KR20200101790A - Gas processing apparatus and method - Google Patents

Gas processing apparatus and method Download PDF

Info

Publication number
KR20200101790A
KR20200101790A KR1020190020115A KR20190020115A KR20200101790A KR 20200101790 A KR20200101790 A KR 20200101790A KR 1020190020115 A KR1020190020115 A KR 1020190020115A KR 20190020115 A KR20190020115 A KR 20190020115A KR 20200101790 A KR20200101790 A KR 20200101790A
Authority
KR
South Korea
Prior art keywords
unit
gas
cooling
temperature
refrigerant
Prior art date
Application number
KR1020190020115A
Other languages
Korean (ko)
Other versions
KR102225520B1 (en
Inventor
류승우
Original Assignee
류승우
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 류승우 filed Critical 류승우
Priority to KR1020190020115A priority Critical patent/KR102225520B1/en
Publication of KR20200101790A publication Critical patent/KR20200101790A/en
Application granted granted Critical
Publication of KR102225520B1 publication Critical patent/KR102225520B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/065Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of CnHm with 4 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0082Methane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0204Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0236Heat exchange integration providing refrigeration for different processes treating not the same feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/067Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/04Mixing or blending of fluids with the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/66Landfill or fermentation off-gas, e.g. "Bio-gas"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/62Separating low boiling components, e.g. He, H2, N2, Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/66Separating acid gases, e.g. CO2, SO2, H2S or RSH
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/04Compressor cooling arrangement, e.g. inter- or after-stage cooling or condensate removal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/08Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/60Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being (a mixture of) hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Disclosed is a gas treatment apparatus including: a compression unit for increasing the pressure of introduced gas; a cooling unit including a main cooling unit for lowering the temperature of the gas through heat exchange with the introduced gas whose pressure is increased by the compression unit and a precooling unit for cooling a refrigerant and providing the refrigerant to the main cooling unit; and a fluid circulation unit that mixes at least a part of one of extracted extracts formed by cooling the introduced gas by the main cooling unit with the introduced gas and cools the heated compression unit by re-introducing a mixture into the compression unit.

Description

가스처리장치 및 가스처리방법{GAS PROCESSING APPARATUS AND METHOD}Gas processing device and gas processing method {GAS PROCESSING APPARATUS AND METHOD}

본 발명은 가스처리장치 및 가스처리방법에 관한 것이다.The present invention relates to a gas treatment apparatus and a gas treatment method.

바이오 산업이 증대되면서 유기성 폐기물 등의 재활용방안에 대한 기술의 발전이 중요시되고 있다. 축산현장 등으로부터 발생하는 유기성 폐기물에서는 폐기물의 산화과정에서 가스가 발생할 수 있다. 발생되는 가스의 상당부분은 메탄이 차지하고 메탄을 액화하여 LNG 등의 연료로 재사용할 수 있다. 연료로의 재사용을 위해 메탄을 고압저온 환경에 노출시키는 과정에서 압축기의 온도는 점점 증가될 수 있다.As the bio-industry is increasing, the development of technology for recycling methods such as organic waste is being emphasized. In organic waste generated from livestock sites, gases may be generated during the oxidation process of the waste. Methane occupies a significant portion of the gas generated, and methane can be liquefied and reused as fuel such as LNG. In the process of exposing methane to a high-pressure and low-temperature environment for reuse as fuel, the temperature of the compressor may increase gradually.

이러한 시스템에서 압축기의 냉각은 보다 장시간의 설비구동 시에도 안정적으로 기능을 할 수 있게 한다. 그래서 상기 냉각을 위해 냉각장치 또는 냉각에 필요한 냉매를 구비해야 하고 상기 냉매의 공급을 지속적으로 수행하기 위해 질소냉매는 기 결정된 주기마다 교체가 요구되고 이를 위해 설비가동의 중지 및 비용이 발생할 수 있다. 따라서, 보다 높은 냉각효율과 맹내공급의 편의성이 개선된 가스처리장치가 요구되고 있다.In such a system, the cooling of the compressor allows it to function stably even when the facility is operated for a longer period of time. Therefore, a cooling device or a refrigerant required for cooling must be provided for the cooling, and in order to continuously supply the refrigerant, the nitrogen refrigerant is required to be replaced every predetermined period, and for this purpose, the operation of the facility may be stopped and cost may occur. Accordingly, there is a need for a gas treatment apparatus with improved cooling efficiency and convenience of supplying to the inside.

대한민국 공개특허공보 제 1995-0031938 호 (1995. 12. 20)Republic of Korea Patent Publication No. 1995-0031938 (1995. 12. 20)

본 발명의 일 실시예는 유입가스에 함유된 성분들의 서로 다른 액화점을 만족시켜 추출하고, 추출한 성분 중 하나를 냉각물질로 사용하는 가스처리장치를 제공하는 것을 목적으로 한다.An object of the present invention is to provide a gas treatment apparatus that extracts by satisfying different liquefaction points of components contained in an inlet gas and uses one of the extracted components as a cooling material.

본 발명의 일 실시예는 유입가스에 함유된 성분들의 서로 다른 액화점을 만족시키기 위해 복수의 냉동사이클의 연결하여 각각의 액화점을 형성할 수 있는 가스처리장치를 제공하는 것을 목적으로 한다.An object of the present invention is to provide a gas treatment apparatus capable of forming respective liquefaction points by connecting a plurality of refrigeration cycles to satisfy different liquefaction points of components contained in an inlet gas.

본 발명의 일 실시예는 가스에 함유된 특정 성분 중 추출하기 위한 성분 및 추출을 위해 사용되는 냉매가 동일한 성분인 가스처리장치를 제공하는 것을 목적으로 한다.An object of the present invention is to provide a gas treatment apparatus in which a component for extraction and a refrigerant used for extraction are the same component among specific components contained in a gas.

유입가스의 압력을 증가시키는 압축부; 압축부에 의해 압력이 증가된 유입가스와 열교환을 통해 가스의 온도를 저하시키는 주냉각부 및 냉매를 냉각시켜 주냉각부에 제공하는 사전냉각부를 포함하는 냉각부; 및 주냉각부에 의해 유입가스가 냉각되어 추출된 추출물 중 하나의 적어도 일부를 유입가스와 혼합 후 압축부로 재유입시켜 가열되는 압축부를 냉각시키는 유체순환부;를 포함하는, 가스처리장치가 제공된다.A compression unit that increases the pressure of the inlet gas; A cooling unit including a main cooling unit for lowering a temperature of the gas through heat exchange with the inlet gas whose pressure is increased by the compression unit, and a precooling unit for cooling the refrigerant and providing the main cooling unit; And a fluid circulation unit for cooling the compressed unit heated by mixing at least a part of one of the extracts extracted by cooling the inlet gas by the main cooling unit with the inlet gas and then re-introducing it to the compression unit. .

그리고, 유입가스와 혼합되는 추출물은 냉매와 동일한 물질일 수 있다.In addition, the extract mixed with the incoming gas may be the same material as the refrigerant.

또한, 주냉각부는 복수 개의 추출물이 추출될 수 있는 온도로 냉각시키기 위한 제1냉각부, 제2냉각부 및 제3냉각부를 포함할 수 있다.In addition, the main cooling unit may include a first cooling unit, a second cooling unit, and a third cooling unit for cooling to a temperature at which a plurality of extracts can be extracted.

또한, 추출물은 황, 이산화탄소 및 메탄을 포함할 수 있다.In addition, the extract may contain sulfur, carbon dioxide and methane.

또한, 압축부를 냉각시키는 쿨링부를 더 포함할 수 있다.In addition, it may further include a cooling unit for cooling the compression unit.

또한, 유체순환부는 압축부에 오일의 제공 및 회수를 반복수행하여 압축부를 냉각시킬 수 있다.In addition, the fluid circulation unit may cool the compression unit by repeatedly providing and recovering oil to the compression unit.

또한, 주냉각부는 유입가스와의 열교환에 의해 온도가 증가한 냉매는 사전냉각부로 전달하여 재냉각 후 전달받을 수 있다.In addition, the refrigerant whose temperature has increased due to heat exchange with the inlet gas may be transferred to the precooling unit to be delivered after recooling.

유입가스가 압축부로 유입되고, 압축부에 의한 압축에 의해 유입가스의 압력이 증가되고, 증가된 압력상태의 유입가스는 냉각부로 전달되어 제1온도에서 제1추출물이 추출되고, 제1온도보다 낮은 제2온도에서 제2추출물이 추출되고, 제2온도보다 낮은 제3온도에서 제3추출물이 추출되고, 제3추출물의 일부는 유체순환부에 의해 유입가스와 섞여 압축부로 재유입되어 압축부의 온도가 저하되도록 하는, 가스처리장치의 구동방법이 제공된다.The inlet gas is introduced into the compression unit, the pressure of the inlet gas is increased by compression by the compression unit, and the inlet gas in an increased pressure state is transferred to the cooling unit to extract the first extract at a first temperature, and is higher than the first temperature. The second extract is extracted at a lower second temperature, and a third extract is extracted at a third temperature lower than the second temperature, and a part of the third extract is mixed with the inlet gas by the fluid circulation unit and re-introduced into the compression unit. There is provided a method of driving a gas processing apparatus in which the temperature is lowered.

본 발명의 일 실시예는 유입가스에 함유된 성분들의 서로 다른 액화점을 만족시켜 추출하고, 추출한 성분 중 하나를 냉각물질로 사용하는 가스처리장치를 제공할 수 있다.An embodiment of the present invention can provide a gas treatment apparatus that extracts by satisfying different liquefaction points of components contained in an inlet gas, and uses one of the extracted components as a cooling material.

본 발명의 일 실시예는 유입가스에 함유된 성분들의 서로 다른 액화점을 만족시키기 위해 복수의 냉동사이클의 연결하여 각각의 액화점을 형성할 수 있는 가스처리장치를 제공할 수 있다.An embodiment of the present invention may provide a gas processing apparatus capable of forming respective liquefaction points by connecting a plurality of refrigeration cycles in order to satisfy different liquefaction points of components contained in an inlet gas.

본 발명의 일 실시예는 가스에 함유된 특정 성분 중 추출하기 위한 성분 및 추출을 위해 사용되는 냉매가 동일한 성분인 가스처리장치를 제공할 수 있다.An embodiment of the present invention may provide a gas processing apparatus in which a component for extraction and a refrigerant used for extraction are the same component among specific components contained in a gas.

도 1은 본 발명의 일 실시예에 따른 가스처리장치의 도면,
도 2는 본 발명의 일 실시예에 따른 압축부로 연결되는 유체흐름을 나타낸 도면,
도 3은 본 발명의 일 실시예에 따른 사전냉각부 및 주냉각부의 연결관계를 나타낸 도면,
도 4는 본 발명의 일 실시예에 따른 가스처리장치가 유입가스를 처리하는 순서를 나타낸 도면.
1 is a view of a gas treatment apparatus according to an embodiment of the present invention,
2 is a view showing a fluid flow connected to a compression unit according to an embodiment of the present invention;
3 is a view showing a connection relationship between a pre-cooling unit and a main cooling unit according to an embodiment of the present invention;
4 is a view showing a sequence in which the gas treatment apparatus according to an embodiment of the present invention processes an incoming gas.

이하, 도면을 참조하여 본 발명의 구체적인 실시형태를 설명하기로 한다. 그러나 이는 예시에 불과하며 본 발명은 이에 제한되지 않는다.Hereinafter, a specific embodiment of the present invention will be described with reference to the drawings. However, this is only an example and the present invention is not limited thereto.

본 발명을 설명함에 있어서, 본 발명과 관련된 공지기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하기로 한다. 그리고, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. In describing the present invention, when it is determined that a detailed description of known technologies related to the present invention may unnecessarily obscure the subject matter of the present invention, a detailed description thereof will be omitted. In addition, terms to be described later are terms defined in consideration of functions in the present invention and may vary according to the intention or custom of users or operators. Therefore, the definition should be made based on the contents throughout this specification.

본 발명의 기술적 사상은 청구범위에 의해 결정되며, 이하의 실시예는 본 발명의 기술적 사상을 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 효율적으로 설명하기 위한 일 수단일 뿐이다.The technical idea of the present invention is determined by the claims, and the following embodiments are only one means for efficiently describing the technical idea of the present invention to those of ordinary skill in the art.

이하에서는 가스처리장치 및 가스처리장치를 통해 가스가 처리되는 과정을 설명한다. 상기 처리란, 처리될 가스를 성분별로 구분추출하는 것을 포함하며, 본 발명의 일 실시예로써 유입가스로부터 고순도의 메탄을 추출하는 것을 후술하기로 한다. 또한, 유입가스는 음식폐기물이나 축산분뇨, 바이오메스 등 유기물의 혐기성발효(Anaerobic digestion)에 의한 것일 수 있고, 상기 유입가스로부터 얻을 수 있는 바이오 가스인 메탄을 추출하기 위한 것일 수 있다.Hereinafter, a gas processing device and a process of processing gas through the gas processing device will be described. The processing includes separately extracting the gas to be treated for each component, and as an embodiment of the present invention, extraction of high purity methane from the inlet gas will be described later. In addition, the inlet gas may be caused by anaerobic digestion of organic matter such as food waste, livestock manure, and biomass, and may be for extracting methane, which is a biogas obtained from the inlet gas.

도 1은 본 발명의 일 실시예에 따른 가스처리장치의 도면이다.1 is a view of a gas treatment apparatus according to an embodiment of the present invention.

도 1을 참조하면, 가스처리장치는 압축부(300), 냉각부 및 유체순환부(10)를 포함할 수 있다. 유입가스를 성분별로 액화시켜 분리추출하기 위해서는 단계적으로 추출할 성분에 대응되는 저온상태에 노출시키는 것이 유리하다. 또한, 기체는 고압저온 상태에서 액화되기 쉬우므로 고압저온의 상태를 형성하는 것이 유리하므로, 상기 압축부(300)의 경우 고압환경을, 냉각부의 경우 저온환경을 조성하여 유입가스를 노출시킴으로써, 각 추출물을 추출해낼 수 있다. 또한, 유체순환부(10)는 추출된 추출물의 적어도 일부를 유입가스가 유입되는 경로로 공급하여 혼합되도록 할 수 있다. 상기 혼합은 압축부(300)로 유입되는 가스의 온도를 저하시켜, 압축부(300)가 유입가스를 압축하는 과정에서 발생하는 온도에 따른 압축부(300)의 내부온도증가를 완화(냉각)시킬 수 있도록 한다.Referring to FIG. 1, the gas treatment apparatus may include a compression unit 300, a cooling unit and a fluid circulation unit 10. In order to liquefy the incoming gas for each component and extract it separately, it is advantageous to expose it to a low temperature state corresponding to the component to be extracted step by step. In addition, since gas is easily liquefied in a high-pressure and low-temperature state, it is advantageous to form a high-pressure and low-temperature state, and thus, a high-pressure environment is created for the compression unit 300, and a low-temperature environment is created for the cooling unit to expose the inlet gas. The extract can be extracted. In addition, the fluid circulation unit 10 may supply at least a part of the extracted extract through a path through which the inlet gas is introduced to be mixed. The mixing reduces the temperature of the gas flowing into the compression unit 300, thereby mitigating the increase in the internal temperature of the compression unit 300 according to the temperature generated in the process of compressing the incoming gas by the compression unit 300 (cooling). To be able to.

구체적으로, 본 발명의 일 실시예인 가스처리장치는 유입가스를 1회 이상 압축하여 고압상태로 형성하는 압축부(300), 압축부(300)에 의해 고압상태인 유입가스를 냉각시켜 추출물이 추출될 수 있도록 하는 냉각부 및 추출된 추출물 중 하나의 적어도 일부를 압축부(300)로 유입되는 유입가스와 혼합되도록 제공하는 유체순환부(10)를 포함할 수 있다.Specifically, the gas treatment apparatus according to an embodiment of the present invention extracts the extract by cooling the inlet gas in a high-pressure state by the compression unit 300, which compresses the inflow gas at least once to form a high-pressure state. A fluid circulation unit 10 for providing at least a portion of one of the cooling unit and the extracted extract to be mixed with the inlet gas flowing into the compression unit 300 may be included.

한편, 상기 유입가스가 앞서 설명한 혐기성발효(Anaerobic digestion)에 의한 것이고, 대기중 상온의 가스라고 할 때 압축부(300)로 제공되는 경로를 제1가스경로(F1)라고 한다. 제1가스경로(F1) 이후 압축부(300)에서 압축되어 고압의 상태로 주냉각부(200)로 가스(유입가스)로 전달되는 경로를 제2가스경로(F2)라고 하고, 주냉각부(200)에 의해 냉각되어 유체순환부(10)로 전달되는 경로를 제3가스경로(F3)라고 한다. 그리고, 유체순환부(10)에 의해 제1가스경로(F1) 상에서 새롭게 유입되는 유입가스와 유체순환부(10)로부터 전달되는 가스가 혼합될 수 있도록 전달되는 경로를 제4가스경로(F4)라고 한다. 즉, 제4가스경로(F4)를 통해 가스를 전달함으로서 유입가스 중 일부인 추출물 중 적어도 일부를 제1가스경로(F1)로 재유입시키는 것이다.On the other hand, when the inlet gas is due to the anaerobic digestion described above, and the gas at room temperature in the atmosphere, the path provided to the compression unit 300 is referred to as a first gas path F1. After the first gas path (F1), the path compressed by the compression unit 300 and transferred to the main cooling unit 200 as gas (inflow gas) in a high pressure state is referred to as the second gas path (F2), and the main cooling unit The path cooled by 200 and transferred to the fluid circulation unit 10 is referred to as a third gas path F3. In addition, a path through which the inlet gas newly introduced on the first gas path F1 by the fluid circulation unit 10 and the gas delivered from the fluid circulation unit 10 are mixed is referred to as a fourth gas path F4. It is called. That is, by transferring the gas through the fourth gas path F4, at least part of the extract, which is part of the incoming gas, is re-introduced into the first gas path F1.

따라서, 제1가스경로(F1)의 경우에는 최초에는 유입가스(앞서 설명한, 혐기성발효(Anaerobic digestion)에 의한 것이고, 대기중 상온의 가스)만 존재할 수 있으나, 일정한 공정이 진행된 이후에는 추출물이 추출된 상태 즉, 주냉각부(200)를 통과한 가스(추출물 중 적어도 일부)가 유체순환부(10)를 경유하여 상기 유입가스와 혼재되어 압축부(300)로 제공될 수 있다.Therefore, in the case of the first gas path (F1), only inflow gas (as described above, due to anaerobic digestion, gas at room temperature in the atmosphere) may exist initially, but the extract is extracted after a certain process proceeds. In other words, the gas (at least a portion of the extract) that has passed through the main cooling unit 200 may be mixed with the inlet gas via the fluid circulation unit 10 and provided to the compression unit 300.

전술한 바와 같이 상기 재유입되는 가스는 압축부(300)의 냉각을 도모할 수 있다. 또한, 압축부(300)의 냉각은 별도의 냉각장치를 구비하여 수행할 수도 있다. 예를 들면, 쿨링부(20)를 더 포함하는 가스처리장치일 수 있다. 냉매로 물을 사용하는 쿨링부(20)를 더 포함할 경우를 예로 들자면, 폐루프 상에서 냉매인 물을 냉각처리하고 압축부(300)로 전달하는 제1냉각수경로(W1), 압축부(300)를 냉각시키고 상승된 온도의 물이 다시 냉각처리되기 위해 쿨링부(20)로 전달되는 제2냉각수경로(W2)가 형성될 수 있다.As described above, the re-inflowed gas may promote cooling of the compression unit 300. In addition, cooling of the compression unit 300 may be performed by providing a separate cooling device. For example, it may be a gas processing apparatus further including a cooling unit 20. For example, when a cooling unit 20 using water as a refrigerant is further included, a first coolant path W1 and a compression unit 300 for cooling water as a refrigerant in a closed loop and delivering it to the compression unit 300 ) May be cooled and a second coolant path W2 transmitted to the cooling unit 20 for cooling the water of the elevated temperature may be formed.

또한, 압축부(300)의 냉각은 오일을 통해 수행할 수도 있다. 예를 들어, 폐루프 상에서 냉매인 오일을 냉각처리하고 압축부(300)로 전달하는 경로, 압축부(300)를 냉각시키고 상승된 온도의 오일이 다시 냉각처리되기 위해 유체순환부(10)로 전달되는 경로가 있을 수 있다. 여기서 유체순환부(10)에서 오일이 냉각처리 되기 위해 제공되는 냉매는 제3가스경로(F3)를 통해 전달되는 추출물의 일부가 될 수 있다. 상기 추출물은 예를 들어 영하의 온도로 전달될 수 있고, 압축부(300)를 경유하며 데워진 오일과 간접적으로 열교환이 되면서 오일의 온도를 저하시킬 수 있다.In addition, cooling of the compression unit 300 may be performed through oil. For example, a path for cooling oil, which is a refrigerant in a closed loop, and delivering it to the compression unit 300, to the fluid circulation unit 10 to cool the compression unit 300 and cool the oil at an elevated temperature again. There may be a path of delivery. Here, the refrigerant provided for cooling the oil in the fluid circulation unit 10 may be a part of the extract delivered through the third gas path F3. The extract may be transferred at, for example, a sub-zero temperature, and may reduce the temperature of the oil by indirectly exchanging heat with the oil heated through the compression unit 300.

앞서 설명한 압축부(300)를 냉각시키는 수단은 가스, 물 및 오일을 포함한다. 여기서, 가스는 압축이 되는 압축대상 물질이므로 압축부(300)의 내부를 냉각시킬 수 있고, 물 및 오일은 압축부(300)의 구동에 의한 가열 및 압축부(300)의 외부를 냉각시킬 수 있다.The means for cooling the compression unit 300 described above includes gas, water, and oil. Here, since the gas is a material to be compressed, the inside of the compression unit 300 can be cooled, and water and oil can be heated by driving the compression unit 300 and cool the outside of the compression unit 300. have.

한편, 유입가스의 온도저하를 위해 열교환을 수행하는 주냉각부(200)는 사전냉각부(100)에 의해 1차적으로 냉각된 냉매를 통해 추가적인 냉각을 수행하여 단계적으로 상기 유입가스를 냉각시킬 수 있다. 즉, 냉각부는 사전냉각부(100)에서 1차적인 냉각을 수행하고 주냉각부(200)로 냉매를 전달하는 제1냉매경로(G1) 및 주냉각부(200)에서 상기 가스와의 열교환을 통해 데워진 냉매를 재냉각하기 위해 다시 사전냉각부(100)로 냉매가 전달되는 제2냉매경로(G2)가 형성될 수 있다.On the other hand, the main cooling unit 200 performing heat exchange to lower the temperature of the incoming gas can cool the incoming gas step by step by performing additional cooling through the refrigerant that has been primarily cooled by the precooling unit 100. have. That is, the cooling unit performs primary cooling in the precooling unit 100 and performs heat exchange with the gas in the first refrigerant path G1 and the main cooling unit 200 to deliver the refrigerant to the main cooling unit 200. A second refrigerant path G2 through which the refrigerant is transferred back to the precooling unit 100 may be formed in order to recool the refrigerant heated through the refrigerant.

여기서, 주냉각부(200)로 냉매가 전달되는 제1냉매경로(G1)는, 단계적으로 냉각시키기 위해 복수 개의 주냉각부(200) 내 구성으로 전달되는 것을 포괄하여 의미한다. 구체적으로는 이하에서 도 3을 통해 제1냉매경로(G1)에 대하여 구체적으로 설명하기로 한다.Here, the first refrigerant path G1 through which the refrigerant is delivered to the main cooling unit 200 encompasses the transmission to the components within the plurality of main cooling units 200 for stepwise cooling. Specifically, the first refrigerant path G1 will be described in detail with reference to FIG. 3 below.

도 2는 본 발명의 일 실시예에 따른 압축부(300)로 연결되는 유체(물, 오일 및 가스)흐름을 나타낸 도면이다.2 is a view showing the flow of fluids (water, oil, and gas) connected to the compression unit 300 according to an embodiment of the present invention.

도 2를 참조하면, 압축부(300)의 냉각 메커니즘을 구체적으로 설명할 수 있다. 여기서, 압축부(300)는 유입가스의 액화를 수행할 수 있도록 요구되는 정도의 압력까지 증가시킬 수 있다. 압력상승을 위해 유입가스는 단계적으로 압축기(101)를 경유하며 점차 압력이 증가될 수 있다. 도 2에 도시된 바에 따르면, 압축부(300)는 4개의 압축기(101)와 각 압축기(101) 간에 위치된 3개의 저온부를 포함할 수 있다. 그리고 전술한 바와 같이, 압축부(300)를 냉각시키는 냉매는 가스, 물 및 오일이 될 수 있다. 상기 가스, 물 및 오일은 압축기(101) 또는 저온부에 제공됨으로써 유입가스의 압력상승에 따른 온도상승을 완화시킬 수 있다.Referring to FIG. 2, a cooling mechanism of the compression unit 300 may be described in detail. Here, the compression unit 300 may increase the pressure to a required level to perform liquefaction of the inlet gas. In order to increase the pressure, the incoming gas passes through the compressor 101 in stages, and the pressure may be gradually increased. As shown in FIG. 2, the compression unit 300 may include four compressors 101 and three low temperature units positioned between each compressor 101. And, as described above, the refrigerant cooling the compression unit 300 may be gas, water, and oil. The gas, water, and oil may be provided to the compressor 101 or a low-temperature unit to mitigate an increase in temperature due to an increase in pressure of the incoming gas.

우선, 상기 냉매 중 가스에 대하여 설명하면, 냉매로써의 가스(추출물 중 일부)는 유입가스가 제1압축기(301) 내로 유입될 때, 제1가스경로(F1)를 따라 유입될 수 있다. 이 때 제1압축기(301) 내로 유입된 냉매로써의 가스는 액화되어 추출되는 과정에서 영하 100도 이하까지 저온상태가 될 수 있다. 따라서, 극저온 상태(영하 100도 이하)에서 냉매로 추출된 가스는 유체순환부(10)를 통해 유입가스와 혼재되므로 낮은 압축초기온도가 형성될 수 있다. 따라서, 압축에 의한 과열을 방지할 수 있다.First, when the gas in the refrigerant is described, gas (some of the extracts) as a refrigerant may be introduced along the first gas path F1 when the inlet gas is introduced into the first compressor 301. At this time, the gas as the refrigerant introduced into the first compressor 301 may be liquefied and extracted, and may be in a low temperature state up to minus 100 degrees Celsius. Accordingly, since the gas extracted as the refrigerant in the cryogenic state (less than -100 degrees Celsius) is mixed with the inflow gas through the fluid circulation unit 10, a low initial compression temperature may be formed. Thus, overheating due to compression can be prevented.

계속해서, 유입가스는 4개의 압축기(101)를 경유하기 위해 반복적으로 압축이 될 수 있는데 제1압축기(301)로 유입되는 가스의 온도를 상기 극저온 수준으로 낮추어 주므로 4차례의 압축에 이후에도 압력대비 저온의 가스형태로 존재할 수 있다.Subsequently, the inlet gas may be repeatedly compressed in order to pass through the four compressors 101, but since the temperature of the gas flowing into the first compressor 301 is lowered to the cryogenic level, the pressure is compared after 4 times of compression. It can exist in the form of a low-temperature gas.

냉매인 저온가스는 압력대비 저온의 가스형태(대기압, 상온 기준)로 존재하면서 압축기(101)의 과열방지도 도모하며, 이후 제2가스경로(F2)를 통해 전달될 주냉각부(200)에서의 냉각효율 증가에도 도움이 될 수 있다. 이러한 압축기(101) 냉각은 압축기(101) 내부 즉, 압축공간을 형성하는 내표면 공간의 온도를 직접적으로 저하시킬 수 있다.The low-temperature gas, which is a refrigerant, exists in the form of a gas having a low temperature compared to the pressure (atmospheric pressure and room temperature), and also prevents overheating of the compressor 101, and then in the main cooling part 200 to be transmitted through the second gas path F2. It can also help to increase the cooling efficiency of The cooling of the compressor 101 can directly reduce the temperature of the inside of the compressor 101, that is, the inner surface space forming the compression space.

그리고, 상기 냉매 중 물의 경우에는, 쿨링부(20)에 의해 압축기(101) 또는 저온부를 냉각할 수 있다. 앞서 설명한 바와 같이 4개의 압축기(101) 및 각 압축기(101) 사이에 위치하는 3개의 저온부가 위치된다. 쿨링부(20)는 냉각된 물을 압축기(101) 또는 저온부로 공급하여 압축기(101) 도는 저온부를 냉각시킬 수 있다. 본 예시에서는 저온부를 냉각시키는 수단으로써의 쿨링부(20)를 설명한다.In the case of water among the refrigerants, the compressor 101 or the low temperature unit may be cooled by the cooling unit 20. As described above, four compressors 101 and three low-temperature units positioned between each compressor 101 are located. The cooling unit 20 may supply cooled water to the compressor 101 or the low temperature unit to cool the compressor 101 or the low temperature unit. In this example, the cooling unit 20 as a means for cooling the low temperature unit will be described.

쿨링부(20)는 열교환부(21)를 통해 물(냉각수)을 냉각하고 펌프(22)의 동력으로 물을 저온부로 제공할 수 있다. 여기서 저온부는 제1저온부(310), 제2저온부(320) 및 제3저온부(330)가 마련되고, 각 저온부로 냉각수가 제공될 수 있다. 각 저온부의 경우 각 압축기(101) 간에 위치되어 압축기(101)에서 압력증가되면서 함께 증가된 온도를 저하시키기 위해 마련된 구간으로 냉각을 목적으로 형성될 수 있는 구간이다.The cooling unit 20 may cool water (cooling water) through the heat exchange unit 21 and provide water to the low temperature unit by power of the pump 22. Here, a first low temperature part 310, a second low temperature part 320, and a third low temperature part 330 are provided in the low temperature part, and cooling water may be provided to each low temperature part. In the case of each low-temperature section, it is a section that is located between the compressors 101 and is provided to reduce the increased temperature as the pressure increases in the compressor 101, and is a section that can be formed for cooling purposes.

따라서, 저온부는 단계적으로 압력이 증가되는 압축기(101) 사이에 위치되어 제1압축기(301)로부터 제2압축기(302)로 가스가 이동되는 구간에 제1저온부(310)가 위치되고, 제2압축기(302)로부터 제3압축기(303)로 가스가 이동되는 구간에 제2저온부(320)가 위치되고, 제3압축기(303)로부터 제4압축기(304)로 가스가 이동되는 구간에 제3저온부(330)가 위치된다. 유입가스의 이동방향은 제1가스경로(F1) 후 제2가스경로(F2)로 이동되므로 온도는 제1저온부(310)가 가장 낮고 제3저온부(330)가 가장 높을 수 있다.Therefore, the low temperature part is located between the compressor 101 in which the pressure is increased step by step, the first low temperature part 310 is located in the section in which the gas is moved from the first compressor 301 to the second compressor 302, and the second The second low temperature unit 320 is located in the section where the gas is moved from the compressor 302 to the third compressor 303, and the third is in the section where the gas is moved from the third compressor 303 to the fourth compressor 304. The low temperature part 330 is located. Since the moving direction of the inflow gas is moved to the second gas path F2 after the first gas path F1, the first low temperature part 310 may have the lowest temperature and the third low temperature part 330 may be the highest.

따라서, 쿨링부(20)는 열교환부(21)의 냉각용량에 따라 제1냉각수경로(W1)는 제1저온부(310), 제2저온부(320) 및 제3저온부(330) 중 하나 이상으로 연결되도록 마련되되, 물(냉각수)과의 온도차가 커서 냉각효율이 높은 측부터 마련될 수 있다. 즉, 제3저온부(330), 제2저온부(320), 제1저온부(310) 순서로 연결될 수 있다. 그러나 이에 한정되지 않고, 당업자의 의도에 따라 달리 배치될 수 있다.Therefore, the cooling unit 20 is at least one of the first low temperature unit 310, the second low temperature unit 320, and the third low temperature unit 330 according to the cooling capacity of the heat exchange unit 21. It is provided to be connected, but the temperature difference with water (cooling water) is large, and the cooling efficiency may be provided from the side. That is, the third low-temperature unit 330, the second low-temperature unit 320, and the first low-temperature unit 310 may be connected in this order. However, it is not limited thereto, and may be arranged differently according to the intention of a person skilled in the art.

또한, 상기 냉매중 오일의 경우, 물(냉각수)의 경우와 같이 페루프 상에서 반복적으로 순환되며 압축기(101)를 냉각시킬 수 있다. 오일은 유체순환부(10)에 의해 압축기(101) 및 유체순환부(10) 사이를 반복이동(Circulate)될 수 있다. 유체순환부(10)에서 오일은 냉각되고, 냉각된 오일은 제1압축기(301), 제2압축기(302), 제3압축기(303) 및 제4압축기(304)로 전달될 수 있다. 압축기(101)가 압축과정에서 발생하는 열은 압축기(101) 내외에서 발생할 수 있고, 압축공간 내외과열부 모두를 냉각시킬 수 있다. 상기 과열부는 기계(압축기(101))동작에 의한 과열 등이 될 수 있다. 제1압축기(301), 제2압축기(302), 제3압축기(303) 및 제4압축기(304)를 냉각하고 유체순환부(10)로 회수되는 오일은 냉각될 수 있다.In addition, in the case of oil among the refrigerants, as in the case of water (cooling water), it is repeatedly circulated on a peruffe, thereby cooling the compressor 101. The oil may be circulated between the compressor 101 and the fluid circulation unit 10 by the fluid circulation unit 10. The oil is cooled in the fluid circulation unit 10, and the cooled oil may be delivered to the first compressor 301, the second compressor 302, the third compressor 303, and the fourth compressor 304. Heat generated by the compressor 101 during the compression process may be generated inside and outside the compressor 101, and may cool both the superheated parts inside and outside the compression space. The overheating part may be overheating due to the operation of the machine (compressor 101). The first compressor 301, the second compressor 302, the third compressor 303, and the fourth compressor 304 are cooled, and the oil recovered to the fluid circulation unit 10 may be cooled.

상기 냉각은 주냉각부(200)에서 냉각에 의해 추출된 추출물의 일부가 제3가스경로(F3)를 통해 유체순환부(10)로 제공되어 서로 열교환을 통해 오일이 냉각될 수 있다. 상기 열교환은 간접적인 열교환으로 직접적으로 혼재되는 것을 의미하지 않는다. 오일과 열교환을 수행한 상기 추출물은 제4가스경로(F4)를 통해 제1가스경로(F1)로 전달되고, 유입가스와 직접적으로 혼재될 수 있다.In the cooling, a part of the extract extracted by cooling in the main cooling unit 200 is provided to the fluid circulation unit 10 through the third gas path F3, so that the oil may be cooled through heat exchange with each other. The heat exchange is indirect heat exchange and does not mean that they are directly mixed. The extract, which has undergone heat exchange with oil, is transferred to the first gas path F1 through the fourth gas path F4, and may be mixed directly with the incoming gas.

한편, 앞서 설명한 제3가스경로(F3) 및 제4가스경로(F4)를 지나는 물질은 동일한 물질이며, 예를 들면 메탄일 수 있다. 추출물은 주냉각부(200)를 통해 단계적으로 액화되어 추출될 수 있는데 예를 들어, 황, 이산화탄소, 메탄 등이 될 수 있다. 본 예시는 도 3을 통해 구체적으로 설명하기로 한다.Meanwhile, the material passing through the third gas path F3 and the fourth gas path F4 described above is the same material, and may be, for example, methane. The extract may be liquefied and extracted in stages through the main cooling unit 200, and may be, for example, sulfur, carbon dioxide, methane, or the like. This example will be described in detail with reference to FIG. 3.

이하에서는 주냉각부(200)에서 유입가스가 단계적으로 냉각되는 과정에서 추출물이 추출되는 것을 설명하기로 한다. 단계는 총 3단계로 구분해서 냉각을 수행하고 각 단게마다 추출물이 발생한다. 각 단계별로 추출되는 추출물은 제1추출물(1), 제2추출물(2) 및 제3추출물(3)이 될 수 있고, 이하에서는 제1추출물(1)을 황, 제2추출물(2)을 이산화탄소 그리고 제3추출물(3)을 메탄으로 예시하여 설명하도록 한다.Hereinafter, it will be described that the extract is extracted during the stepwise cooling of the incoming gas in the main cooling unit 200. Steps are divided into three steps, cooling is performed, and extracts are generated for each step. The extract extracted in each step may be a first extract (1), a second extract (2), and a third extract (3). Hereinafter, the first extract (1) is used as sulfur, and the second extract (2) is used. Carbon dioxide and the third extract (3) will be described by exemplifying methane.

도 3은 본 발명의 일 실시예에 따른 사전냉각부(100) 및 주냉각부(200)의 연결관계를 나타낸 도면이다.3 is a diagram showing a connection relationship between the precooling unit 100 and the main cooling unit 200 according to an embodiment of the present invention.

도 3을 참조하면, 냉각부는 사전냉각부(100) 및 주냉각부(200)를 포함한다. 사전냉각부(100)는 주냉각부(200)로 전달할 냉매를 1차적으로 냉각시키는 기능을 수행하고, 냉각된 냉매를 제1냉매경로(G1)를 통해 전달받은 주냉각부(200)는 압축부(300)를 경유하여 제2가스경로(F2)를 통해 주냉각부(200)로 유입된 유입가스를 냉각시킬 수 있다. 주냉각부(200)는 유입가스를 냉각시킴으로써, 특정 냉각온도에 액화되는 추출물을 액화시켜 추출해낼 수 있다.Referring to FIG. 3, the cooling unit includes a precooling unit 100 and a main cooling unit 200. The precooling unit 100 performs a function of primarily cooling the refrigerant to be transferred to the main cooling unit 200, and the main cooling unit 200 receiving the cooled refrigerant through the first refrigerant path G1 is compressed. The inlet gas introduced into the main cooling unit 200 may be cooled through the second gas path F2 via the unit 300. The main cooling unit 200 may liquefy and extract the extract liquefied at a specific cooling temperature by cooling the incoming gas.

상기 사전냉각부(100)는 압축기(101), 콘덴서(102), 수액기(103) 및 증발기(104)를 포함하고, 증발기(104)를 경유한 냉매가 냉각되면, 주냉각부(200)로 제1냉매경로(G1)를 통해 전달된다. 주냉각부(200)에서 온도가 상승된 냉매는 사전냉각부(100)의 압축기(101)로 회수되고 증발기(104)를 경유하면서 냉각되어 주냉각부(200)로 재공급된다.The precooling unit 100 includes a compressor 101, a condenser 102, a receiver 103 and an evaporator 104, and when the refrigerant passing through the evaporator 104 is cooled, the main cooling unit 200 It is transmitted through the first refrigerant path (G1). The refrigerant whose temperature has risen in the main cooling unit 200 is recovered by the compressor 101 of the precooling unit 100, cooled while passing through the evaporator 104, and supplied to the main cooling unit 200 again.

한편, 유입가스가 앞서 설명한 황(약 5%), 이산화탄소(35%), 메탄(약 60%) 등을 함유하고 있을 때, 고순도의 메탄만을 추출하기 위해 메탄을 액화시켜 액화시킨 메탄만을 추출할 수 있다. 그러나, 냉각 중에는 황 및 이산화탄소의 액화점(황 : 약 - 85도, 이산화탄소, 약 - 130도, 메탄 : 약 - 172도)에 더 빨리 도달하므로, 황 및 이산화탄소를 액화하여 추출해내고 메탄을 액화시키는 과정을 수행할 수 있다.On the other hand, when the inlet gas contains sulfur (about 5%), carbon dioxide (35%), methane (about 60%), etc. as described above, only methane that has been liquefied and liquefied to extract only high purity methane is extracted. I can. However, during cooling, the liquefaction points of sulfur and carbon dioxide (sulfur: about-85 degrees, carbon dioxide, about-130 degrees, methane: about-172 degrees) are reached more quickly, so sulfur and carbon dioxide are liquefied and extracted, and methane is liquefied. The process can be carried out.

따라서, 단계적인 냉각은 각 액화점에 유입가스를 노출시키는 단계가 요구된다. 상기 요구를 만족시키기 위해 본 발명의 일 실시예의 주냉각부(200)는 제1냉각부(210), 제2냉각부(220) 및 제3냉각부(230)를 포함할 수 있다. 제1냉각부(210)는 -85도의 환경을 조성하여 유입가스와 열교환 후 황을 액화시켜 유입가스로부터 추출할 수 있고, 제2냉각부(220)는 -130도의 환경을 조성하여 황이 추출된 유입가스로부터 액화된 이산화탄소를 추출할 수 있다. 그리고 제3냉각부(230)는 -172도의 환경을 조성하여, 황과 이산화탄소가 추출된 유입가스로부터 메탄을 액화시켜 추출할 수 있다.Therefore, stepwise cooling requires the step of exposing the incoming gas to each liquefaction point. In order to satisfy the above requirements, the main cooling unit 200 according to an embodiment of the present invention may include a first cooling unit 210, a second cooling unit 220, and a third cooling unit 230. The first cooling unit 210 creates an environment of -85 degrees to liquefy sulfur after heat exchange with the inlet gas and extracts it from the inlet gas, and the second cooling unit 220 creates an environment of -130 degrees to extract sulfur. Liquefied carbon dioxide can be extracted from the incoming gas. In addition, the third cooling unit 230 may create an environment of -172 degrees and extract methane by liquefying methane from the inlet gas from which sulfur and carbon dioxide are extracted.

단계적인 냉각환경을 조성하기 위해 주냉각부(200)는 사전냉각부(100)로부터 전달받은 냉매를 재냉각할 수 있다. 단계를 거듭하면서 재냉각이 반복되므로, 냉매의 온도는 보다 더 저하될 수 있다. 냉매의 이동경로를 기준으로 설명하면, 사전냉각부(100)로부터 냉각되어 제1냉매경로(G1)를 통해 전달되는 냉매는 주냉각부(200)로 전달될 수 있다. 여기서 제1냉매경로(G1)는 사전냉각부(100)로부터 주냉각부(200)로 전달되는 냉매의 경로를 포괄적으로 정의한 것으로서, 구체적으로는 사전냉각부(100)의 증발기(104)로부터 제1냉각부(210)의 제1수액기(214)로 냉매가 전달되는 경로를 제1-1냉매경로(G1-1)라고 하고, 제1냉각부(210)의 제1유닛(211)으로부터 제2냉각부(220)의 제2수액기(224)로 냉매가 전달되는 경로를 제1-2냉매경로(G1-2)라고 한다. 그리고, 제2냉각부(220)의 제2유닛(221)으로부터 제3냉각부(230)의 제3수액기(234)로 냉매가 전달되는 경로를 제1-3냉매경로(G1-3)라고 한다.In order to create a staged cooling environment, the main cooling unit 200 may recool the refrigerant delivered from the precooling unit 100. Since the recooling is repeated as the steps are repeated, the temperature of the refrigerant may be further lowered. When described based on the movement path of the refrigerant, the refrigerant cooled by the precooling unit 100 and transferred through the first refrigerant path G1 may be transferred to the main cooling unit 200. Here, the first refrigerant path G1 is a comprehensive definition of the path of the refrigerant transferred from the precooling unit 100 to the main cooling unit 200, and specifically, it is removed from the evaporator 104 of the precooling unit 100. 1 The path through which the refrigerant is transferred to the first receiver 214 of the cooling unit 210 is referred to as the 1-1 refrigerant path (G1-1), and from the first unit 211 of the first cooling unit 210 A path through which the refrigerant is transferred to the second receiver 224 of the second cooling unit 220 is referred to as a 1-2 refrigerant path G1-2. In addition, the refrigerant is transferred from the second unit 221 of the second cooling unit 220 to the third receiver 234 of the third cooling unit 230 as a third refrigerant path (G1-3). It is called.

여기서, 제1유닛(211), 제2유닛(221) 및 제3유닛(231)은 각각 제1수액기(214), 제2수액기(224) 및 제3수액기(234)로부터 냉매를 전달받아, 열교환부(21)(제1열교환부(212), 제2열교환부(222) 및 제3열교환부(232))로 전달받은 냉매의 적어도 일부를 열교환을 위해 전달하는 유닛이다.Here, the first unit 211, the second unit 221, and the third unit 231 receive the refrigerant from the first receiver 214, the second receiver 224, and the third receiver 234, respectively. It is a unit that receives and transfers at least a part of the refrigerant delivered to the heat exchange unit 21 (the first heat exchange unit 212, the second heat exchange unit 222, and the third heat exchange unit 232) for heat exchange.

구체적으로 냉매의 순환경로는 사전냉각부(100)에서 냉각이 되어 제1냉각부(210)의 제1수액기(214)로 전달이 되고, 제1수액기(214)에 수용된 냉매는 증발기(104)밸브의 개폐에 의해 제1유닛(211)으로 전달될 수 있다. 제1유닛(211)에 전달된 냉매는 일부는 제1펌프(213)에 의해 제1열교환부(212)로 공급되고, 나머지 일부는 제2냉각부(220)의 제2수액기(224)로 전달된다. 상기 제1열교환부(212)로 공급된 일부 냉매는, 제2가스경로(F2)를 통해 주냉각부(200)로 전달된 유입가스와 1차적인 열교환을 수행한다. 여기서 1차적인 열교환은 유입가스가 - 85 도에 도달하는 것을 의미한다.Specifically, the refrigerant circulation path is cooled in the precooling unit 100 and transferred to the first receiver 214 of the first cooling unit 210, and the refrigerant accommodated in the first receiver 214 is an evaporator ( 104) It may be transferred to the first unit 211 by opening and closing the valve. Part of the refrigerant delivered to the first unit 211 is supplied to the first heat exchange unit 212 by the first pump 213, and the other part is the second receiver 224 of the second cooling unit 220 Is delivered to. Some of the refrigerants supplied to the first heat exchange unit 212 perform primary heat exchange with the inlet gas delivered to the main cooling unit 200 through the second gas path F2. Primary heat exchange here means that the incoming gas reaches -85 degrees.

상기 제1열교환부(212)에서 열교환을 통해 온도가 증가된 냉매는 제1유닛(211)으로 회수되어 사전냉각부(100)로 제2냉매경로(G2)를 따라 이동될 수 있다. 여기서 제2냉매경로(G2)는 냉매가 제1유닛(211)으로부터 사전냉각부(100)의 압축기(101)로 이동되는 제2-1냉매경로(G2-1), 냉매가 제2유닛(221)으로부터 사전냉각부(100)의 압축기(101)로 이동되는 제2-2냉매경로(G2-2) 및 냉매가 제3유닛(231)으로부터 사전냉각부(100)의 압축기(101)로 이동되는 제2-3냉매경로(G2-3)를 포함한다.The refrigerant whose temperature is increased through heat exchange in the first heat exchange unit 212 may be recovered to the first unit 211 and moved to the precooling unit 100 along the second refrigerant path G2. Here, the second refrigerant path G2 is a 2-1 refrigerant path G2-1 through which the refrigerant moves from the first unit 211 to the compressor 101 of the precooling unit 100, and the refrigerant is the second unit ( The 2-2 refrigerant path G2-2 and the refrigerant moved from 221 to the compressor 101 of the precooling unit 100 from the third unit 231 to the compressor 101 of the precooling unit 100 It includes a moving 2-3 refrigerant path (G2-3).

또한, 제2가스경로(F2)는 구체적으로 제4압축기(304)로부터 제1열교환부(212)로 연결되는 제2-1가스경로(F2-1), 제1열교환부(212)로부터 제2열교환부(222)로 연결되는 제2-2가스경로(F2-2) 및 제2열교환부(222)로부터 제3열교환부(232)로 연결되는 제2-3가스경로(F2-3)로 구분할 수 있다.In addition, the second gas path (F2) is specifically the second gas path (F2-1) connected to the first heat exchange unit 212 from the fourth compressor (304), the first heat exchange unit (212). 2 The 2-2 gas path (F2-2) connected to the heat exchange part 222 and the 2-3 gas path (F2-3) connected to the third heat exchange part 232 from the second heat exchange part 222 It can be classified as

상기 나머지 냉매인 제1유닛(211)으로부터 제2수액기(224)로 전달된 냉매는 증발기(104)밸브의 개폐에 의해 제2유닛(221)으로 전달될 수 있다. 제2유닛(221)에 전달된 냉매는, 일부는 제2펌프(223)에 의해 제2열교환부(222)로 공급되고, 나머지 일부는 제3냉각부(230)의 제3수액기(234)로 전달된다. 상기 제2열교환부(222)로 공급된 냉매는 제1열교환부(212)에서 황이 추출된 유입가스로부터 제2열교환부(222)에서 2차적인 열교환이 이루어진다. 여기서 2차적인 열교환은 유입가스가 - 130 도에 도달하는 것을 의미한다. 상기 제2열교환부(222)에서 열교환을 통해 온도가 증가된 냉매는 제2유닛(221)으로 회수되어 사전냉각부(100)로 제2-2냉매경로(G2-2)를 따라 이동될 수 있다.The refrigerant transferred from the first unit 211 as the remaining refrigerant to the second receiver 224 may be transferred to the second unit 221 by opening and closing a valve of the evaporator 104. The refrigerant delivered to the second unit 221 is partially supplied to the second heat exchange unit 222 by the second pump 223, and the remaining portion is the third receiver 234 of the third cooling unit 230 ). The refrigerant supplied to the second heat exchange unit 222 undergoes secondary heat exchange in the second heat exchange unit 222 from the inlet gas extracted from sulfur in the first heat exchange unit 212. Here, secondary heat exchange means that the incoming gas reaches -130 degrees. The refrigerant whose temperature is increased through heat exchange in the second heat exchange unit 222 is recovered to the second unit 221 and may be moved to the precooling unit 100 along the 2-2 refrigerant path G2-2. have.

그리고, 제2유닛(221)으로부터 제3수액기(234)로 전달된 냉매는 증발기(104)밸브의 개폐에 의해 제3유닛(231)으로 전달될 수 있다. 제3유닛(231)에 전달된 냉매는, 제3펌프(233)에 의해 제3열교환부(232)로 공급될 수 있다. 상기 제3열교환부(232)로 공급된 냉매는, 제2열교환부(222)에서 황 및 이산화탄소가 추출된 유입가스로부터 제3열교환부(232)에서 최종 열교환이 이루어진다. 여기서 상기 최종 열교환은 유입가스가 - 172 도에 도달하는 것을 의미한다. 상기 제3열교환부(232)에서 열교환을 통해 온도가 증가된 냉매는 제3유닛(231)으로 회수되어 사전냉각부(100)로 제2-3냉매경로(G2-3)를 따라 이동될 수 있다.In addition, the refrigerant transferred from the second unit 221 to the third receiver 234 may be transferred to the third unit 231 by opening and closing a valve of the evaporator 104. The refrigerant delivered to the third unit 231 may be supplied to the third heat exchange unit 232 by the third pump 233. The refrigerant supplied to the third heat exchange unit 232 undergoes final heat exchange in the third heat exchange unit 232 from the inlet gas from which sulfur and carbon dioxide are extracted from the second heat exchange unit 222. Here, the final heat exchange means that the incoming gas reaches -172 degrees. The refrigerant whose temperature is increased through heat exchange in the third heat exchange unit 232 is recovered to the third unit 231 and can be moved to the precooling unit 100 along the 2-3 refrigerant path (G2-3). have.

도 4는 본 발명의 일 실시예에 따른 가스처리장치가 유입가스를 처리하는 순서를 나타낸 도면이다.4 is a diagram showing a sequence in which the gas treatment apparatus according to an embodiment of the present invention processes an incoming gas.

도 4를 참조하면, 가스처리장치를 통해 가스를 처리하는 방법은, 유입가스의 유입 단계(S1), 유입가스의 압력 증가 단계(S2), 유입가스의 온도 저하 단계(S3), 추출물 분리 단계(S4) 및 추출물 재유입 단계(S5)를 포함한다.Referring to FIG. 4, a method of treating a gas through a gas processing device includes: an inlet gas inlet step (S1), an inlet gas pressure increase step (S2), an inlet gas temperature decrease step (S3), and an extract separation step. (S4) and extract re-introduction step (S5).

유입가스의 유입 단계(S1)에서는 추출대상을 포함된 가스가 될 수 있고 추출대상이 메탄인 경우에는 유기물의 혐기성발효(Anaerobic digestion)에 의한 가스가 될 수 있다. 대기압 및 상온의 환경에서 압축부(300)로 유입되는 유입가스는 압축부(300)에서 압력이 높은 상태가 될 수 있다. 가스를 액화시켜 성분별로 분리하는 과정에서 추출대상물을 분리할 수 있으므로, 가스가 액화되기 유리한 환경을 조성하는 것이며, 상기 환경은 고압 및 저온의 환경이 될 수 있다.In the inflow step (S1) of the inlet gas, it may be a gas containing an extraction target, and when the extraction target is methane, it may be a gas by anaerobic digestion of organic matter. Inflow gas flowing into the compression unit 300 in an atmosphere of atmospheric pressure and room temperature may have a high pressure in the compression unit 300. Since the object to be extracted can be separated in the process of liquefying the gas and separating each component, an environment in which the gas is liquefied is advantageous, and the environment may be an environment of high pressure and low temperature.

유입가스의 압력 증가 단계(S2)에서 대기압으로부터 기 결정된 압력만큼 증가된 압력환경에서 압력조건이 만족되면, 유입가스의 온도 저하 단계가 수행될 수 있다. 유입가스의 온도 저하 단계(S3)에서는 고압상태의 가스에 온도 조건을 저온으로 만족시켜 액화시킬 수 있다. 저온 조건을 만족시키면 수 단계로 구분된 각각의 저온 단계에서 액화된 추출물이 발생할 수 있다.When the pressure condition is satisfied in a pressure environment in which the pressure of the inlet gas is increased by a predetermined pressure from atmospheric pressure in the step S2 of increasing the pressure of the inlet gas, the step of reducing the temperature of the inlet gas may be performed. In the step of reducing the temperature of the inlet gas (S3), the high-pressure gas may be liquefied by satisfying the temperature condition at a low temperature. If the low-temperature conditions are satisfied, a liquefied extract may be generated in each low-temperature step divided into several steps.

이어서 수행될 추출물 분리 단계(S4)에서는 제1추출물(1), 제2추출물(2) 및 제3추출물(3)을 각각의 대응되는 액화점에 도달하도록 조성하여 추출할 수 있다. 상기 추출물의 예는 앞서 설명한 바와 같이 황, 이산화탄소, 메탄일 수 있고, 최종적으로 액화점이 가장 낮은 메탄을 분리할 수 있는 장치 일 수 있다.In the extract separation step (S4) to be performed subsequently, the first extract (1), the second extract (2), and the third extract (3) may be formulated and extracted to reach respective corresponding liquefaction points. Examples of the extract may be sulfur, carbon dioxide, and methane as described above, and may be a device capable of separating methane with the lowest liquefaction point.

상기 액화점이 가장 낮은 메탄의 경우 최초에 유입가스가 압축부(300)로 유입된 경로에 혼합시킬 수 있다. 이 단계를 추출물 재유입 단계(S5)라고 한다. 여기서 재유입되는 되는 추출물은 액화점이 가장 낮은 추출물로써, 상기 예에 따르면 메탄일 수 있다. 상기 재유입을 수행하는 추출물은 상기 유입가스의 온도 저하 단계에서 저온 환경을 유지하기 위해 사용한 냉매와 동일한 물질일 수 있다.In the case of methane having the lowest liquefaction point, the incoming gas may be initially mixed in a path introduced into the compression unit 300. This step is called the extract re-introduction step (S5). Here, the re-introduced extract is an extract having the lowest liquefaction point, and according to the above example, it may be methane. The extract for re-inflow may be the same material as the refrigerant used to maintain a low-temperature environment in the step of reducing the temperature of the inlet gas.

예를 들어, 본 발명의 가스처리장치에 포함되는 냉동사이클에 사용된 냉매는 상기 액화점이 가장 낮은 추출물과 동일한 물질일 수 있다. 예를 들면, 상기 동일한 물질은 메탄일 수 있고, 상기 메탄은 상기 냉동사이클에 사용된 냉매로 회수되어 재사용될수도 있다.For example, the refrigerant used in the refrigeration cycle included in the gas treatment apparatus of the present invention may be the same material as the extract having the lowest liquefaction point. For example, the same material may be methane, and the methane may be recovered as a refrigerant used in the refrigeration cycle and reused.

추출물 재유입 단계에서 압축부(300)로의 추출물 재유입은 압축부(300)의 냉각을 도모할 수 있다. 유입가스의 액화 조건 중 고압조건을 만족시킬 수 있도록 압력을 증가시키는 과정에서 발생하는 열을 상기 추출물 재유입으로 냉각시킬 수 있다. 따라서, 압축부(300)의 과열을 방지 또는 예방할 수 있다.In the extract re-inflow step, the re-inflow of the extract into the compression unit 300 may promote cooling of the compression unit 300. Heat generated in the process of increasing the pressure so as to satisfy the high pressure condition among the liquefaction conditions of the inlet gas may be cooled by re-inflow of the extract. Therefore, overheating of the compression unit 300 can be prevented or prevented.

이상에서 본 발명의 대표적인 실시예들을 상세하게 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 상술한 실시예에 대하여 본 발명의 범주에서 벗어나지 않는 한도 내에서 다양한 변형이 가능함을 이해할 것이다. 그러므로 본 발명의 권리범위는 설명된 실시예에 국한되어 정해져서는 안 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.Although the exemplary embodiments of the present invention have been described in detail above, those of ordinary skill in the art to which the present invention pertains will understand that various modifications may be made to the above-described embodiments without departing from the scope of the present invention. . Therefore, the scope of the present invention is limited to the described embodiments and should not be determined, and should not be determined by the claims to be described later, as well as those equivalent to the claims.

1 : 제1추출물
2 : 제2추출물
3 : 제3추출물
10 : 유체순환부
20 : 쿨링부
21 : 열교환부
22 : 펌프
30 : 서지탱크
100 : 사전냉각부
101 : 압축기
102 : 콘덴서
103 : 수액기
104 : 증발기
200 : 주냉각부
210 : 제1냉각부
211 : 제1유닛
212 : 제1열교환부
213 : 제1펌프
214 : 제1수액기
220 : 제2냉각부
221 : 제2유닛
222 : 제2열교환부
223 : 제2펌프
224 : 제2수액기
230 : 제3냉각부
231 : 제3유닛
232 : 제3열교환부
233 : 제3펌프
234 : 제3수액기
300 : 압축부
301 : 제1압축기
302 : 제2압축기
303 : 제3압축기
304 : 제4압축기
310 : 제1저온부
320 : 제2저온부
330 : 제3저온부
F1 : 제1가스경로
F2 : 제2가스경로
F2-1 : 제2-1가스경로
F2-2 : 제2-2가스경로
F2-3 : 제2-3가스경로
F3 : 제3가스경로
F4 : 제4가스경로
G1 : 제1냉매경로
G1-1 : 제1-1냉매경로
G1-2 : 제1-2냉매경로
G1-3 : 제1-3냉매경로
G2 : 제2냉매경로
G2-1 : 제2-1냉매경로
G2-2 : 제2-2냉매경로
G2-3 : 제2-3냉매경로
W1 : 제1냉각수경로
W2 : 제2냉각수경로
S1 : 유입가스의 유입 단계
S2 : 유입가스의 압력 증가 단계
S3 : 유입가스의 온도 저하 단계
S4 : 추출물 분리 단계
S5 : 추출물 재유입 단계
1: first extract
2: second extract
3: third extract
10: fluid circulation part
20: cooling part
21: heat exchange part
22: pump
30: surge tank
100: pre-cooling unit
101: compressor
102: capacitor
103: receiver
104: evaporator
200: main cooling part
210: first cooling unit
211: first unit
212: first heat exchanger
213: first pump
214: first receiver
220: second cooling unit
221: second unit
222: second heat exchange unit
223: second pump
224: second receiver
230: third cooling unit
231: 3rd unit
232: third heat exchanger
233: third pump
234: third receiver
300: compression part
301: first compressor
302: second compressor
303: third compressor
304: fourth compressor
310: first low temperature section
320: second low temperature part
330: third low temperature part
F1: 1st gas path
F2: 2nd gas path
F2-1: 2-1 gas path
F2-2: 2-2 gas path
F2-3: The 2-3rd gas path
F3: 3rd gas path
F4: 4th gas path
G1: 1st refrigerant path
G1-1: 1-1 refrigerant path
G1-2: The 1-2 refrigerant path
G1-3: No. 1-3 refrigerant path
G2: Second refrigerant path
G2-1: 2-1 refrigerant path
G2-2: 2-2 refrigerant path
G2-3: 2-3 refrigerant path
W1: 1st coolant path
W2: 2nd coolant path
S1: Inflow stage of inflow gas
S2: Step of increasing the pressure of the incoming gas
S3: step of lowering the temperature of the incoming gas
S4: extract separation step
S5: Extract re-introduction step

Claims (8)

유입가스의 압력을 증가시키는 압축부;
상기 압축부에 의해 압력이 증가된 상기 유입가스와 열교환을 통해 상기 가스의 온도를 저하시키는 주냉각부 및 냉매를 냉각시켜 상기 주냉각부에 제공하는 사전냉각부를 포함하는 냉각부; 및
상기 주냉각부에 의해 상기 유입가스가 냉각되어 추출된 추출물 중 하나의 적어도 일부를 상기 유입가스와 혼합 후 상기 압축부로 재유입시켜 가열되는 상기 압축부를 냉각시키는 유체순환부;를 포함하는, 가스처리장치.
A compression unit that increases the pressure of the inlet gas;
A cooling unit including a main cooling unit for lowering a temperature of the gas through heat exchange with the inlet gas whose pressure is increased by the compression unit, and a precooling unit for cooling a refrigerant and providing the main cooling unit; And
A fluid circulation unit cooling the compressed unit heated by mixing at least a portion of one of the extracts extracted by cooling the inlet gas by the main cooling unit with the inlet gas and then re-introducing the inlet gas to the compression unit to cool the heated compression unit; Device.
청구항 1에 있어서,
상기 유입가스와 혼합되는 상기 추출물은 상기 냉매와 동일한 물질인, 가스처리장치.
The method according to claim 1,
The extract mixed with the inlet gas is the same material as the refrigerant, gas treatment apparatus.
청구항 1에 있어서,
상기 주냉각부는 복수 개의 상기 추출물이 추출될 수 있는 온도로 냉각시키기 위한 제1냉각부, 제2냉각부 및 제3냉각부를 포함하는, 가스처리장치.
The method according to claim 1,
The main cooling unit includes a first cooling unit, a second cooling unit, and a third cooling unit for cooling to a temperature at which a plurality of the extracts can be extracted.
청구항 1에 있어서,
상기 추출물은 황, 이산화탄소 및 메탄을 포함하는, 가스처리장치.
The method according to claim 1,
The extract contains sulfur, carbon dioxide and methane, gas treatment apparatus.
청구항 1에 있어서,
상기 압축부를 냉각시키는 쿨링부를 더 포함하는, 가스처리장치.
The method according to claim 1,
The gas processing apparatus further comprises a cooling part for cooling the compression part.
청구항 1에 있어서,
상기 유체순환부는 압축부에 오일의 제공 및 회수를 반복수행하여 압축부를 냉각시키는, 가스처리장치.
The method according to claim 1,
The fluid circulation unit cooling the compression unit by repeatedly providing and recovering oil to the compression unit.
청구항 1에 있어서,
상기 주냉각부는 상기 유입가스와의 열교환에 의해 온도가 증가한 상기 냉매는 상기 사전냉각부로 전달하여 재냉각 후 전달받는, 가스처리장치.
The method according to claim 1,
The main cooling unit, wherein the refrigerant whose temperature has increased due to heat exchange with the inlet gas is transferred to the precooling unit to be delivered after recooling.
유입가스가 압축부로 유입되고,
상기 압축부에 의한 압축에 의해 상기 유입가스의 압력이 증가되고,
증가된 압력상태의 상기 유입가스는 냉각부로 전달되어 제1온도에서 제1추출물이 추출되고, 상기 제1온도보다 낮은 제2온도에서 제2추출물이 추출되고, 상기 제2온도보다 낮은 제3온도에서 제3추출물이 추출되고,
상기 제3추출물의 일부는 유체순환부에 의해 상기 유입가스와 섞여 상기 압축부로 재유입되어 상기 압축부의 온도가 저하되도록 하는, 가스처리장치의 구동방법.

The inlet gas flows into the compression unit,
The pressure of the inlet gas is increased by compression by the compression unit,
The inlet gas in an increased pressure state is delivered to a cooling unit to extract a first extract at a first temperature, and a second extract is extracted at a second temperature lower than the first temperature, and a third temperature lower than the second temperature The third extract is extracted from,
A portion of the third extract is mixed with the inlet gas by a fluid circulation unit and re-introduced into the compression unit to lower the temperature of the compression unit.

KR1020190020115A 2019-02-20 2019-02-20 Gas processing apparatus and method KR102225520B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190020115A KR102225520B1 (en) 2019-02-20 2019-02-20 Gas processing apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190020115A KR102225520B1 (en) 2019-02-20 2019-02-20 Gas processing apparatus and method

Publications (2)

Publication Number Publication Date
KR20200101790A true KR20200101790A (en) 2020-08-28
KR102225520B1 KR102225520B1 (en) 2021-03-08

Family

ID=72292186

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190020115A KR102225520B1 (en) 2019-02-20 2019-02-20 Gas processing apparatus and method

Country Status (1)

Country Link
KR (1) KR102225520B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220053946A (en) * 2020-10-23 2022-05-02 이낙영 Greenhouse gas treatment device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950031938A (en) 1994-05-02 1995-12-20 정상배 Organic Waste Purification and Methane Gas Treatment System
KR19980077465A (en) * 1997-04-19 1998-11-16 김동윤 Resource regeneration technology such as methane and carbonic acid from landfill gas
KR101027809B1 (en) * 2010-02-12 2011-04-07 한솔이엠이(주) Manufacturing apparatus for liquified bio methane
KR20160091091A (en) * 2015-01-23 2016-08-02 대우조선해양 주식회사 A vessel with an engine in a hull

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950031938A (en) 1994-05-02 1995-12-20 정상배 Organic Waste Purification and Methane Gas Treatment System
KR19980077465A (en) * 1997-04-19 1998-11-16 김동윤 Resource regeneration technology such as methane and carbonic acid from landfill gas
KR101027809B1 (en) * 2010-02-12 2011-04-07 한솔이엠이(주) Manufacturing apparatus for liquified bio methane
KR20160091091A (en) * 2015-01-23 2016-08-02 대우조선해양 주식회사 A vessel with an engine in a hull

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220053946A (en) * 2020-10-23 2022-05-02 이낙영 Greenhouse gas treatment device
WO2022085952A3 (en) * 2020-10-23 2022-07-28 이낙영 Greenhouse gas treatment apparatus

Also Published As

Publication number Publication date
KR102225520B1 (en) 2021-03-08

Similar Documents

Publication Publication Date Title
US8549876B2 (en) Method and apparatus for cooling a hydrocarbon stream
RU2458296C2 (en) Natural gas liquefaction method
AU2007275118B2 (en) Method and apparatus for liquefying a hydrocarbon stream
RU2436024C2 (en) Procedure and device for treatment of flow of hydrocarbons
CN109157944B (en) Fractional cryogenic recovery system for VOCs (volatile organic compounds) of throttling expansion refrigeration
CN1291711A (en) Liquefaction method of nitrogen
CN207831793U (en) Equipment for cooling down hydrocarbon charging stream
CN107110599B (en) Gas liquefaction device and gas liquefaction method
CN102216711A (en) Method for producing liquid and gaseous nitrogen streams, a helium-rich gaseous stream, and a denitrogened hydrocarbon stream, and associated plant
US10753676B2 (en) Multiple pressure mixed refrigerant cooling process
CN1172243A (en) Improved cooling process and installation in particular for liquenfaction of natural gas
CN103038587A (en) Natural Gas Liquefaction Process
KR102225520B1 (en) Gas processing apparatus and method
RU2654309C2 (en) Method for cooling of hydrocarbon- rich fraction
AU2022256150A1 (en) Fluid cooling apparatus
RU2686964C2 (en) Method for cooling fraction having rich hydro-hydrocarbons
EP3604993A2 (en) Balancing power in split mixed refrigerant liquefaction system
RU2665015C1 (en) Gas liquefaction unit
CN103776238A (en) Method and equipment for separating methane from synthesis gas
EP2275762A1 (en) Method of cooling a hydrocarbon stream and appraratus therefor
CN110749159B (en) Device and method for refrigerating and liquefying natural gas
CN105180534B (en) A kind of azeotrope complete recovering technique method
JP6290703B2 (en) Liquefied gas manufacturing apparatus and manufacturing method
WO2016103296A1 (en) Refrigeration device
US20180372404A1 (en) Method for liquefying natural gas and nitrogen

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant