WO2016103296A1 - Refrigeration device - Google Patents
Refrigeration device Download PDFInfo
- Publication number
- WO2016103296A1 WO2016103296A1 PCT/JP2014/006470 JP2014006470W WO2016103296A1 WO 2016103296 A1 WO2016103296 A1 WO 2016103296A1 JP 2014006470 W JP2014006470 W JP 2014006470W WO 2016103296 A1 WO2016103296 A1 WO 2016103296A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stage
- heat exchanger
- refrigerant
- gas
- liquid
- Prior art date
Links
- 238000005057 refrigeration Methods 0.000 title claims abstract description 72
- 239000003507 refrigerant Substances 0.000 claims abstract description 268
- 239000007788 liquid Substances 0.000 claims abstract description 175
- 239000012530 fluid Substances 0.000 claims abstract description 68
- 239000007789 gas Substances 0.000 claims description 137
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 40
- 238000001816 cooling Methods 0.000 claims description 33
- 239000003345 natural gas Substances 0.000 claims description 18
- 238000000926 separation method Methods 0.000 claims description 6
- 238000002347 injection Methods 0.000 claims description 5
- 239000007924 injection Substances 0.000 claims description 5
- 230000006835 compression Effects 0.000 claims description 4
- 238000007906 compression Methods 0.000 claims description 4
- 239000000470 constituent Substances 0.000 claims description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- 230000003247 decreasing effect Effects 0.000 description 8
- 238000007710 freezing Methods 0.000 description 8
- 230000008014 freezing Effects 0.000 description 8
- 239000003949 liquefied natural gas Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 238000011144 upstream manufacturing Methods 0.000 description 6
- 239000002826 coolant Substances 0.000 description 5
- 239000001294 propane Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 239000001273 butane Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0211—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
- F25J1/0214—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
- F25J1/0215—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
- F25J1/0216—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle using a C3 pre-cooling cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B5/00—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
- F25B5/02—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B6/00—Compression machines, plants or systems, with several condenser circuits
- F25B6/04—Compression machines, plants or systems, with several condenser circuits arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/0052—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/008—Hydrocarbons
- F25J1/0087—Propane; Propylene
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2341/00—Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
- F25B2341/001—Ejectors not being used as compression device
- F25B2341/0012—Ejectors with the cooled primary flow at high pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/60—Expansion by ejector or injector, e.g. "Gasstrahlpumpe", "venturi mixing", "jet pumps"
Definitions
- the present invention relates to a refrigeration apparatus for cooling a fluid to be cooled such as natural gas.
- the production process of liquefied natural gas is a process of performing pretreatment such as acid gas removal and moisture removal on natural gas, followed by precooling to, for example, around ⁇ 40 ° C. with a precooling refrigerant, and then heavy gas from natural gas. After removing the gas, it is provided with a step of cooling to ⁇ 160 ° C. to ⁇ 160 ° C. with the main refrigerant and liquefying.
- a refrigerant mainly composed of propane is used as the precooling refrigerant, and a mixed refrigerant obtained by mixing methane, ethane, propane and nitrogen is used as the main refrigerant.
- refrigerants are circulated and used in a vapor compression refrigeration cycle.
- the refrigerant is compressed by a compressor in a gaseous state, and then cooled and liquefied by a condenser, and the liquefied refrigerant having a high pressure is reduced in pressure by an expansion valve or the like.
- the low-temperature refrigerant is vaporized by heat exchange with natural gas and becomes a gas again.
- the precooling refrigerant is also used to cool the main refrigerant compressed by the compressor, and the main refrigerant is cooled by the precooling refrigerant and then exchanges heat with natural gas.
- Patent Document 1 proposes a technique for improving the efficiency of a refrigeration cycle by replacing an expansion valve provided in the refrigeration cycle with an ejector.
- the refrigeration cycle described in Patent Document 1 is applied to relatively small devices such as air conditioners such as air conditioners and refrigerators for showcases. Therefore, there is no description of an efficient utilization method when an ejector is provided in a refrigeration cycle of a large plant as in a natural gas liquefaction system.
- Patent Document 2 discloses a technique for reducing the outlet pressure of a refrigeration compressor to an external pressure or lower using an ejector in order to reduce power when starting a refrigeration compressor provided in a natural gas refrigeration cycle.
- Patent Document 3 describes a technique in which natural gas cooled and liquefied by a heat exchanger is decompressed and expanded into a rectifying column by an ejector to separate nitrogen contained in the liquefied natural gas.
- the ejector described in the cited document 2 ends its use after starting the refrigeration compressor, and the ejector described in the cited document 3 is a device on the cooled fluid side, both of which are parts of the refrigeration cycle. It is not an ejector constituting the part.
- JP 2009-299911 A Japanese Patent No. 4976426 U.S. Pat. No. 4,112,700
- the present invention has been made under such a background, and is to provide a refrigeration apparatus that efficiently uses an ejector in a refrigeration cycle.
- the refrigeration apparatus according to the first invention corresponds to the embodiment described in FIGS.
- the refrigeration apparatus of the present invention includes a compressor (20) that compresses refrigerant gas, A high-pressure refrigerant liquid obtained by condensing the high-pressure refrigerant gas discharged from the compressor is injected, and a suction port for sucking the refrigerant gas by the injection of the high-pressure refrigerant liquid is injected from the nozzle.
- First-stage ejectors (41a in FIG. 2, 41a and 41d in FIG. 4, 41d in FIG. 5, 41g in FIG.
- the first-stage heat exchanger (34a in FIG. 2, FIG. 4) is supplied with the mixed fluid whose pressure has been increased by the first-stage ejector and heat-exchanged between the mixed fluid and the fluid to be cooled to cool the fluid to be cooled.
- 34a and 35a, 35a of FIGS. 5 and 6, and The refrigerant gas generated by heat exchange in the first stage heat exchanger and the liquid accompanying it are gas-liquid separated, and the separated refrigerant gas is sent to the compressor (FIG.
- the refrigerant obtained by expanding the refrigerant liquid that has not been vaporized in the first-stage heat exchanger by the expansion section (36b in FIG. 2, 41b and 41e in FIG. 4, 37b in FIG. 5, and 39 in FIG. 6) is supplied. Then, heat exchange is performed between the refrigerant and the fluid to be cooled to cool the fluid to be cooled (34b in FIG. 2, 34b and 35b in FIG. 4, 35b in FIG. 5, FIG. 6). 38) and A flow path (501 in FIG. 2, 501a, 501d in FIG. 4, 501a, 501d, FIG.
- the third invention corresponds to the embodiment described in FIGS. 2, 4, and 5, and gas-liquid separation is performed on the refrigerant gas generated by heat exchange in the subsequent heat exchanger and the liquid accompanying the refrigerant gas,
- a next-stage gas-liquid separator (33b in FIGS. 2, 4, and 5) in which the separated refrigerant gas is sent to the compressor;
- the refrigerant gas generated by heat exchange in the next-stage heat exchanger and the liquid accompanying the refrigerant gas are supplied separately to the suction port of the first-stage ejector and the gas-liquid separator in the next stage. It is configured. 4th invention is corresponded to embodiment shown in FIG. 4, and the expansion
- the high-pressure refrigerant liquid obtained by condensing the high-pressure refrigerant gas discharged from the compressor is provided at each nozzle of the first-stage ejector (41a) of the first group and the first-stage ejector (41d) of the second group.
- the first-stage gas-liquid separator (33a) is common to the first group and the second group
- the next-stage gas-liquid separator (33b) is the first group and the second group. It is characterized by being common to.
- first stage ejectors (41a, 41d) are provided in parallel, When the first-stage ejector on one side is called the first first-stage ejector (41a) and the first-stage ejector on the other side is called the second first-stage ejector (41d), The mixed fluid pressurized by the first first-stage ejector is supplied, heat exchange is performed between the mixed fluid and the fluid to be cooled to cool the fluid to be cooled, and the refrigerant generated by heat exchange.
- first first-stage heat exchanger (34a) which is the first-stage heat exchanger in which the gas and the liquid accompanying it are supplied to the first-stage gas-liquid separator (33a), and the second first-stage ejector Providing a second first-stage heat exchanger (35a), which is a first-stage heat exchanger to which the pressurized mixed fluid is supplied,
- the first next-stage expansion section (the ejector 41b in FIG.
- the refrigerant liquid that has not been vaporized in the first first-stage heat exchanger is supplied as a high-pressure refrigerant to the first next-stage heat exchanger via the first next-stage expansion section, and the second first-stage heat exchanger is supplied.
- the refrigerant liquid that has not been vaporized in the heat exchanger is supplied to the second next-stage heat exchanger as a high-pressure refrigerant through the second next-stage expansion section,
- a flow path for supplying the refrigerant gas heat-exchanged in the second next-stage heat exchanger and the liquid accompanying the refrigerant gas to the suction port of the first first-stage ejector and the next-stage gas-liquid separator. (501g, 502d)
- the first first-stage heat exchanger and the first next-stage heat exchanger are for cooling the first cooled fluid
- the stage heat exchanger is provided for cooling the second cooled fluid.
- the sixth invention corresponds to the embodiment shown in FIG.
- the seventh invention corresponds to the embodiment described in FIGS. 4 and 5, and natural gas is precooled with a precooling refrigerant, then main cooled with the main refrigerant, and after the main cooling after the main cooling is compressed, the precooling is performed.
- the high-pressure refrigerant is a precooling refrigerant,
- the first cooled fluid and the second cooled fluid are natural gas and main refrigerant, respectively.
- the eighth invention corresponds to the embodiment shown in FIG. 6 and is discharged from the compressor (20) to the first stage expansion valve (37a) provided in parallel with the first stage ejector (41g).
- the high-pressure refrigerant liquid obtained by condensing the high-pressure refrigerant gas is divided and supplied, and the refrigerant obtained by expanding the high-pressure refrigerant liquid is supplied to the first-stage heat exchanger (35a),
- the heat exchanger (38) in the next stage of the separate system is provided with the refrigerant liquid that has not been vaporized in the heat exchanger (35a) in the first stage on the inlet side of the heat exchanger (38) in the next stage of the separate system.
- the refrigerant obtained by being expanded by the expanded portion (39) is supplied, heat is exchanged between the refrigerant and the fluid to be cooled to cool the fluid to be cooled, and the fluid to be cooled is
- the first stage heat exchanger is different from the cooled fluid cooled by the next stage heat exchanger. 6 shows that the lower heat exchanger (35a) of the two upper and lower heat exchanger systems is used as the first stage heat exchanger, and the subsequent stage is placed after the first stage heat exchanger (35a).
- the upper stage heat exchanger (34a) is used as the first stage heat exchanger
- the first stage ejector is provided on the inlet side of the first stage heat exchanger (34a)
- a stage heat exchanger (34b) and a next stage heat exchanger (38) of another system may be provided in parallel.
- the present invention includes a first-stage heat exchanger and a second-stage heat exchanger that cool a fluid to be cooled using a refrigerant liquid and are connected in series to each other via an expansion unit, and are generated in each heat exchanger.
- a refrigeration cycle is provided in which a refrigerant gas is compressed by a compressor to obtain a high-pressure refrigerant liquid.
- pressure is increased by sucking a part of the refrigerant gas generated in the heat exchanger at the next stage using an ejector. For this reason, it is possible to reduce the supply amount of refrigerant gas generated in the next-stage heat exchanger with relatively low pressure to the compressor, reduce the load on the compressor, and realize an efficient refrigeration cycle. it can.
- the liquefaction system of the natural gas (LNG: Liquefied Natural Gas) provided with the freezing apparatus which concerns on this invention is demonstrated.
- LNG Liquefied Natural Gas
- LNG manufacturing equipment will remove the acid gas removal part 101 which removes the acid gas in NG, and the water
- the water removal unit 102 and the NG that has been subjected to the pretreatment for removing the acid gas and water are precooled and cooled to an intermediate temperature in the range of about ⁇ 20 ° C. to ⁇ 70 ° C., for example, ⁇ 35 ° C. to ⁇ 39 ° C.
- the precooling heat exchange unit 103 and the gas-liquid mixed gas cooled to an intermediate temperature are sent to a heavy component removal unit (not shown) to remove heavy components (ethane and heavier components) having 2 or more carbon atoms.
- LNG containing methane as a main component and containing a small amount of ethane, propane, and butane is cooled to ⁇ 150 ° C. to ⁇ 160 ° C. to be liquefied to provide liquefaction unit 104 for obtaining LNG as liquefied gas.
- the thick white arrows shown in FIG. 1 indicate the flow of the raw material NG or the product LNG.
- the precooling heat exchange unit 103 precools the pretreated NG using, for example, propane which is a precooling refrigerant.
- the precooling refrigerant is also used for cooling the main refrigerant used in the liquefaction unit 104 at the subsequent stage.
- auxiliary cooling the cooling of the main refrigerant by the precooling refrigerant.
- the flow of propane is indicated by a thin arrow indicated with “C3”
- the flow of the main refrigerant is indicated by an hatched arrow indicated with “MR (MixederRefrigerant)”.
- the precooling heat exchanging unit 103 and the auxiliary heat exchanging unit 105 for cooling the main refrigerant are preliminarily used for precooling NG and precooling the main refrigerant (MR).
- the 1st compression part 2a which compresses the refrigerant (C3) for operation is provided.
- the liquefaction unit 104 includes a second compression unit 2b that compresses the main refrigerant used for liquefaction of NG.
- Each compressor 2a, 2b is provided with a plurality of compressors in parallel and in series according to the amount of precooling refrigerant or main refrigerant processed, the pressure difference between the suction side and the discharge side, and the like.
- the refrigeration apparatus of this example is configured as a refrigeration cycle of a precooling refrigerant used in the precooling heat exchanging unit 103 and the auxiliary heat exchanging unit 105 constituting the liquefaction system.
- the precooling refrigerant gas (high-pressure refrigerant gas) that has been pressurized by the compressor 20 constituting the first compressor 2a is cooled and condensed by AFC (AirFCFin Cooler) 31a, 31b.
- the liquid receiver 32 retains the precooling refrigerant liquid (high-pressure refrigerant liquid).
- the precooling refrigerant (liquid) is supercooled by the AFC 31c, and then precooled heat exchangers 34a to 34d provided on the precooling heat exchange unit 103 side, and an auxiliary provided on the auxiliary heat exchange unit 105 side.
- the heat exchangers 35a to 35d are supplied separately.
- the compressor 20 may be gas turbine driven, steam driven, or motor driven.
- AFC 31a, 31b, and 31c may be water-cooled heat exchangers.
- the precooling heat exchangers 34a to 34d of the precooling heat exchanging section 103 flow NG as a fluid to be cooled to the tube side, and flow a precooling refrigerant to the shell side to perform precooling of NG.
- the tubes and shells of the precooling heat exchangers 34a to 34d are connected in series with the precooling heat exchanger 34a as the most upstream stage (first stage) and the precooling heat exchanger 34d as the most downstream stage (fourth stage).
- NG flows in order from the first stage precooling heat exchanger 34a toward the fourth stage precooling heat exchanger 34d.
- the description of NG piping connecting the precooling heat exchangers 34a to 34d is omitted (the same applies to FIGS. 2, 4 to 6).
- the precooling refrigerant (liquid) supercooled by the AFC 31c is adiabatically expanded by the expansion valve 36a provided on the inlet side of the first stage precooling heat exchanger 34a, and the precooling heat exchange is performed while the temperature is further lowered. Is supplied to the vessel 34a.
- the precooling heat exchanger 34a heat exchange between the precooling refrigerant and NG is performed, and NG is cooled.
- gas-liquid separation between the liquid of the precooling refrigerant generated by adiabatic expansion in the expansion valve 36a and heat exchange with NG and the liquid is performed.
- the gas is extracted from the pre-cooling heat exchanger 34a, and then the accompanying liquid is removed by the knockout drum 33a, and then returned to the high-pressure side suction port of the compressor 20.
- the liquid in the precooling heat exchanger 34a is extracted toward the second stage precooling heat exchanger 34b.
- a demister is provided in the knockout drum 33a.
- expansion valves 36b to 36d are provided on the inlet side of the second and subsequent stage precooling heat exchangers 34b to 34d, respectively, so that the precooling heat on the upstream stage side is provided.
- the precooling refrigerant (liquid) supplied from the exchangers 34a to 34c is adiabatically expanded to lower its temperature and then supplied to the downstream precooling heat exchangers 34b to 34d.
- the temperature of the precooling refrigerant supplied to the precooling heat exchangers 34a to 34d gradually decreases from the upstream stage to the downstream stage.
- the temperature of the NG cooled by the precooling heat exchangers 34a to 34d gradually decreases, and from the fourth stage precooling heat exchanger 34d, for example, from -35 ° C to -39.
- NG in the gas-liquid mixed state cooled to 0 ° C. is extracted and supplied to the liquefaction unit 104 in the subsequent stage.
- the gas generated in the second and subsequent precooling heat exchangers 34b to 34d also corresponds to the pressure of the knockout drums 33b to 33d after the accompanying liquid is removed from the knockout drums 33b to 33d. It is returned to the suction port of the compressor 20.
- the precooling heat exchangers 34a to 34d are provided with liquid level gauges 341a to 341d for detecting the height position (liquid level) of the liquid in the shell.
- the expansion valves 36a to 36d provided on the inlet side of the respective precooling heat exchangers 34a to 34d are detected by liquid level gauges 341a to 341d provided on the downstream side of the precooling heat exchangers 34a to 34d.
- the amount of precooling refrigerant passing through the expansion valves 36a to 36d is increased or decreased based on the liquid level.
- the opening of the expansion valves 36a to 36d is increased to increase the supply amount of the precooling refrigerant, while the liquid level is increased.
- control is performed to reduce the supply amount of the precooling refrigerant by reducing the opening degree of the expansion valves 36a to 36d.
- the number of stages of the precooling heat exchangers 34a to 34d may be increased or decreased as necessary.
- a plurality of heat exchanger systems in which these precooling heat exchangers 34a to 34d are connected in series are provided in parallel. Also good.
- the configuration of the precooling heat exchangers 34a to 34d provided in the precooling heat exchange unit 103 has been described above, but the configuration of the auxiliary heat exchangers 35a to 35d provided on the auxiliary heat exchange unit 105 side is almost the same. It has become. That is, the auxiliary heat exchangers 35a to 35d flow the main refrigerant (MR), which is a fluid to be cooled, to the tube side, and flow the precooling refrigerant to the shell side to perform preliminary cooling of the main refrigerant.
- the tubes and shells 35a to 35d are connected in series in this order. Further, the description of the main refrigerant piping connecting between the auxiliary heat exchangers 35a to 35d is omitted, which is the same as in the case of the precooling heat exchangers 34a to 34d.
- Expansion valves 37a to 37d are provided on the inlet sides of the auxiliary heat exchangers 35a to 35d, respectively, so that the precooling refrigerant (liquid) supplied from the upstream side is adiabatically expanded to lower its temperature. Is supplied to each of the auxiliary heat exchangers 35a to 35d to cool the main refrigerant. Also in these auxiliary heat exchangers 35a to 35d, as the temperature of the precooling refrigerant decreases, the temperature of the main refrigerant gradually decreases. For example, the main refrigerant cooled to ⁇ 35 ° C. to ⁇ 39 ° C. is supplied to the liquefaction unit 104. Is done.
- the gas generated in each of the auxiliary heat exchangers 35a to 35d is introduced into the aforementioned knockout drums 33a to 33d in accordance with the pressure, and the accompanying liquid is removed, and then the compressor corresponding to each pressure is removed. 20 and the flow rate adjustment by the expansion valves 37a to 37d is performed based on the liquid level detected by the liquid level gauges 351a to 351d provided in the auxiliary heat exchangers 35a to 35d. This is the same as the precooling heat exchangers 34a to 34d on the precooling heat exchanging unit 103 side.
- the number of stages of the auxiliary heat exchangers 35a to 35d may be increased or decreased as necessary, and a plurality of heat exchanger systems in which the auxiliary heat exchangers 35a to 35d are connected in series are connected in parallel. It may be provided.
- the refrigeration apparatus includes the precooling heat exchange unit 103 in which the precooling refrigerant flows through the path of “compressor 20 ⁇ AFC 31a to 31c ⁇ precooling heat exchanger 34a to 34d ⁇ compressor 20”. And a refrigeration cycle on the auxiliary heat exchange section 105 side through which the precooling refrigerant flows through a path of “compressor 20 ⁇ AFC 31a to 31c ⁇ auxiliary heat exchangers 35a to 35d ⁇ compressor 20”. The temperature of the precooling refrigerant in each refrigeration cycle is lowered by adiabatic expansion in the expansion valves 36a to 36d and 37a to 37d.
- the refrigeration apparatus of the present embodiment uses an ejector 41a that reduces the low-pressure side suction amount of the compressor 20 using the energy of the precooling refrigerant in the process of adiabatic expansion of the precooling refrigerant. It has.
- a configuration example of the refrigeration apparatus including the ejector 41a will be described with reference to FIGS.
- FIGS. 2 and 4 to 6 described below the same reference numerals as those used in FIG. 7 are attached to the same components as those described using FIG.
- the refrigeration apparatus shown in FIG. 2 is provided with an ejector 41a in place of the expansion valve 36a on the inlet side of the first-stage precooling heat exchanger 34a, and the ejector 41a provides a second-stage precooling heat exchanger 34b.
- 7 is different from the conventional refrigeration apparatus shown in FIG. 7 in that a part of the precooling refrigerant gas generated is sucked.
- the first stage preheat exchanger 34a corresponds to the first stage heat exchanger
- the second stage preheat exchanger 34b corresponds to the next stage heat exchanger.
