KR20200100650A - 표면 추종 노즐, 이동 물체 표면의 관찰 장치 및 이동 물체 표면의 관찰 방법 - Google Patents

표면 추종 노즐, 이동 물체 표면의 관찰 장치 및 이동 물체 표면의 관찰 방법 Download PDF

Info

Publication number
KR20200100650A
KR20200100650A KR1020207017642A KR20207017642A KR20200100650A KR 20200100650 A KR20200100650 A KR 20200100650A KR 1020207017642 A KR1020207017642 A KR 1020207017642A KR 20207017642 A KR20207017642 A KR 20207017642A KR 20200100650 A KR20200100650 A KR 20200100650A
Authority
KR
South Korea
Prior art keywords
nozzle
moving object
gas
tip
following
Prior art date
Application number
KR1020207017642A
Other languages
English (en)
Other versions
KR102403959B1 (ko
Inventor
요시토 이세이
도모야 가토
Original Assignee
닛폰세이테츠 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 닛폰세이테츠 가부시키가이샤 filed Critical 닛폰세이테츠 가부시키가이샤
Publication of KR20200100650A publication Critical patent/KR20200100650A/ko
Application granted granted Critical
Publication of KR102403959B1 publication Critical patent/KR102403959B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B13/00Measuring arrangements characterised by the use of fluids
    • G01B13/12Measuring arrangements characterised by the use of fluids for measuring distance or clearance between spaced objects or spaced apertures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/02Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
    • B05B1/06Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape in annular, tubular or hollow conical form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B15/00Details of spraying plant or spraying apparatus not otherwise provided for; Accessories
    • B05B15/70Arrangements for moving spray heads automatically to or from the working position
    • B05B15/72Arrangements for moving spray heads automatically to or from the working position using hydraulic or pneumatic means
    • B05B15/74Arrangements for moving spray heads automatically to or from the working position using hydraulic or pneumatic means driven by the discharged fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/08Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
    • B05B12/12Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to conditions of ambient medium or target, e.g. humidity, temperature position or movement of the target relative to the spray apparatus
    • B05B12/124Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to conditions of ambient medium or target, e.g. humidity, temperature position or movement of the target relative to the spray apparatus responsive to distance between spray apparatus and target
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B15/00Details of spraying plant or spraying apparatus not otherwise provided for; Accessories
    • B05B15/60Arrangements for mounting, supporting or holding spraying apparatus
    • B05B15/68Arrangements for adjusting the position of spray heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B28/00Maintaining rolls or rolling equipment in effective condition
    • B21B28/02Maintaining rolls in effective condition, e.g. reconditioning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C51/00Measuring, gauging, indicating, counting, or marking devices specially adapted for use in the production or manipulation of material in accordance with subclasses B21B - B21F
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B13/00Measuring arrangements characterised by the use of fluids
    • G01B13/22Measuring arrangements characterised by the use of fluids for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2267/00Roll parameters
    • B21B2267/02Roll dimensions
    • B21B2267/06Roll diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2267/00Roll parameters
    • B21B2267/10Roughness of roll surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2267/00Roll parameters
    • B21B2267/24Roll wear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Textile Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Spray Control Apparatus (AREA)

Abstract

이동 물체의 형상의 변동 및 거리의 변동에 추종하면서, 노즐 근방의 물을 제거할 수 있는 표면 추종 노즐, 이동 물체 표면의 관찰 장치 및 이동 물체 표면의 관찰 방법을 제공한다. 표면 추종 노즐(22)은, 선단으로부터 기체를 분사하는 노즐(28)과, 상기 노즐(28)의 기단을 폐색하는 칸막이부(32)와, 상기 칸막이부(32)를 통해 상기 노즐(28)의 후방에 마련되고, 상기 노즐의 축 방향을 따라서 신축하는 신축부(30)를 구비하고, 상기 신축부(30)는, 상기 노즐(28)에 대하여 전방 방향으로 힘을 가하는 탄성체(42)를 갖는다.

Description

표면 추종 노즐, 이동 물체 표면의 관찰 장치 및 이동 물체 표면의 관찰 방법
본 발명은, 표면 추종 노즐, 이동 물체 표면의 관찰 장치 및 이동 물체 표면의 관찰 방법에 관한 것이다.
강판의 압연기에 있어서, 양호한 표면과 형상을 구비한 압연 강판을 제조함에 있어서, 압연 롤의 표면 상태를 파악하거나, 프로필, 즉, 롤 축 방향의 반경 분포를 정확하게 파악해 둠으로써, 압연 롤의 교환 타이밍을 판단할 수 있도록 하거나, 압연 조건이나 냉각 조건에 피드백하여 제어할 수 있도록 해 두는 것은 중요하다.
예를 들어, 열간 압연 중의 압연 롤은, 피압연재 온도가 약 1000℃의 고온이기 때문에, 압연 시간의 경과와 함께, 압연 롤을 냉각하고 있었다고 해도, 가혹한 열영향을 받음으로써, 표면이 울퉁불퉁한 거친 상태로 된다. 이러한 표면 거칠함이 일어난 압연 롤로 압연이 행하여지면, 볼록부에 생성된 스케일이 압연 롤로 압박되어, 압연재에 밀려 들어가는 형태로 되어, 강판 표면에 파고 들어, 스케일 흠집이 발생한다. 이 때문에, 미리 롤 교환까지의 압연량을 정해 두고, 계획적으로 롤 교환을 행하고 있지만, 이 방법에서는 안전 측면에 입각한 압연량 설정으로 할 필요가 있고, 가동률이 저하되는 요인으로 되고 있었다.
열간 압연 중의 압연 롤은, 압연재를 고하중으로 연신하면, 롤이 열에 의해 직경 방향으로 팽창하거나, 마모에 의해 압연재가 통과한 부분만 롤 직경이 감소하거나 한다. 이 롤 축 방향의 직경 변동, 즉, 프로필을 정확하게 파악할 수 없으면, 압연재의 두께 불량이나, 형상 불량이 발생하는 요인으로 된다. 그래서, 종래는 열에 의한 팽창이나 마모량을, 압연재의 실적 조건, 롤 냉각 수량 등의 데이터로부터 컴퓨터로 추정하여, 압연 롤 프로필을 구하고 있었지만, 이 방법에서는 정밀도가 높지 않기 때문에, 형상 불량이 발생하고 있었다.
이와 같은 과제로의 대책으로서, 카메라로 롤 표면을 촬영하는 롤 표면 관찰 방법이나, 소정의 위치로부터 롤 외주면까지의 거리를 초음파 거리계 등으로 측정하여 롤 반경을 연산하고, 이 연산값에 기초하여 롤 프로필을 측정하는 방법이 제안되어 있다.
특허문헌 1에 기재된 압연 롤의 표면 관찰 장치는, 압연 롤에 대하여 노즐로부터 물을 공급하고, 압연 롤과 노즐 사이에 물기둥을 형성하여, 형성한 물기둥을 통하여 카메라로 롤 표면을 촬영한다.
특허문헌 2에 기재된 롤 프로필 측정 방법은, 초음파 거리계를 내장한 프로브와 압연 롤 사이에 물기둥을 생성하고, 거리계로부터 조사된 펄스상 초음파가 프로브와 롤 표면 사이를 왕복하는 시간으로부터 거리를 구하고, 그 거리계를 가이드 레일을 따라 롤 축 방향으로 주사하여 롤 프로필을 측정한다는 것이다.
특허문헌 3에 기재된 표면 검사 장치는, 광원과 수광부를 포함하는 검사 장치와, 광원으로부터 출사되는 광 빔의 축을 따라 마련된 원통상 노즐과, 원통상 노즐 내에 마련된 가동 노즐을 갖는다. 원통상 노즐로부터 가동 노즐 속을 통과하는 물에 의해 가동 노즐이 압연 롤을 향하여 압출되어, 가동 노즐과 압연 롤 사이의 갭을, 물의 유속에 의해 조정한다.
일본 특허 공개 제2009-85843호 공보 일본 특허 공개 평7-229733호 공보 일본 특허 공표 제2004-517324호 공보
특허문헌 1 내지 3에 기재된 어느 방법이어도, 대량의 냉각수를 기초로 측정 루트를 확보하기 위해서, 압연 롤과 관찰 카메라 또는 거리계 사이에 물기둥을 형성할 필요가 있다. 이러한 물기둥에 있어서는, 롤과 냉각수의 간섭에 의해 내부에 기포가 발생한다. 당해 기포는, 관찰의 장해나, 초음파 거리계에 있어서의 노이즈로 되어 측정의 장해로 되는 경우가 있다. 또한, 유량이나 온도에 의한 굴절률의 불균일이 발생하기 쉬운 물을 매질로서 사용하는 측정에는, 레이저 거리계 등의 고정밀도의 광학식 센서를 적용할 수 없다.
본 발명은, 이동 물체의 형상 변동 및 거리의 변동에 추종하면서, 노즐 근방의 물을 제거할 수 있는 표면 추종 노즐, 이동 물체 표면의 관찰 장치 및 이동 물체 표면의 관찰 방법을 제공하는 것을 목적으로 한다.
본 발명에 관한 표면 추종 노즐은, 선단으로부터 기체를 분사하는 노즐과, 상기 노즐의 기단을 폐색하는 칸막이부와, 상기 칸막이부를 통해 상기 노즐의 후방에 마련되고, 상기 노즐의 축 방향을 따라서 신축하는 신축부를 구비하고, 상기 신축부는, 상기 노즐에 대하여 전방 방향으로 힘을 가하는 탄성체를 갖는다.
본 발명에 관한 이동 물체 표면의 관찰 장치는, 상기 표면 추종 노즐과, 상기 표면 추종 노즐의 후방에 마련된 환경 박스와, 상기 환경 박스 내에 수용된 광학식 관찰부를 구비하고, 상기 광학식 관찰부로부터 상기 노즐의 선단에 걸쳐서 관찰 광로가 마련되어 있다.
본 발명에 관한 이동 물체 표면의 관찰 방법은, 선단으로부터 기체를 분사하는 노즐과, 상기 노즐의 기단을 폐색하는 칸막이부와, 상기 칸막이부를 통해 상기 노즐의 후방에 마련되고, 노즐의 축 방향을 따라서 신축하는 신축부를 갖고, 상기 신축부는, 상기 노즐에 대하여 전방 방향으로 힘을 가하는 탄성체를 포함하는 표면 추종 노즐과, 상기 표면 추종 노즐의 후방에 마련된 환경 박스와, 상기 환경 박스 내에 수용된 광학식 관찰부를 구비하고, 상기 광학식 관찰부로부터 상기 노즐의 선단에 걸쳐서 관찰 광로가 마련되어 있는 이동 물체 표면의 관찰 장치를 사용하여 상기 이동 물체를 감시하는 스텝과, 상기 이동 물체를 교환하는 타이밍을 결정하는, 또는, 상기 이동 물체의 사용 조건을 제어하는 스텝을 구비한다.
본 발명의 표면 추종 노즐에 의하면, 신축부가 신축함으로써 이동 물체의 형상 변동 및 거리의 변동에 추종할 수 있다. 노즐로부터 소정의 유속으로 기체를 분사함으로써, 노즐 선단 근방의 물을 제거할 수 있다. 따라서, 표면 추종 노즐을 사용함으로써, 물의 영향을 받지 않고, 이동 물체의 표면을 관찰할 수 있다.
도 1은, 본 실시 형태에 관한 관찰 장치가 적용되는 열간 압연기를 도시하는 모식도이다.
도 2는, 본 실시 형태에 관한 관찰 장치를 도시하는 단면도이다.
도 3은, 본 실시 형태에 관한 노즐의 부분 단면도이다.
도 4는, 노즐 선단과 이동 물체 표면 사이의 갭과, 노즐 배압의 관계를 나타내는 그래프이다.
도 5는, 실험(1)에 사용한 장치를 도시하는 모식도이다.
도 6은, 실험(1)의 결과를 나타내는 그래프이고, 도 6A는 갭과 유량의 관계, 도 6B는 노즐 배압과 유량의 관계를 나타내는 도면이다.
도 7은, 유량 1000L/min의 실험 결과를 발출한 그래프이고, 도 7A는 압입량과 노즐 배압의 관계, 도 7B는 갭과 노즐 배압의 관계를 나타내는 도면이다.
