDsRed2-C1-NLS, pDsRed2-C1-S100A10-wt 및 pDsRed2-C1-S100A10-NLS 벡터로 형질전환시켰고 세포 용해물로부터 면역침전(Immunoprecipitation)은 karyopherin α2 및 karyopherin β2 항체를 사용하여 임포틴 α 및 임포틴 β의 결합을 확인하는데 사용되었다.
그 결과, pDsRed2-C1-wt 및 pDsRed2-C1-S100A10-wt를 이용한 COS1과 COS7 세포에서 DsRed 및 임포틴은 검출되지 않았으나 pDsRed2-C1-NLS 및 pDsRed2-C1-S100A10-NLS를 사용하면 DsRed 및 임포틴이 검출되어 DsRed-NLS 및 임포틴이 함께 작동함을 확인하였다(도 5).
실시예 4: 세포 생존력 분석
본 발명자들은 새롭게 제조한 pDsRed2-C1-NLS, pDsRed2-C1-S100A10-wt 및 pDsRed2-C1-S100A10-NLS 벡터로 형질전환된 세포의 생존율을 분석하였다. 먼저, pDsRed2-C1-wt 벡터는 COS1 및 COS7 세포에서 각각 93.50% 및 92.85% 생존율을 나타냈고 pDsRed2-C1-NLS는 92.55% 및 89.87%, pDsRed2-C1-S100A10-wt의 경우 92.95% 및 93.42%, pDsRed2-C1-S100A10-NLS는 95.6% 및 89.8%로 나타났다(도 6).
또한 COS1 및 COS7 세포의 형질전환 효율은 pDsRed2-C1-wt의 경우 42.14% 및 56.91%, pDsRed2-C1-NLS는 41.75% 및 53.22%로 나타났으며 pDsRed2-C1-S100A10-wt는 각각 39.51% 및 48.05%였고 pDsRed2-C1-S100A10-NLS는 각각 45.06% 및 49.36%으로 나타났다(도 7).
결론적으로, 본 발명의 재조합 발현 벡터는 반복 없는 최소 서열로 구성되어 제한효소에 의해 쉽기 삽입하기 위한 고전 NLS 서열 및 다중 클로닝 사이트(MCS)의 일부 변형으로 생성되었으므로 일반적인 연구에 사용되는 세포에 효과적이며 치료 효과와 함께 마커 유전자의 발현 분석과 같은 광범위한 연구에 사용될 수 있다.
본 발명은 상술한 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.
<110> EULJI UNIVERSITY INDUSTRY ACADEMY COOPERATION FOUNDATION <120> Novel recombinant expression vectors and uses thereof <130> PD19-5757 <160> 9 <170> KoPatentIn 3.0 <210> 1 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> pDsRed2-C1-NLS F <400> 1 gtcgacggta ccgcgggcag gaaaaagaag cgcaagcgcg gatccaccgg atct 54 <210> 2 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> pDsRed2-C1-NLS R <400> 2 tctagatccg gtggatccgc gcttgcgctt ctttttcctg cccgcggtac cgtc 54 <210> 3 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> S100A10 F <400> 3 ggagctcctc gagcaagctt catgccatct caaatg 36 <210> 4 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> S100A10 R <400> 4 ggccacctag ggcagctgct tctttccctt ctg 33 <210> 5 <211> 225 <212> PRT <213> Artificial Sequence <220> <223> DsRed2 <400> 5 Met Ala Ser Ser Glu Asn Val Ile Thr Glu Phe Met Arg Phe Lys Val 1 5 10 15 Arg Met Glu Gly Thr Val Asn Gly His Glu Phe Glu Ile Glu Gly Glu 20 25 30 Gly Glu Gly Arg Pro Tyr Glu Gly His Asn Thr Val Lys Leu Lys Val 35 40 45 Thr Lys Gly Gly Pro Leu Pro Phe Ala Trp Asp Ile Leu Ser Pro Gln 50 55 60 Phe Gln Tyr Gly Ser Lys Val Tyr Val Lys His Pro Ala Asp Ile Pro 65 70 75 80 Asp Tyr Lys Lys Leu Ser Phe Pro Glu Gly Phe Lys Trp Glu Arg Val 85 90 95 Met Asn Phe Glu Asp Gly Gly Val Ala Thr Val Thr Gln Asp Ser Ser 100 105 110 Leu Gln Asp Gly Cys Phe Ile Tyr Lys Val Lys Phe Ile Gly Val Asn 115 120 125 Phe Pro Ser Asp Gly Pro Val Met Gln Lys Lys Thr Met Gly Trp Glu 130 135 140 Ala Ser Thr Glu Arg Leu Tyr Pro Arg Asp Gly Val Leu Lys Gly Glu 145 150 155 160 Thr His Lys Ala Leu Lys Leu Lys Asp Gly Gly His Tyr Leu Val Glu 165 170 175 Phe Lys Ser Ile Tyr Met Ala Lys Lys Pro Val Gln Leu Pro Gly Tyr 180 185 190 Tyr Tyr Val Asp Ala Lys Leu Asp Ile Thr Ser His Asn Glu Asp Tyr 195 200 205 Thr Ile Val Glu Gln Tyr Glu Arg Thr Glu Gly Arg His His Leu Phe 210 215 220 Leu 225 <210> 6 <211> 17 <212> PRT <213> Artificial Sequence <220> <223> mMCS <400> 6 Arg Ser Arg Ala Gln Ala Ser Asn Ser Ala Val Asp Gly Thr Ala Gly 1 5 10 15 Arg <210> 7 <211> 6 <212> PRT <213> Artificial Sequence <220> <223> NLS <400> 7 Lys Lys Lys Arg Lys Arg 1 5 <210> 8 <211> 248 <212> PRT <213> Artificial Sequence <220> <223> fusion protein <400> 8 Met Ala Ser Ser Glu Asn Val Ile Thr Glu Phe Met Arg Phe Lys Val 1 5 10 15 Arg Met Glu Gly Thr Val Asn Gly His Glu Phe Glu Ile Glu Gly Glu 20 25 30 Gly Glu Gly Arg Pro Tyr Glu Gly His Asn Thr Val Lys Leu Lys Val 35 40 45 Thr Lys Gly Gly Pro Leu Pro Phe Ala Trp Asp Ile Leu Ser Pro Gln 50 55 60 Phe Gln Tyr Gly Ser Lys Val Tyr Val Lys His Pro Ala Asp Ile Pro 65 70 75 80 Asp Tyr Lys Lys Leu Ser Phe Pro Glu Gly Phe Lys Trp Glu Arg Val 85 90 95 Met Asn Phe Glu Asp Gly Gly Val Ala Thr Val Thr Gln Asp Ser Ser 100 105 110 Leu Gln Asp Gly Cys Phe Ile Tyr Lys Val Lys Phe Ile Gly Val Asn 115 120 125 Phe Pro Ser Asp Gly Pro Val Met Gln Lys Lys Thr Met Gly Trp Glu 130 135 140 Ala Ser Thr Glu Arg Leu Tyr Pro Arg Asp Gly Val Leu Lys Gly Glu 145 150 155 160 Thr His Lys Ala Leu Lys Leu Lys Asp Gly Gly His Tyr Leu Val Glu 165 170 175 Phe Lys Ser Ile Tyr Met Ala Lys Lys Pro Val Gln Leu Pro Gly Tyr 180 185 190 Tyr Tyr Val Asp Ala Lys Leu Asp Ile Thr Ser His Asn Glu Asp Tyr 195 200 205 Thr Ile Val Glu Gln Tyr Glu Arg Thr Glu Gly Arg His His Leu Phe 210 215 220 Leu Arg Ser Arg Ala Gln Ala Ser Asn Ser Ala Val Asp Gly Thr Ala 225 230 235 240 Gly Arg Lys Lys Lys Arg Lys Arg 245 <210> 9 <211> 17 <212> PRT <213> Artificial Sequence <220> <223> MCS <400> 9 Arg Ser Arg Ala Gln Ala Ser Asn Ser Ala Val Asp Gly Thr Ala Gly 1 5 10 15 Pro