- the ejector 41a corresponds to the first-stage ejector
- the expansion valve 36b provided between the first-stage and second-stage preheat exchangers 34a and 34b corresponds to the expansion section.
- FIG. 3 shows an example of the configuration of each ejector 41a (in FIG. 3, reference numeral “41” is given as a general description including each ejector 41b to 41g described later).
- a nozzle 412 for supplying a precooling refrigerant liquid (high-pressure refrigerant liquid) to a tubular main body 416 whose rear end portion is sealed is coaxially inserted from the rear end portion side.
- a suction port 413 for sucking a precooling refrigerant gas into the main body 416 is provided on a side surface of the main body 416, and the suction port 413 is connected to a pipe for extracting gas from the precooling heat exchangers 34a to 34d.
- the distal end side of the main body 416 is reduced in diameter in the liquid discharge direction from the nozzle 412, and the downstream side of the discharge port of the nozzle 412 is a mixing unit 414 made of a pipe having a smaller diameter than the main body 416. It has become.
- a diffuser portion 415 having a gradually increasing pipe diameter is provided on the outlet side of the mixing portion 414.
- the ejector 41 is connected to the precooling refrigerant introduction pipe to the gas-liquid separators 33a to 33d via the diffuser portion 415. Is done.
- the ejector 41 having the above-described configuration, when the precooling refrigerant (liquid) accelerated at high speed in the nozzle 412 is discharged from the nozzle 412, the fluid in the main body 416 is drawn toward the precooling refrigerant flowing at high speed.
- the precooling refrigerant (gas) is sucked from the suction port 413.
- most of the precooling refrigerant extracted from the second stage precooling heat exchanger 34b is gas, but is accompanied by a mist-like liquid of about 1.0 wt% at most.
- the ejector 41a sucks the precooling refrigerant gas and the liquid accompanying it from the precooling heat exchanger 34b.
- the precooling refrigerant gas and the liquid accompanying it may be collectively referred to as “gas”.
- the temperature of the precooling refrigerant discharged from the nozzle 412 decreases due to adiabatic expansion.
- the precooling refrigerant (liquid) discharged from the nozzle 412 and the precooling refrigerant (gas) sucked from the suction port 413 flow through the mixing unit 414 as a gas-liquid mixed fluid while being mixed with each other, and enter the diffuser unit 415. Decelerate and the pressure recovers.
- the configuration of the ejector 41 provided in the refrigeration apparatus is not limited to the example shown in FIG. 3, and the precooling refrigerant (gas) is sucked using the precooling refrigerant (liquid), and the mixed fluid thereof. As long as the voltage is increased, the configuration of each part may be changed as appropriate.
- the precooling refrigerant (liquid) supercooled by the AFC 31c is supplied to the nozzle 412 provided in the ejector 41a on the precooling heat exchange section 103 side.
- the suction port 413 of the ejector 41a is connected to a flow path 501 branched from the flow path 502 for introducing the precooling refrigerant gas generated in the second stage precooling heat exchanger 34b to the gas-liquid separator 33b. ing.
- the precooling refrigerant gas (including the accompanying liquid) is diverted from the flow to the second-stage gas-liquid separator 33b and supplied to the suction port 413.
- the exit side of the diffuser part 415 of the ejector 41a from which the gas-liquid mixed fluid of the precooling refrigerant flows out is connected to the first stage precooling heat exchanger 34a.
- the gas-liquid separators 33a, 33b, 33c, and 33d separate mist (liquid) accompanying the refrigerant gas, and correspond to, for example, a knockout drum.
- each of the gas-liquid separators 33a and 33b corresponds to a first-stage gas-liquid separator and a next-stage gas-liquid separator
- the above-described flow path 502 is “the next-stage heat exchanger (second-stage preheat exchanger 34b)”.
- This corresponds to the “flow path for supplying the refrigerant gas generated by heat exchange in the gas and the liquid accompanying the refrigerant gas (also referred to as“ second-stage gas ”) to the gas-liquid separator 33b in the next stage”.
- the flow path 501 corresponds to “a flow path for supplying (second-stage gas) to the suction port 413 of the first-stage (first-stage) ejector 41a”.
- the pressure of the precooling refrigerant gas (second stage gas) generated in the second stage precooling heat exchanger 34b into which the precooling refrigerant adiabatically expanded using the expansion valve 36b flows is the first stage preheating temperature. It is lower than the pressure of the precooling refrigerant gas (also referred to as “first stage gas”) generated in the cold heat exchanger 34a.
- first stage gas also referred to as “first stage gas” generated in the cold heat exchanger 34a.
- the refrigeration apparatus of this example uses the ejector 41 a to increase the pressure of the second stage gas returned to the compressor 20, thereby reducing the amount of the second stage gas returned to the compressor 20. The load on the compressor 20 is reduced.
- the refrigeration apparatus of the present example includes a first-stage precooling heat exchanger 34a.
- An ejector 41a is provided on the inlet side instead of the expansion valve 36a.
- the expansion valve 36a provided in the conventional device has a function of increasing or decreasing the supply amount of the precooling refrigerant based on the liquid level in the precooling heat exchanger 34a.
- a regulating valve 411 is provided.
- the flow rate adjustment valve 411 is provided on the base end side of the nozzle 412.
- the flow rate adjustment valve 411 is preferably provided integrally with the nozzle 412 as a part of the equipment constituting the ejector 41.
- the flow rate adjusting valve 411 may be independently provided on the upstream side of the precooling refrigerant (liquid) supply pipe connected to the nozzle 412 that does not include the flow rate adjusting valve 411.
- the opening degree of the flow rate adjusting valve 411 is increased. Then, while increasing the supply amount of the precooling refrigerant, when the liquid level is higher than the target value, control is performed to reduce the supply amount of the precooling refrigerant by reducing the opening degree of the flow rate adjustment valve 411.
- the second and subsequent precooling heat exchangers 34b to 34d on the precooling heat exchanging portion 103 side, the expansion valves 36b to 36d on the inlet side, and the auxiliary heat exchangers on the auxiliary heat exchanging portion 105 side are the same as those of the conventional refrigeration apparatus described with reference to FIG.
- the operation of the refrigeration apparatus of this example will be described.
- the supplied precooling refrigerant (liquid) subcooled in the AFC 31c is supplied to the first precooling heat exchanger 34a on the precooling heat exchange section 103 side, the liquid level of the precooling heat exchanger 34a is supplied. Accordingly, the supply amount to the ejector 41a is increased or decreased. In the ejector 41a, the suction amount of the second-stage gas (including the accompanying liquid) increases or decreases in accordance with the supply amount of the precooling refrigerant (liquid).
- the pressure of the second stage gas discharged from the ejector 41a and the mixed fluid of the precooling refrigerant liquid and gas whose temperature has decreased due to adiabatic expansion are introduced into the first stage precooling heat exchanger 34a, NG flowing on the tube side is cooled.
- the precooling heat exchanger 34a performs gas-liquid separation of the precooling refrigerant, and the gas of the precooling refrigerant is returned to the high-pressure side suction port of the compressor 20 via the gas-liquid separator 33a.
- the liquid in the precooling heat exchanger 34a is extracted toward the second stage precooling heat exchanger 34b, and passes through the expansion valve 36b in accordance with the liquid level in the precooling heat exchanger 34b.
- the amount of refrigerant (liquid) is increased or decreased.
- NG cooling and gas-liquid separation of the pre-cooling refrigerant gas and liquid are performed, and the gas is returned to the compressor 20 via the gas-liquid separator 33b.
- a part of the precooling refrigerant gas flowing toward the gas-liquid separator 33b is divided and sucked from the suction port 413 of the ejector 41a. After the pressure is increased and returned to the compressor 20, the compressor 20 The load can be reduced.
- the actions of the pre-cooling heat exchangers 34c and 34d after the third stage, the expansion valves 36c and 36d, and the auxiliary heat exchangers 35a to 35d and the expansion valves 37a to 37d on the auxiliary heat exchanging unit 105 side will be described with reference to FIG. Since it is the same as that of the conventional refrigeration apparatus explained using, the explanation is omitted again.
- the refrigeration apparatus cools NG using a precooling refrigerant, and is connected to a first stage precooling heat exchanger 34a (first stage heat exchanger) and two stages connected in series via an expansion valve 36b (expansion part). Refrigeration including a pre-cooling heat exchanger 34b (next-stage heat exchanger), and a refrigerant gas generated in each heat exchanger 34a, 34b is compressed by the compressor 20 to obtain a pre-cooling refrigerant (high-pressure refrigerant liquid) Provide a cycle.
- FIG. 2 shows an example in which the ejector 41a is provided only on the inlet side of the first stage precooling heat exchanger 34a on the precooling heat exchanging unit 103 side, the ejector 41 is provided.
- the position is not limited to this example.
- FIG. 4 shows the first to third stage precooling heat exchangers 34a to 34c on the precooling heat exchange unit 103 side, and the first to third stage auxiliary heat exchangers 35a to 35c on the auxiliary heat exchange unit 105 side.
- a refrigerating apparatus is shown in which ejectors 41a to 41f are provided on the respective inlet sides of 35c. Since no heat exchanger is provided on the further lower side of the fourth stage pre-cooling heat exchanger 34d and auxiliary heat exchanger 35d, an expansion valve 36d is provided on the inlet side of these heat exchangers 34d and 35d. , 37d.
- the ejectors 41a to 41c provided at the inlets of the precooling heat exchangers 34a to 34c are branched from flow paths 502a to 502c respectively leading from the precooling heat exchangers 34b to 34d downstream to the gas-liquid separators 33b to 33d.
- the precooling refrigerant gas is sucked through the flow paths 501a to 501c.
- the ejectors 41d to 41f provided at the inlets of the auxiliary heat exchangers 35a to 35c are respectively connected from the flow paths 502d to 502f directed from the auxiliary heat exchangers 35b to 35d downstream by one stage to the gas-liquid separators 33b to 33d.
- the precooling refrigerant gas is sucked through the branched flow paths 501d to 501f.
- the refrigerant gas generated by heat exchange in the pre-cooling heat exchanger or auxiliary heat exchanger downstream of the first stage and the liquid accompanying the refrigerant gas may be supplied to the suction port of the ejector in the previous stage. .
- the first stage precooling heat exchanger 34a on the side of the precooling heat exchanging section 103 is viewed as the first stage heat exchanger
- the second stage precooling heat exchanger 34b is viewed as the next stage heat exchanger
- the first stage side ejector 41a corresponds to the first-stage ejector
- the second-stage ejector 41b corresponds to the inflatable portion and the next-stage ejector.
- the second-stage precooling heat exchanger 34b is regarded as a first-stage heat exchanger in which the precooling refrigerant (liquid) from the compressor 20 is supplied via the first-stage precooling heat exchanger 34a.
- the third-stage precooling heat exchanger 34c corresponds to the next-stage heat exchanger.
- the ejector 41c on the third stage side corresponds to a next-stage ejector (expansion section) that expands the refrigerant liquid supplied to the third-stage precooling heat exchanger 34c.
- the first stage auxiliary heat exchanger 35a is regarded as the first stage heat exchanger
- the second stage auxiliary heat exchanger 35b is regarded as the next stage heat exchanger.
- the first-stage ejector 41d corresponds to the first-stage ejector
- the second-stage ejector 41e corresponds to the next-stage ejector as well as the expansion portion.
- the second stage auxiliary heat exchanger 35b is regarded as a first stage heat exchanger in which the precooling refrigerant (liquid) from the compressor 20 is supplied via the first stage auxiliary heat exchanger 35a.
- the third stage auxiliary heat exchanger 35c corresponds to the next stage heat exchanger.
- the ejector 41f on the third stage side corresponds to a next-stage ejector (expansion section) that expands the refrigerant liquid supplied to the third stage auxiliary heat exchanger 35c.
- first stage ejector 41 a, precooling heat exchanger 34 a, second stage ejector 41 b, precooling heat exchanger 34 b” on the precooling heat exchanging section 103 side is NG (first cooled fluid).
- the “first-stage ejector 41d, auxiliary heat exchanger 35a, second-stage ejector 41e, auxiliary heat exchanger 35b” on the auxiliary heat exchanging portion 105 side is the main set. This corresponds to a second set for cooling the refrigerant (second fluid to be cooled).
- the first-stage gas-liquid separator 33a and the next-stage gas-liquid separator 33b are provided in common for the first group and the second group.
- the ejector 41 provided in the one side system is in the same system. It is not essential that the precooling refrigerant gas generated in step 1 is sucked.
- ejectors 41a to 41c are provided at the inlets of the first to third stage precooling heat exchangers 34a to 34c on the precooling heat exchange unit 103 side, and the auxiliary heat exchange unit 105 side is provided with the first stage auxiliary cooling unit.
- entrance of the heat exchanger 35a is shown.
- the second-stage gas on the auxiliary heat exchanging portion 105 side goes to the gas-liquid separator 33b as in the example shown in FIG.
- the precooling refrigerant gas is sucked through the flow path 501d branched from the flow path 502d.
- a flow path 501g for supplying a precooling refrigerant gas to the first-stage ejector 41a on the precooling heat exchange section 103 side is further branched from the flow path 501d.
- the second-stage gas on the auxiliary heat exchange unit 105 side is sucked into the ejectors 41 a and 41 d of both systems of the precooling heat exchange unit 103 and the auxiliary heat exchange unit 105.
- the precooling refrigerant (liquid) in the second and third stage precooling heat exchangers 34b and 34c on the precooling heat exchanging unit 103 side is the third and fourth stage, respectively.
- the pre-cooling heat exchangers 34c and 34d and the auxiliary heat exchangers 35c and 35d at the third and fourth stages on the auxiliary heat exchanging unit 105 side are divided and supplied.
- the precooling generated in the third and fourth stage auxiliary heat exchangers 35c and 35d on the auxiliary heat exchange section 105 side is provided.
- Flow paths 501h and 501i are provided for diverting a part of the refrigerant gas (also referred to as “third and fourth stage gas”) and sucking them by these ejectors 41b and 41c.
- the gas supplied to each ejector 41 includes the amount of precooling refrigerant gas generated in each of the heat exchangers 34b to 34d and 35b to 35d, and the precooling in the heat exchangers 34a to 34c and 35a to 35c.
- An appropriate supply source can be selected from the balance of the amount of refrigerant used.
- the first-stage ejector 41a and the pre-cooling heat exchanger 34a on the pre-cooling heat exchange section 103 side are called a first first-stage ejector and a first first-stage heat exchanger, and the second-stage ejector 41b.
- the precooling heat exchanger 34b When the precooling heat exchanger 34b is called a first next-stage ejector and a first next-stage heat exchanger, the first-stage ejector 41d and the auxiliary heat exchanger 35a on the auxiliary heat exchanging unit 105 side are
- the second pre-stage heat exchanger 35b corresponds to the second first-stage ejector and the second first-stage heat exchanger, and the second pre-stage heat exchanger 35b is provided with an expansion valve 37b (expansion part) on the inlet side. It corresponds to a heat exchanger.
- the flow path 501d is “the refrigerant gas heat-exchanged in the second next-stage heat exchanger (second-stage auxiliary heat exchanger 35b) and the liquid accompanying the refrigerant gas (second-stage gas).
- the refrigeration apparatus shown in FIG. 6 includes an ejector 41g provided in parallel with the expansion valve 37a on the inlet side of the first stage auxiliary heat exchanger 35a on the auxiliary heat exchanging unit 105 side.
- Precooling refrigerant gas generated in the other system heat exchanger 38 that cools the fluid to be cooled that flows through a system different from the precooling heat exchange unit 103 that cools the NG and the auxiliary heat exchange unit 105 that cools the main refrigerant. It is different from the conventional refrigeration apparatus shown in FIG. 7 in that the pressure is increased by sucking (including the accompanying liquid).
- the second stage auxiliary heat exchanger 35b of the same system and the other system heat exchanger 38 are used for precooling inside thereof.
- a refrigerant (liquid) is supplied in a diverted state.
- the liquid level of the precooling refrigerant in the other system heat exchanger 38 is adjusted by an expansion valve 39 provided on the inlet side.
- the increase / decrease in the supply amount of the precooling refrigerant by the flow rate adjustment valve 411 provided in the ejector 41g is indicated by a pressure gauge that measures the pressure on the outlet side of the other system heat exchanger 38 (pressure of the precooling refrigerant gas).
- the value is adjusted to be the target value. That is, when the pressure is lower than the target value, the opening amount of the flow rate adjustment valve 411 is reduced to reduce the suction amount of the precooling refrigerant gas (including the accompanying liquid), while the pressure is the target value. If higher, control is performed to increase the suction amount of the gas by increasing the opening degree of the flow rate adjustment valve 411.
- a refrigerant that can be used for a chiller that lowers the supply temperature of the gas turbine For example, cooling water
- deethanizer top liquid for removing heavy components such as ethane in NG, LPG obtained by rectifying the heavy components, and the like.
- the expansion valve 37a provided on the inlet side thereof is connected to the ejector 41g. It corresponds to the first stage expansion valve provided in parallel.
- the other system heat exchanger 38 corresponds to a heat exchanger in the next stage of another system, and the expansion valve 39 provided on the inlet side thereof corresponds to an expansion section.
- FIG. 6 shows the auxiliary heat exchanger 35a on the auxiliary heat exchange unit 105 side of the two systems on the precooling heat exchange unit 103 side and the auxiliary heat exchange unit 105 side as the first stage heat exchanger.
- the present invention is not limited to the example shown in FIG.
- a first-stage ejector 41 is provided in parallel with the expansion valve 36a (first-stage expansion valve), a pre-cooling heat exchanger 34b, which is a next-stage heat exchanger, and a second-stage heat exchanger, which is a separate system, in the subsequent stage.
- the system heat exchanger 38 may be provided in parallel. In this way, the system (precooling heat exchanging unit 103 and auxiliary heat exchanging unit 105) provided with the first stage expansion valve and the second stage heat exchanger of another system is appropriately selected.
- the system and the number of installed ejectors 41a to 41g may be appropriately changed.
- the conventional expansion valves 36a to 36c, 37a to 37c are replaced with ejectors 41a to 41f (FIGS. 2, 4, and 5), or the ejector 41g is newly connected to the other system heat exchanger 38 (FIG. 6).
- the ejectors 41a to 41g may be provided at the position where the merit is greatest.
- the upstream side expansion valve has a larger pressure difference before and after adiabatic expansion, and the effect of replacing it with the ejectors 41a to 41f increases. There is a tendency to become larger toward the step side.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Provided is a refrigeration device that efficiently employs an ejector in a refrigeration cycle. A first-stage ejector 41a provided in a refrigeration device sucks a refrigerant gas by the ejection of a high-pressure refrigerant liquid obtained by condensing a high-pressure refrigerant gas emitted from a compressor 20, and increases the pressure of a mixed fluid thereof. A first-stage heat exchanger 34a cools a fluid to be cooled by exchanging heat with the mixed fluid the pressure of which has been increased by the first-stage ejector 41a. A first-stage gas-liquid separator 33a separates a liquid accompanying the refrigerant gas generated by the first-stage heat exchanger 34a, and sends the liquid to the compressor 20. A next-stage heat exchanger 34b cools the fluid to be cooled by exchanging heat with a refrigerant obtained by expanding, with an expander 36b, the refrigerant liquid that did not vaporize in the first-stage heat exchanger 34a. The refrigeration device also includes a flow path 501 that supplies a refrigerant gas generated by the next-stage heat exchanger 34b to a suction opening 413 of the first-stage ejector 41a.
Description
本発明は、天然ガスなどの被冷却流体を冷却する冷凍装置に関する。
The present invention relates to a refrigeration apparatus for cooling a fluid to be cooled such as natural gas.
液化天然ガスの製造工程は、天然ガスに対して酸性ガス除去及び水分除去などの前処理を行う工程、その後、予冷用冷媒により例えば-40℃付近まで予備冷却する工程、次いで天然ガスから重質ガスを除去した後、主冷媒により例えば-150℃から-160℃に冷却して液化する工程を備えている。予冷用冷媒としてはプロパンを主成分とする冷媒が用いられ、主冷媒としてはメタン、エタン、プロパン及び窒素を混合した混合冷媒が用いられる。
The production process of liquefied natural gas is a process of performing pretreatment such as acid gas removal and moisture removal on natural gas, followed by precooling to, for example, around −40 ° C. with a precooling refrigerant, and then heavy gas from natural gas. After removing the gas, it is provided with a step of cooling to −160 ° C. to −160 ° C. with the main refrigerant and liquefying. A refrigerant mainly composed of propane is used as the precooling refrigerant, and a mixed refrigerant obtained by mixing methane, ethane, propane and nitrogen is used as the main refrigerant.
これらの冷媒は、蒸気圧縮式の冷凍サイクルにおいて循環利用される。冷凍サイクルにおいては、冷媒は気体の状態で圧縮機により圧縮され、次いで凝縮器により冷却されて液化され、液化した圧力の高い冷媒は、膨張弁などにより降圧されて低温化される。低温化された冷媒は天然ガスとの熱交換により気化して再び気体となる。予冷用冷媒は、圧縮機により圧縮された主冷媒を冷却することにも使用され、主冷媒は予冷用冷媒により冷却された後、天然ガスとの間で熱交換を行う。
These refrigerants are circulated and used in a vapor compression refrigeration cycle. In the refrigeration cycle, the refrigerant is compressed by a compressor in a gaseous state, and then cooled and liquefied by a condenser, and the liquefied refrigerant having a high pressure is reduced in pressure by an expansion valve or the like. The low-temperature refrigerant is vaporized by heat exchange with natural gas and becomes a gas again. The precooling refrigerant is also used to cool the main refrigerant compressed by the compressor, and the main refrigerant is cooled by the precooling refrigerant and then exchanges heat with natural gas.
一般的な冷凍サイクルに着目したとき、例えば特許文献1には、冷凍サイクル内に設けられている膨張弁をエジェクタに置き換えることにより、冷凍サイクルの効率を向上させる技術が提案されている。しかしながら、特許文献1に記載の冷凍サイクルは、エアコンなどの空気調和機やショーケース用の冷凍機などの比較的小型の機器に適用されるものである。従って、天然ガスの液化システムのように、大型プラントの冷凍サイクルにエジェクタを設ける際の効率的な活用法は記載されていない。
When focusing on a general refrigeration cycle, for example, Patent Document 1 proposes a technique for improving the efficiency of a refrigeration cycle by replacing an expansion valve provided in the refrigeration cycle with an ejector. However, the refrigeration cycle described in Patent Document 1 is applied to relatively small devices such as air conditioners such as air conditioners and refrigerators for showcases. Therefore, there is no description of an efficient utilization method when an ejector is provided in a refrigeration cycle of a large plant as in a natural gas liquefaction system.
ここで特許文献2には、天然ガスの冷凍サイクルに設けられた冷凍圧縮機を起動する際の動力を低減するために、エジェクタを用いて冷凍圧縮機の出口圧を外気圧以下まで下げる技術が記載されている。また特許文献3には、熱交換器で冷却されて液化された天然ガスをエジェクタによって精留塔内に減圧膨張させ、液化天然ガス中に含まれる窒素を分離する技術が記載されている。
しかしながら、引用文献2に記載のエジェクタは冷凍圧縮機を起動した後には使用を終えるものであり、また引用文献3に記載のエジェクタは被冷却流体側の機器であって、いずれも冷凍サイクルの一部を構成するエジェクタではない。 Here, Patent Document 2 discloses a technique for reducing the outlet pressure of a refrigeration compressor to an external pressure or lower using an ejector in order to reduce power when starting a refrigeration compressor provided in a natural gas refrigeration cycle. Are listed. Patent Document 3 describes a technique in which natural gas cooled and liquefied by a heat exchanger is decompressed and expanded into a rectifying column by an ejector to separate nitrogen contained in the liquefied natural gas.
However, the ejector described in the cited document 2 ends its use after starting the refrigeration compressor, and the ejector described in the cited document 3 is a device on the cooled fluid side, both of which are parts of the refrigeration cycle. It is not an ejector constituting the part.
しかしながら、引用文献2に記載のエジェクタは冷凍圧縮機を起動した後には使用を終えるものであり、また引用文献3に記載のエジェクタは被冷却流体側の機器であって、いずれも冷凍サイクルの一部を構成するエジェクタではない。 Here, Patent Document 2 discloses a technique for reducing the outlet pressure of a refrigeration compressor to an external pressure or lower using an ejector in order to reduce power when starting a refrigeration compressor provided in a natural gas refrigeration cycle. Are listed. Patent Document 3 describes a technique in which natural gas cooled and liquefied by a heat exchanger is decompressed and expanded into a rectifying column by an ejector to separate nitrogen contained in the liquefied natural gas.
However, the ejector described in the cited document 2 ends its use after starting the refrigeration compressor, and the ejector described in the cited document 3 is a device on the cooled fluid side, both of which are parts of the refrigeration cycle. It is not an ejector constituting the part.
本発明は、このような背景の下になされたものであり、冷凍サイクル中のエジェクタを効率的に活用した冷凍装置を提供することにある。
The present invention has been made under such a background, and is to provide a refrigeration apparatus that efficiently uses an ejector in a refrigeration cycle.
第1の発明に係る冷凍装置は、図2、4、5、6に記載の実施の形態に相当する。以下、課題を解決するための手段の記載においては、これらの図で用いた符号を構成要素に併記してある。
本発明の冷凍装置は、冷媒ガスを圧縮する圧縮機(20)と、
前記圧縮機から吐出された高圧冷媒ガスを凝縮させて得られた高圧冷媒液体が噴射されるノズルと当該高圧冷媒液体の噴射により冷媒ガスを吸引する吸引口とを備え、前記ノズルから噴射された高圧冷媒液体と前記吸引口から吸引された冷媒ガスとの混合流体を昇圧する初段のエジェクタ(図2の41a、図4の41a及び41d、図5の41d、図6の41g)と、
前記初段のエジェクタにて昇圧された混合流体が供給され、当該混合流体と被冷却流体との間で熱交換されて当該被冷却流体を冷却する初段の熱交換器(図2の34a、図4の34a及び35a、図5、図6の35a)と、
前記初段の熱交換器にて熱交換されて発生した冷媒ガスとそれに同伴される液を気液分離し、分離された冷媒ガスが前記圧縮機に送られる初段の気液分離器(図2、4、5、6の33a)と、
前記初段の熱交換器にて気化しなかった冷媒液を膨張部(図2の36b、図4の41b及び41e、図5の37b、図6の39)により膨張させて得られた冷媒が供給され、当該冷媒と被冷却流体との間で熱交換を行って当該被冷却流体を冷却する次段の熱交換器(図2の34b、図4の34b及び35b、図5の35b、図6の38)と、
前記次段の熱交換器にて熱交換されて発生した冷媒ガスとそれに同伴される液を前記初段のエジェクタの吸引口に供給する流路(図2の501、図4の501a、501d、図5の501d、図6の501j)と、を備えたことを特徴とする。
また、第2の発明は図4に記載の実施形態に相当し、前記膨張部は、高圧冷媒液体が噴射されるノズルと当該高圧冷媒液体の噴射により冷媒ガスを吸引する吸引口とを備え、当該ノズルから噴射された高圧冷媒液体と当該吸引口から吸引された冷媒ガスとの混合流体を昇圧する次段のエジェクタ(図4の41b、41e)であることを特徴とする。 The refrigeration apparatus according to the first invention corresponds to the embodiment described in FIGS. Hereinafter, in the description of the means for solving the problems, the reference numerals used in these figures are written together as the constituent elements.
The refrigeration apparatus of the present invention includes a compressor (20) that compresses refrigerant gas,
A high-pressure refrigerant liquid obtained by condensing the high-pressure refrigerant gas discharged from the compressor is injected, and a suction port for sucking the refrigerant gas by the injection of the high-pressure refrigerant liquid is injected from the nozzle. First-stage ejectors (41a in FIG. 2, 41a and 41d in FIG. 4, 41d in FIG. 5, 41g in FIG. 6) for increasing the pressure of the mixed fluid of the high-pressure refrigerant liquid and the refrigerant gas sucked from the suction port,
The first-stage heat exchanger (34a in FIG. 2, FIG. 4) is supplied with the mixed fluid whose pressure has been increased by the first-stage ejector and heat-exchanged between the mixed fluid and the fluid to be cooled to cool the fluid to be cooled. 34a and 35a, 35a of FIGS. 5 and 6, and
The refrigerant gas generated by heat exchange in the first stage heat exchanger and the liquid accompanying it are gas-liquid separated, and the separated refrigerant gas is sent to the compressor (FIG. 2, 4, 5 and 6 33a),
The refrigerant obtained by expanding the refrigerant liquid that has not been vaporized in the first-stage heat exchanger by the expansion section (36b in FIG. 2, 41b and 41e in FIG. 4, 37b in FIG. 5, and 39 in FIG. 6) is supplied. Then, heat exchange is performed between the refrigerant and the fluid to be cooled to cool the fluid to be cooled (34b in FIG. 2, 34b and 35b in FIG. 4, 35b in FIG. 5, FIG. 6). 38) and
A flow path (501 in FIG. 2, 501a, 501d in FIG. 4, 501a, 501d, FIG. 4) supplies the refrigerant gas generated by heat exchange in the next-stage heat exchanger and the liquid accompanying the refrigerant gas to the suction port of the first-stage ejector. 5 501d and FIG. 6 501j).
Moreover, 2nd invention is corresponded to embodiment shown in FIG. 4, The said expansion | swelling part is equipped with the nozzle in which a high pressure refrigerant | coolant liquid is injected, and the suction port which attracts | sucks refrigerant gas by injection of the said high pressure refrigerant | coolant liquid, It is a next-stage ejector (41b, 41e in FIG. 4) that pressurizes the mixed fluid of the high-pressure refrigerant liquid ejected from the nozzle and the refrigerant gas sucked from the suction port.
本発明の冷凍装置は、冷媒ガスを圧縮する圧縮機(20)と、
前記圧縮機から吐出された高圧冷媒ガスを凝縮させて得られた高圧冷媒液体が噴射されるノズルと当該高圧冷媒液体の噴射により冷媒ガスを吸引する吸引口とを備え、前記ノズルから噴射された高圧冷媒液体と前記吸引口から吸引された冷媒ガスとの混合流体を昇圧する初段のエジェクタ(図2の41a、図4の41a及び41d、図5の41d、図6の41g)と、
前記初段のエジェクタにて昇圧された混合流体が供給され、当該混合流体と被冷却流体との間で熱交換されて当該被冷却流体を冷却する初段の熱交換器(図2の34a、図4の34a及び35a、図5、図6の35a)と、
前記初段の熱交換器にて熱交換されて発生した冷媒ガスとそれに同伴される液を気液分離し、分離された冷媒ガスが前記圧縮機に送られる初段の気液分離器(図2、4、5、6の33a)と、
前記初段の熱交換器にて気化しなかった冷媒液を膨張部(図2の36b、図4の41b及び41e、図5の37b、図6の39)により膨張させて得られた冷媒が供給され、当該冷媒と被冷却流体との間で熱交換を行って当該被冷却流体を冷却する次段の熱交換器(図2の34b、図4の34b及び35b、図5の35b、図6の38)と、
前記次段の熱交換器にて熱交換されて発生した冷媒ガスとそれに同伴される液を前記初段のエジェクタの吸引口に供給する流路(図2の501、図4の501a、501d、図5の501d、図6の501j)と、を備えたことを特徴とする。
また、第2の発明は図4に記載の実施形態に相当し、前記膨張部は、高圧冷媒液体が噴射されるノズルと当該高圧冷媒液体の噴射により冷媒ガスを吸引する吸引口とを備え、当該ノズルから噴射された高圧冷媒液体と当該吸引口から吸引された冷媒ガスとの混合流体を昇圧する次段のエジェクタ(図4の41b、41e)であることを特徴とする。 The refrigeration apparatus according to the first invention corresponds to the embodiment described in FIGS. Hereinafter, in the description of the means for solving the problems, the reference numerals used in these figures are written together as the constituent elements.
The refrigeration apparatus of the present invention includes a compressor (20) that compresses refrigerant gas,
A high-pressure refrigerant liquid obtained by condensing the high-pressure refrigerant gas discharged from the compressor is injected, and a suction port for sucking the refrigerant gas by the injection of the high-pressure refrigerant liquid is injected from the nozzle. First-stage ejectors (41a in FIG. 2, 41a and 41d in FIG. 4, 41d in FIG. 5, 41g in FIG. 6) for increasing the pressure of the mixed fluid of the high-pressure refrigerant liquid and the refrigerant gas sucked from the suction port,
The first-stage heat exchanger (34a in FIG. 2, FIG. 4) is supplied with the mixed fluid whose pressure has been increased by the first-stage ejector and heat-exchanged between the mixed fluid and the fluid to be cooled to cool the fluid to be cooled. 34a and 35a, 35a of FIGS. 5 and 6, and
The refrigerant gas generated by heat exchange in the first stage heat exchanger and the liquid accompanying it are gas-liquid separated, and the separated refrigerant gas is sent to the compressor (FIG. 2, 4, 5 and 6 33a),
The refrigerant obtained by expanding the refrigerant liquid that has not been vaporized in the first-stage heat exchanger by the expansion section (36b in FIG. 2, 41b and 41e in FIG. 4, 37b in FIG. 5, and 39 in FIG. 6) is supplied. Then, heat exchange is performed between the refrigerant and the fluid to be cooled to cool the fluid to be cooled (34b in FIG. 2, 34b and 35b in FIG. 4, 35b in FIG. 5, FIG. 6). 38) and
A flow path (501 in FIG. 2, 501a, 501d in FIG. 4, 501a, 501d, FIG. 4) supplies the refrigerant gas generated by heat exchange in the next-stage heat exchanger and the liquid accompanying the refrigerant gas to the suction port of the first-stage ejector. 5 501d and FIG. 6 501j).
Moreover, 2nd invention is corresponded to embodiment shown in FIG. 4, The said expansion | swelling part is equipped with the nozzle in which a high pressure refrigerant | coolant liquid is injected, and the suction port which attracts | sucks refrigerant gas by injection of the said high pressure refrigerant | coolant liquid, It is a next-stage ejector (41b, 41e in FIG. 4) that pressurizes the mixed fluid of the high-pressure refrigerant liquid ejected from the nozzle and the refrigerant gas sucked from the suction port.
第3の発明は、図2、4、5に記載の実施形態に相当し、前記次段の熱交換器にて熱交換されて発生した冷媒ガスとそれに同伴される液を気液分離し、分離された冷媒ガスが前記圧縮機に送られる次段の気液分離器(図2、図4、図5の33b)と、
前記次段の熱交換器にて熱交換されて発生した冷媒ガスとそれに同伴される液を前記次段の気液分離器に供給するための流路(図2の502、図4の502a、502d、図5の502d)と、を備え、
前記次段の熱交換器にて熱交換されて発生した冷媒ガスとそれに同伴される液は前記初段のエジェクタの吸引口と前記次段の気液分離器とに分流して供給されるように構成されていることを特徴とする。
第4の発明は、図4に記載の実施形態に相当し、第1の発明の冷凍装置の構成要件である膨張部は、次段のエジェクタ(41b、41e)であること、
第3の発明の冷凍装置の構成要件である前記初段のエジェクタ、初段の熱交換器、次段のエジェクタ及び次段の熱交換器からなる組として、第1の被冷却流体を冷却するための第1の組(41a、34a、41b、34b、)と、第2の被冷却流体を冷却するための第2の組(41d、35a、41e、35b)とが設けられること、
前記第1の組の初段のエジェクタ(41a)及び第2の組の初段のエジェクタ(41d)の各ノズルには、前記圧縮機から吐出された高圧冷媒ガスを凝縮させて得られた高圧冷媒液体が分流して供給されること、
前記初段の気液分離器(33a)は、第1の組及び第2の組に対して共通であり、前記次段の気液分離器(33b)は、第1の組及び第2の組に対して共通であること、を備えたことを特徴とする。 The third invention corresponds to the embodiment described in FIGS. 2, 4, and 5, and gas-liquid separation is performed on the refrigerant gas generated by heat exchange in the subsequent heat exchanger and the liquid accompanying the refrigerant gas, A next-stage gas-liquid separator (33b in FIGS. 2, 4, and 5) in which the separated refrigerant gas is sent to the compressor;
A flow path (502 in FIG. 2, 502a in FIG. 4) for supplying the refrigerant gas generated by heat exchange in the next-stage heat exchanger and the liquid accompanying the refrigerant gas to the next-stage gas-liquid separator. 502d, 502d) of FIG.
The refrigerant gas generated by heat exchange in the next-stage heat exchanger and the liquid accompanying the refrigerant gas are supplied separately to the suction port of the first-stage ejector and the gas-liquid separator in the next stage. It is configured.
4th invention is corresponded to embodiment shown in FIG. 4, and the expansion | swelling part which is a structural requirement of the freezing apparatus of 1st invention is an ejector (41b, 41e) of the next stage,
The first stage ejector, the first stage heat exchanger, the second stage ejector, and the second stage heat exchanger, which are constituent requirements of the refrigeration apparatus of the third invention, are used to cool the first cooled fluid. A first set (41a, 34a, 41b, 34b) and a second set (41d, 35a, 41e, 35b) for cooling the second cooled fluid;
The high-pressure refrigerant liquid obtained by condensing the high-pressure refrigerant gas discharged from the compressor is provided at each nozzle of the first-stage ejector (41a) of the first group and the first-stage ejector (41d) of the second group. Is supplied in a diversion,
The first-stage gas-liquid separator (33a) is common to the first group and the second group, and the next-stage gas-liquid separator (33b) is the first group and the second group. It is characterized by being common to.
前記次段の熱交換器にて熱交換されて発生した冷媒ガスとそれに同伴される液を前記次段の気液分離器に供給するための流路(図2の502、図4の502a、502d、図5の502d)と、を備え、
前記次段の熱交換器にて熱交換されて発生した冷媒ガスとそれに同伴される液は前記初段のエジェクタの吸引口と前記次段の気液分離器とに分流して供給されるように構成されていることを特徴とする。
第4の発明は、図4に記載の実施形態に相当し、第1の発明の冷凍装置の構成要件である膨張部は、次段のエジェクタ(41b、41e)であること、
第3の発明の冷凍装置の構成要件である前記初段のエジェクタ、初段の熱交換器、次段のエジェクタ及び次段の熱交換器からなる組として、第1の被冷却流体を冷却するための第1の組(41a、34a、41b、34b、)と、第2の被冷却流体を冷却するための第2の組(41d、35a、41e、35b)とが設けられること、
前記第1の組の初段のエジェクタ(41a)及び第2の組の初段のエジェクタ(41d)の各ノズルには、前記圧縮機から吐出された高圧冷媒ガスを凝縮させて得られた高圧冷媒液体が分流して供給されること、
前記初段の気液分離器(33a)は、第1の組及び第2の組に対して共通であり、前記次段の気液分離器(33b)は、第1の組及び第2の組に対して共通であること、を備えたことを特徴とする。 The third invention corresponds to the embodiment described in FIGS. 2, 4, and 5, and gas-liquid separation is performed on the refrigerant gas generated by heat exchange in the subsequent heat exchanger and the liquid accompanying the refrigerant gas, A next-stage gas-liquid separator (33b in FIGS. 2, 4, and 5) in which the separated refrigerant gas is sent to the compressor;
A flow path (502 in FIG. 2, 502a in FIG. 4) for supplying the refrigerant gas generated by heat exchange in the next-stage heat exchanger and the liquid accompanying the refrigerant gas to the next-stage gas-liquid separator. 502d, 502d) of FIG.
The refrigerant gas generated by heat exchange in the next-stage heat exchanger and the liquid accompanying the refrigerant gas are supplied separately to the suction port of the first-stage ejector and the gas-liquid separator in the next stage. It is configured.
4th invention is corresponded to embodiment shown in FIG. 4, and the expansion | swelling part which is a structural requirement of the freezing apparatus of 1st invention is an ejector (41b, 41e) of the next stage,
The first stage ejector, the first stage heat exchanger, the second stage ejector, and the second stage heat exchanger, which are constituent requirements of the refrigeration apparatus of the third invention, are used to cool the first cooled fluid. A first set (41a, 34a, 41b, 34b) and a second set (41d, 35a, 41e, 35b) for cooling the second cooled fluid;
The high-pressure refrigerant liquid obtained by condensing the high-pressure refrigerant gas discharged from the compressor is provided at each nozzle of the first-stage ejector (41a) of the first group and the first-stage ejector (41d) of the second group. Is supplied in a diversion,
The first-stage gas-liquid separator (33a) is common to the first group and the second group, and the next-stage gas-liquid separator (33b) is the first group and the second group. It is characterized by being common to.
第5の発明は、図5に記載の実施形態に相当し、前記圧縮機(20)から吐出された高圧冷媒ガスを凝縮させて得られた高圧冷媒液体が分流して供給され、高圧冷媒液体が噴射されるノズルと当該高圧冷媒液体の噴射により冷媒ガスを吸引する吸引口とを備え、前記ノズルから噴射された高圧冷媒液体と前記吸引口から吸引された冷媒ガスとの混合流体を昇圧する前記初段のエジェクタ(41a、41d)を並列に二つ設け、
一方側の初段のエジェクタを第1の初段のエジェクタ(41a)、他方側の初段のエジェクタを第2の初段のエジェクタ(41d)と呼ぶとすると、
この第1の初段のエジェクタにて昇圧された混合流体が供給され、当該混合流体と被冷却流体との間で熱交換を行って当該被冷却流体を冷却すると共に、熱交換されて発生した冷媒ガスとそれに同伴される液が初段の気液分離器(33a)に供給される初段の熱交換器である第1の初段の熱交換器(34a)、及び前記第2の初段のエジェクタにて昇圧された混合流体が供給される初段の熱交換器である第2の初段の熱交換器(35a)を各々設けたこと、
第1の初段の熱交換器の後段に、第1の次段の膨張部(図5ではエジェクタ41b)、第1の次段の熱交換器(34b)及び次段の気液分離器(33b)を設け、第2の初段の熱交換器の後段に、第2の次段の膨張部(37b)、第2の次段の熱交換器(35b)を設けたこと、
前記第1の初段の熱交換器にて気化しなかった冷媒液が高圧冷媒として第1の次段の膨張部を介して第1の次段の熱交換器に供給され、前記第2の初段の熱交換器にて気化しなかった冷媒液が高圧冷媒として第2の次段の膨張部を介して第2の次段の熱交換器に供給されるように構成したこと、
この第2の次段の熱交換器にて熱交換された冷媒ガスとそれに同伴される液を前記第1の初段のエジェクタの吸引口、及び前記次段の気液分離器に供給する流路(501g、502d)を設けたこと、
前記第1の初段の熱交換器及び第1の次段の熱交換器は、第1の被冷却流体を冷却するためのものであり、前記第2の初段の熱交換器及び第2の次段の熱交換器は、第2の被冷却流体を冷却するためのものであること、を備えたことを特徴とする。
第6の発明は、図5に記載の実施形態に相当し、第2の次段の熱交換器(35b)にて熱交換された冷媒ガスとそれに同伴される液を前記第1の初段のエジェクタの吸引口、及び前記次段の気液分離器に供給する流路(501g、502d)に加えて、前記第2の初段のエジェクタ(41d)の吸引口に供給する流路(501d)を設けたことを特徴とする。 5th invention is corresponded to embodiment shown in FIG. 5, the high pressure refrigerant | coolant liquid obtained by condensing the high pressure refrigerant | coolant gas discharged from the said compressor (20) is shunted and supplied, and high pressure refrigerant | coolant liquid is supplied. And a suction port that sucks the refrigerant gas by jetting the high-pressure refrigerant liquid, and pressurizes the fluid mixture of the high-pressure refrigerant liquid jetted from the nozzle and the refrigerant gas sucked from the suction port Two first stage ejectors (41a, 41d) are provided in parallel,
When the first-stage ejector on one side is called the first first-stage ejector (41a) and the first-stage ejector on the other side is called the second first-stage ejector (41d),
The mixed fluid pressurized by the first first-stage ejector is supplied, heat exchange is performed between the mixed fluid and the fluid to be cooled to cool the fluid to be cooled, and the refrigerant generated by heat exchange. In the first first-stage heat exchanger (34a), which is the first-stage heat exchanger in which the gas and the liquid accompanying it are supplied to the first-stage gas-liquid separator (33a), and the second first-stage ejector Providing a second first-stage heat exchanger (35a), which is a first-stage heat exchanger to which the pressurized mixed fluid is supplied,
After the first first-stage heat exchanger, the first next-stage expansion section (theejector 41b in FIG. 5), the first next-stage heat exchanger (34b), and the next-stage gas-liquid separator (33b) ), And the second subsequent stage expansion section (37b) and the second next stage heat exchanger (35b) are provided after the second first stage heat exchanger,
The refrigerant liquid that has not been vaporized in the first first-stage heat exchanger is supplied as a high-pressure refrigerant to the first next-stage heat exchanger via the first next-stage expansion section, and the second first-stage heat exchanger is supplied. The refrigerant liquid that has not been vaporized in the heat exchanger is supplied to the second next-stage heat exchanger as a high-pressure refrigerant through the second next-stage expansion section,
A flow path for supplying the refrigerant gas heat-exchanged in the second next-stage heat exchanger and the liquid accompanying the refrigerant gas to the suction port of the first first-stage ejector and the next-stage gas-liquid separator. (501g, 502d)
The first first-stage heat exchanger and the first next-stage heat exchanger are for cooling the first cooled fluid, and the second first-stage heat exchanger and the second next-stage heat exchanger The stage heat exchanger is provided for cooling the second cooled fluid.