도 8은, 실험(2)에 사용한 장치를 도시하는 모식도이다.
도 9는, 실험(2)의 결과를 나타내는 그래프이고, 도 9A는 압입량 0mm, 도 9B는 압입량 6mm, 도 9C는 압입량 12mm의 결과이다.
이하, 도면을 참조하여 본 발명의 실시 형태에 대하여 상세하게 설명한다.
(전체 구성)
도 1에 도시하는 열간 압연기(10)는, 가열로(12)와, 상기 가열로(12)의 하류측에 압연기(13)를 구비한다. 가열로(12)는, 상류측에서 반입된 이동 물체로서의 압연재(18)에 대하여, 화염을 분사함으로써, 압연재(18)를 가열한다. 압연재(18)는, 가열로(12)에 있어서 가열된 후, 하류측으로 반송되어, 압연기(13)에 의한 압연 공정으로 이행한다.
압연기(13)는, 반송된 압연재(18)에 대하여, 한 쌍의 원주상의 열간 압연 롤(이하, 압연 롤)(14) 사이를 통과시켜, 소정의 두께로 압연한다. 실제의 열간 압연기(10)는, 복수의 압연기(13)를 구비한다. 압연기(13)에는, 냉각수 공급부(16)가 마련되어 있다. 냉각수 공급부(16)는, 압연기(13)에 대하여 상류측에 배치되어 있고, 상류측에서 압연 롤(14)에 냉각수를 공급한다.
냉각수 공급부(16)보다 압연재(18)측에 관찰 장치(20)가 배치되어 있다. 관찰 장치(20)는, 압연재(18) 표면에 접촉하기 직전의 압연 롤(14)의 표면을 관찰한다.
도 2에 도시한 바와 같이, 관찰 장치(20)는, 표면 추종 노즐(22)과, 환경 박스(24)와, 광학식 관찰부(26)를 구비한다. 표면 추종 노즐(22)은, 노즐(28), 신축부(30) 및 칸막이부(32)를 갖는다. 본 명세서에 있어서, 표면 추종 노즐(22)의 선단(압연 롤측)을 전방, 기단(환경 박스측)을 후방으로 한다.
노즐(28)은, 노즐 선단으로부터 압연 롤(14) 표면을 향하여 기체를 분사하고, 노즐 선단 근방의 냉각수를 제거한다. 본 실시 형태의 경우, 노즐(28)은, 내측 노즐(34)과, 상기 내측 노즐(34)의 외측에 배치된 외측 노즐(36)을 갖는다. 내측 노즐(34)은, 통상의 부재이며, 내강이 선단을 향하여 오므라들고 있고, 외측을 향하여 돌출된 플랜지부(35)가 내측 노즐(34)의 기단에 마련되어 있다. 외측 노즐(36)은, 내경이 내측 노즐(34)보다 큰 통상의 부재이며, 내측을 향하여 돌출된 에지부(37)가 선단에 마련되어 있다. 내측 노즐(34)은, 외측 노즐(36) 내에 퇴피 가능함과 함께, 플랜지부(35)가 에지부(37)에 접촉할 때까지의 한에 있어서, 외측 노즐(36)에 대하여 진출 가능하다.
노즐 선단은, 압연 롤(14) 표면에 대향한 평탄면(29)을 갖는다. 평탄면(29)은, 노즐(28)의 축 방향에 직교하는 방향에 평행한 면이다. 특히, 원주상의 회전체인 압연 롤(14)의 경우, 롤 표면의 측정 개소의 중심을 통과하는 법선과 노즐 중심축(관찰 광로(L))에 어긋남이 발생한 경우에도, 노즐 선단의 평탄면(29)에 롤 표면이 대향하도록, 평평한 부분의 면적을 확보할 필요가 있다. 내측 노즐(34)의 내강이 선단을 향하여 오므라들고 있음으로써, 압력 손실이 발생하고, 내측 노즐(34)은 외측 노즐(36)에 대하여 진출한다. 노즐 선단의 외경은, 너무 굵게 하면 중량이 증가하여 신축 동작이 곤란해진다. 따라서 평탄면(29)의 외경은, 노즐 구경 d(도 3)의 2배 내지 4배 정도가 바람직하다. 또한 직교란, 엄밀한 직교인 경우에 한하지 않고, 다소 어긋나 있는 경우를 포함한다.
노즐(28)은, 내측 노즐(34)과 외측 노즐(36)이 동일한 재료로 형성되어 있을 필요는 없다. 적어도 내측 노즐(34)은, 압연 롤(14)보다 연질의 재료로 형성되어 있다. 내측 노즐(34)은, 마찰 계수가 작은 재료, 예를 들어 고체 윤활제를 함유하는 재료가 바람직하다. 구체적으로는, 내측 노즐(34)은, 페놀 수지에, 윤활 성능을 향상시키는 고체 윤활제 및 강화 섬유로서 유리 섬유를 혼합한 재료로 형성되어 있는 것이 바람직하다. 고체 윤활제로서는, 그래파이트, 이황화몰리브덴 등을 사용할 수 있다. 내측 노즐(34)을 이러한 연질의 재료로 형성함으로써, 내측 노즐(34)의 선단이 압연 롤(14)에 접촉한 때에, 압연 롤(14)을 흠집내는 일이 없어지므로 적합하다.
외측 노즐(36)에는, 제1 기체 도입구(38)와, 제2 기체 도입구(40)가 마련되어 있다. 제1 기체 도입구(38)는, 외측 노즐(36) 내로 통하고 있다. 제1 기체 도입구(38)에 공급된 기체는, 외측 노즐(36) 내를 통하여 내측 노즐(34)의 선단으로부터 외부로 분사된다. 당해 기체에 의해 노즐 배압이 상승함으로써, 내측 노즐(34)을 외측 노즐(36)에 대하여 진출시킨다. 제2 기체 도입구(40)는, 플랜지부(35)와 에지부(37) 사이에 통하고 있다. 제2 기체 도입구(40)에 공급된 기체는, 외측 노즐(36)로부터 진출하고 있었던 내측 노즐(34)을 외측 노즐(36) 내에 퇴피시킨다.
신축부(30)는, 칸막이부(32)를 통해 노즐(28)의 후방에 마련되어 있다. 칸막이부(32)는, 노즐(28)의 기단을 폐색하고 있다. 칸막이부(32)는, 노즐(28)에 공급된 기체가 신축부(30)로 유통하지 않도록, 기밀이 유지되고 있다. 당해 칸막이부(32)는, 광학창(48)이 끼워 넣어져 있다. 광학창(48)은, 광학식 관찰부(26)로부터 출사된 광 및 압연 롤(14)로부터 반사된 광이 투과 가능한, 유리제 또는 수지제의 판이다.
신축부(30)는, 내통부(44)와, 외통부(46)와, 탄성체로서의 벨로우즈 스프링(42)을 갖는다. 내통부(44)는, 선단이 칸막이부(32)에 접속되어 있고, 타단이 외통부(46)의 선단에 삽입되어 있다. 외통부(46)는, 기단이 환경 박스(24)의 선단측 표면에 접속되어 있다. 내통부(44)는, 기단측이 외통부(46)에 대하여, 출입 가능하다. 내통부(44) 및 외통부(46)는, 벨로우즈 스프링(42) 내에 배치되어 있다. 벨로우즈 스프링(42)은, 일단이 칸막이부(32)의 표면, 타단이 환경 박스(24)의 선단측 표면에 접촉되어 있고, 칸막이부(32)를 통해 노즐(28)에 대하여 전방 방향의 힘을 부여한다. 신축부(30)는, 벨로우즈 스프링(42)의 신축에 수반하여, 내통부(44)가 외통부(46) 내에 출입함으로써, 노즐(28)의 축 방향을 따라서 신축한다.
환경 박스(24)는, 선단측 표면에 개구(25)를 갖고, 내부에, 광학식 관찰부(26)가 수용되어 있다. 개구(25)를 둘러싸도록, 외통부(46)의 기단이 접속되어 있다. 개구(25)로부터 내측 노즐(34)의 선단까지, 일직선 상에 관찰 광로(L)가 형성되어 있다. 광학식 관찰부(26)로서는, 조명과 2차원 카메라, 광학식의 거리계, 레이저 도플러 속도계, 방사 온도계 등을 사용할 수 있다.
광학식 관찰부(26)로서, 조명과 2차원 카메라를 사용하는 경우, 압연 롤(14) 표면을 조명하여, 그 표면의 화상을 2차원 카메라에 의해 촬상한다. 촬상된 화상을 바탕으로 압연 롤(14) 표면의 표면 거친 상태를 파악할 수 있고, 적확하게 롤 교환이나 표면 메인터넌스의 타이밍을 판단할 수 있다.
광학식 관찰부(26)로서, 광학식의 거리계를 사용하는 경우, 레이저광을 압연 롤(14) 표면에 조사하고, 당해 압연 롤(14)로부터의 산란광을 수광할 때까지의 시간, 위치를 측정함으로써, 압연 롤(14) 표면까지의 거리를 측정한다.
광학식 관찰부(26)로서, 레이저 도플러 속도계를 사용하는 경우, 레이저광을 압연 롤(14) 표면에 조사하고, 당해 압연 롤(14)로부터의 산란광의 주파수가, 도플러 효과에 의해 시프트하는 것을 이용하여, 압연 롤(14) 표면의 이동 속도를 측정한다. 광학식 관찰부(26)가 측정한 압연 롤(14) 표면까지의 거리, 또는, 압연 롤(14) 표면의 이동 속도는, 도시하지 않은 연산 장치에 출력된다. 연산 장치는, 당해, 롤 표면까지의 거리, 롤 표면의 이동 속도에 기초하여, 압연 롤(14)의 팽창이나 마모에 의한 외경의 변동을 산출한다. 산출된 압연 롤(14)의 팽창이나 마모에 의한 외경의 변동에 기초하여, 적확하게 롤 교환이나 표면 메인터넌스의 타이밍을 판단할 수 있다.
광학식 관찰부(26)로서, 방사 온도계를 사용하는 경우, 압연 롤(14)로부터 방사된 적외선의 강도를 측정함으로써, 압연 롤(14) 표면의 온도를 측정한다. 측정된 온도에 기초하여, 롤 프로필을 변화시키는 열팽창이나, 압연 롤(14) 표면을 표면 거칠게 하는 표면 온도 상승의 원인을 특정할 수 있다.
노즐 선단과 압연 롤(14) 표면 사이의 갭(G)에 대하여 도 3을 참조하여 설명한다. 기체를 분사하여 노즐 선단 근방의 냉각수(W)를 제거하기 위해서는, 냉각수(W)의 운동량을 초과하는 운동량을 갖는 기체를 분사할 필요가 있다. 본 실시 형태의 경우, 갭(G)의 크기를 소정 범위로 제어함으로써, 분사하는 기체의 유속을 높이고, 냉각수(W)의 운동량을 초과하는 운동량을 갖는 기체를 얻는 것으로 하였다.
이하에, 갭(G)을 좁게 함으로써, 분사하는 기체의 유속을 높이기 위한 조건식을 도출한다. 노즐 구경을 d[m]로 하면, 노즐 토출 면적 SN[㎡]은 하기 식 (6)으로 나타낼 수 있다.
SN=π(d/2)2 ···(6)
또한, 갭을 G[m]로 하면, 노즐 선단의 갭(G)의 면적 SG[㎡]는 하기 식 (7)과 같이 된다. 노즐 선단의 갭(G)의 면적 SG는, 노즐 선단과 압연 롤(14)의 표면 사이의 갭(G)에 있어서의 기체가 흐르는 방향과 직교하는 개구 부분의 면적을 말한다.
SG=πdG ···(7)
갭(G)의 크기를 소정 범위로 제어함으로써, 분사하는 기체의 유속을 높이기 위해서는, 갭(G)의 면적 SG가 노즐 토출 면적 SN보다도 작을 필요가 있으므로, 하기 식 (8)의 조건을 만족시킬 필요가 있다.
SG<SN
πdG<π(d/2)2
G<d/4 ···(8)
이어서, 유속을 증가시킨 기체에 의해, 속도 V[m/s]로 이동하고 있는 압연 롤(14) 표면과 함께 이동해 오는 냉각수(W)를 배제하기 위한 조건식을 도출한다. 노즐(28)로부터 분출된 기체는 노즐 선단의 평탄면(29)과 압연 롤(14) 표면의 갭(G)에 유입하여 압연 롤(14) 표면을 따라 유속 VA[m/s]로 흐른다. 기체의 유량을 Q[㎥/s]로 하면, 기체의 유속 VA[m/s]는 하기 식 (9)에 의해 표시된다.
VA=Q/SG=Q/(πdG) ···(9)
이 때문에, 기체의 밀도 ρA[kg/㎥], 충돌 단면적 S[㎡]로 하면, 기체의 운동량 pA[kgm/s]는 하기 식 (10)으로 된다.
pAAVA 2S ···(10)
한편, 냉각수(W)의 밀도 ρW[kg/㎥]로 하면, 노즐 선단 주위의 냉각수(W)의 속도는 압연 롤(14)의 속도 V[m/s]와 동등하기 때문에, 운동량 pW[kgm/s]는 하기 식 (11)과 같이 된다.
pWWV2S ···(11)
여기서, 기체의 운동량이 냉각수(W)의 운동량보다도 클 때에 냉각수(W)를 배제할 수 있기 때문에, 하기 식 (12)의 조건이 유도된다.
pA>pW
ρAVA 2S>ρWV2S
WA)1/2>VA/V ···(12)
한편, 갭(G)이 좁아지면 압력 손실이 커지기 때문에, 공급하는 기체의 최대 압력에 의해, 선택할 수 있는 갭(G)의 하한은 결정된다. 일반적으로, 압축 가스의 공급에는 컴프레서가 사용되고, 최대 압력은 0.7MPa이지만, 유량에 대해서는 컴프레서의 크기를 선정함으로써 대응 가능하다. 기체의 유량 Q[㎥/s]는, 노즐 선단의 갭(G)의 면적 SG[㎡], 노즐 배압 P[Pa]로 하면, 베르누이의 정리로부터, 하기 식(13)의 관계에 있다.
Q=SG(2/ρA)1/2P1/2 ···(13)
유량을 일정하게 하면, 갭(G)은 노즐 배압(P)의 평방근에 반비례한다.
Q=πdG(2/ρA)1/2P1/2
VA=Q/SG이므로, (12) 식과 (13) 식에서
V(ρWA)1/2>(2/ρA)1/2P1/2
P>(ρWV2)/2
최대 속도 Vmax일 때에도 상기 식을 만족시킬 필요가 있으므로, 허용 가능한 최소 압력 Pmin은 이하로 나타낼 수 있다.
PminWVmax 2/2
여기서, Vmax=15m/s, ρW=997kg/㎥일 때, Pmin=0.11MPa이다. 즉, 노즐 배압이 0.11MPa 이상으로 되도록 갭(G)을 좁게 할 필요가 있다.
벨로우즈 스프링(42)의 스프링 상수 k[N/m], 수축량 x[m], 노즐 배압 P[Pa], 노즐 토출 면적 SN[㎡]으로 하면, 후크의 법칙과 힘의 균형으로부터, 하기 식 (14)가 성립한다.
kx=PSN ···(14)
여기서, 공급 가능한 최대 압력 Pmax 시의 수축량 xmax로 하면,
kxmax=PmaxSN
또한, 최소 압력 Pmin 시의 수축량 xmin으로 하면,
kxmin=PminSN
이들 2 식에 의해,
k(xmax-xmin)=(Pmax-Pmin)SN
으로 된다.
필요한 추종 거리 변화량 xr로 하면, 이 xr의 범위에 있어서, 냉각수를 배제 가능한 운동량과 갭(G)을 확보하기 위해서는, 노즐 배압에 의해 벨로우즈 스프링(42)을 되돌려서 수축시킬 필요가 있으므로, xr<(xmax-xmin)을 만족시키기 위해, 스프링 상수 k는, 하기 식 (15)를 만족시킬 필요가 있다.
kxr<(Pmax-Pmin)SN
k<(Pmax-Pmin)SN/xr ···(15)
도 4에, 실험에 의해 구한 갭(G)과 노즐 배압의 관계를 나타낸다. 실험은, 벨로우즈 스프링(42)을 고정하여 신축하지 않는 상태로 하여, 노즐(28) 선단과 압연 롤(14)의 표면의 갭(G)의 크기를 변경해 가는, 노즐 배압과의 관계를 조사하였다. 노즐 구경(d)은 φ15mm, 유량(Q)은 1000L/min(일정)으로 하였다. 갭(G)은, 노즐 선단이 압연 롤(14) 표면에 접촉하고 있는 상태를, 제로로 하였다. 노즐 배압은, 노즐 내의 압력을 압력계로 측정하였다. 노즐 배압의 변화 범위 0.5MPa(0.1 내지 0.6MPa)에 있어서, 0.3mm 이상의 갭(G)을 유지할 수 있는 것이 확인되었다.
노즐 구경 φ15mm, 최대 압력 0.5MPa일 때에 수축량 17mm로 하면, k=5.19N/mm로 된다. 즉, 스프링 상수 k가 5.19N/mm 이하의 벨로우즈 스프링을 선정함으로써, 기체의 압력 변화 폭 0.5MPa에 있어서, 압연 롤(14)의 위치가 17mm 변화해도 추종할 수 있다. 압연 롤(14)의 위치에 맞춘 표면 추종 노즐의 신축량을, 추종 거리 변화량이라고 칭한다. 이 경우, 추종 거리 변화량은, 17mm이다.
(작용 및 효과)
관찰 장치(20)의 작용 및 효과를 설명한다. 먼저, 내측 노즐(34)을 외측 노즐(36)로부터 인출하고, 정지 상태의 압연 롤(14)에, 내측 노즐(34)의 선단을 접촉시킨다. 이때 노즐(28)은 플랜지부(35)가 에지부(37)에 접촉하고 있지 않고, 완전히 신장하고 있지 않은 상태로 한다.
이어서, 제1 기체 도입구(38)에 압축된 기체를 공급한다. 당해 기체는, 유량이 일정해지도록 제어되어 있다. 제1 기체 도입구(38)에 공급된 기체에 의해, 노즐(28)의 내부 압력(노즐 배압)이 상승한다. 노즐 배압에 의해 칸막이부(32)에는, 후방 방향의 힘이 발생한다. 당해 힘이 벨로우즈 스프링(42)에 의한 전방 방향의 힘보다 커지면, 신축부(30)는 수축한다. 신축부(30)가 수축하면, 내측 노즐(34)의 내강이 선단을 향하여 오므라들고 있음으로써, 신축부(30)과 일체적으로 외측 노즐(36)이 후방으로 이동하고, 플랜지부(35)가 에지부(37)에 접촉할 때까지 내측 노즐(34)이 외측 노즐(36)로부터 진출한다. 이와 같이 하여 노즐(28)이 완전히 신장한다.
노즐 배압이 더 상승함으로써 신축부(30)가 더 수축하고, 노즐 선단과 압연 롤(14) 사이에 갭(G)이 발생한다. 노즐 내부의 압축 기체는, 노즐 선단으로부터 갭(G)을 통해, 외부로 분사된다. 실제로는, 갭(G)이 넓어짐으로써, 노즐 배압의 상승이 완만해져, 노즐 배압에 의해 칸막이부(32)를 후방 방향으로 누르는 힘과, 벨로우즈 스프링(42)이 노즐(28)을 전방 방향으로 누르는 힘이 균형이 잡혔을 때에, 노즐 배압의 상승 및 신축부(30)의 수축이 정지한다. 이때의 갭(G)을 초기 갭이라고 칭한다.
내측 노즐(34)은, 분사되는 기체에 의해, 외측 노즐(36)로부터 진출한 상태로 유지된다. 노즐(28)은, 칸막이부(32)에 의해 기단이 폐색되어, 신축부(30)와 칸막이되어 있기 때문에, 신축부(30)가 신축해도, 내측 노즐(34)은 돌출된 상태를 유지하고, 노즐(28) 내의 체적은 일정하게 유지된다. 도 4에 도시한 바와 같이, 노즐 배압과 갭(G)은, 상관 관계가 있기 때문에, 유량을 일정하게 한 경우, 노즐 배압을 측정함으로써, 갭(G)의 크기를 추정할 수 있다.
계속해서, 압연기(13)의 동작을 개시한다. 즉 압연 롤(14)을 회전시켜, 당해 압연 롤(14)에 냉각수(W)를 공급한다. 냉각수(W)는, 압연 롤(14)의 표면에 부착되어, 압연 롤(14)과 일체적으로 회전한다.
관찰 장치(20)의 노즐 선단 근방에서는, 당해 노즐 선단으로부터 분사된 기체에 의해, 냉각수(W)가 제거된다. 냉각수(W)는, 노즐 선단을 피하도록 하여 압연 롤(14) 표면을 흐른다. 광학식 관찰부(26)로부터 출사된 광은, 관찰 광로(L)를 진행한다. 노즐 선단 근방의 냉각수(W)가 제거되고 있으므로, 광학식 관찰부(26)로부터 출사된 광은, 냉각수(W)로 가로막히는 일없이, 압연 롤(14) 표면에 도달한다. 마찬가지로, 압연 롤(14)로부터 반사된 광도 광학식 관찰부(26)에 도달한다. 따라서 관찰 장치(20)는, 냉각수(W)의 영향을 받지 않고, 광학식 관찰부(26)에 의해, 압연 롤(14)의 표면을 관찰할 수 있다.
또한, 종래의 물기둥을 사용한 관찰 장치에 있어서는, 광학식 관찰부를 적용할 수는 없다. 즉, 종래의 물기둥을 사용한 관찰 장치에 있어서는, 롤과 냉각수의 간섭에 의해 내부에 기포가 발생한다. 당해 기포는, 관찰의 장해나, 초음파 거리계에 있어서의 노이즈로 되어 측정의 장해로 되는 경우가 있다. 또한, 물은, 유량이나 온도에 의한 굴절률의 불균일을 발생하기 쉬우므로, 레이저 거리계 등의 광학식 관찰부를 사용한 경우, 정밀도가 현저하게 저하된다. 따라서 종래의 물기둥을 사용한 관찰 장치에서는, 광학식 관찰부를 적용하여 압연 롤의 표면을 관찰할 수 없다.
압연재(18)를 압연 중의 압연 롤(14)이, 압연재(18)의 열에 의해 팽창한 경우, 갭(G)이 작아진다. 갭(G)이 작아지면, 노즐 배압이 상승한다(도 4). 신축부(30)는, 벨로우즈 스프링(42)이 칸막이부(32)를 전방 방향으로 누르는 힘과, 상승한 노즐 배압에 의해 칸막이부(32)를 후방 방향으로 누르는 힘이 균형이 잡힐 때까지, 수축한다. 신축부(30)가 수축함으로써, 갭(G)이 초기 갭과 동일 정도로 복귀하여, 노즐 선단으로부터 소정의 유속을 갖는 기체가 분사된다.
압연재(18)를 압연 중의 압연 롤(14)이, 마모에 의해 직경 방향으로 수축한 경우, 갭(G)이 커진다. 갭(G)이 커지면, 노즐 배압이 저하된다(도 4). 신축부(30)는, 벨로우즈 스프링(42)이 칸막이부(32)를 전방 방향으로 누르는 힘이, 저하된 노즐 배압에 의해 칸막이부(32)를 후방 방향으로 누르는 힘에 균형이 잡힐 때까지, 신장한다. 신축부(30)가 신장함으로써, 갭(G)이 초기 갭과 동일 정도로 복귀하여, 노즐 선단으로부터 소정의 유속을 갖는 기체가 분사된다.
상기와 같이 표면 추종 노즐(22)은, 압연 롤(14)의 팽창, 수축에 따라 변화한 압연 롤(14)의 표면 위치에 맞춰서 신축부(30)가 신축함으로써, 갭(G)을 초기 갭에 접근하게 제어한다. 따라서 관찰 장치(20)는, 압연 롤(14)의 위치가 바뀌어도, 소정의 유속으로 기체를 분사함으로써, 노즐 선단 근방의 냉각수(W)를 제거할 수 있으므로, 냉각수(W)의 영향을 받지 않고, 압연 롤(14)의 표면을 관찰할 수 있다. 신축부(30)는, 칸막이부(32)와 환경 박스(24) 사이에 마련되어 있기 때문에, 표면 추종 노즐(22)이 압연 롤(14)에 추종하여 신축해도, 환경 박스(24)는 이동하지 않는다. 표면 추종 노즐(22)은, 노즐 배압이 칸막이부(32)에 작용하여 발생하는 힘과 벨로우즈 스프링(42)이 발생하는 힘의 균형에 의해, 압연 롤(14)의 형상의 변동 및 거리의 변동에 추종하므로, 기체의 유량을 제어할 필요가 없다.
압연 롤(14)을 교환할 때는, 압연 롤(14)의 회전, 냉각수(W)의 공급, 제1 기체 도입구(38)로의 기체의 공급을 정지한다. 이어서, 제2 기체 도입구(40)를 통해, 플랜지부(35)와 에지부(37) 사이에 압축된 기체를 공급한다. 당해 기체에 의해 내측 노즐(34)이 외측 노즐(36) 내로 후퇴하고, 노즐(28)이 수축한다. 노즐(28)을 수축시킴으로써, 압연 롤(14)을 용이하게 교환할 수 있다. 압연 롤(14)의 교환에 의해, 압연 롤(14)의 반경에 변화가 발생하는 경우가 있지만, 반경 변화량이, 추종 노즐의 추종 거리 변화량 내이면, 롤 표면에 추종하여 광학식 관찰부(26)의 시야를 확보할 수 있다.
(실시예)
실제로 도 5에 도시하는 실험 장치를 사용하여, 표면 추종 노즐(22)의 효과를 검증하였다. 제1 기체 도입구(38)에는, 유량계(50), 밸브(54), 압력계(52)가 마련된 배관이 접속되어 있다. 당해 배관에는 도시하지 않은 압축 기체 공급 장치로부터 기체로서 압축 공기가, 공급되고 있다. 노즐 구경은 φ15mm로 하였다. 벨로우즈 스프링(42)은, SUS제(스프링 상수 k: 5N/mm, 14산, 자연 길이: 67mm, 신축량: 17mm 이상)를 사용하였다. 유량계(50)는, 압축 기체 공급 장치와 노즐(28) 사이의 배관을 통하는 압축 공기의 유량을 측정한다. 압력계(52)는, 노즐 배압을 측정한다. 이동 물체로서 직경 400mm의 모의 롤(14)을 사용하였다. 갭(G)은, 노즐 선단과 모의 롤(14) 사이를 매크로 촬영하여 얻은 화상으로부터 측정하였다. 본 도면에 도시하는 실험 장치에 있어서, 노즐(28)을 완전히 신장시킨 상태에서, 노즐 선단이 모의 롤(14) 표면에 접촉한 위치를 압입량 0mm로 하고, 관찰 장치(20)를 모의 롤(14)을 향하여 이동시킨 때의, 갭(G)과 유량의 변화를 측정하였다. 그 결과를 도 6에 나타낸다. 도 6A는, 횡축이 갭(mm), 종축이 유량(L/min)이다. 도 6B는, 횡축이 노즐 배압(MPa), 종축이 유량(L/min)이다. 각 압입량에 있어서, 갭(G)과 유량은 거의 비례 관계에 있고, 압입량이 클수록 갭(G)이 개방되기 어려워지고 있다. 한편, 노즐 배압은, 유량이 증가함에 따라 완만하게 상승하고 있고, 압입량이 클수록 높아지는 것을 알 수 있었다.
유량(Q)이 1000L/min 시에 있어서의 압입량과 노즐 배압의 관계를 도 7A, 갭(G)과의 노즐 배압의 관계를 도 7B에 나타낸다. 금회 사용한 벨로우즈는, 대략 설계대로, 0.5MPa의 노즐 배압에 의해, 압입량 15mm라도 0.3mm의 갭(G)을 확보 할 수 있는 것을 확인할 수 있었다. 압입량과 노즐 배압은, 벨로우즈를 사용하지 않는 경우의 관계식(상기 식(13))에 합치하고 있다. 이 때문에, 노즐 배압을 측정함으로써, 압입량을 추정할 수 있는 것을 알 수 있었다. 또한, 노즐 배압과 갭(G)의 크기에 대해서도 상관 관계가 있고, 갭(G)의 크기도 노즐 배압으로부터 추정 가능하다. 또한, 최대 갭은 압입량 0mm일 때의 0.8mm이다. 이때의 냉각수를 배제 가능한 이동 물체의 속도 V는, (12) 식(ρA: 1.293kg/㎥(압축 공기를 사용), ρW: 997kg/㎥)에 의해 15.9m/s이다. 즉 상기 조건 하에서는, 롤의 회전 속도가 15.9m/s 이하라면 냉각수를 배제할 수 있다.
이어서, 도 8에 도시하는 실험 장치를 사용하여, 관찰 장치(20)의 효과를 검증하였다. 이동 물체로서, 원반(14)을 사용하였다. 제1 기체 도입구(38)에, 유량이 1000L/min(일정)의 압축 공기를 공급하였다. 노즐(28)을 신장시킨 상태에서, 노즐 선단이 원반(14) 표면에 접촉한 상태를 압입량 0mm로 하고, 관찰 장치(20)를 원반(14)을 향해서 6mm, 12mm 이동시킨 때의 시야 확보성을 확인하였다. 원반(14)의 표면 속도는, 95, 300, 730mpm(각각, 1.6m/s, 5m/s, 12.2m/s임)의 3종류로 하였다. 원반(14)에 물을 공급한 경우(물 있음)와, 공급하지 않는 경우(물 없음)에 있어서, 환경 박스(24) 내에 수용한 광학식 관찰부(26)에서, 이동 물체 표면에 광을 조사하고, 당해 이동 물체 표면으로부터의 산란광을 수광하여, 당해 산란광의 신호 강도를 측정하였다. 그 결과를 도 9에 나타낸다. 도 9는, 횡축이 속도(mpm), 종축이 신호 강도(dB)이고, 도 9A가 압입량 0mm, 도 9B가 압입량 6mm, 도 9C가 압입량 12mm의 결과이다. 물의 유무에 있어서, 신호 강도에 차가 인정되지 않았다. 따라서 표면 추종 노즐(22)에 있어서 물이 제거되고 있고, 관찰 장치(20)는 물의 영향을 받지 않고 이동 물체 표면을 관찰할 수 있다.
(변형예)
본 발명은 상기 실시 형태에 한정되는 것은 아니고, 본 발명의 취지 범위 내에서 적절히 변경하는 것이 가능하다.
이동 물체로서 압연 롤에 적용한 경우에 대하여 설명했지만, 본 발명은 이에 한정되지 않고, 파이프나 기계 부품 등의 축 대칭 형상 물체에 적용할 수 있다. 또한, 축 대칭 형상 물체에 한하지 않고, 냉각 중의 강판 등, 평면상의 이동 물체여도, 표면까지의 거리 변동 범위가 추종 노즐의 추종 거리 변화 내라면, 적용할 수 있고, 대상 이동 물체의 표면 관찰, 온도 측정, 길이 측정 등을 행할 수 있다. 이동 물체로서 열간 압연 롤에 적용한 경우에 대하여 설명했지만, 본 발명은 이에 한정되지 않고, 냉간 압연 롤에 적용해도 된다.
탄성체로서 벨로우즈 스프링(42)을 사용한 경우에 대하여 설명했지만, 본 발명은 이에 한정되지 않고, 예를 들어 코일 스프링, 고무 등을 사용해도 된다.
14: 압연 롤(이동 물체)
20: 관찰 장치
22: 표면 추종 노즐
24: 환경 박스
26: 광학식 관찰부
28: 노즐
29: 평탄면
30: 신축부
32: 칸막이부
34: 내측 노즐
36: 외측 노즐
42: 벨로우즈 스프링(탄성체)
48: 광학창
50: 유량계
52: 압력계

Claims (13)

  1. 선단으로부터 기체를 분사하는 노즐과,
    상기 노즐의 기단을 폐색하는 칸막이부와,
    상기 칸막이부를 통해 상기 노즐의 후방에 마련되고, 상기 노즐의 축 방향을 따라서 신축하는 신축부를
    구비하고,
    상기 신축부는, 상기 노즐에 대하여 전방 방향으로 힘을 가하는 탄성체를 갖는,
    표면 추종 노즐.
  2. 제1항에 있어서, 상기 탄성체의 스프링 상수를 k[N/m], 필요한 추종 거리 변화량을 xr[m], 공급 가능한 기체의 최대 압력을 Pmax[Pa], 허용 가능한 기체의 최소 압력을 Pmin[Pa], 노즐 토출 면적을 SN[㎡], 상기 노즐 선단 주위의 냉각수의 최대 속도를 Vmax, 냉각수의 밀도를 ρW[kg/㎥]로 한 때에, 상기 탄성체의 스프링 상수 k는 하기 식 (1) 및 (2)를 만족시키고,
    상기 탄성체의 수축량 x[m]가 하기 식 (3) 및 (4) 식으로 나타내는 xmin으로부터 xmax의 범위인, 표면 추종 노즐.
    k<(Pmax-Pmin)SN/xr ···(1)
    PminWVmax 2/2 ···(2)
    xmin=PminSN/k ···(3)
    xmax=PmaxSN/k ···(4)
  3. 제1항 또는 제2항에 있어서, 상기 노즐에 연결되어 상기 기체를 상기 노즐에 공급하는 배관에 마련된 유량계와,
    상기 노즐 내의 압력을 측정하는 압력계를
    구비하는,
    표면 추종 노즐.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 탄성체가 벨로우즈인, 표면 추종 노즐.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 노즐은 내측 노즐과, 상기 내측 노즐에 동축 상에 마련된 외측 노즐을 갖고, 분사되는 상기 기체의 압력에 의해, 상기 내측 노즐이 상기 외측 노즐에 대하여 돌출되는, 표면 추종 노즐.
  6. 제5항에 있어서, 상기 내측 노즐의 재질이 페놀 수지와, 고체 윤활제와, 강화 섬유를 함유하는, 표면 추종 노즐.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서, 상기 노즐 선단에, 축 방향에 직교하는 방향에 평행한 평탄면을 갖고, 상기 노즐 선단의 외경은 내경의 2 내지 4배인, 표면 추종 노즐.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서, 상기 노즐의 내강은, 선단을 향하여 오므라들고 있는, 표면 추종 노즐.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서, 상기 칸막이부는, 광학창을 갖는, 표면 추종 노즐.
  10. 제9항에 기재된 표면 추종 노즐과,
    상기 표면 추종 노즐의 후방에 마련된 환경 박스와,
    상기 환경 박스 내에 수용된 광학식 관찰부를
    구비하고,
    상기 광학식 관찰부로부터 상기 노즐 선단에 걸쳐서 관찰 광로가 마련되어 있는, 이동 물체 표면의 관찰 장치.
  11. 선단으로부터 기체를 분사하는 노즐과,
    상기 노즐의 기단을 폐색하는 칸막이부와,
    상기 칸막이부를 통해 상기 노즐의 후방에 마련되고, 상기 노즐의 축 방향을 따라서 신축하는 신축부를
    갖고, 상기 신축부는, 상기 노즐에 대하여 전방 방향으로 힘을 가하는 탄성체를 포함하는 표면 추종 노즐과,
    상기 표면 추종 노즐의 후방에 마련된 환경 박스와,
    상기 환경 박스 내에 수용된 광학식 관찰부를
    구비하고, 상기 광학식 관찰부로부터 상기 노즐 선단에 걸쳐서 관찰 광로가 마련되어 있는 이동 물체 표면의 관찰 장치를
    사용하여 상기 이동 물체를 감시하는 스텝과,
    상기 이동 물체를 교환하는 타이밍을 결정하는, 또는, 상기 이동 물체의 사용 조건을 제어하는 스텝을
    구비하는, 이동 물체 표면의 관찰 방법.
  12. 제11항에 있어서, 상기 노즐 구경을 d[m], 기체의 밀도를 ρA[kg/㎥], 냉각수의 밀도를 ρW[kg/㎥], 상기 이동 물체의 속도를 V[m/s], 분출하는 기체의 유량을 Q[㎥/s], 상기 이동 물체 표면과 상기 노즐 선단 사이의 갭을 G[m]로 한 때에, 하기 식 (5)를 만족시키는, 이동 물체 표면의 관찰 방법.
    AW)1/2Q/(πdV)>G ···(5)
  13. 제11항 또는 제12항에 있어서, 상기 기체를 상기 노즐에 공급하는 배관을 흐르는 상기 기체의 유량 및 노즐 배압에 기초하여, 적어도 상기 탄성체의 압입량 및 상기 노즐 선단과 상기 이동 물체 표면 사이의 갭의 크기 중 어느 하나를 추정하는, 이동 물체 표면의 관찰 방법.
KR1020207017642A 2017-12-04 2018-08-22 표면 추종 노즐, 이동 물체 표면의 관찰 장치 및 이동 물체 표면의 관찰 방법 KR102403959B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2017-232957 2017-12-04
JP2017232957 2017-12-04
PCT/JP2018/031014 WO2019111448A1 (ja) 2017-12-04 2018-08-22 表面追従ノズル、移動物体表面の観察装置、及び移動物体表面の観察方法

Publications (2)

Publication Number Publication Date
KR20200100650A true KR20200100650A (ko) 2020-08-26
KR102403959B1 KR102403959B1 (ko) 2022-06-02

Family

ID=66750099

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207017642A KR102403959B1 (ko) 2017-12-04 2018-08-22 표면 추종 노즐, 이동 물체 표면의 관찰 장치 및 이동 물체 표면의 관찰 방법

Country Status (6)

Country Link
US (1) US11578970B2 (ko)
EP (1) EP3722005B1 (ko)
KR (1) KR102403959B1 (ko)
BR (1) BR112020009263B1 (ko)
TW (1) TWI766095B (ko)
WO (1) WO2019111448A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102319851B1 (ko) 2021-05-24 2021-10-29 임재생 물분사 방식의 초음파검사장치용 노즐
KR102447666B1 (ko) 2022-02-14 2022-09-26 임재생 물분사 방식의 위상배열 초음파검사시스템용 노즐장치

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7333032B2 (ja) * 2020-03-18 2023-08-24 尾高ゴム工業株式会社 ロールの表面状態の計測装置
TWI796569B (zh) * 2020-05-29 2023-03-21 大量科技股份有限公司 用於檢測設備之噴嘴
DE102020130265A1 (de) * 2020-11-17 2022-05-19 Harburg-Freudenberger Maschinenbau Gmbh Walzenanlage, Verwendung einer Benetzungsvorrichtung und Verfahren zum Betrieb einer Walzenanlage
US12138739B2 (en) * 2021-05-21 2024-11-12 GM Global Technology Operatios LLC Automatic adjusting hydro-mechanical fluid nozzle apparatus
JP2022180805A (ja) * 2021-05-25 2022-12-07 アズビル株式会社 光学式間隙測定装置及び光学式間隙測定方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06138044A (ja) * 1992-10-28 1994-05-20 Kobe Steel Ltd 圧延ロールの光学式表面検査装置
JPH07229733A (ja) 1994-02-15 1995-08-29 Mitsubishi Heavy Ind Ltd ロールプロフィール測定装置
KR970044979U (ko) * 1995-12-26 1997-07-31 압연작업률 표면측정장치
JP2004517324A (ja) 2001-01-16 2004-06-10 サントル ド ルシェルシュ メタリュルジク, アー. エス. ベー. エル. 表面を検査するための装置
JP2009085843A (ja) 2007-10-01 2009-04-23 Nippon Steel Corp 圧延ロールの表面観察装置
JP2015527199A (ja) * 2012-07-02 2015-09-17 エス・エム・エス・グループ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 鋳造設備、圧延設備又はそれ以外のストリッププロセスラインにおいて表面を冷却するための方法及び装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58224013A (ja) * 1982-06-22 1983-12-26 Sumitomo Metal Ind Ltd 圧延ロ−ル表面温度制御装置
JPS60127025A (ja) * 1983-12-14 1985-07-06 Mitsubishi Heavy Ind Ltd 圧延機のロ−ル径検出装置
JPH0774785B2 (ja) 1990-07-11 1995-08-09 株式会社神戸製鋼所 圧延ロールの光学式表面検査装置
WO1993001488A1 (en) * 1991-07-05 1993-01-21 Kabushiki Kaisha Kobe Seiko Sho Optical surface inspection device for mill roll
BE1008573A6 (fr) * 1994-08-09 1996-06-04 Centre Rech Metallurgique Dispositif pour l'inspection de la surface d'un cylindre de laminoir.
JP2721806B2 (ja) * 1994-08-29 1998-03-04 株式会社神戸製鋼所 圧延ロールの光学式表面検査装置
TW320586B (ko) * 1995-11-24 1997-11-21 Hitachi Ltd
JPH10328867A (ja) * 1997-06-05 1998-12-15 Mitsubishi Electric Corp レーザビーム加工装置およびレーザビーム加工装置用の焦点位置決め治具およびレーザビーム集光直径測定治具
EP1775034B1 (en) * 2004-08-05 2010-12-15 Kabushiki Kaisha Kobe Seiko Sho Deposit removing device
JP4634914B2 (ja) * 2005-05-24 2011-02-16 新日本製鐵株式会社 圧延ロールの表面撮影装置及びその制御方法
JP2011187539A (ja) * 2010-03-05 2011-09-22 Sinfonia Technology Co Ltd ガス注入装置、ガス排出装置、ガス注入方法及びガス排出方法
JP5646261B2 (ja) * 2010-09-22 2014-12-24 三菱日立製鉄機械株式会社 熱延鋼帯の冷却装置
DE102014117165A1 (de) * 2014-11-24 2016-05-25 Kautex Textron Gmbh & Co. Kg Fahrzeugintegriertes Sicht- und Reinigungssystem
CN106423608A (zh) 2016-10-26 2017-02-22 山东大学 喷嘴位置可调的喷射器及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06138044A (ja) * 1992-10-28 1994-05-20 Kobe Steel Ltd 圧延ロールの光学式表面検査装置
JPH07229733A (ja) 1994-02-15 1995-08-29 Mitsubishi Heavy Ind Ltd ロールプロフィール測定装置
KR970044979U (ko) * 1995-12-26 1997-07-31 압연작업률 표면측정장치
JP2004517324A (ja) 2001-01-16 2004-06-10 サントル ド ルシェルシュ メタリュルジク, アー. エス. ベー. エル. 表面を検査するための装置
JP2009085843A (ja) 2007-10-01 2009-04-23 Nippon Steel Corp 圧延ロールの表面観察装置
JP2015527199A (ja) * 2012-07-02 2015-09-17 エス・エム・エス・グループ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 鋳造設備、圧延設備又はそれ以外のストリッププロセスラインにおいて表面を冷却するための方法及び装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102319851B1 (ko) 2021-05-24 2021-10-29 임재생 물분사 방식의 초음파검사장치용 노즐
KR102447666B1 (ko) 2022-02-14 2022-09-26 임재생 물분사 방식의 위상배열 초음파검사시스템용 노즐장치

Also Published As

Publication number Publication date
EP3722005A1 (en) 2020-10-14
EP3722005B1 (en) 2023-09-20
BR112020009263B1 (pt) 2023-01-10
EP3722005C0 (en) 2023-09-20
US20210033391A1 (en) 2021-02-04
WO2019111448A1 (ja) 2019-06-13
TW201936265A (zh) 2019-09-16
EP3722005A4 (en) 2021-08-18
BR112020009263A2 (pt) 2020-10-20
KR102403959B1 (ko) 2022-06-02
US11578970B2 (en) 2023-02-14
TWI766095B (zh) 2022-06-01

Similar Documents

Publication Publication Date Title
KR20200100650A (ko) 표면 추종 노즐, 이동 물체 표면의 관찰 장치 및 이동 물체 표면의 관찰 방법
US10209199B2 (en) Surface inspection method, surface inspection device, manufacturing system, method of identifying defect formed area, and manufacturing method of steel pipe
US11358324B2 (en) Straining device and method for extending a film web
KR20160032689A (ko) 터보 과급기 샤프트 및 휠 조립체
US20060012804A1 (en) Method and apparatus for contactless optical measurement of the thickness of a hot glass body by optical dispersion
US8743379B2 (en) Device for monitoring thickness reduction of inner surface in heat transfer tube or inner surface in evaporation tube
JP6460300B1 (ja) 表面追従ノズル、移動物体表面の観察装置、及び移動物体表面の観察方法
KR20160032690A (ko) 터보 과급기 샤프트 및 휠 조립체
JP7255481B2 (ja) 液体膜の厚みの測定方法、測定装置、及びフィルムの製造方法
KR101778453B1 (ko) 압연 설비 및 스테인리스 강판의 압연 방법
US20120000213A1 (en) Method and apparatus for discharging a controlled amount of cryogen onto work surfaces in a cold roll mill
JP2020192578A (ja) 鋼片の加熱炉抽出温度予測方法及び加熱炉抽出温度予測装置
Berridge et al. Boundary-layer instability measurements in a Mach-6 quiet tunnel
Fuh et al. Experimental investigation of a flowing fluid layer on metal surface roughness measurement and aberration correction using adaptive optics
Gafsi et al. In‐process measurement system based on laser triangulation during heat treatment
Isei et al. Development of refractory thickness meter for torpedo ladle car
HLAJENJA et al. TECHNIQUES OF MEASURING SPRAY-COOLING HOMOGENEITY
Honda et al. Newly developed Fountain pyrometer for a running hot strip in the cooling banks of a hot strip mill
JP2017146107A (ja) 熱間連続圧延機スタンド間の被圧延材温度測定装置及び被圧延材温度測定方法
Kán et al. The analysis of the rolls cooling at push bench in rolling mill plant ŽP AS
Horn et al. Non-interferometric transient quantitative phase microscopy for ultrafast engineering
ITUD20000076A1 (it) Procedimento di raffreddamento per prodotti laminati e relativo dispositivo
JPH05231850A (ja) 圧延材位置検出方法及び装置
JPH08243622A (ja) 液体冷却される熱間材の温度推定方法

Legal Events

Date Code Title Description
PA0105 International application

Patent event date: 20200618

Patent event code: PA01051R01D

Comment text: International Patent Application

PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20200618

Comment text: Request for Examination of Application

PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20211007

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20220323

PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20220526

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20220527

End annual number: 3

Start annual number: 1

PG1601 Publication of registration