Claims (7)

  1. 서열번호 5로 기재되는 아미노산 서열로 구성되는 DsRed 단백질이 서열번호 6으로 기재되는 아미노산 서열로 구성되는, 변형 다중 클로닝 사이트에 의해 암호화되는 폴리펩타이드(MCS)에 의해 서열번호 7로 기재되는 아미노산 서열로 구성되는 핵이동 신호(NLS)에 연결된 융합단백질을 암호화하는 폴리뉴클레오타이드를 포함하는, 상기 DsRed 형광단백질 또는 상기 DsRed 형광단백질에 연결되는 외래단백질의 핵내 이동용 발현벡터.
  2. 제1항에 있어서,
    상기 융합단백질은 서열번호 8로 기재되는 아미노산 서열로 구성되는, 발현벡터.
  3. 제1항에 있어서,
    상기 MCS는 서열번호 9로 구성되는 아미노산 서열로 구성되는 폴리펩타이드의 아미노산인 프롤린이 아르기닌으로 치환된 것인, 발현벡터.
  4. 제1항의 발현벡터의 변이 다중 클로닝 사이트를 통해 외래단백질을 암호화하는 폴리뉴클레오타이드가 삽입된, 상기 외래단백질의 핵내 이동용 발현벡터.
  5. 제4항에 있어서,
    상기 외래단백질을 암호화하는 폴리뉴클레오타이드는 상기 MCS를 암호화하는 변이 다중 클로닝 사이트를 통해 삽입이 되는, 발현벡터.
  6. 제1항 내지 제5항 중 어느 한 항의 발현벡터를 숙주세포에 형질전환시킨 형질 전환체.
  7. 제4항의 발현벡터를 숙주세포 내로 형질전환하는 단계를 포함하는, 상기 외래단백질을 상기 숙주세포의 핵내에서 발현시키는 방법.

KR1020190026310A 2019-03-07 2019-03-07 신규 재조합 발현 벡터 및 이의 용도 KR102180619B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190026310A KR102180619B1 (ko) 2019-03-07 2019-03-07 신규 재조합 발현 벡터 및 이의 용도

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190026310A KR102180619B1 (ko) 2019-03-07 2019-03-07 신규 재조합 발현 벡터 및 이의 용도

Publications (2)

Publication Number Publication Date
KR20200107337A true KR20200107337A (ko) 2020-09-16
KR102180619B1 KR102180619B1 (ko) 2020-11-19

Family

ID=72670163

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190026310A KR102180619B1 (ko) 2019-03-07 2019-03-07 신규 재조합 발현 벡터 및 이의 용도

Country Status (1)

Country Link
KR (1) KR102180619B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115716880A (zh) * 2022-12-07 2023-02-28 云舟生物科技(广州)股份有限公司 一种核定位荧光蛋白及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160019223A (ko) * 2014-08-11 2016-02-19 삼성전자주식회사 재조합 벡터 및 이를 이용한 목적 폴리펩타이드의 생산 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160019223A (ko) * 2014-08-11 2016-02-19 삼성전자주식회사 재조합 벡터 및 이를 이용한 목적 폴리펩타이드의 생산 방법

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Addgene. 2017, pDonor-tBFP-NLS-Neo (Universal), plasmid #80767. *
Biotech. 2019 Jun,9(6):232. *
Clontech. 2010, pDsRed2-C1 vector information. Cat.No. 632407. *
Develop Growth Differ. 2016, 58:679-687. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115716880A (zh) * 2022-12-07 2023-02-28 云舟生物科技(广州)股份有限公司 一种核定位荧光蛋白及其应用

Also Published As

Publication number Publication date
KR102180619B1 (ko) 2020-11-19

Similar Documents

Publication Publication Date Title
Liu et al. Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector
US9493776B2 (en) System for increasing gene expression and vector comprising the system
EP1950294B1 (en) Novel cell penetrating peptide
WO2017215619A1 (zh) 在细胞内产生点突变的融合蛋白、其制备及用途
Zhang et al. VCP, a weak ATPase involved in multiple cellular events, interacts physically with BRCA1 in the nucleus of living cells
KR20220061282A (ko) 항염증 활성을 갖는 펩티드 및 이를 포함하는 조성물
US5670481A (en) Dorsal tissue affecting factor (noggin) and compositions comprising same
JP4723185B2 (ja) 組換えポリペプチドの生産方法
CN111320684B (zh) 人源N-甲基-D-天冬氨酸受体的GluN1/GluN2A四聚体的表达及其应用
KR102180619B1 (ko) 신규 재조합 발현 벡터 및 이의 용도
CN113727993A (zh) 通过遗传密码子扩展以靶蛋白选择性方式制备工程化靶蛋白的手段和方法
US20090029907A1 (en) Recombinant Method for Production of an Erythropoiesis Stimulating Protein
WO2018184267A1 (zh) mRNA编码的纳米抗体及其应用
JP2009062372A (ja) 高分子質量レクチンの生産
Feldherr et al. The effects of SV40 large T antigen and p53 on nuclear transport capacity in BALB/c 3T3 cells
Almeida et al. HPV‐16 targeted DNA vaccine expression: The role of purification
Streisinger et al. Direction of translation of the lysozyme gene of bacteriophage T4 relative to the linkage map
CN112608366A (zh) 超正电荷聚多肽及其制备方法、应用
US20130023643A1 (en) Nuclear localization signal peptides derived from vp2 protein of chicken anemia virus and uses of said peptides
CN113880924A (zh) 一种SARS-CoV-2假病毒
Channell Biophysical studies of dynamic CD4 changes implicated in HIV-1 infection
RU2694598C1 (ru) Клеточная линия huFSHKKc6 - продуцент рекомбинантного человеческого фолликулостимулирующего гормона (ФСГ) и способ получения ФСГ с использованием данной линии
JP4024525B2 (ja) 異なる2つの選択マーカーからなる融合タンパク質
CN114395016B (zh) 一种作为蛋白质和/或核酸胞内递送载体的多肽及应用
US20040209323A1 (en) Protein expression by codon harmonization and translational attenuation

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right