The sixth invention corresponds to the embodiment shown in FIG. 5, and the refrigerant gas exchanged with the heat exchanger (35b) in the second next stage and the liquid accompanying the refrigerant gas are supplied to the first first stage. In addition to the suction port of the ejector and the flow channel (501g, 502d) for supplying to the next-stage gas-liquid separator, the flow channel (501d) for supplying to the suction port of the second first-stage ejector (41d) It is provided.
一方側の初段のエジェクタを第1の初段のエジェクタ(41a)、他方側の初段のエジェクタを第2の初段のエジェクタ(41d)と呼ぶとすると、
この第1の初段のエジェクタにて昇圧された混合流体が供給され、当該混合流体と被冷却流体との間で熱交換を行って当該被冷却流体を冷却すると共に、熱交換されて発生した冷媒ガスとそれに同伴される液が初段の気液分離器(33a)に供給される初段の熱交換器である第1の初段の熱交換器(34a)、及び前記第2の初段のエジェクタにて昇圧された混合流体が供給される初段の熱交換器である第2の初段の熱交換器(35a)を各々設けたこと、
第1の初段の熱交換器の後段に、第1の次段の膨張部(図5ではエジェクタ41b)、第1の次段の熱交換器(34b)及び次段の気液分離器(33b)を設け、第2の初段の熱交換器の後段に、第2の次段の膨張部(37b)、第2の次段の熱交換器(35b)を設けたこと、
前記第1の初段の熱交換器にて気化しなかった冷媒液が高圧冷媒として第1の次段の膨張部を介して第1の次段の熱交換器に供給され、前記第2の初段の熱交換器にて気化しなかった冷媒液が高圧冷媒として第2の次段の膨張部を介して第2の次段の熱交換器に供給されるように構成したこと、
この第2の次段の熱交換器にて熱交換された冷媒ガスとそれに同伴される液を前記第1の初段のエジェクタの吸引口、及び前記次段の気液分離器に供給する流路(501g、502d)を設けたこと、
前記第1の初段の熱交換器及び第1の次段の熱交換器は、第1の被冷却流体を冷却するためのものであり、前記第2の初段の熱交換器及び第2の次段の熱交換器は、第2の被冷却流体を冷却するためのものであること、を備えたことを特徴とする。
第6の発明は、図5に記載の実施形態に相当し、第2の次段の熱交換器(35b)にて熱交換された冷媒ガスとそれに同伴される液を前記第1の初段のエジェクタの吸引口、及び前記次段の気液分離器に供給する流路(501g、502d)に加えて、前記第2の初段のエジェクタ(41d)の吸引口に供給する流路(501d)を設けたことを特徴とする。 5th invention is corresponded to embodiment shown in FIG. 5, the high pressure refrigerant | coolant liquid obtained by condensing the high pressure refrigerant | coolant gas discharged from the said compressor (20) is shunted and supplied, and high pressure refrigerant | coolant liquid is supplied. And a suction port that sucks the refrigerant gas by jetting the high-pressure refrigerant liquid, and pressurizes the fluid mixture of the high-pressure refrigerant liquid jetted from the nozzle and the refrigerant gas sucked from the suction port Two first stage ejectors (41a, 41d) are provided in parallel,
When the first-stage ejector on one side is called the first first-stage ejector (41a) and the first-stage ejector on the other side is called the second first-stage ejector (41d),
The mixed fluid pressurized by the first first-stage ejector is supplied, heat exchange is performed between the mixed fluid and the fluid to be cooled to cool the fluid to be cooled, and the refrigerant generated by heat exchange. In the first first-stage heat exchanger (34a), which is the first-stage heat exchanger in which the gas and the liquid accompanying it are supplied to the first-stage gas-liquid separator (33a), and the second first-stage ejector Providing a second first-stage heat exchanger (35a), which is a first-stage heat exchanger to which the pressurized mixed fluid is supplied,
After the first first-stage heat exchanger, the first next-stage expansion section (the
The refrigerant liquid that has not been vaporized in the first first-stage heat exchanger is supplied as a high-pressure refrigerant to the first next-stage heat exchanger via the first next-stage expansion section, and the second first-stage heat exchanger is supplied. The refrigerant liquid that has not been vaporized in the heat exchanger is supplied to the second next-stage heat exchanger as a high-pressure refrigerant through the second next-stage expansion section,
A flow path for supplying the refrigerant gas heat-exchanged in the second next-stage heat exchanger and the liquid accompanying the refrigerant gas to the suction port of the first first-stage ejector and the next-stage gas-liquid separator. (501g, 502d)
The first first-stage heat exchanger and the first next-stage heat exchanger are for cooling the first cooled fluid, and the second first-stage heat exchanger and the second next-stage heat exchanger The stage heat exchanger is provided for cooling the second cooled fluid.
The sixth invention corresponds to the embodiment shown in FIG. 5, and the refrigerant gas exchanged with the heat exchanger (35b) in the second next stage and the liquid accompanying the refrigerant gas are supplied to the first first stage. In addition to the suction port of the ejector and the flow channel (501g, 502d) for supplying to the next-stage gas-liquid separator, the flow channel (501d) for supplying to the suction port of the second first-stage ejector (41d) It is provided.
第7の発明は、図4、5に記載の実施形態に相当し、天然ガスを予冷用冷媒により予備冷却し、次いで主冷媒により主冷却し、主冷却を終えた主冷媒を圧縮後前記予冷用冷媒により冷却する天然ガスの液化システムに用いられる冷凍装置であって、
前記高圧冷媒は予冷用冷媒であり、
第1の被冷却流体及び第2の被冷却流体は、夫々天然ガス及び主冷媒であることを特徴とする。 The seventh invention corresponds to the embodiment described in FIGS. 4 and 5, and natural gas is precooled with a precooling refrigerant, then main cooled with the main refrigerant, and after the main cooling after the main cooling is compressed, the precooling is performed. A refrigeration system used in a natural gas liquefaction system cooled by a refrigerant for use,
The high-pressure refrigerant is a precooling refrigerant,
The first cooled fluid and the second cooled fluid are natural gas and main refrigerant, respectively.
前記高圧冷媒は予冷用冷媒であり、
第1の被冷却流体及び第2の被冷却流体は、夫々天然ガス及び主冷媒であることを特徴とする。 The seventh invention corresponds to the embodiment described in FIGS. 4 and 5, and natural gas is precooled with a precooling refrigerant, then main cooled with the main refrigerant, and after the main cooling after the main cooling is compressed, the precooling is performed. A refrigeration system used in a natural gas liquefaction system cooled by a refrigerant for use,
The high-pressure refrigerant is a precooling refrigerant,
The first cooled fluid and the second cooled fluid are natural gas and main refrigerant, respectively.
第8の発明は、図6に記載の実施形態に相当し、前記初段のエジェクタ(41g)と並列して設けられた初段の膨張弁(37a)に対し、前記圧縮機(20)から吐出された高圧冷媒ガスを凝縮させて得られた高圧冷媒液体が分流して供給され、当該高圧冷媒液体を膨張させて得られた冷媒が前記初段の熱交換器(35a)に供給され、
前記初段の熱交換器の後段から、前記次段の熱交換器(35b)へ供給される冷媒が分流して供給される別系統の次段の熱交換器(38)と、
前記別系統の次段の熱交換器(38)にて熱交換されて発生した冷媒ガスとそれに同伴される液を、前記初段のエジェクタの吸引口に供給する流路(501j)と、を備え、
前記別系統の次段の熱交換器(38)は、前記初段の熱交換器(35a)にて気化しなかった冷媒液を別系統の次段の熱交換器(38)の入口側に設けられた膨張部(39)により膨張させて得られた冷媒が供給され、当該冷媒と被冷却流体との間で熱交換を行って当該被冷却流体を冷却し、かつ、被冷却流体は、前記初段の熱交換器と次段の熱交換器により冷却する被冷却流体とは異なることを特徴とする。
なお図6は、上下2つの系統の熱交換器系統の内、下側の系統の熱交換器(35a)を初段の熱交換器として、当該初段の熱交換器(35a)の後段に次段の熱交換器(35b)と、別系統の次段の熱交換器(38)とを並列に設けた実施形態である。
但し、第8の発明は、上側の系統の熱交換器(34a)を初段の熱交換器として、当該初段の熱交換器(34a)の入口側に初段のエジェクタを設けるとともに、その後段に次段の熱交換器(34b)と、別系統の次段の熱交換器(38)とを並列に設けてもよい。 The eighth invention corresponds to the embodiment shown in FIG. 6 and is discharged from the compressor (20) to the first stage expansion valve (37a) provided in parallel with the first stage ejector (41g). The high-pressure refrigerant liquid obtained by condensing the high-pressure refrigerant gas is divided and supplied, and the refrigerant obtained by expanding the high-pressure refrigerant liquid is supplied to the first-stage heat exchanger (35a),
A second-stage heat exchanger (38) in a separate system to which a refrigerant to be supplied to the next-stage heat exchanger (35b) is branched and supplied from the latter stage of the first-stage heat exchanger;
A flow path (501j) for supplying the refrigerant gas generated by heat exchange in the next-stage heat exchanger (38) of the different system and the liquid accompanying the refrigerant gas to the suction port of the first-stage ejector. ,
The heat exchanger (38) in the next stage of the separate system is provided with the refrigerant liquid that has not been vaporized in the heat exchanger (35a) in the first stage on the inlet side of the heat exchanger (38) in the next stage of the separate system. The refrigerant obtained by being expanded by the expanded portion (39) is supplied, heat is exchanged between the refrigerant and the fluid to be cooled to cool the fluid to be cooled, and the fluid to be cooled is The first stage heat exchanger is different from the cooled fluid cooled by the next stage heat exchanger.
6 shows that the lower heat exchanger (35a) of the two upper and lower heat exchanger systems is used as the first stage heat exchanger, and the subsequent stage is placed after the first stage heat exchanger (35a). This is an embodiment in which a heat exchanger (35b) and a heat exchanger (38) of the next stage of another system are provided in parallel.
However, in the eighth invention, the upper stage heat exchanger (34a) is used as the first stage heat exchanger, the first stage ejector is provided on the inlet side of the first stage heat exchanger (34a), A stage heat exchanger (34b) and a next stage heat exchanger (38) of another system may be provided in parallel.
前記初段の熱交換器の後段から、前記次段の熱交換器(35b)へ供給される冷媒が分流して供給される別系統の次段の熱交換器(38)と、
前記別系統の次段の熱交換器(38)にて熱交換されて発生した冷媒ガスとそれに同伴される液を、前記初段のエジェクタの吸引口に供給する流路(501j)と、を備え、
前記別系統の次段の熱交換器(38)は、前記初段の熱交換器(35a)にて気化しなかった冷媒液を別系統の次段の熱交換器(38)の入口側に設けられた膨張部(39)により膨張させて得られた冷媒が供給され、当該冷媒と被冷却流体との間で熱交換を行って当該被冷却流体を冷却し、かつ、被冷却流体は、前記初段の熱交換器と次段の熱交換器により冷却する被冷却流体とは異なることを特徴とする。
なお図6は、上下2つの系統の熱交換器系統の内、下側の系統の熱交換器(35a)を初段の熱交換器として、当該初段の熱交換器(35a)の後段に次段の熱交換器(35b)と、別系統の次段の熱交換器(38)とを並列に設けた実施形態である。
但し、第8の発明は、上側の系統の熱交換器(34a)を初段の熱交換器として、当該初段の熱交換器(34a)の入口側に初段のエジェクタを設けるとともに、その後段に次段の熱交換器(34b)と、別系統の次段の熱交換器(38)とを並列に設けてもよい。 The eighth invention corresponds to the embodiment shown in FIG. 6 and is discharged from the compressor (20) to the first stage expansion valve (37a) provided in parallel with the first stage ejector (41g). The high-pressure refrigerant liquid obtained by condensing the high-pressure refrigerant gas is divided and supplied, and the refrigerant obtained by expanding the high-pressure refrigerant liquid is supplied to the first-stage heat exchanger (35a),
A second-stage heat exchanger (38) in a separate system to which a refrigerant to be supplied to the next-stage heat exchanger (35b) is branched and supplied from the latter stage of the first-stage heat exchanger;
A flow path (501j) for supplying the refrigerant gas generated by heat exchange in the next-stage heat exchanger (38) of the different system and the liquid accompanying the refrigerant gas to the suction port of the first-stage ejector. ,
The heat exchanger (38) in the next stage of the separate system is provided with the refrigerant liquid that has not been vaporized in the heat exchanger (35a) in the first stage on the inlet side of the heat exchanger (38) in the next stage of the separate system. The refrigerant obtained by being expanded by the expanded portion (39) is supplied, heat is exchanged between the refrigerant and the fluid to be cooled to cool the fluid to be cooled, and the fluid to be cooled is The first stage heat exchanger is different from the cooled fluid cooled by the next stage heat exchanger.
6 shows that the lower heat exchanger (35a) of the two upper and lower heat exchanger systems is used as the first stage heat exchanger, and the subsequent stage is placed after the first stage heat exchanger (35a). This is an embodiment in which a heat exchanger (35b) and a heat exchanger (38) of the next stage of another system are provided in parallel.
However, in the eighth invention, the upper stage heat exchanger (34a) is used as the first stage heat exchanger, the first stage ejector is provided on the inlet side of the first stage heat exchanger (34a), A stage heat exchanger (34b) and a next stage heat exchanger (38) of another system may be provided in parallel.
本発明は、冷媒液を用いて被冷却流体を冷却し、膨張部を介して互いに直列に接続された初段の熱交換器と次段の熱交換器とを含み、各熱交換器で発生した冷媒ガスを圧縮機で圧縮して高圧冷媒液体を得る冷凍サイクルを備える。そして、この高圧冷媒液体の断熱膨張により温度を低下させる際に、エジェクタを用いて次段の熱交換器にて発生した冷媒ガスの一部を吸引して昇圧を行う。このため、比較的圧力が低い、次段の熱交換器にて発生した冷媒ガスの圧縮機への供給量を低減し、圧縮機の負荷を軽減して効率的な冷凍サイクルを実現することができる。
The present invention includes a first-stage heat exchanger and a second-stage heat exchanger that cool a fluid to be cooled using a refrigerant liquid and are connected in series to each other via an expansion unit, and are generated in each heat exchanger. A refrigeration cycle is provided in which a refrigerant gas is compressed by a compressor to obtain a high-pressure refrigerant liquid. When the temperature is lowered by adiabatic expansion of the high-pressure refrigerant liquid, pressure is increased by sucking a part of the refrigerant gas generated in the heat exchanger at the next stage using an ejector. For this reason, it is possible to reduce the supply amount of refrigerant gas generated in the next-stage heat exchanger with relatively low pressure to the compressor, reduce the load on the compressor, and realize an efficient refrigeration cycle. it can.
本発明に係る冷凍装置を備えた天然ガス(LNG:Liquefied Natural Gas)の液化システムについて説明する。
初めに、本液化システムの概略構成について、図1を参照しながら説明する。 The liquefaction system of the natural gas (LNG: Liquefied Natural Gas) provided with the freezing apparatus which concerns on this invention is demonstrated.
First, a schematic configuration of the liquefaction system will be described with reference to FIG.
初めに、本液化システムの概略構成について、図1を参照しながら説明する。 The liquefaction system of the natural gas (LNG: Liquefied Natural Gas) provided with the freezing apparatus which concerns on this invention is demonstrated.
First, a schematic configuration of the liquefaction system will be described with reference to FIG.
天然ガス(以下、「NG」と記す)を処理する順序に沿って説明すると、LNG製造設備は、NG中の酸性ガスを除去する酸性ガス除去部101と、NG中に含まれる水分を除去する水分除去部102と、酸性ガス及び水分を除去する前処理が行われたNGを予備冷却して、約-20℃~-70℃の範囲の例えば-35℃~-39℃の中間温度に冷却する予冷熱交換部103と、中間温度に冷却された気液混合ガスを不図示の重質分除去部に送って、炭素数2以上の重質分(エタン及びそれよりも重い成分)を除去した後、メタンを主成分とし、若干のエタン、プロパン、ブタンを含むNGを-150℃~-160℃に冷却して液化し、液化ガスであるLNGを得る液化部104とを備える。
ここで図1中に示した太い白抜きの矢印が原料のNGまたは製品LNGの流れを示している。 If it demonstrates along the order which processes natural gas (henceforth "NG"), LNG manufacturing equipment will remove the acid gas removal part 101 which removes the acid gas in NG, and the water | moisture content contained in NG. Thewater removal unit 102 and the NG that has been subjected to the pretreatment for removing the acid gas and water are precooled and cooled to an intermediate temperature in the range of about −20 ° C. to −70 ° C., for example, −35 ° C. to −39 ° C. The precooling heat exchange unit 103 and the gas-liquid mixed gas cooled to an intermediate temperature are sent to a heavy component removal unit (not shown) to remove heavy components (ethane and heavier components) having 2 or more carbon atoms. Thereafter, LNG containing methane as a main component and containing a small amount of ethane, propane, and butane is cooled to −150 ° C. to −160 ° C. to be liquefied to provide liquefaction unit 104 for obtaining LNG as liquefied gas.
Here, the thick white arrows shown in FIG. 1 indicate the flow of the raw material NG or the product LNG.
ここで図1中に示した太い白抜きの矢印が原料のNGまたは製品LNGの流れを示している。 If it demonstrates along the order which processes natural gas (henceforth "NG"), LNG manufacturing equipment will remove the acid gas removal part 101 which removes the acid gas in NG, and the water | moisture content contained in NG. The
Here, the thick white arrows shown in FIG. 1 indicate the flow of the raw material NG or the product LNG.
予冷熱交換部103は、予冷用冷媒である例えばプロパンを用いて前処理後のNGを予冷する。予冷用冷媒は、後段の液化部104にて用いられる主冷媒の冷却にも用いられている。以下、予冷用冷媒による主冷媒の冷却を「補助冷却」と呼ぶ。図1には、プロパンの流れを「C3」と併記した細い矢印で記す一方、主冷媒の流れを「MR(Mixed Refrigerant)」と併記した斜線のハッチングを付した矢印で記してある。
The precooling heat exchange unit 103 precools the pretreated NG using, for example, propane which is a precooling refrigerant. The precooling refrigerant is also used for cooling the main refrigerant used in the liquefaction unit 104 at the subsequent stage. Hereinafter, the cooling of the main refrigerant by the precooling refrigerant is referred to as “auxiliary cooling”. In FIG. 1, the flow of propane is indicated by a thin arrow indicated with “C3”, while the flow of the main refrigerant is indicated by an hatched arrow indicated with “MR (MixederRefrigerant)”.
さらに図1に示すように、既述の予冷熱交換部103、及び主冷媒の冷却を行う補助熱交換部105には、NGの予冷、及び主冷媒(MR)の予備冷却に用いられた予冷用冷媒(C3)を圧縮する第1の圧縮部2aが設けられている。一方、液化部104は、NGの液化に用いられた主冷媒を圧縮する第2の圧縮部2bを備える。各圧縮部2a、2bには、予冷用冷媒や主冷媒の処理量や吸込側と吐出側との圧力差などに応じ、複数の圧縮機が並列、直列に組み合わせて設けられている。
Further, as shown in FIG. 1, the precooling heat exchanging unit 103 and the auxiliary heat exchanging unit 105 for cooling the main refrigerant are preliminarily used for precooling NG and precooling the main refrigerant (MR). The 1st compression part 2a which compresses the refrigerant (C3) for operation is provided. On the other hand, the liquefaction unit 104 includes a second compression unit 2b that compresses the main refrigerant used for liquefaction of NG. Each compressor 2a, 2b is provided with a plurality of compressors in parallel and in series according to the amount of precooling refrigerant or main refrigerant processed, the pressure difference between the suction side and the discharge side, and the like.
本例の冷凍装置は、上述の液化システムを構成する予冷熱交換部103及び補助熱交換部105にて用いられる予冷用冷媒の冷凍サイクルとして構成されている。
当該冷凍装置の具体的な構成を説明する前に、図7を参照しながら、従来の冷凍装置の例を説明しておく。 The refrigeration apparatus of this example is configured as a refrigeration cycle of a precooling refrigerant used in the precoolingheat exchanging unit 103 and the auxiliary heat exchanging unit 105 constituting the liquefaction system.
Before describing the specific configuration of the refrigeration apparatus, an example of a conventional refrigeration apparatus will be described with reference to FIG.
当該冷凍装置の具体的な構成を説明する前に、図7を参照しながら、従来の冷凍装置の例を説明しておく。 The refrigeration apparatus of this example is configured as a refrigeration cycle of a precooling refrigerant used in the precooling
Before describing the specific configuration of the refrigeration apparatus, an example of a conventional refrigeration apparatus will be described with reference to FIG.
従来の冷凍装置においては、第1の圧縮部2aを構成する圧縮機20にて昇圧された予冷用冷媒のガス(高圧冷媒ガス)が、AFC(Air Fin Cooler)31a、31bによって冷却されて凝縮し、液レシーバー32にて予冷用冷媒の液体(高圧冷媒液体)が滞留される。この予冷用冷媒(液体)は、AFC31cにて過冷却された後、予冷熱交換部103側に設けられている予冷熱交換器34a~34d、及び補助熱交換部105側に設けられている補助熱交換器35a~35dに分かれて供給される。圧縮機20は、ガスタービン駆動であってもよいし、スチーム駆動、モーター駆動であってもよい。また、AFC31a、31b、31cは水冷による熱交換器であってもよい。
In the conventional refrigeration apparatus, the precooling refrigerant gas (high-pressure refrigerant gas) that has been pressurized by the compressor 20 constituting the first compressor 2a is cooled and condensed by AFC (AirFCFin Cooler) 31a, 31b. The liquid receiver 32 retains the precooling refrigerant liquid (high-pressure refrigerant liquid). The precooling refrigerant (liquid) is supercooled by the AFC 31c, and then precooled heat exchangers 34a to 34d provided on the precooling heat exchange unit 103 side, and an auxiliary provided on the auxiliary heat exchange unit 105 side. The heat exchangers 35a to 35d are supplied separately. The compressor 20 may be gas turbine driven, steam driven, or motor driven. AFC 31a, 31b, and 31c may be water-cooled heat exchangers.
予冷熱交換部103の各予冷熱交換器34a~34dは、チューブ側に被冷却流体であるNGを流す一方、シェル側に予冷用冷媒を流してNGの予冷を行う。予冷熱交換器34a~34dのチューブ及びシェルは、予冷熱交換器34aを最上流段(1段目)、予冷熱交換器34dを最下流段(4段目)として直列に接続されている。これらの予冷熱交換器34a~34dにおいて、NGは1段目の予冷熱交換器34aから順に、4段目の予冷熱交換器34dへ向けて流れていく。なお、図示の便宜上、予冷熱交換器34a~34d間を繋ぐNGの配管については記載を省略してある(図2、4~6において同じ)。
The precooling heat exchangers 34a to 34d of the precooling heat exchanging section 103 flow NG as a fluid to be cooled to the tube side, and flow a precooling refrigerant to the shell side to perform precooling of NG. The tubes and shells of the precooling heat exchangers 34a to 34d are connected in series with the precooling heat exchanger 34a as the most upstream stage (first stage) and the precooling heat exchanger 34d as the most downstream stage (fourth stage). In these precooling heat exchangers 34a to 34d, NG flows in order from the first stage precooling heat exchanger 34a toward the fourth stage precooling heat exchanger 34d. For convenience of illustration, the description of NG piping connecting the precooling heat exchangers 34a to 34d is omitted (the same applies to FIGS. 2, 4 to 6).
AFC31cにて過冷却された予冷用冷媒(液体)は、1段目の予冷熱交換器34aの入口側に設けられた膨張弁36aにて断熱膨張し、さらに温度が低下した状態で予冷熱交換器34aに供給される。予冷熱交換器34aにおいては、予冷用冷媒とNGとの熱交換が行われ、NGが冷却される。予冷熱交換器34aのシェル内においては、膨張弁36aにおける断熱膨張やNGとの熱交換によって発生した予冷用冷媒のガスと、液体との気液分離が行われる。当該ガスは、予冷熱交換器34aから抜き出された後、ノックアウトドラム33aにて同伴する液体が除去された後、圧縮機20の高圧側の吸込口に戻される。一方で、予冷熱交換器34a内の液体は2段目の予冷熱交換器34bへ向けて抜き出される。ノックアウトドラム33aには、例えばデミスタが設けられている。
The precooling refrigerant (liquid) supercooled by the AFC 31c is adiabatically expanded by the expansion valve 36a provided on the inlet side of the first stage precooling heat exchanger 34a, and the precooling heat exchange is performed while the temperature is further lowered. Is supplied to the vessel 34a. In the precooling heat exchanger 34a, heat exchange between the precooling refrigerant and NG is performed, and NG is cooled. In the shell of the precooling heat exchanger 34a, gas-liquid separation between the liquid of the precooling refrigerant generated by adiabatic expansion in the expansion valve 36a and heat exchange with NG and the liquid is performed. The gas is extracted from the pre-cooling heat exchanger 34a, and then the accompanying liquid is removed by the knockout drum 33a, and then returned to the high-pressure side suction port of the compressor 20. On the other hand, the liquid in the precooling heat exchanger 34a is extracted toward the second stage precooling heat exchanger 34b. For example, a demister is provided in the knockout drum 33a.
以上に説明した1段目の予冷熱交換器34aと同様に、2段目以降の予冷熱交換器34b~34dの入口側にも各々膨張弁36b~36dが設けられ、上流段側の予冷熱交換器34a~34cから供給された予冷用冷媒(液体)を断熱膨張させて、その温度を低下させてから下流側の予冷熱交換器34b~34dに供給する。この結果、予冷熱交換器34a~34dに供給される予冷用冷媒は、上流側の段から下流側の段へ向けて、その温度が次第に低くなる。
Similarly to the first stage precooling heat exchanger 34a described above, expansion valves 36b to 36d are provided on the inlet side of the second and subsequent stage precooling heat exchangers 34b to 34d, respectively, so that the precooling heat on the upstream stage side is provided. The precooling refrigerant (liquid) supplied from the exchangers 34a to 34c is adiabatically expanded to lower its temperature and then supplied to the downstream precooling heat exchangers 34b to 34d. As a result, the temperature of the precooling refrigerant supplied to the precooling heat exchangers 34a to 34d gradually decreases from the upstream stage to the downstream stage.
この予冷用冷媒の温度低下に伴って、予冷熱交換器34a~34dにて冷却されるNGの温度も次第に低くなり、4段目の予冷熱交換器34dからは、例えば-35℃~-39℃に冷却された気液混合状態のNGが抜き出され、後段の液化部104へ供給される。
なお、2段目以降の予冷熱交換器34b~34dにて発生したガスについても、各々ノックアウトドラム33b~33dにて同伴する液体が除去された後、各ノックアウトドラム33b~33dの圧力に対応する圧縮機20の吸込口に戻される。 As the temperature of the precooling refrigerant decreases, the temperature of the NG cooled by the precoolingheat exchangers 34a to 34d gradually decreases, and from the fourth stage precooling heat exchanger 34d, for example, from -35 ° C to -39. NG in the gas-liquid mixed state cooled to 0 ° C. is extracted and supplied to the liquefaction unit 104 in the subsequent stage.
The gas generated in the second and subsequentprecooling heat exchangers 34b to 34d also corresponds to the pressure of the knockout drums 33b to 33d after the accompanying liquid is removed from the knockout drums 33b to 33d. It is returned to the suction port of the compressor 20.
なお、2段目以降の予冷熱交換器34b~34dにて発生したガスについても、各々ノックアウトドラム33b~33dにて同伴する液体が除去された後、各ノックアウトドラム33b~33dの圧力に対応する圧縮機20の吸込口に戻される。 As the temperature of the precooling refrigerant decreases, the temperature of the NG cooled by the precooling
The gas generated in the second and subsequent
ここで各予冷熱交換器34a~34dには、シェル内の液体の液面の高さ位置(液面レベル)を検出する液面計341a~341dが設けられている。そして各予冷熱交換器34a~34dの入口側に設けられている膨張弁36a~36dは、その下流側の予冷熱交換器34a~34dに設けられている液面計341a~341dにて検出された液面レベルに基づいて、当該膨張弁36a~36dを通過する予冷用冷媒の量を増減する。
Here, the precooling heat exchangers 34a to 34d are provided with liquid level gauges 341a to 341d for detecting the height position (liquid level) of the liquid in the shell. The expansion valves 36a to 36d provided on the inlet side of the respective precooling heat exchangers 34a to 34d are detected by liquid level gauges 341a to 341d provided on the downstream side of the precooling heat exchangers 34a to 34d. The amount of precooling refrigerant passing through the expansion valves 36a to 36d is increased or decreased based on the liquid level.
即ち、各予冷熱交換器34a~34d内の液面レベルが目標値よりも低い場合には、膨張弁36a~36dの開度を大きくして予冷用冷媒の供給量を増やす一方、当該液面レベルが目標値よりも高い場合には、膨張弁36a~36dの開度を小さくして予冷用冷媒の供給量を減らす制御が行われる。
なお、予冷熱交換器34a~34dの段数は、必要に応じて増減してもよいし、これら予冷熱交換器34a~34dが直列に接続された熱交換器系統を複数系統、並列に設けてもよい。 That is, when the liquid level in each of theprecooling heat exchangers 34a to 34d is lower than the target value, the opening of the expansion valves 36a to 36d is increased to increase the supply amount of the precooling refrigerant, while the liquid level is increased. When the level is higher than the target value, control is performed to reduce the supply amount of the precooling refrigerant by reducing the opening degree of the expansion valves 36a to 36d.
The number of stages of theprecooling heat exchangers 34a to 34d may be increased or decreased as necessary. A plurality of heat exchanger systems in which these precooling heat exchangers 34a to 34d are connected in series are provided in parallel. Also good.
なお、予冷熱交換器34a~34dの段数は、必要に応じて増減してもよいし、これら予冷熱交換器34a~34dが直列に接続された熱交換器系統を複数系統、並列に設けてもよい。 That is, when the liquid level in each of the
The number of stages of the
以上、予冷熱交換部103に設けられている予冷熱交換器34a~34dの構成について説明したが、補助熱交換部105側に設けられている補助熱交換器35a~35dについてもほぼ同様の構成となっている。
即ち、補助熱交換器35a~35dは、チューブ側に被冷却流体である主冷媒(MR)を流す一方、シェル側に予冷用冷媒を流して主冷媒の予備冷却を行い、これら補助熱交換器35a~35dのチューブ及びシェルが、この順番に直列に接続されている。また、補助熱交換器35a~35d間を繋ぐ主冷媒の配管の記載を省略してある点については、予冷熱交換器34a~34dの場合と同じである。 The configuration of theprecooling heat exchangers 34a to 34d provided in the precooling heat exchange unit 103 has been described above, but the configuration of the auxiliary heat exchangers 35a to 35d provided on the auxiliary heat exchange unit 105 side is almost the same. It has become.
That is, theauxiliary heat exchangers 35a to 35d flow the main refrigerant (MR), which is a fluid to be cooled, to the tube side, and flow the precooling refrigerant to the shell side to perform preliminary cooling of the main refrigerant. The tubes and shells 35a to 35d are connected in series in this order. Further, the description of the main refrigerant piping connecting between the auxiliary heat exchangers 35a to 35d is omitted, which is the same as in the case of the precooling heat exchangers 34a to 34d.
即ち、補助熱交換器35a~35dは、チューブ側に被冷却流体である主冷媒(MR)を流す一方、シェル側に予冷用冷媒を流して主冷媒の予備冷却を行い、これら補助熱交換器35a~35dのチューブ及びシェルが、この順番に直列に接続されている。また、補助熱交換器35a~35d間を繋ぐ主冷媒の配管の記載を省略してある点については、予冷熱交換器34a~34dの場合と同じである。 The configuration of the
That is, the
そして、各補助熱交換器35a~35dの入口側には、各々膨張弁37a~37dが設けられ、上流側から供給された予冷用冷媒(液体)を断熱膨張させて、その温度を低下させてから各補助熱交換器35a~35dに供給することにより、主冷媒を冷却する。これら補助熱交換器35a~35dにおいても、予冷用冷媒の温度低下に伴って、主冷媒の温度が次第に低くなり、例えば-35℃~-39℃に冷却された主冷媒が液化部104へ供給される。
Expansion valves 37a to 37d are provided on the inlet sides of the auxiliary heat exchangers 35a to 35d, respectively, so that the precooling refrigerant (liquid) supplied from the upstream side is adiabatically expanded to lower its temperature. Is supplied to each of the auxiliary heat exchangers 35a to 35d to cool the main refrigerant. Also in these auxiliary heat exchangers 35a to 35d, as the temperature of the precooling refrigerant decreases, the temperature of the main refrigerant gradually decreases. For example, the main refrigerant cooled to −35 ° C. to −39 ° C. is supplied to the liquefaction unit 104. Is done.
さらに、各補助熱交換器35a~35dにて発生したガスは、各々圧力に応じて既述のノックアウトドラム33a~33dに導入され、同伴する液体が除去された後、各圧力に対応する圧縮機20の吸込口に戻されること、及び、膨張弁37a~37dによる流量調整が補助熱交換器35a~35dに設けられた液面計351a~351dにて検出された液面レベルに基づいて行われることについても、予冷熱交換部103側の予冷熱交換器34a~34dと同様である。
また、これら補助熱交換器35a~35dの段数についても、必要に応じて増減してもよいし、これら補助熱交換器35a~35dが直列に接続された熱交換器系統を複数系統、並列に設けてもよい。 Further, the gas generated in each of theauxiliary heat exchangers 35a to 35d is introduced into the aforementioned knockout drums 33a to 33d in accordance with the pressure, and the accompanying liquid is removed, and then the compressor corresponding to each pressure is removed. 20 and the flow rate adjustment by the expansion valves 37a to 37d is performed based on the liquid level detected by the liquid level gauges 351a to 351d provided in the auxiliary heat exchangers 35a to 35d. This is the same as the precooling heat exchangers 34a to 34d on the precooling heat exchanging unit 103 side.
Further, the number of stages of theauxiliary heat exchangers 35a to 35d may be increased or decreased as necessary, and a plurality of heat exchanger systems in which the auxiliary heat exchangers 35a to 35d are connected in series are connected in parallel. It may be provided.
また、これら補助熱交換器35a~35dの段数についても、必要に応じて増減してもよいし、これら補助熱交換器35a~35dが直列に接続された熱交換器系統を複数系統、並列に設けてもよい。 Further, the gas generated in each of the
Further, the number of stages of the
以上、図7を用いて説明したように、冷凍装置は、「圧縮機20→AFC31a~31c→予冷熱交換器34a~34d→圧縮機20」の経路で予冷用冷媒が流れる予冷熱交換部103側の冷凍サイクルと、「圧縮機20→AFC31a~31c→補助熱交換器35a~35d→圧縮機20」の経路で予冷用冷媒が流れる補助熱交換部105側の冷凍サイクルとを備える。そして、各冷凍サイクル内における予冷用冷媒の温度は、膨張弁36a~36d、37a~37dにおける断熱膨張によって低下する。
As described above with reference to FIG. 7, the refrigeration apparatus includes the precooling heat exchange unit 103 in which the precooling refrigerant flows through the path of “compressor 20 → AFC 31a to 31c → precooling heat exchanger 34a to 34d → compressor 20”. And a refrigeration cycle on the auxiliary heat exchange section 105 side through which the precooling refrigerant flows through a path of “compressor 20 → AFC 31a to 31c → auxiliary heat exchangers 35a to 35d → compressor 20”. The temperature of the precooling refrigerant in each refrigeration cycle is lowered by adiabatic expansion in the expansion valves 36a to 36d and 37a to 37d.
しかしながら、膨張弁36a~36d、37a~37dにおいては、断熱膨張の過程において予冷用冷媒が持っているエネルギーの一部が失われるので、高い冷凍サイクル効率が得られない。この点、予冷用冷媒の断熱膨張の過程にて、液のなす仕事を予冷用冷媒(ガス)の圧力エネルギーとして回収すれば、圧縮機20の低圧側吸込量を低減させて圧縮機20の負荷を低減し、冷凍サイクルの効率を向上させることができる。
However, in the expansion valves 36a to 36d and 37a to 37d, part of the energy of the precooling refrigerant is lost in the process of adiabatic expansion, so that high refrigeration cycle efficiency cannot be obtained. In this regard, in the process of adiabatic expansion of the precooling refrigerant, if the work done by the liquid is recovered as the pressure energy of the precooling refrigerant (gas), the low-pressure side suction amount of the compressor 20 is reduced and the load on the compressor 20 is reduced. And the efficiency of the refrigeration cycle can be improved.
上述の考えに基づき、本実施の形態の冷凍装置は、予冷用冷媒の断熱膨張の過程において、予冷用冷媒が持っているエネルギーを利用して圧縮機20の低圧側吸込量を低減させるエジェクタ41aを備えている。以下、図2、3を参照しながらエジェクタ41aを備えた冷凍装置の構成例について説明する。
なお、以下に説明する図2、図4~図6において、図7を用いて説明したものと共通の構成要素には、図7に付したものと共通の符号を付してある。 Based on the above idea, the refrigeration apparatus of the present embodiment uses anejector 41a that reduces the low-pressure side suction amount of the compressor 20 using the energy of the precooling refrigerant in the process of adiabatic expansion of the precooling refrigerant. It has. Hereinafter, a configuration example of the refrigeration apparatus including the ejector 41a will be described with reference to FIGS.
In FIGS. 2 and 4 to 6 described below, the same reference numerals as those used in FIG. 7 are attached to the same components as those described using FIG.
なお、以下に説明する図2、図4~図6において、図7を用いて説明したものと共通の構成要素には、図7に付したものと共通の符号を付してある。 Based on the above idea, the refrigeration apparatus of the present embodiment uses an
In FIGS. 2 and 4 to 6 described below, the same reference numerals as those used in FIG. 7 are attached to the same components as those described using FIG.
図2に記載の冷凍装置は、1段目の予冷熱交換器34aの入口側に、膨張弁36aに替えてエジェクタ41aを設けると共に、当該エジェクタ41aにより、2段目の予冷熱交換器34bにて発生した予冷用冷媒のガスの一部を吸引している点が図7に記載の従来の冷凍装置と異なる。
ここで図2において、1段目の予熱交換器34aは、初段の熱交換器に相当し、2段目の予熱交換器34bは、次段の熱交換器に相当する。そして、エジェクタ41aは初段のエジェクタに相当し、1段目と2段目の予熱交換器34a、34bの間に設けられた膨張弁36bは、膨張部に相当している。 The refrigeration apparatus shown in FIG. 2 is provided with anejector 41a in place of the expansion valve 36a on the inlet side of the first-stage precooling heat exchanger 34a, and the ejector 41a provides a second-stage precooling heat exchanger 34b. 7 is different from the conventional refrigeration apparatus shown in FIG. 7 in that a part of the precooling refrigerant gas generated is sucked.
In FIG. 2, the firststage preheat exchanger 34a corresponds to the first stage heat exchanger, and the second stage preheat exchanger 34b corresponds to the next stage heat exchanger. The ejector 41a corresponds to the first-stage ejector, and the expansion valve 36b provided between the first-stage and second- stage preheat exchangers 34a and 34b corresponds to the expansion section.
ここで図2において、1段目の予熱交換器34aは、初段の熱交換器に相当し、2段目の予熱交換器34bは、次段の熱交換器に相当する。そして、エジェクタ41aは初段のエジェクタに相当し、1段目と2段目の予熱交換器34a、34bの間に設けられた膨張弁36bは、膨張部に相当している。 The refrigeration apparatus shown in FIG. 2 is provided with an
In FIG. 2, the first
図3は、各エジェクタ41aの構成例を示している(図3には後述の各エジェクタ41b~41gを含んだ総括的な記載として「41」の符号を付してある)。エジェクタ41は、後端部が封止された管状の本体部416に対し、予冷用冷媒の液体(高圧冷媒液体)の供給を行うノズル412が、前記後端部側から同軸状に挿入されている。また本体部416の側面には、本体部416内への予冷用冷媒のガスの吸引を行う吸引口413が設けられ、当該吸引口413は予冷熱交換器34a~34dからガスを抜き出す配管と接続されている。また、本体部416の先端部側は、ノズル412からの液体の吐出方向へ向けて縮径し、ノズル412の吐出口の下流側は、本体部416よりも径の小さな配管からなる混合部414となっている。混合部414の出口側には管径が次第に拡大するディフューザ部415が設けられ、当該エジェクタ41は、このディフューザ部415を介して気液分離器33a~33dへの予冷用冷媒の導入配管に接続される。
FIG. 3 shows an example of the configuration of each ejector 41a (in FIG. 3, reference numeral “41” is given as a general description including each ejector 41b to 41g described later). In the ejector 41, a nozzle 412 for supplying a precooling refrigerant liquid (high-pressure refrigerant liquid) to a tubular main body 416 whose rear end portion is sealed is coaxially inserted from the rear end portion side. Yes. Further, a suction port 413 for sucking a precooling refrigerant gas into the main body 416 is provided on a side surface of the main body 416, and the suction port 413 is connected to a pipe for extracting gas from the precooling heat exchangers 34a to 34d. Has been. In addition, the distal end side of the main body 416 is reduced in diameter in the liquid discharge direction from the nozzle 412, and the downstream side of the discharge port of the nozzle 412 is a mixing unit 414 made of a pipe having a smaller diameter than the main body 416. It has become. A diffuser portion 415 having a gradually increasing pipe diameter is provided on the outlet side of the mixing portion 414. The ejector 41 is connected to the precooling refrigerant introduction pipe to the gas-liquid separators 33a to 33d via the diffuser portion 415. Is done.
上述の構成を備えたエジェクタ41において、ノズル412内で高速に加速された予冷用冷媒(液体)をノズル412から吐出すると、高速で流れる予冷用冷媒に向けて本体部416内の流体が引き込まれ、吸引口413から予冷用冷媒(ガス)が吸引される。例えば図2において、2段目の予冷熱交換器34bから抜き出された予冷用冷媒の大部分はガスであるが、多くて1.0wt%程度のミスト状の液体が同伴される。エジェクタ41aは、これら予冷用冷媒のガス及びそれに同伴される液体を予冷熱交換器34bから吸引する。以下の説明では、予冷用冷媒のガス及びそれに同伴される液体をまとめて「ガス」という場合がある。
In the ejector 41 having the above-described configuration, when the precooling refrigerant (liquid) accelerated at high speed in the nozzle 412 is discharged from the nozzle 412, the fluid in the main body 416 is drawn toward the precooling refrigerant flowing at high speed. The precooling refrigerant (gas) is sucked from the suction port 413. For example, in FIG. 2, most of the precooling refrigerant extracted from the second stage precooling heat exchanger 34b is gas, but is accompanied by a mist-like liquid of about 1.0 wt% at most. The ejector 41a sucks the precooling refrigerant gas and the liquid accompanying it from the precooling heat exchanger 34b. In the following description, the precooling refrigerant gas and the liquid accompanying it may be collectively referred to as “gas”.
さらにノズル412から吐出された予冷用冷媒は、断熱膨張によりその温度が低下する。
そしてノズル412から吐出された予冷用冷媒(液体)、及び吸引口413から吸引された予冷用冷媒(ガス)は、互いに混合されながら気液混合流体として混合部414を流れ、ディフューザ部415内にて減速して圧力が回復する。
なお、冷凍装置に設けるエジェクタ41の構成は、図3に示した例のみに限定されるものではなく、予冷用冷媒(液体)を用いて予冷用冷媒(ガス)を吸引し、これらの混合流体を昇圧する限りにおいて、各部の構成を適宜、変更してもよい。 Further, the temperature of the precooling refrigerant discharged from thenozzle 412 decreases due to adiabatic expansion.
The precooling refrigerant (liquid) discharged from thenozzle 412 and the precooling refrigerant (gas) sucked from the suction port 413 flow through the mixing unit 414 as a gas-liquid mixed fluid while being mixed with each other, and enter the diffuser unit 415. Decelerate and the pressure recovers.
The configuration of theejector 41 provided in the refrigeration apparatus is not limited to the example shown in FIG. 3, and the precooling refrigerant (gas) is sucked using the precooling refrigerant (liquid), and the mixed fluid thereof. As long as the voltage is increased, the configuration of each part may be changed as appropriate.
そしてノズル412から吐出された予冷用冷媒(液体)、及び吸引口413から吸引された予冷用冷媒(ガス)は、互いに混合されながら気液混合流体として混合部414を流れ、ディフューザ部415内にて減速して圧力が回復する。
なお、冷凍装置に設けるエジェクタ41の構成は、図3に示した例のみに限定されるものではなく、予冷用冷媒(液体)を用いて予冷用冷媒(ガス)を吸引し、これらの混合流体を昇圧する限りにおいて、各部の構成を適宜、変更してもよい。 Further, the temperature of the precooling refrigerant discharged from the
The precooling refrigerant (liquid) discharged from the
The configuration of the
次に図2を参照しながら、上述のエジェクタ41aを備える冷凍装置について詳述する。
AFC31cにて過冷却された予冷用冷媒(液体)は、予冷熱交換部103側においてはエジェクタ41aに設けられたノズル412に供給される。一方、エジェクタ41aの吸引口413には、2段目の予冷熱交換器34bにて発生した予冷用冷媒のガスを気液分離器33bへ導入する流路502から分岐した流路501が接続されている。この結果、前記予冷用冷媒のガス(同伴される液体を含む)は、2段目の気液分離器33bへの流れから分流して、前記吸引口413に供給される。そして、予冷用冷媒の気液混合流体が流出するエジェクタ41aのディフューザ部415の出口側は、1段目の予冷熱交換器34aに接続されている。なお、気液分離器33a、33b、33c、33dは、冷媒ガスに同伴するミスト(液)を分離するものであり、例えばノックアウトドラムが該当する。 Next, a refrigeration apparatus including the above-describedejector 41a will be described in detail with reference to FIG.
The precooling refrigerant (liquid) supercooled by theAFC 31c is supplied to the nozzle 412 provided in the ejector 41a on the precooling heat exchange section 103 side. On the other hand, the suction port 413 of the ejector 41a is connected to a flow path 501 branched from the flow path 502 for introducing the precooling refrigerant gas generated in the second stage precooling heat exchanger 34b to the gas-liquid separator 33b. ing. As a result, the precooling refrigerant gas (including the accompanying liquid) is diverted from the flow to the second-stage gas-liquid separator 33b and supplied to the suction port 413. And the exit side of the diffuser part 415 of the ejector 41a from which the gas-liquid mixed fluid of the precooling refrigerant flows out is connected to the first stage precooling heat exchanger 34a. The gas- liquid separators 33a, 33b, 33c, and 33d separate mist (liquid) accompanying the refrigerant gas, and correspond to, for example, a knockout drum.
AFC31cにて過冷却された予冷用冷媒(液体)は、予冷熱交換部103側においてはエジェクタ41aに設けられたノズル412に供給される。一方、エジェクタ41aの吸引口413には、2段目の予冷熱交換器34bにて発生した予冷用冷媒のガスを気液分離器33bへ導入する流路502から分岐した流路501が接続されている。この結果、前記予冷用冷媒のガス(同伴される液体を含む)は、2段目の気液分離器33bへの流れから分流して、前記吸引口413に供給される。そして、予冷用冷媒の気液混合流体が流出するエジェクタ41aのディフューザ部415の出口側は、1段目の予冷熱交換器34aに接続されている。なお、気液分離器33a、33b、33c、33dは、冷媒ガスに同伴するミスト(液)を分離するものであり、例えばノックアウトドラムが該当する。 Next, a refrigeration apparatus including the above-described
The precooling refrigerant (liquid) supercooled by the
ここで、気液分離器33a、33bは各々、初段及び次段の気液分離器に相当し、既述の流路502は「次段の熱交換器(2段目の予熱交換器34b)にて熱交換されて発生した冷媒ガスとそれに同伴される液(「2段目のガス」ともいう)を前記次段の気液分離器33bに供給するための流路」に相当する。また、流路501は、「(2段目のガスを)初段(1段目)のエジェクタ41aの吸引口413に供給する流路」に相当している。
Here, each of the gas- liquid separators 33a and 33b corresponds to a first-stage gas-liquid separator and a next-stage gas-liquid separator, and the above-described flow path 502 is “the next-stage heat exchanger (second-stage preheat exchanger 34b)”. This corresponds to the “flow path for supplying the refrigerant gas generated by heat exchange in the gas and the liquid accompanying the refrigerant gas (also referred to as“ second-stage gas ”) to the gas-liquid separator 33b in the next stage”. Further, the flow path 501 corresponds to “a flow path for supplying (second-stage gas) to the suction port 413 of the first-stage (first-stage) ejector 41a”.
膨張弁36bを用いて断熱膨張させた予冷用冷媒が流入する2段目の予冷熱交換器34bにて発生する予冷用冷媒のガス(2段目のガス)の圧力は、1段目の予冷熱交換器34aにて発生する予冷用冷媒のガス(「1段目のガス」ともいう)の圧力よりも低い。図7を用いて説明した従来の冷凍装置においては、2段目のガスの全量が、気液分離器33bを介して圧縮機20の吸込口に戻されていた。
The pressure of the precooling refrigerant gas (second stage gas) generated in the second stage precooling heat exchanger 34b into which the precooling refrigerant adiabatically expanded using the expansion valve 36b flows is the first stage preheating temperature. It is lower than the pressure of the precooling refrigerant gas (also referred to as “first stage gas”) generated in the cold heat exchanger 34a. In the conventional refrigeration apparatus described with reference to FIG. 7, the entire amount of the second-stage gas is returned to the suction port of the compressor 20 via the gas-liquid separator 33b.
しかしながら、圧力が低い2段目のガスを圧縮機20で圧縮して予冷用冷媒の液体を得るためには、1段目のガスよりも多くのエネルギーが必要となる。そこで本例の冷凍装置は、エジェクタ41aを用いて、圧縮機20に戻される2段目のガスの一部を昇圧することにより、圧縮機20に戻される2段目のガスの量を低減し、圧縮機20の負荷を低減している。
However, in order to compress the second-stage gas having a low pressure by the compressor 20 to obtain the liquid for the precooling refrigerant, more energy is required than the first-stage gas. Therefore, the refrigeration apparatus of this example uses the ejector 41 a to increase the pressure of the second stage gas returned to the compressor 20, thereby reducing the amount of the second stage gas returned to the compressor 20. The load on the compressor 20 is reduced.
以上に説明した構成を備えた図2に示す本例の冷凍装置と、図7に示す従来の冷凍装置とを比較すると、本例の冷凍装置には、1段目の予冷熱交換器34aの入口側に、膨張弁36aに替えてエジェクタ41aが設けられている。既述のように、従来装置に設けられていた膨張弁36aは、予冷熱交換器34a内の液面レベルに基づいて予冷用冷媒の供給量を増減する機能を有していた。
Comparing the refrigeration apparatus of the present example shown in FIG. 2 having the above-described configuration with the conventional refrigeration apparatus shown in FIG. 7, the refrigeration apparatus of the present example includes a first-stage precooling heat exchanger 34a. An ejector 41a is provided on the inlet side instead of the expansion valve 36a. As described above, the expansion valve 36a provided in the conventional device has a function of increasing or decreasing the supply amount of the precooling refrigerant based on the liquid level in the precooling heat exchanger 34a.
これに対応して本例の冷凍装置のエジェクタ41a(41)には、予冷熱交換器34aの液面計341aにて検出された液面レベルに基づいて予冷用冷媒の供給量を増減する流量調整弁411が設けられている。図3に示すように、例えば流量調整弁411は、ノズル412の基端部側に設けられている。ここで流量調整弁411は、エジェクタ41を構成する機器の一部として、ノズル412と一体に設けられていることが好ましい。但し、例えば流量調整弁411を備えないノズル412に接続される予冷用冷媒(液体)の供給配管の上流側に、流量調整弁411を独立して設けてもよいことは勿論である。
Correspondingly, in the ejector 41a (41) of the refrigeration apparatus of the present example, a flow rate for increasing or decreasing the supply amount of the precooling refrigerant based on the liquid level detected by the liquid level gauge 341a of the precooling heat exchanger 34a. A regulating valve 411 is provided. As shown in FIG. 3, for example, the flow rate adjustment valve 411 is provided on the base end side of the nozzle 412. Here, the flow rate adjustment valve 411 is preferably provided integrally with the nozzle 412 as a part of the equipment constituting the ejector 41. However, for example, the flow rate adjusting valve 411 may be independently provided on the upstream side of the precooling refrigerant (liquid) supply pipe connected to the nozzle 412 that does not include the flow rate adjusting valve 411.
これらエジェクタ41a~41dの流量調整弁411により実行される制御の例を挙げると、予冷熱交換器34a内の液面レベルが目標値よりも低い場合には、流量調整弁411の開度を大きくして予冷用冷媒の供給量を増やす一方、当該液面レベルが目標値よりも高い場合には、流量調整弁411の開度を小さくして予冷用冷媒の供給量を減らす制御が行われる。
As an example of the control executed by the flow rate adjusting valves 411 of these ejectors 41a to 41d, when the liquid level in the precooling heat exchanger 34a is lower than the target value, the opening degree of the flow rate adjusting valve 411 is increased. Then, while increasing the supply amount of the precooling refrigerant, when the liquid level is higher than the target value, control is performed to reduce the supply amount of the precooling refrigerant by reducing the opening degree of the flow rate adjustment valve 411.
以上に説明した構成の他、予冷熱交換部103側の2段目以降の予冷熱交換器34b~34dとその入口側の膨張弁36b~36d、補助熱交換部105側の各補助熱交換器35a~35dとその入口側の膨張弁37a~37d、及び各気液分離器33a~33dの構成は、図7を用いて説明した従来の冷凍装置と同様の構成となっている。
In addition to the configuration described above, the second and subsequent precooling heat exchangers 34b to 34d on the precooling heat exchanging portion 103 side, the expansion valves 36b to 36d on the inlet side, and the auxiliary heat exchangers on the auxiliary heat exchanging portion 105 side. The configurations of 35a to 35d, the expansion valves 37a to 37d on the inlet side, and the gas-liquid separators 33a to 33d are the same as those of the conventional refrigeration apparatus described with reference to FIG.
以下、本例の冷凍装置の作用について説明する。AFC31cにて過冷却された供給された予冷用冷媒(液体)は、予冷熱交換部103側の1段目の予冷熱交換器34aに供給される際、当該予冷熱交換器34aの液面レベルに応じてエジェクタ41aへの供給量が増減される。エジェクタ41aにおいては、予冷用冷媒(液体)の供給量に対応して、2段目のガス(同伴される液体を含む)の吸引量が増減する。
Hereinafter, the operation of the refrigeration apparatus of this example will be described. When the supplied precooling refrigerant (liquid) subcooled in the AFC 31c is supplied to the first precooling heat exchanger 34a on the precooling heat exchange section 103 side, the liquid level of the precooling heat exchanger 34a is supplied. Accordingly, the supply amount to the ejector 41a is increased or decreased. In the ejector 41a, the suction amount of the second-stage gas (including the accompanying liquid) increases or decreases in accordance with the supply amount of the precooling refrigerant (liquid).
エジェクタ41aから吐出され、2段目のガスを昇圧すると共に、断熱膨張により温度が低下した予冷用冷媒の液体とガスとの混合流体は、1段目の予冷熱交換器34aに導入されて、チューブ側を流れるNGを冷却する。そして、予冷熱交換器34aでは予冷用冷媒の気液分離が行われ、予冷用冷媒のガスは、気液分離器33aを介して圧縮機20の高圧側の吸込口に戻される。
The pressure of the second stage gas discharged from the ejector 41a and the mixed fluid of the precooling refrigerant liquid and gas whose temperature has decreased due to adiabatic expansion are introduced into the first stage precooling heat exchanger 34a, NG flowing on the tube side is cooled. The precooling heat exchanger 34a performs gas-liquid separation of the precooling refrigerant, and the gas of the precooling refrigerant is returned to the high-pressure side suction port of the compressor 20 via the gas-liquid separator 33a.
一方で、予冷熱交換器34a内の液体は2段目の予冷熱交換器34bへ向けて抜き出され、当該予冷熱交換器34b内の液面レベルに応じて膨張弁36bを通過する予冷用冷媒(液体)の量が増減される。2段目の予冷熱交換器34b内においてもNGの冷却及び予冷用冷媒のガスと液体との気液分離が行われ、当該ガスは気液分離器33bを介して圧縮機20に戻される。
On the other hand, the liquid in the precooling heat exchanger 34a is extracted toward the second stage precooling heat exchanger 34b, and passes through the expansion valve 36b in accordance with the liquid level in the precooling heat exchanger 34b. The amount of refrigerant (liquid) is increased or decreased. In the second stage pre-cooling heat exchanger 34b, NG cooling and gas-liquid separation of the pre-cooling refrigerant gas and liquid are performed, and the gas is returned to the compressor 20 via the gas-liquid separator 33b.
気液分離器33bに向けて流れる予冷用冷媒のガスの一部を分流してエジェクタ41aの吸引口413から吸引し、その圧力を上昇させてから圧縮機20に戻すことにより、圧縮機20の負荷を低減することができる。
以下、3段目以降の予冷熱交換器34c、34d、や膨張弁36c、36d、及び補助熱交換部105側の補助熱交換器35a~35dや膨張弁37a~37dの作用については、図7を用いて説明した従来の冷凍装置と同様なので、再度の説明を省略する。 A part of the precooling refrigerant gas flowing toward the gas-liquid separator 33b is divided and sucked from the suction port 413 of the ejector 41a. After the pressure is increased and returned to the compressor 20, the compressor 20 The load can be reduced.
Hereinafter, the actions of the pre-cooling heat exchangers 34c and 34d after the third stage, the expansion valves 36c and 36d, and the auxiliary heat exchangers 35a to 35d and the expansion valves 37a to 37d on the auxiliary heat exchanging unit 105 side will be described with reference to FIG. Since it is the same as that of the conventional refrigeration apparatus explained using, the explanation is omitted again.
以下、3段目以降の予冷熱交換器34c、34d、や膨張弁36c、36d、及び補助熱交換部105側の補助熱交換器35a~35dや膨張弁37a~37dの作用については、図7を用いて説明した従来の冷凍装置と同様なので、再度の説明を省略する。 A part of the precooling refrigerant gas flowing toward the gas-
Hereinafter, the actions of the
本実施の形態に係る冷凍装置によれば以下の効果がある。冷凍装置は、予冷用冷媒を用いてNGを冷却し、膨張弁36b(膨張部)を介して互いに直列に接続された1段目の予冷熱交換器34a(初段の熱交換器)と2段目の予冷熱交換器34b(次段の熱交換器)とを含み、各熱交換器34a、34bで発生した冷媒ガスを圧縮機20で圧縮して予冷用冷媒(高圧冷媒液体)を得る冷凍サイクルを備える。この予冷用冷媒の断熱膨張により温度を低下させる際に、エジェクタ41aを用いて2段目の予冷熱交換器34bにて発生した予冷用冷媒のガスの一部を吸引して昇圧を行う。このため、比較的圧力が低い、2段目の予冷熱交換器34bにて発生した予冷用冷媒のガスの圧縮機20への供給量を低減し、圧縮機20の負荷を軽減して効率的な冷凍サイクルを実現することができる。
The refrigeration apparatus according to the present embodiment has the following effects. The refrigeration apparatus cools NG using a precooling refrigerant, and is connected to a first stage precooling heat exchanger 34a (first stage heat exchanger) and two stages connected in series via an expansion valve 36b (expansion part). Refrigeration including a pre-cooling heat exchanger 34b (next-stage heat exchanger), and a refrigerant gas generated in each heat exchanger 34a, 34b is compressed by the compressor 20 to obtain a pre-cooling refrigerant (high-pressure refrigerant liquid) Provide a cycle. When the temperature is lowered by the adiabatic expansion of the precooling refrigerant, pressure is increased by sucking a part of the precooling refrigerant gas generated in the second stage precooling heat exchanger 34b using the ejector 41a. For this reason, the supply amount to the compressor 20 of the precooling refrigerant gas generated in the second stage precooling heat exchanger 34b having a relatively low pressure is reduced, and the load on the compressor 20 is reduced. Refrigeration cycle can be realized.
ここで図2を用いて説明した冷凍装置は、予冷熱交換部103側の1段目の予冷熱交換器34aの入口側のみにエジェクタ41aを設けた例を示しているが、エジェクタ41を設ける位置はこの例に限定されない。
例えば、図4は予冷熱交換部103側の1段目~3段目の予冷熱交換器34a~34c、及び補助熱交換部105側の1段目~3段目の補助熱交換器35a~35cの各々入口側にエジェクタ41a~41fを設けた冷凍装置を示している。なお、4段目の予冷熱交換器34d、補助熱交換器35dのさらに下段側には熱交換器が設けられていないので、これらの熱交換器34d、35dの入口側には、膨張弁36d、37dが設けられている。 2 shows an example in which theejector 41a is provided only on the inlet side of the first stage precooling heat exchanger 34a on the precooling heat exchanging unit 103 side, the ejector 41 is provided. The position is not limited to this example.
For example, FIG. 4 shows the first to third stage precoolingheat exchangers 34a to 34c on the precooling heat exchange unit 103 side, and the first to third stage auxiliary heat exchangers 35a to 35c on the auxiliary heat exchange unit 105 side. A refrigerating apparatus is shown in which ejectors 41a to 41f are provided on the respective inlet sides of 35c. Since no heat exchanger is provided on the further lower side of the fourth stage pre-cooling heat exchanger 34d and auxiliary heat exchanger 35d, an expansion valve 36d is provided on the inlet side of these heat exchangers 34d and 35d. , 37d.
例えば、図4は予冷熱交換部103側の1段目~3段目の予冷熱交換器34a~34c、及び補助熱交換部105側の1段目~3段目の補助熱交換器35a~35cの各々入口側にエジェクタ41a~41fを設けた冷凍装置を示している。なお、4段目の予冷熱交換器34d、補助熱交換器35dのさらに下段側には熱交換器が設けられていないので、これらの熱交換器34d、35dの入口側には、膨張弁36d、37dが設けられている。 2 shows an example in which the
For example, FIG. 4 shows the first to third stage precooling
予冷熱交換器34a~34cの入口に設けられたエジェクタ41a~41cには、各々1段下流の予冷熱交換器34b~34dから気液分離器33b~33dへ向かう流路502a~502cから分岐した流路501a~501cを介して予冷用冷媒のガスが吸引される。補助熱交換器35a~35cの入口に設けられたエジェクタ41d~41fについても同様に、各々1段下流の補助熱交換器35b~35dから気液分離器33b~33dへ向かう流路502d~502fから分岐した流路501d~501fを介して予冷用冷媒のガスが吸引される。ここで、前記1段下流の予冷熱交換器または補助熱交換器にて熱交換されて発生した冷媒ガスとそれに同伴される液は、その全量を前段のエジェクタの吸引口に供給してもよい。
The ejectors 41a to 41c provided at the inlets of the precooling heat exchangers 34a to 34c are branched from flow paths 502a to 502c respectively leading from the precooling heat exchangers 34b to 34d downstream to the gas-liquid separators 33b to 33d. The precooling refrigerant gas is sucked through the flow paths 501a to 501c. Similarly, the ejectors 41d to 41f provided at the inlets of the auxiliary heat exchangers 35a to 35c are respectively connected from the flow paths 502d to 502f directed from the auxiliary heat exchangers 35b to 35d downstream by one stage to the gas-liquid separators 33b to 33d. The precooling refrigerant gas is sucked through the branched flow paths 501d to 501f. Here, the refrigerant gas generated by heat exchange in the pre-cooling heat exchanger or auxiliary heat exchanger downstream of the first stage and the liquid accompanying the refrigerant gas may be supplied to the suction port of the ejector in the previous stage. .
予冷熱交換部103側の1段目の予冷熱交換器34aを初段の熱交換器、2段目の予冷熱交換器34bを次段の熱交換器と見たとき、1段目側のエジェクタ41aは初段のエジェクタに相当し、2段目側のエジェクタ41bは、膨張部であると共に次段のエジェクタに相当する。また、2段目の予冷熱交換器34bは、圧縮機20からの予冷用冷媒(液体)が、1段目の予冷熱交換器34aを介して供給される初段の熱交換器であると捉えたとき、3段目の予冷熱交換器34cは次段の熱交換器に相当することとなる。この場合に3段目側のエジェクタ41cは、3段目の予冷熱交換器34cに供給される冷媒液を膨張させる次段のエジェクタ(膨張部)に相当するといえる。
When the first stage precooling heat exchanger 34a on the side of the precooling heat exchanging section 103 is viewed as the first stage heat exchanger, and the second stage precooling heat exchanger 34b is viewed as the next stage heat exchanger, the first stage side ejector 41a corresponds to the first-stage ejector, and the second-stage ejector 41b corresponds to the inflatable portion and the next-stage ejector. The second-stage precooling heat exchanger 34b is regarded as a first-stage heat exchanger in which the precooling refrigerant (liquid) from the compressor 20 is supplied via the first-stage precooling heat exchanger 34a. In this case, the third-stage precooling heat exchanger 34c corresponds to the next-stage heat exchanger. In this case, it can be said that the ejector 41c on the third stage side corresponds to a next-stage ejector (expansion section) that expands the refrigerant liquid supplied to the third-stage precooling heat exchanger 34c.
補助熱交換部105側についても同様の対応関係が成り立ち、1段目の補助熱交換器35aを初段の熱交換器、2段目の補助熱交換器35bを次段の熱交換器と見たとき、1段目側のエジェクタ41dは初段のエジェクタに相当し、2段目側のエジェクタ41eは、膨張部であると共に次段のエジェクタに相当する。また、2段目の補助熱交換器35bは、圧縮機20からの予冷用冷媒(液体)が、1段目の補助熱交換器35aを介して供給される初段の熱交換器であると捉えたとき、3段目の補助熱交換器35cは次段の熱交換器に相当することとなる。この場合に3段目側のエジェクタ41fは、3段目の補助熱交換器35cに供給される冷媒液を膨張させる次段のエジェクタ(膨張部)に相当するといえる。
The same correspondence is also established on the auxiliary heat exchanger 105 side, and the first stage auxiliary heat exchanger 35a is regarded as the first stage heat exchanger, and the second stage auxiliary heat exchanger 35b is regarded as the next stage heat exchanger. In this case, the first-stage ejector 41d corresponds to the first-stage ejector, and the second-stage ejector 41e corresponds to the next-stage ejector as well as the expansion portion. The second stage auxiliary heat exchanger 35b is regarded as a first stage heat exchanger in which the precooling refrigerant (liquid) from the compressor 20 is supplied via the first stage auxiliary heat exchanger 35a. In this case, the third stage auxiliary heat exchanger 35c corresponds to the next stage heat exchanger. In this case, it can be said that the ejector 41f on the third stage side corresponds to a next-stage ejector (expansion section) that expands the refrigerant liquid supplied to the third stage auxiliary heat exchanger 35c.
さらに図4において、予冷熱交換部103側の「1段目のエジェクタ41a、予冷熱交換器34a、2段目のエジェクタ41b、予冷熱交換器34b」は、NG(第1の被冷却流体)を冷却するための第1の組に相当し、補助熱交換部105側の「1段目のエジェクタ41d、補助熱交換器35a、2段目のエジェクタ41e、補助熱交換器35b」は、主冷媒(第2の被冷却流体)を冷却するための第2の組に相当する。そして、これら第1の組、第2の組に対して、初段の気液分離器33a、及び次段の気液分離器33bが共通に設けられている。
Further, in FIG. 4, “first stage ejector 41 a, precooling heat exchanger 34 a, second stage ejector 41 b, precooling heat exchanger 34 b” on the precooling heat exchanging section 103 side is NG (first cooled fluid). The “first-stage ejector 41d, auxiliary heat exchanger 35a, second-stage ejector 41e, auxiliary heat exchanger 35b” on the auxiliary heat exchanging portion 105 side is the main set. This corresponds to a second set for cooling the refrigerant (second fluid to be cooled). The first-stage gas-liquid separator 33a and the next-stage gas-liquid separator 33b are provided in common for the first group and the second group.
またここで、予冷熱交換部103側と補助熱交換部105側との2系統の冷凍サイクルがある場合において、図4に示したように、一方側の系統に設けたエジェクタ41が同じ系統内で発生した予冷用冷媒のガスを吸引するように構成することは必須ではない。
例えば図5は、予冷熱交換部103側には、1~3段目の予冷熱交換器34a~34cの入口にエジェクタ41a~41cを設け、補助熱交換部105側は、1段目の補助熱交換器35aの入口にのみエジェクタ41dを設けた例を示している。 Further, here, when there are two refrigeration cycles of the precoolingheat exchanging unit 103 side and the auxiliary heat exchanging unit 105 side, as shown in FIG. 4, the ejector 41 provided in the one side system is in the same system. It is not essential that the precooling refrigerant gas generated in step 1 is sucked.
For example, in FIG. 5,ejectors 41a to 41c are provided at the inlets of the first to third stage precooling heat exchangers 34a to 34c on the precooling heat exchange unit 103 side, and the auxiliary heat exchange unit 105 side is provided with the first stage auxiliary cooling unit. The example which provided the ejector 41d only in the inlet_port | entrance of the heat exchanger 35a is shown.
例えば図5は、予冷熱交換部103側には、1~3段目の予冷熱交換器34a~34cの入口にエジェクタ41a~41cを設け、補助熱交換部105側は、1段目の補助熱交換器35aの入口にのみエジェクタ41dを設けた例を示している。 Further, here, when there are two refrigeration cycles of the precooling
For example, in FIG. 5,
そして、補助熱交換部105側の1段目のエジェクタ41dに対しては、図4に示した例と同様に、補助熱交換部105側の2段目のガスが気液分離器33bへ向かう流路502dより分岐した流路501dを介して予冷用冷媒のガスが吸引されている。本例の冷凍装置では、さらにこの流路501dから、予冷熱交換部103側の1段目のエジェクタ41aに予冷用冷媒のガスを供給する流路501gが分岐している。これらをまとめると、補助熱交換部105側の2段目のガスが、予冷熱交換部103及び補助熱交換部105の両系統のエジェクタ41a、41dに吸引される構成となっている。
For the first-stage ejector 41d on the auxiliary heat exchanging portion 105 side, the second-stage gas on the auxiliary heat exchanging portion 105 side goes to the gas-liquid separator 33b as in the example shown in FIG. The precooling refrigerant gas is sucked through the flow path 501d branched from the flow path 502d. In the refrigeration apparatus of this example, a flow path 501g for supplying a precooling refrigerant gas to the first-stage ejector 41a on the precooling heat exchange section 103 side is further branched from the flow path 501d. In summary, the second-stage gas on the auxiliary heat exchange unit 105 side is sucked into the ejectors 41 a and 41 d of both systems of the precooling heat exchange unit 103 and the auxiliary heat exchange unit 105.
また、予冷用冷媒の液体の流れに着目すると、各々予冷熱交換部103側の2、3段目の予冷熱交換器34b、34c内の予冷用冷媒(液体)は、3、4段目の予冷熱交換器34c、34dと、補助熱交換部105側の3、4段目の補助熱交換器35c、35dとに分流して供給する。
When attention is paid to the liquid flow of the precooling refrigerant, the precooling refrigerant (liquid) in the second and third stage precooling heat exchangers 34b and 34c on the precooling heat exchanging unit 103 side is the third and fourth stage, respectively. The pre-cooling heat exchangers 34c and 34d and the auxiliary heat exchangers 35c and 35d at the third and fourth stages on the auxiliary heat exchanging unit 105 side are divided and supplied.
さらに、予冷熱交換部103側の2、3段目のエジェクタ41b、41cに対しては、補助熱交換部105側の3、4段目の補助熱交換器35c、35dにて発生した予冷用冷媒のガス(「3、4段目のガス」ともいう)の一部を分流して、これらのエジェクタ41b、41cで吸引する流路501h、501iが設けられている。
このように、各エジェクタ41に供給されるガスは、各々の熱交換器34b~34d、35b~35dで発生する予冷用冷媒のガス量や、熱交換器34a~34c、35a~35cでの予冷用冷媒の使用量のバランスなどから、適切な供給元を選択することができる。 Further, for the second and third stage ejectors 41b and 41c on the precooling heat exchange section 103 side, the precooling generated in the third and fourth stage auxiliary heat exchangers 35c and 35d on the auxiliary heat exchange section 105 side is provided. Flow paths 501h and 501i are provided for diverting a part of the refrigerant gas (also referred to as “third and fourth stage gas”) and sucking them by these ejectors 41b and 41c.
As described above, the gas supplied to eachejector 41 includes the amount of precooling refrigerant gas generated in each of the heat exchangers 34b to 34d and 35b to 35d, and the precooling in the heat exchangers 34a to 34c and 35a to 35c. An appropriate supply source can be selected from the balance of the amount of refrigerant used.
このように、各エジェクタ41に供給されるガスは、各々の熱交換器34b~34d、35b~35dで発生する予冷用冷媒のガス量や、熱交換器34a~34c、35a~35cでの予冷用冷媒の使用量のバランスなどから、適切な供給元を選択することができる。 Further, for the second and
As described above, the gas supplied to each
図5において、例えば予冷熱交換部103側の1段目のエジェクタ41a及び予冷熱交換器34aは、第1の初段のエジェクタ、第1の初段の熱交換器と呼び、2段目のエジェクタ41b及び予冷熱交換器34bは、第1の次段のエジェクタ、第1の次段の熱交換器と呼ぶとすると、補助熱交換部105側の1段目のエジェクタ41d及び補助熱交換器35aは、第2の初段のエジェクタ、第2の初段の熱交換器に相当し、2段目の予冷熱交換器35bは、入口側に膨張弁37b(膨張部)が設けられた第2の次段の熱交換器に相当する。そして、流路501dは、「第2の次段の熱交換器(2段目の補助熱交換器35b)にて熱交換された冷媒ガスとそれに同伴される液(2段目のガス)を、第2の初段(1段目)のエジェクタ41dの吸引口413に供給する流路」に相当する。
In FIG. 5, for example, the first-stage ejector 41a and the pre-cooling heat exchanger 34a on the pre-cooling heat exchange section 103 side are called a first first-stage ejector and a first first-stage heat exchanger, and the second-stage ejector 41b. When the precooling heat exchanger 34b is called a first next-stage ejector and a first next-stage heat exchanger, the first-stage ejector 41d and the auxiliary heat exchanger 35a on the auxiliary heat exchanging unit 105 side are The second pre-stage heat exchanger 35b corresponds to the second first-stage ejector and the second first-stage heat exchanger, and the second pre-stage heat exchanger 35b is provided with an expansion valve 37b (expansion part) on the inlet side. It corresponds to a heat exchanger. Then, the flow path 501d is “the refrigerant gas heat-exchanged in the second next-stage heat exchanger (second-stage auxiliary heat exchanger 35b) and the liquid accompanying the refrigerant gas (second-stage gas). Corresponds to the “flow path to be supplied to the suction port 413 of the ejector 41d of the second first stage (first stage)”.
次いで図6に示した冷凍装置は、補助熱交換部105側の1段目の補助熱交換器35aの入口側に、膨張弁37aと並列にエジェクタ41gを設けた点と、このエジェクタ41gは、NGの冷却を行う予冷熱交換部103や、主冷媒の冷却を行う補助熱交換部105とは異なる系統を流れる被冷却流体を冷却する他系統熱交換器38にて発生した予冷用冷媒のガス(同伴される液体を含む)を吸引して昇圧する点と、において図7に示した従来の冷凍装置と異なる。
Next, the refrigeration apparatus shown in FIG. 6 includes an ejector 41g provided in parallel with the expansion valve 37a on the inlet side of the first stage auxiliary heat exchanger 35a on the auxiliary heat exchanging unit 105 side. Precooling refrigerant gas generated in the other system heat exchanger 38 that cools the fluid to be cooled that flows through a system different from the precooling heat exchange unit 103 that cools the NG and the auxiliary heat exchange unit 105 that cools the main refrigerant. It is different from the conventional refrigeration apparatus shown in FIG. 7 in that the pressure is increased by sucking (including the accompanying liquid).
補助熱交換部105側の1段目の補助熱交換器35aからは、同系統の2段目の補助熱交換器35bと、前記他系統熱交換器38とに対して、その内部の予冷用冷媒(液体)が分流して供給される。また他系統熱交換器38内の予冷用冷媒の液面レベルは、その入口側に設けられた膨張弁39により調整される。
From the first stage auxiliary heat exchanger 35a on the side of the auxiliary heat exchanger 105, the second stage auxiliary heat exchanger 35b of the same system and the other system heat exchanger 38 are used for precooling inside thereof. A refrigerant (liquid) is supplied in a diverted state. The liquid level of the precooling refrigerant in the other system heat exchanger 38 is adjusted by an expansion valve 39 provided on the inlet side.
さらに、エジェクタ41gに設けられた流量調整弁411による予冷用冷媒の供給量の増減は、他系統熱交換器38の出口側の圧力(予冷用冷媒のガスの圧力)を測定する圧力計の指示値が目標値となるように調整される。即ち、前記圧力が目標値よりも低い場合には、流量調整弁411の開度を小さくして予冷用冷媒のガス(同伴される液体を含む)の吸引量を減らす一方、当該圧力が目標値よりも高い場合には、流量調整弁411の開度を大きくして前記ガスの吸引量を増やす制御が行われる。
Further, the increase / decrease in the supply amount of the precooling refrigerant by the flow rate adjustment valve 411 provided in the ejector 41g is indicated by a pressure gauge that measures the pressure on the outlet side of the other system heat exchanger 38 (pressure of the precooling refrigerant gas). The value is adjusted to be the target value. That is, when the pressure is lower than the target value, the opening amount of the flow rate adjustment valve 411 is reduced to reduce the suction amount of the precooling refrigerant gas (including the accompanying liquid), while the pressure is the target value. If higher, control is performed to increase the suction amount of the gas by increasing the opening degree of the flow rate adjustment valve 411.
他系統熱交換器38にて冷却する被冷却流体の例としては、圧縮機20を駆動するガスタービンが設けられている場合に、当該ガスタービンの給気温度を下げるチラーに用いられ得る冷媒(例えば冷却水)や、NG中のエタンなどの重質分を除去するデエタナイザの塔頂液や、当該重質分を精留して得られたLPGなどを例示することができる。
As an example of the fluid to be cooled that is cooled by the other system heat exchanger 38, when a gas turbine that drives the compressor 20 is provided, a refrigerant that can be used for a chiller that lowers the supply temperature of the gas turbine ( For example, cooling water), deethanizer top liquid for removing heavy components such as ethane in NG, LPG obtained by rectifying the heavy components, and the like.
このように、NGや主冷媒とは異なる被冷却流体を冷却する他系統熱交換器38にまでエジェクタ41gの設置対象を広げることにより、天然ガスの液化システム内にある多数の熱交換器の中から、予冷用冷媒の圧力エネルギーを回収するのに好適なものを選択することが可能となる。
In this way, by extending the installation object of the ejector 41g to the other system heat exchanger 38 that cools the fluid to be cooled different from NG and the main refrigerant, among the many heat exchangers in the natural gas liquefaction system, Therefore, it is possible to select a suitable material for recovering the pressure energy of the precooling refrigerant.
図6に示した例において、補助熱交換部105側の1段目の補助熱交換器35aを初段の熱交換器としたとき、その入口側に設けられている膨張弁37aは、エジェクタ41gと並列に設けられた初段の膨張弁に相当する。また、他系統熱交換器38は別系統の次段の熱交換器に相当し、その入口側に設けられている膨張弁39は膨張部に相当する。
In the example shown in FIG. 6, when the first stage auxiliary heat exchanger 35a on the side of the auxiliary heat exchanging section 105 is the first stage heat exchanger, the expansion valve 37a provided on the inlet side thereof is connected to the ejector 41g. It corresponds to the first stage expansion valve provided in parallel. The other system heat exchanger 38 corresponds to a heat exchanger in the next stage of another system, and the expansion valve 39 provided on the inlet side thereof corresponds to an expansion section.
このように図6には、予冷熱交換部103側、補助熱交換部105側の2つの系統の内、補助熱交換部105側の補助熱交換器35aを初段の熱交換器として、当該補助熱交換器35aの後段に次段の熱交換器である補助熱交換器35bと、別系統の次段の熱交換器である他系統熱交換器38とを並列に設けた実施形態を示した。
但し、本発明は図6に示した例に限定されるものではなく、予冷熱交換部103側の予冷熱交換器34aを初段の熱交換器として、当該予冷熱交換器34aの入口側に、膨張弁36a(初段の膨張弁)と並列に初段のエジェクタ41を設けるとともに、その後段に次段の熱交換器である予冷熱交換器34bと、別系統の次段の熱交換器である他系統熱交換器38とを並列に設けてもよい。
このように、初段の膨張弁や別系統の次段の熱交換器を設ける系統(予冷熱交換部103、補助熱交換部105)は、適宜、選択される。 Thus, FIG. 6 shows theauxiliary heat exchanger 35a on the auxiliary heat exchange unit 105 side of the two systems on the precooling heat exchange unit 103 side and the auxiliary heat exchange unit 105 side as the first stage heat exchanger. An embodiment in which an auxiliary heat exchanger 35b, which is a next-stage heat exchanger, and another system heat exchanger 38, which is a next-stage heat exchanger of another system, is provided in parallel to the subsequent stage of the heat exchanger 35a. .
However, the present invention is not limited to the example shown in FIG. 6, and theprecooling heat exchanger 34 a on the precooling heat exchange unit 103 side is used as a first stage heat exchanger, and the inlet side of the precooling heat exchanger 34 a is A first-stage ejector 41 is provided in parallel with the expansion valve 36a (first-stage expansion valve), a pre-cooling heat exchanger 34b, which is a next-stage heat exchanger, and a second-stage heat exchanger, which is a separate system, in the subsequent stage. The system heat exchanger 38 may be provided in parallel.
In this way, the system (precoolingheat exchanging unit 103 and auxiliary heat exchanging unit 105) provided with the first stage expansion valve and the second stage heat exchanger of another system is appropriately selected.
但し、本発明は図6に示した例に限定されるものではなく、予冷熱交換部103側の予冷熱交換器34aを初段の熱交換器として、当該予冷熱交換器34aの入口側に、膨張弁36a(初段の膨張弁)と並列に初段のエジェクタ41を設けるとともに、その後段に次段の熱交換器である予冷熱交換器34bと、別系統の次段の熱交換器である他系統熱交換器38とを並列に設けてもよい。
このように、初段の膨張弁や別系統の次段の熱交換器を設ける系統(予冷熱交換部103、補助熱交換部105)は、適宜、選択される。 Thus, FIG. 6 shows the
However, the present invention is not limited to the example shown in FIG. 6, and the
In this way, the system (precooling
以上、図2、4~6を用いて説明した冷凍装置の各例において、エジェクタ41a~41gを設ける系統や設置台数は、適宜、変更してよい。例えば従来の膨張弁36a~36c、37a~37cをエジェクタ41a~41fに置き換えたり(図2、4、5)、他系統熱交換器38に新たにエジェクタ41gを接続したりする(図6)効果とコストとを比較し、メリットが最も大きくなる位置にエジェクタ41a~41gを設けてもよい。
一般に、膨張弁36a~36d、37a~37dのうち上流段側の膨張弁ほど、断熱膨張前後の圧力差が大きく、エジェクタ41a~41fに置き換える効果が大きくなる一方、エジェクタ41a~41fのサイズは上流段側ほど大きくなる傾向がある。 As described above, in each example of the refrigeration apparatus described with reference to FIGS. 2, 4 to 6, the system and the number of installedejectors 41a to 41g may be appropriately changed. For example, the conventional expansion valves 36a to 36c, 37a to 37c are replaced with ejectors 41a to 41f (FIGS. 2, 4, and 5), or the ejector 41g is newly connected to the other system heat exchanger 38 (FIG. 6). The ejectors 41a to 41g may be provided at the position where the merit is greatest.
In general, among theexpansion valves 36a to 36d and 37a to 37d, the upstream side expansion valve has a larger pressure difference before and after adiabatic expansion, and the effect of replacing it with the ejectors 41a to 41f increases. There is a tendency to become larger toward the step side.
一般に、膨張弁36a~36d、37a~37dのうち上流段側の膨張弁ほど、断熱膨張前後の圧力差が大きく、エジェクタ41a~41fに置き換える効果が大きくなる一方、エジェクタ41a~41fのサイズは上流段側ほど大きくなる傾向がある。 As described above, in each example of the refrigeration apparatus described with reference to FIGS. 2, 4 to 6, the system and the number of installed
In general, among the
20 圧縮機
33a~33d
気液分離器(ノックアウトドラム)
331a~331d
液面計
34a~34d
予冷熱交換器
341a~341d
液面計
342a~342d
液面調節弁
35a~35d
補助熱交換器
36a~36d
膨張弁
37a~37d
膨張弁
38 他系統熱交換器
382 圧力計
41、41a~41g
エジェクタ
411 流量調整弁
20Compressors 33a-33d
Gas-liquid separator (knockout drum)
331a to 331d
Level gauges 34a to 34d
Pre-cooling heat exchangers 341a-341d
Level gauges 342a to 342d
Liquidlevel control valves 35a-35d
Auxiliary heat exchangers 36a-36d
Expansion valves 37a-37d
Expansion valve 38 Other system heat exchanger 382 Pressure gauge 41, 41a to 41g
Ejector 411 Flow adjustment valve
33a~33d
気液分離器(ノックアウトドラム)
331a~331d
液面計
34a~34d
予冷熱交換器
341a~341d
液面計
342a~342d
液面調節弁
35a~35d
補助熱交換器
36a~36d
膨張弁
37a~37d
膨張弁
38 他系統熱交換器
382 圧力計
41、41a~41g
エジェクタ
411 流量調整弁
20
Gas-liquid separator (knockout drum)
331a to 331d
Level gauges 34a to 34d
Pre-cooling heat exchangers 341a-341d
Level gauges 342a to 342d
Liquid
Claims (8)
- 冷媒ガスを圧縮する圧縮機と、
前記圧縮機から吐出された高圧冷媒ガスを凝縮させて得られた高圧冷媒液体が噴射されるノズルと当該高圧冷媒液体の噴射により冷媒ガスを吸引する吸引口とを備え、前記ノズルから噴射された高圧冷媒液体と前記吸引口から吸引された冷媒ガスとの混合流体を昇圧する初段のエジェクタと、
前記初段のエジェクタにて昇圧された混合流体が供給され、当該混合流体と被冷却流体との間で熱交換されて当該被冷却流体を冷却する初段の熱交換器と、
前記初段の熱交換器にて熱交換されて発生した冷媒ガスとそれに同伴される液を気液分離し、分離された冷媒ガスが前記圧縮機に送られる初段の気液分離器と、
前記初段の熱交換器にて気化しなかった冷媒液を膨張部により膨張させて得られた冷媒が供給され、当該冷媒と被冷却流体との間で熱交換を行って当該被冷却流体を冷却する次段の熱交換器と、
前記次段の熱交換器にて熱交換されて発生した冷媒ガスとそれに同伴される液を前記初段のエジェクタの吸引口に供給する流路と、を備えたことを特徴とする冷凍装置。 A compressor for compressing the refrigerant gas;
A high-pressure refrigerant liquid obtained by condensing the high-pressure refrigerant gas discharged from the compressor is injected, and a suction port for sucking the refrigerant gas by the injection of the high-pressure refrigerant liquid is injected from the nozzle. A first-stage ejector for increasing the pressure of the mixed fluid of the high-pressure refrigerant liquid and the refrigerant gas sucked from the suction port;
A first-stage heat exchanger that is supplied with the mixed fluid pressurized by the first-stage ejector, heat-exchanged between the mixed fluid and the fluid to be cooled, and cools the fluid to be cooled;
Gas-liquid separation of the refrigerant gas generated by heat exchange in the first-stage heat exchanger and the liquid accompanying the refrigerant gas, and the first-stage gas-liquid separator in which the separated refrigerant gas is sent to the compressor;
The refrigerant obtained by expanding the refrigerant liquid that has not been vaporized in the first stage heat exchanger by the expansion unit is supplied, and heat exchange is performed between the refrigerant and the fluid to be cooled to cool the fluid to be cooled. A next stage heat exchanger,
A refrigeration apparatus comprising: a refrigerant gas generated by heat exchange in the next-stage heat exchanger and a flow path for supplying a liquid accompanying the refrigerant gas to a suction port of the first-stage ejector. - 前記膨張部は、高圧冷媒液体が噴射されるノズルと当該高圧冷媒液体の噴射により冷媒ガスを吸引する吸引口とを備え、当該ノズルから噴射された高圧冷媒液体と当該吸引口から吸引された冷媒ガスとの混合流体を昇圧する次段のエジェクタであることを特徴とする請求項1記載の冷凍装置。 The expansion section includes a nozzle from which high-pressure refrigerant liquid is injected and a suction port that sucks refrigerant gas by the injection of the high-pressure refrigerant liquid, and the high-pressure refrigerant liquid injected from the nozzle and the refrigerant sucked from the suction port 2. The refrigeration apparatus according to claim 1, wherein the refrigeration apparatus is a next-stage ejector that pressurizes a mixed fluid with gas.
- 前記次段の熱交換器にて熱交換されて発生した冷媒ガスとそれに同伴される液を気液分離し、分離された冷媒ガスが前記圧縮機に送られる次段の気液分離器と、
前記次段の熱交換器にて熱交換されて発生した冷媒ガスとそれに同伴される液を前記次段の気液分離器に供給するための流路と、を備え、
前記次段の熱交換器にて熱交換されて発生した冷媒ガスとそれに同伴される液は前記初段のエジェクタの吸引口と前記次段の気液分離器とに分流して供給されるように構成されていることを特徴とする請求項1または2記載の冷凍装置。 Gas-liquid separation of the refrigerant gas generated by heat exchange in the next-stage heat exchanger and the liquid accompanying the refrigerant gas, and the separated gas-liquid separator in which the separated refrigerant gas is sent to the compressor;
A refrigerant gas generated by heat exchange in the next-stage heat exchanger and a flow path for supplying liquid accompanying the refrigerant gas to the next-stage gas-liquid separator,
The refrigerant gas generated by heat exchange in the next-stage heat exchanger and the liquid accompanying the refrigerant gas are supplied separately to the suction port of the first-stage ejector and the gas-liquid separator in the next stage. The refrigeration apparatus according to claim 1, wherein the refrigeration apparatus is configured. - 請求項1の冷凍装置の構成要件である膨張部は、次段のエジェクタであること、
請求項3の冷凍装置の構成要件である前記初段のエジェクタ、初段の熱交換器、次段のエジェクタ及び次段の熱交換器からなる組として、第1の被冷却流体を冷却するための第1の組と、第2の被冷却流体を冷却するための第2の組とが設けられること、
前記第1の組の初段のエジェクタ及び第2の組の初段のエジェクタの各ノズルには、前記圧縮機から吐出された高圧冷媒ガスを凝縮させて得られた高圧冷媒液体が分流して供給されること、
前記初段の気液分離器は、第1の組及び第2の組に対して共通であり、前記次段の気液分離器は、第1の組及び第2の組に対して共通であること、を備えたことを特徴とする請求項3記載の冷凍装置。 The expansion part which is a constituent requirement of the refrigeration apparatus according to claim 1 is an ejector of the next stage,
The first stage ejector, the first stage heat exchanger, the second stage ejector, and the second stage heat exchanger, which are constituent elements of the refrigeration apparatus according to claim 3, are used to cool the first cooled fluid. 1 set and a second set for cooling the second cooled fluid are provided,
A high-pressure refrigerant liquid obtained by condensing the high-pressure refrigerant gas discharged from the compressor is separately supplied to each nozzle of the first-stage ejector of the first group and the first-stage ejector of the second group. That
The first-stage gas-liquid separator is common to the first group and the second group, and the next-stage gas-liquid separator is common to the first group and the second group. The refrigeration apparatus according to claim 3, further comprising: - 前記圧縮機から吐出された高圧冷媒ガスを凝縮させて得られた高圧冷媒液体が分流して供給され、高圧冷媒液体が噴射されるノズルと当該高圧冷媒液体の噴射により冷媒ガスを吸引する吸引口とを備え、前記ノズルから噴射された高圧冷媒液体と前記吸引口から吸引された冷媒ガスとの混合流体を昇圧する前記初段のエジェクタを並列に二つ設け、
一方側の初段のエジェクタを第1の初段のエジェクタ、他方側の初段のエジェクタを第2の初段のエジェクタと呼ぶとすると、
この第1の初段のエジェクタにて昇圧された混合流体が供給され、当該混合流体と被冷却流体との間で熱交換を行って当該被冷却流体を冷却すると共に、熱交換されて発生した冷媒ガスとそれに同伴される液が初段の気液分離器に供給される初段の熱交換器である第1の初段の熱交換器、及び前記第2の初段のエジェクタにて昇圧された混合流体が供給される初段の熱交換器である第2の初段の熱交換器を各々設けたこと、
第1の初段の熱交換器の後段に、第1の次段の膨張部、第1の次段の熱交換器及び次段の気液分離器を設け、第2の初段の熱交換器の後段に、第2の次段の膨張部、第2の次段の熱交換器を設けたこと、
前記第1の初段の熱交換器にて気化しなかった冷媒液が高圧冷媒として第1の次段の膨張部を介して第1の次段の熱交換器に供給され、前記第2の初段の熱交換器にて気化しなかった冷媒液が高圧冷媒として第2の次段の膨張部を介して第2の次段の熱交換器に供給されるように構成したこと、 この第2の次段の熱交換器にて熱交換された冷媒ガスとそれに同伴される液を前記第1の初段のエジェクタの吸引口、及び前記次段の気液分離器に供給する流路を設けたこと、
前記第1の初段の熱交換器及び第1の次段の熱交換器は、第1の被冷却流体を冷却するためのものであり、前記第2の初段の熱交換器及び第2の次段の熱交換器は、第2の被冷却流体を冷却するためのものであること、を備えたことを特徴とする請求項1記載の冷凍装置。 A high-pressure refrigerant liquid obtained by condensing the high-pressure refrigerant gas discharged from the compressor is divided and supplied, and a nozzle from which the high-pressure refrigerant liquid is injected and a suction port for sucking the refrigerant gas by the injection of the high-pressure refrigerant liquid And provided in parallel two first-stage ejectors for boosting the mixed fluid of the high-pressure refrigerant liquid ejected from the nozzle and the refrigerant gas sucked from the suction port,
If the first-stage ejector on one side is called the first first-stage ejector and the first-stage ejector on the other side is called the second-first ejector,
The mixed fluid pressurized by the first first-stage ejector is supplied, heat exchange is performed between the mixed fluid and the fluid to be cooled to cool the fluid to be cooled, and the refrigerant generated by heat exchange. The first fluid heat exchanger, which is the first heat exchanger in which the gas and the liquid accompanying the gas are supplied to the first gas-liquid separator, and the mixed fluid pressurized by the second first ejector are Providing a second first-stage heat exchanger, which is a first-stage heat exchanger to be supplied;
A first next stage expansion section, a first next stage heat exchanger, and a next stage gas-liquid separator are provided after the first first stage heat exchanger, and the second first stage heat exchanger The second stage is provided with a second next stage expansion section and a second next stage heat exchanger.
The refrigerant liquid that has not been vaporized in the first first-stage heat exchanger is supplied as a high-pressure refrigerant to the first next-stage heat exchanger via the first next-stage expansion section, and the second first-stage heat exchanger is supplied. The refrigerant liquid that has not been vaporized by the second heat exchanger is supplied as a high-pressure refrigerant to the second next-stage heat exchanger via the second next-stage expansion section. Provided with a flow path for supplying the refrigerant gas heat-exchanged in the next-stage heat exchanger and the accompanying liquid to the suction port of the first-stage first-stage ejector and the next-stage gas-liquid separator ,
The first first-stage heat exchanger and the first next-stage heat exchanger are for cooling the first cooled fluid, and the second first-stage heat exchanger and the second next-stage heat exchanger 2. The refrigeration apparatus according to claim 1, wherein the stage heat exchanger is for cooling the second fluid to be cooled. - 第2の次段の熱交換器にて熱交換された冷媒ガスとそれに同伴される液を前記第1の初段のエジェクタの吸引口、及び前記次段の気液分離器に供給する流路に加えて、前記第2の初段のエジェクタの吸引口に供給する流路を設けたことを特徴とする請求項5記載の冷凍装置。 In the flow path for supplying the refrigerant gas heat-exchanged in the second next-stage heat exchanger and the liquid accompanying the refrigerant gas to the suction port of the first first-stage ejector and the next-stage gas-liquid separator 6. The refrigeration apparatus according to claim 5, further comprising a flow path that supplies a suction port of the second first-stage ejector.
- 天然ガスを予冷用冷媒により予備冷却し、次いで主冷媒により主冷却し、主冷却を終えた主冷媒を圧縮後前記予冷用冷媒により冷却する天然ガスの液化システムに用いられる冷凍装置であって、
前記高圧冷媒は予冷用冷媒であり、
第1の被冷却流体及び第2の被冷却流体は、夫々天然ガス及び主冷媒であることを特徴とする請求項4、5または6記載の冷凍装置。 A refrigeration apparatus used in a natural gas liquefaction system that precools natural gas with a precooling refrigerant, then main cools with a main refrigerant, and cools the main refrigerant after the main cooling is compressed with the precooling refrigerant after compression,
The high-pressure refrigerant is a precooling refrigerant,
The refrigeration apparatus according to claim 4, 5 or 6, wherein the first cooled fluid and the second cooled fluid are natural gas and main refrigerant, respectively. - 前記初段のエジェクタと並列して設けられた初段の膨張弁に対し、前記圧縮機から吐出された高圧冷媒ガスを凝縮させて得られた高圧冷媒液体が分流して供給され、当該高圧冷媒液体を膨張させて得られた冷媒が前記初段の熱交換器に供給され、
前記初段の熱交換器の後段から、前記次段の熱交換器へ供給される冷媒が分流して供給される別系統の次段の熱交換器と、
前記別系統の次段の熱交換器にて熱交換されて発生した冷媒ガスとそれに同伴される液を、前記初段のエジェクタの吸引口に供給する流路と、を備え、
前記別系統の次段の熱交換器は、前記初段の熱交換器にて気化しなかった冷媒液を別系統の次段の熱交換器の入口側に設けられた膨張部により膨張させて得られた冷媒が供給され、当該冷媒と被冷却流体との間で熱交換を行って当該被冷却流体を冷却し、かつ、被冷却流体は、前記初段の熱交換器と次段の熱交換器により冷却する被冷却流体とは異なることを特徴とする請求項1記載の冷凍装置。
A high-pressure refrigerant liquid obtained by condensing the high-pressure refrigerant gas discharged from the compressor is supplied to a first-stage expansion valve provided in parallel with the first-stage ejector. The refrigerant obtained by expansion is supplied to the first-stage heat exchanger,
From the rear stage of the first stage heat exchanger, the second stage heat exchanger of another system to which the refrigerant to be supplied to the next stage heat exchanger is supplied in a branched manner,
A flow path for supplying the refrigerant gas generated by heat exchange in the next-stage heat exchanger of the different system and the liquid accompanying the refrigerant gas to the suction port of the first-stage ejector,
The heat exchanger of the next stage of the different system is obtained by expanding the refrigerant liquid that has not been vaporized in the heat exchanger of the first stage by an expansion unit provided on the inlet side of the heat exchanger of the next stage of the different system. The supplied refrigerant is supplied, heat exchange is performed between the refrigerant and the fluid to be cooled to cool the fluid to be cooled, and the fluid to be cooled includes the first stage heat exchanger and the next stage heat exchanger. The refrigerating apparatus according to claim 1, wherein the refrigerating apparatus is different from the fluid to be cooled by cooling.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/006470 WO2016103296A1 (en) | 2014-12-25 | 2014-12-25 | Refrigeration device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/006470 WO2016103296A1 (en) | 2014-12-25 | 2014-12-25 | Refrigeration device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016103296A1 true WO2016103296A1 (en) | 2016-06-30 |
Family
ID=56149400
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/006470 WO2016103296A1 (en) | 2014-12-25 | 2014-12-25 | Refrigeration device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016103296A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190323769A1 (en) * | 2018-04-20 | 2019-10-24 | Chart Energy & Chemicals, Inc. | Mixed Refrigerant Liquefaction System and Method with Pre-Cooling |
WO2021030112A1 (en) * | 2019-08-13 | 2021-02-18 | Bechtel Oil, Gas And Chemicals, Inc. | Systems and methods for improving the efficiency of open-cycle cascade-based liquified natural gas systems |
CN115235135A (en) * | 2022-07-20 | 2022-10-25 | 北京航空航天大学 | Gas staged cooling liquefaction system based on vortex tube and ejector |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5128101A (en) * | 1974-08-09 | 1976-03-09 | Linde Ag | Tennengasuno ekikahoho |
JP2005315469A (en) * | 2004-04-27 | 2005-11-10 | Mitsubishi Electric Corp | Refrigerating cycle device |
JP2007024412A (en) * | 2005-07-19 | 2007-02-01 | Denso Corp | Ejector type refrigeration cycle |
JP2013108632A (en) * | 2011-11-17 | 2013-06-06 | Denso Corp | Ejector-type refrigeration cycle |
JP2014077552A (en) * | 2012-10-08 | 2014-05-01 | Denso Corp | Refrigeration cycle device |
-
2014
- 2014-12-25 WO PCT/JP2014/006470 patent/WO2016103296A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5128101A (en) * | 1974-08-09 | 1976-03-09 | Linde Ag | Tennengasuno ekikahoho |
JP2005315469A (en) * | 2004-04-27 | 2005-11-10 | Mitsubishi Electric Corp | Refrigerating cycle device |
JP2007024412A (en) * | 2005-07-19 | 2007-02-01 | Denso Corp | Ejector type refrigeration cycle |
JP2013108632A (en) * | 2011-11-17 | 2013-06-06 | Denso Corp | Ejector-type refrigeration cycle |
JP2014077552A (en) * | 2012-10-08 | 2014-05-01 | Denso Corp | Refrigeration cycle device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190323769A1 (en) * | 2018-04-20 | 2019-10-24 | Chart Energy & Chemicals, Inc. | Mixed Refrigerant Liquefaction System and Method with Pre-Cooling |
WO2021030112A1 (en) * | 2019-08-13 | 2021-02-18 | Bechtel Oil, Gas And Chemicals, Inc. | Systems and methods for improving the efficiency of open-cycle cascade-based liquified natural gas systems |
CN115235135A (en) * | 2022-07-20 | 2022-10-25 | 北京航空航天大学 | Gas staged cooling liquefaction system based on vortex tube and ejector |
CN115235135B (en) * | 2022-07-20 | 2023-05-23 | 北京航空航天大学 | Gas classification cooling liquefaction system based on vortex tube and injector |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2012324797B2 (en) | Multi nitrogen expansion process for LNG production | |
US7628035B2 (en) | Method for processing a stream of LNG obtained by means of cooling using a first refrigeration cycle and associated installation | |
JP5725856B2 (en) | Natural gas liquefaction process | |
TWI388788B (en) | Liquefaction method and system | |
JP4741468B2 (en) | Integrated multi-loop cooling method for gas liquefaction | |
JP5410443B2 (en) | Method and system for adjusting the cooling capacity of a cooling system based on a gas expansion process | |
JP2007506064A (en) | Hybrid gas liquefaction cycle with multiple expanders | |
CN107917577B (en) | Multi-pressure mixed refrigerant cooling method and system | |
JP6415329B2 (en) | Gas liquefaction apparatus and gas liquefaction method | |
EP2122280A2 (en) | Method and apparatus for cooling a hydrocarbon stream | |
KR101669729B1 (en) | Air liquefaction system using lng cold energy with ejector expansion device entraining expanded vapor | |
JP2016128738A5 (en) | ||
AU2015388393B2 (en) | Natural gas production system and method | |
WO2016103296A1 (en) | Refrigeration device | |
JP7369163B2 (en) | liquefaction system | |
US9791209B2 (en) | System and process for liquefying natural gas | |
RU2656068C1 (en) | Method and unit of natural gas liquefaction at the gas distribution station | |
JP2022013820A5 (en) | ||
WO2016103295A1 (en) | Refrigeration device | |
RU2740112C1 (en) | Natural gas liquefaction method "polar star" and installation for its implementation | |
AU2020311435B2 (en) | Systems and methods for improving the efficiency of combined cascade and multicomponent refrigeration systems | |
TW201930799A (en) | Mixed refrigerant system and method | |
US20220268517A1 (en) | Systems and Methods for Improving the Efficiency of Open-Cycle Cascade-Based Liquified Natural Gas Systems | |
US11359858B2 (en) | Method for liquefying ammonia | |
RU2735977C1 (en) | Natural gas liquefaction method and apparatus for implementation thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14908907 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14908907 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |