KR20200095244A - A deformable liposome prepared with natural surfactants and use of the same - Google Patents

A deformable liposome prepared with natural surfactants and use of the same Download PDF

Info

Publication number
KR20200095244A
KR20200095244A KR1020190013084A KR20190013084A KR20200095244A KR 20200095244 A KR20200095244 A KR 20200095244A KR 1020190013084 A KR1020190013084 A KR 1020190013084A KR 20190013084 A KR20190013084 A KR 20190013084A KR 20200095244 A KR20200095244 A KR 20200095244A
Authority
KR
South Korea
Prior art keywords
liposomes
taxifolin
elastic
liposome
skin
Prior art date
Application number
KR1020190013084A
Other languages
Korean (ko)
Other versions
KR102160629B1 (en
Inventor
박수남
김아랑
안현진
장은상
이재덕
Original Assignee
서울과학기술대학교 산학협력단
여명바이오켐 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울과학기술대학교 산학협력단, 여명바이오켐 주식회사 filed Critical 서울과학기술대학교 산학협력단
Priority to KR1020190013084A priority Critical patent/KR102160629B1/en
Publication of KR20200095244A publication Critical patent/KR20200095244A/en
Application granted granted Critical
Publication of KR102160629B1 publication Critical patent/KR102160629B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0014Skin, i.e. galenical aspects of topical compositions

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • Dispersion Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

The present invention relates to an elastic liposome prepared by using polyglyceryl-2 caprate or polyglyceryl-10-stearate as an edge activator in a phospholipid, a preparation method thereof, and a skin delivery system composition prepared by trapping a drug in the elastic liposome. The elastic liposome of the present invention has superior skin permeability and the like compared to general liposomes, and thus can be a delivery system for efficient skin delivery of various active ingredients.

Description

천연 계면활성제를 이용하여 제조된 탄성 리포좀 및 그 용도{A deformable liposome prepared with natural surfactants and use of the same}Elastic liposome prepared with natural surfactants and its use {A deformable liposome prepared with natural surfactants and use of the same}

본 발명은 천연 계면활성제를 이용하여 제조된 탄성 리포좀 및 그 용도에 관한 것이다.The present invention relates to an elastic liposome prepared using a natural surfactant and its use.

피부는 크게 표피, 진피, 피하지방으로 구성되어 있으며, 유해 환경으로부터 체내를 보호하고 항상성을 유지하는데 중요한 역할을 담당한다. 표피의 가장 외부에 존재하는 각질층은 유해 물질이 경피를 통해 침입하는 것을 방어하고 항산화 장벽의 역할을 담당하여 피부를 보호한다. 하지만 이러한 피부 장벽은 대기 오염 및 자외선과 같은 외부 환경에 의해 붕괴될 수 있다. 특히, 자외선에 의해 발생하는 다양한 활성산소종(reactive oxygen species, ROS)은 높은 산화력으로 인해 단백질 및 DNA의 산화, 지질 과산화 반응의 개시, 항산화제 파괴 등을 통해 신체의 여러 조직들을 손상시키며 피부노화를 가속화시킨다. The skin is largely composed of epidermis, dermis, and subcutaneous fat, and it plays an important role in protecting the body from harmful environments and maintaining homeostasis. The stratum corneum, which is present at the outermost part of the epidermis, protects the skin by preventing harmful substances from invading through the transdermis and acting as an antioxidant barrier. However, these skin barriers can be disrupted by air pollution and external environments such as UV rays. In particular, various reactive oxygen species (ROS) generated by ultraviolet rays damage various tissues of the body through oxidation of proteins and DNA, initiation of lipid peroxidation reaction, and destruction of antioxidants due to their high oxidative power, and skin aging. Accelerates

따라서 이러한 활성산소를 제거하기 위해 비타민 C, 비타민 E 및 플라보노이드와 같은 여러 가지 항산화제가 필요하다. 이 중 플라보노이드는 식물 세포에 수용성 배당체 형태로 많이 존재하는 페놀릭 화합물이다. 일반적으로 플라보노이드는 천연 항산화제로 불리며 항산화, 항암, 항염, 항알러지 등과 같은 다양한 활성을 가진다.Therefore, various antioxidants such as vitamin C, vitamin E and flavonoids are required to remove these free radicals. Among them, flavonoids are phenolic compounds that exist in plant cells in the form of water-soluble glycosides. In general, flavonoids are called natural antioxidants and have various activities such as antioxidant, anticancer, anti-inflammatory, and anti-allergic.

Taxifolin은 작약(paeonia lactiflora), 천년초(opuntia humifusa) 그리고 감귤류 및 양파 등에 존재하는 플라보노이드 성분 중 하나로 항산화, 항균, 항염, 미백 등의 다양한 생물학적 효과를 가진다. 이외에도 MMP-9을 감소시키며 NF-κB 활성화 조절을 통해 쥐의 뇌 허혈-재관류 손상을 완화시킨다. 또한 taxifolin 배당체는 NC/Nga mice의 아토피성 피부염과 유사한 피부 병변에서 효과가 있었다. 그러나 taxifolin은 구조적으로 불안정할 수 있다.Taxifolin is a peony ( paeonia lactiflora ), opuntia humifusa ) and is one of the flavonoids present in citrus fruits and onions, and has various biological effects such as antioxidant, antibacterial, anti-inflammatory, and whitening. In addition, it reduces MMP-9 and alleviates brain ischemia-reperfusion injury in rats through regulation of NF-κB activation. In addition, taxifolin glycosides were effective in skin lesions similar to atopic dermatitis in NC/Nga mice. However, taxifolin can be structurally unstable.

Taxifolin의 화학적 안정성 증대를 위해 합성된 유도체인 taxifolin tetra octanoate는 taxifolin과 마찬가지로 우수한 피부 미백 효과를 나타낸다고 보고되고 있다. 그러나, 이러한 항산화 유효 성분들이 피부 속으로 전달될 때에는 피부 최외각층인 각질층을 통과하여야 한다. 각질층은 각질세포와 그 사이를 채우는 각질세포간지질(intercellular lipid)로 구성되어 있고, 이러한 구조로 인해 외부 물질에 대한 강한 장벽의 역할을 수행한다. 따라서 각질층으로 이루어진 강한 피부 장벽을 극복하고 피부 깊숙이 약물 전달을 하기 위해서는 경피 약물 전달체가 필요하다.Taxifolin tetra octanoate, a derivative synthesized to increase the chemical stability of Taxifolin, has been reported to exhibit excellent skin whitening effects like taxifolin. However, when these antioxidant active ingredients are delivered into the skin, they must pass through the stratum corneum, the outermost layer of the skin. The stratum corneum is composed of keratinocytes and intercellular lipids that fill between them, and this structure acts as a strong barrier against foreign substances. Therefore, in order to overcome the strong skin barrier composed of the stratum corneum and deliver drugs deep into the skin, a transdermal drug delivery system is required.

경피 약물 전달체로는 리포좀, 하이드로겔, nanostructured lipid carriers 등 다양한 발명가 진행되고 있으며, 그 중 리포좀은 수용액 상에서 인지질의 자발적 형성에 의해 만들어지는 구형의 생체 유사 지질막이다. 리포좀은 인지질 이중층 구조로 인해 막 내부에 친수성 물질을 담지 할 수 있으며, 이중층 사이에는 소수성 물질을 담지 할 수 있어 약물 전달체로서 많은 발명가 이루어지고 있다. 담지한 유효 성분의 피부 흡수를 더욱 증진시키기 위해 기본 리포좀을 변형시킨 에토좀, 탄성리포좀, layer by layer, 양이온 리포좀, 단백질 코팅 리포좀 등 다양한 리포좀 발명들이 최근까지 활발히 진행되고 있다.Various inventions, such as liposomes, hydrogels, and nanostructured lipid carriers, have been developed as transdermal drug delivery systems. Among them, liposomes are spherical bio-like lipid membranes made by the spontaneous formation of phospholipids in aqueous solutions. Liposomes can carry a hydrophilic material inside the membrane due to the phospholipid bilayer structure, and a hydrophobic material can be carried between the bilayers, so many inventions have been made as drug delivery systems. Various liposome inventions such as ethosomes, elastic liposomes, layer by layer, cationic liposomes, and protein-coated liposomes have been actively progressed until recently in order to further enhance the skin absorption of the supported active ingredients.

탄성리포좀은 인지질과 edge activator로 작용하는 surfactant로 구성되어 있다. 이 리포좀은 edge activator로 작용하는 surfactant로 인해 지질 이중층 막에 탄성 및 유연성을 가지게 된다. 따라서 탄성리포좀은 각질층을 보다 유연하게 통과할 수 있기 때문에 유효 성분을 피부 깊숙이 효과적으로 전달할 수 있다는 장점이 있다. 탄성리포좀의 발명 초기에는 Span 80, Tween 80등과 같은 단일 탄소 사슬을 갖는 계면 활성제 또는 sodium hexadecyl sulfates, cetylpyridinium chloride 등의 이온성 계면활성제를 많이 이용하였으나, 이러한 계면활성제들은 리포좀의 막 안정성을 감소시킨다는 단점이 있다. Elastic liposomes are composed of phospholipids and surfactants that act as edge activators. These liposomes have elasticity and flexibility in the lipid bilayer membrane due to surfactant acting as an edge activator. Therefore, since the elastic liposome can more flexibly pass through the stratum corneum, the active ingredient can be effectively delivered deep into the skin. In the early days of the invention of elastic liposomes, surfactants having a single carbon chain such as Span 80 and Tween 80 or ionic surfactants such as sodium hexadecyl sulfates and cetylpyridinium chloride were used a lot, but these surfactants reduce the membrane stability of liposomes. There is this.

[선행 특허 문헌][Prior patent literature]

대한민국 등록특허 10-1684415Korean Patent Registration 10-1684415

본 발명은 상기의 문제점을 해결하고, 상기의 필요성에 의하여 안출된 것으로서 본 발명의 목적은 생리적인 유효 성분들의 효율적인 피부 전달을 위한 전달체로 탄성 리포좀을 제공하는 것이다.The present invention solves the above problems and is conceived by the necessity of the above, and an object of the present invention is to provide an elastic liposome as a carrier for efficient skin delivery of physiologically active ingredients.

상기의 목적을 달성하기 위하여 본 발명은 폴리글리세릴(polyglyceryl)-2 카프레이트(caprate) 또는 폴리글리세릴-10- 스테아레이트(stearate)를 엣지 활성제(edge activator)로 사용하여 제조된 탄성 리포좀을 제공한다.In order to achieve the above object, the present invention uses an elastic liposome prepared using polyglyceryl-2 caprate or polyglyceryl-10-stearate as an edge activator. to provide.

본 발명의 일 구현예에 있어서, 상기 리포좀은 포스파티딜콜린: 엣지 활성제: 콜레스테롤의 혼합 중량비가 7 : 3 : 3.5인 것이 바람직하나 이에 한정되지 아니한다.In one embodiment of the present invention, the liposome is preferably a mixture of phosphatidylcholine: edge activator: cholesterol in a weight ratio of 7:3:3.5, but is not limited thereto.

또 본 발명은 상기 본 발명의 탄성 리포좀에 생리 활성 물질을 포집시켜 제조된 피부 전달체 조성물을 제공한다.In addition, the present invention provides a skin delivery system composition prepared by trapping a physiologically active substance in the elastic liposome of the present invention.

또한 본 발명은 탄성 리포좀 제조 과정에서 폴리글리세릴(polyglyceryl)-2 카프레이트(caprate) 또는 폴리글리세릴-10- 스테아레이트(stearate)를 엣지 활성제(edge activator)로 사용하여 탄성 리포좀을 제조하는 방법을 제공한다.In addition, the present invention is a method of preparing an elastic liposome using polyglyceryl-2 caprate or polyglyceryl-10-stearate as an edge activator in the process of manufacturing an elastic liposome. Provides.

이하 본 발명을 설명한다.Hereinafter, the present invention will be described.

본 발명에서는 피부에 자극을 주지 않는 천연 계면활성제인 polyglyceryl-2 caprate (PGL-2-caprate) 및 polyglyceryl-10 stearate (PGL-10-stearate) 를 edge activator로 사용하여 탄성 리포좀을 제조하였고, 유효성분으로는 taxifolin 및 taxifolin tetra octanoate를 담지하여 담지 효율 및 성질을 비교하였다. PGL-2-caprate는 야자열매로부터 유래한 천연 비이온성 계면활성제로, capric acid 및 diglycerin의 에스터이다. 피부를 부드럽게 유연화시키는데 도움을 주며 우수한 보습력으로 알려져 있다. PGL-10-stearate는 polyglycerin-10과 stearic acid의 에스터이며, PGL-2-caprate에 비해 glycerin 수와 소수성 꼬리부분의 탄소수가 더 많은 구조로 이루어져 있다. 이 두 가지 계면활성제는 식품, 화장품, 세면도구(toiletries)등에 많이 이용되는 폴리글리세린지방산에스테르계(PGFE) 로서 기존의 폴리옥시에틸렌계의 비이온성 계면활성제에 비하여 온도의 영향을 받지 않으므로, 환경보존과 안전에 유용한 계면활성제로 활용될 것으로 기대되고 있다. In the present invention, an elastic liposome was prepared by using polyglyceryl-2 caprate (PGL-2-caprate) and polyglyceryl-10 stearate (PGL-10-stearate), which are natural surfactants that do not irritate the skin, as an edge activator. As an example, taxifolin and taxifolin tetra octanoate were loaded and the loading efficiency and properties were compared. PGL-2-caprate is a natural nonionic surfactant derived from coconut and is an ester of capric acid and diglycerin. It helps to soften the skin and is known for its excellent moisturizing power. PGL-10-stearate is an ester of polyglycerin-10 and stearic acid. Compared to PGL-2-caprate, PGL-10-stearate has a higher number of glycerin and more carbon atoms in the hydrophobic tail. These two surfactants are polyglycerin fatty acid esters (PGFE), which are widely used in foods, cosmetics, toiletries, etc., and are not affected by temperature compared to the existing polyoxyethylene-based nonionic surfactants, thus preserving the environment. It is expected to be used as a useful surfactant for safety and safety.

본 발명에서는 두 개의 계면활성제를 edge activator로 이용한 탄성리포좀을 제조하였고, 이에 taxifolin 및 그 유도체인 taxifolin tetra octanoate를 담지하여 사이즈, 제타포텐셜, 안정성, 포집효율, 가변형률 등의 성질 및 형태학적 관찰을 통해 비교하였으며, in vitro 피부 투과 연구를 통해 taxifolin 및 그 유도체인 taxifolin tetra octanoate의 경피 전달을 증대시키고자 하였다.In the present invention, an elastic liposome was prepared using two surfactants as edge activators, and by supporting taxifolin and its derivative, taxifolin tetra octanoate, properties and morphological observations such as size, zeta potential, stability, collection efficiency, and variable form factor were observed. Through in vitro skin permeation studies, we tried to enhance the transdermal delivery of taxifolin and its derivative, taxifolin tetra octanoate.

본 발명에서는 taxifolin 및 taxifolin tetra octanoate의 피부 투과를 증진시키기 위하여 천연 계면활성제인 polyglyceryl-2 caprate 및 polyglyceryl-10 stearate와 PC 그리고 콜레스테롤을 이용하여 탄성리포좀을 제조하였고, 여러 가지 물리적 특성과 in vitro 피부 투과능을 평가하였다. Polyglyceryl-2 caprate를 이용한 탄성 리포좀들의 입자사이즈는 64.70 ~ 91.30 nm였으며, 포집효율은 77.94 ~ 79.44%, 가변형률은 11.46 ~ 17.97로 나타났다. polyglyceryl-10 stearate를 이용한 탄성 리포좀은 90.20 ~ 110.70 nm로 포집효율은 77.87 ~ 78.96%, 가변형률은 11.34 ~ 14.79로 나타났다. Taxifolin과 taxifolin tetra octanoate을 담지한 리포좀의 포집효율을 비교하였을때, taxifolin tetra octanoate를 담지할 경우 포집효율과 가변형성이 증가하였다. 높은 포집효율, 안정성, 가변형성을 갖는 CDLT3, CDLTO3 SDLT3 그리고 SDLTO3를 최종적으로 선정하여 결정화도 및 피부투과발명를 진행하였다. 계면활성제 종류 및 담지된 약물의 종류에 따른 결정화도는 DSC를 이용하여 비교하였으며 CDLTO3에서 7.55 ℃로 가장 작은 융점을 나타내 가변형률이 가장 크게 나타났던 결과와 일치하였다. 또한 리포좀들의 형태학적 관찰을 위해 TEM을 이용하여 측정한 결과 구형의 형태를 가진 리포좀들이 잘 형성되었음을 확인하였다. Franz cell을 이용하여 리포좀에 담지된 taxifolin 및 taxifolin tetra octanoate의 피부 투과 발명를 진행한 결과, 탄성 리포좀인 CDLT3와 SDLT3 그리고 CDLTO3와 SDLTO3의 경우 1,3 BG 및 일반 리포좀에 비해 유효성분의 피부 흡수가 증진되었다. 특히 CDLTO3에 담지된 taxifolin tetra octanoate의 각질층(Tape), 표피 및 진피층(Skin)에 존재하는 양 그리고 피부 전체(Transdermal)를 투과한 양은 7.90, 60.11, 73.43 μg/cm3으로 가장 큰 투과 양을 나타냈다. 결론적으로 polyglyceryl-2 caprate와 polyglyceryl-10 stearate를 이용한 탄성 리포좀은 taxifolin 및 taxifolin tetra octanoate를 비롯한 다양한 유효 성분들의 효율적인 피부 전달을 위한 전달체가 될 수 있음을 시사한다.In the present invention, an elastic liposome was prepared using natural surfactants polyglyceryl-2 caprate and polyglyceryl-10 stearate, PC, and cholesterol to enhance skin penetration of taxifolin and taxifolin tetra octanoate, and various physical properties and in vitro skin penetration The ability was evaluated. The particle size of elastic liposomes using polyglyceryl-2 caprate was 64.70 ~ 91.30 nm, the collection efficiency was 77.94 ~ 79.44%, and the variable rate was 11.46 ~ 17.97. The elastic liposome using polyglyceryl-10 stearate was 90.20 ~ 110.70 nm, the collection efficiency was 77.87 ~ 78.96%, and the variation rate was 11.34 ~ 14.79. When comparing the capture efficiencies of liposomes loaded with taxifolin and taxifolin tetra octanoate, the capture efficiency and variability were increased when taxifolin tetra octanoate was loaded. CDLT3, CDLTO3 SDLT3, and SDLTO3, which have high collection efficiency, stability, and variability, were finally selected and the crystallinity and skin permeation invention were proceeded. The degree of crystallinity according to the type of surfactant and the type of drug supported was compared using DSC, and CDLTO3 showed the smallest melting point at 7.55 ℃, which was consistent with the result showing the largest variable form ratio. In addition, as a result of measurement using TEM for morphological observation of liposomes, it was confirmed that liposomes having a spherical shape were well formed. As a result of the invention of skin permeation of taxifolin and taxifolin tetra octanoate carried on liposomes using Franz cells, in the case of elastic liposomes CDLT3 and SDLT3, and CDLTO3 and SDLTO3, skin absorption of active ingredients is improved compared to 1,3 BG and general liposomes. Became. In particular, the amount of taxifolin tetra octanoate supported on CDLTO3 in the stratum corneum (Tape), epidermis and dermis (Skin), and the amount that penetrated the entire skin (Transdermal) was 7.90, 60.11, 73.43 μg/cm 3 , showing the largest amount of penetration. . In conclusion, it is suggested that elastic liposomes using polyglyceryl-2 caprate and polyglyceryl-10 stearate can be a delivery vehicle for efficient skin delivery of various active ingredients including taxifolin and taxifolin tetra octanoate.

본 발명에서는 taxifolin 및 taxifolin tetra octanoate의 피부 투과를 증진시키기 위하여 천연 계면활성제인 PGL-2 caprate 및 PGL-10 stearate를 edge activator로 사용하여 탄성리포좀을 제조하였고, 물리적 성질과 사람 피부에서의 약물 투과 양을 비교한 결과, 제조된 탄성 리포좀들의 안정성은 매우 높았으며, 특히 CDLT3, SDLT3, SDLTO3, SDLTO3의 입자사이즈는 0주차와 4주차의 사이즈 변화폭이 작아 안정성이 가장 크게 나타났고, Taxifolin과 taxifolin tetra octanoate을 담지한 리포좀의 포집효율을 비교하였을 때, taxifolin tetra octanoate를 담지할 경우 포집효율이 증가하였으며, 두 종류의 계면활성제를 이용한 탄성 리포좀의 포집효율은 PGL-2 caprate를 이용할 경우 더 증가하였다.In the present invention, an elastic liposome was prepared using natural surfactants PGL-2 caprate and PGL-10 stearate as edge activators in order to enhance the skin penetration of taxifolin and taxifolin tetra octanoate, and physical properties and drug penetration amount in human skin As a result of comparing the results, the stability of the prepared elastic liposomes was very high.In particular, the particle sizes of CDLT3, SDLT3, SDLTO3, and SDLTO3 showed the greatest stability due to the small size change at week 0 and week 4. Taxifolin and taxifolin tetra octanoate When comparing the trapping efficiency of liposomes carrying, the trapping efficiency was increased when taxifolin tetra octanoate was supported, and the trapping efficiency of elastic liposomes using two types of surfactants was further increased when PGL-2 caprate was used.

결론적으로 PGL-2 caprate와 PGL-10 stearate를 이용한 탄성 리포좀은 taxifolin 및 taxifolin tetra octanoate를 비롯한 다양한 유효 성분들의 효율적인 피부 전달을 위한 전달체가 될 수 있음을 시사한다.In conclusion, it is suggested that elastic liposomes using PGL-2 caprate and PGL-10 stearate can be a delivery vehicle for efficient skin delivery of various active ingredients including taxifolin and taxifolin tetra octanoate.

도 1a와 b는 각각 taxifolin 및 taxifolin tetra octanoate의 구조를 나타낸 그림,
도 2는 (a) taxifolin 및 (b) taxifolin tetra octanoate를 포함하는 탄성 리포좀의 안정성을 나타낸 그림,
도 3은 taxifolin 및 taxifolin tetra octanoate를 포함하는 탄성 리포좀의 캡슐화 효율을 나타낸 그림, CDLT, CDLTO : polyglyceryl-2 caprate deformable liposomes, SDLT, SDLTO : polyglyceryl-10 stearate deformable liposomes.
도 4는 일반 리포좀(LT, LTO) 및 탄성 리포좀(CDLT3, CDLTO3, SDLT3, SDLTO3)의 DSC 써모그램을 나타낸 그림,
도 5는 (a) LT, (b) CDLT3, (c) SDLT3, (d) LTO, (e) CDLTO3, (f) SDLTO3의 TEM 이미지,
도 6은 1,3-butylene glycol 용액(1,3-BG), 일반 리포좀(LT, LTO) 및 탄성 리포좀 (CDLT3, SDLT3, CDLTO3, SDLTO3)을 통한 taxifolin 및 taxifolin tetra octanoate 의 인비트로 피부 투과를 나타낸 그림,
도 7은 1,3-butylene glycol 용액(1,3-BG), 일반 리포좀(LT, LTO) 및 탄성 리포좀 (CDLT3, SDLT3, CDLTO3, SDLTO3)에서 taxifolin 및 taxifolin tetra octanoate의 24시간 후 투과 비율(%)를 나타낸 그림. (Tape: 각질층, Skin: 표피 및 진피, Transdermal: 피부를 통한 투과).
1a and b are diagrams showing the structures of taxifolin and taxifolin tetra octanoate, respectively,
Figure 2 is a picture showing the stability of elastic liposomes containing (a) taxifolin and (b) taxifolin tetra octanoate,
3 is a diagram showing the encapsulation efficiency of elastic liposomes containing taxifolin and taxifolin tetra octanoate, CDLT, CDLTO: polyglyceryl-2 caprate deformable liposomes, SDLT, SDLTO: polyglyceryl-10 stearate deformable liposomes.
Figure 4 is a picture showing the DSC thermograms of normal liposomes (LT, LTO) and elastic liposomes (CDLT3, CDLTO3, SDLT3, SDLTO3),
5 is a TEM image of (a) LT, (b) CDLT3, (c) SDLT3, (d) LTO, (e) CDLTO3, (f) SDLTO3,
Figure 6 is a 1,3-butylene glycol solution (1,3-BG), normal liposomes (LT, LTO) and elastic liposomes (CDLT3, SDLT3, CDLTO3, SDLTO3) through the in vitro skin penetration of taxifolin and taxifolin tetra octanoate Shown picture,
7 is a 1,3-butylene glycol solution (1,3-BG), normal liposomes (LT, LTO) and elastic liposomes (CDLT3, SDLT3, CDLTO3, SDLTO3) in the permeation ratio of taxifolin and taxifolin tetra octanoate after 24 hours ( %). (Tape: stratum corneum, Skin: epidermis and dermis, Transdermal: penetration through the skin).

이하 비한정적인 실시예를 통하여 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail through non-limiting examples.

L-α-phosphatidylcholine (from egg yolk, ≥ 99.0%), cholesterol 및 인산 완충 용액에 사용한 sodium phosphate monobasic (NaH2PO4·2H2O) 및 sodium phosphate dibasic (Na2HPO4·2H2O)는 모두 Sigma-Aldrich Co. (St. Louis, MO, USA)에서 구입하였다. PGL-2-caprate, taxifolin, 및 taxifolin tetra octanoate는 여명바이오켐에서 제공받았다. Ethanol, methanol 및 chloroform과 같은 용매들은 Daejung Chemical Co., Ltd (Korea)의 제품을 사용하였고, 증류수는 Milli-Q로 정제하여 사용하였다.L-α-phosphatidylcholine (from egg yolk, ≥ 99.0%), sodium phosphate monobasic (NaH 2 PO 4 2H 2 O) and sodium phosphate dibasic (Na 2 HPO 4 2H 2 O) used in cholesterol and phosphate buffer solutions All Sigma-Aldrich Co. (St. Louis, MO, USA). PGL-2-caprate, taxifolin, and taxifolin tetra octanoate were provided by Yeomyeong Biochem. Solvents such as ethanol, methanol and chloroform were manufactured by Daejung Chemical Co., Ltd (Korea), and distilled water was purified with Milli-Q.

실시예Example 1:탄성1: elasticity 리포좀의Liposomal 제조 Produce

탄성 리포좀의 제조는 얇은 막 수화법을 이용하였으며, 그 구성성분과 조성은 표 1에 나타내었다. 콜레스테롤은 리포좀의 안정성을 증대시키기 위하여 첨가하였다. 먼저, 표 1의 구성성분을 용매인 클로로포름-메탄올 (4 : 1) 25 mL에 완전히 용해될 때까지 녹인 후 회전증발농축기를 이용하여 용매를 완전히 제거한 후 필름을 형성시켰다. 형성된 필름에 10 mL의 인산완충용액(phosphate buffer, PB, pH 7.4)을 첨가하여 수화시킨 다음 probe sonicator를 이용하여 5 min 간 균질화시켰다. 그 다음 1.2 μm filter (Minisart CA 26 mm)를 통과시켜서 보관하였다. 제조된 리포좀 제형의 PC와 계면활성제 함량은 2.5% (w/v)로 하였다.The elastic liposome was prepared using a thin film hydration method, and its components and compositions are shown in Table 1. Cholesterol was added to increase the stability of liposomes. First, the constituents of Table 1 were dissolved in 25 mL of chloroform-methanol (4:1) as a solvent until completely dissolved, and then the solvent was completely removed using a rotary evaporator to form a film. 10 mL of a phosphate buffer (PB, pH 7.4) was added to the formed film to hydrate and then homogenized for 5 min using a probe sonicator. Then, it was stored by passing through a 1.2 μm filter (Minisart CA 26 mm). The content of PC and surfactant in the prepared liposome formulation was 2.5% (w/v).

Molar ratioMolar ratio PC : S : CholPC: S: Chol Taxifolin (mM)Taxifolin (mM) Taxifolin tetra octanoate (mM)Taxifolin tetra octanoate (mM) LTLT 10 : 0 : 510: 0: 5 0.50.5 -- DLT1DLT1 9 : 1 : 4.59: 1: 4.5 0.50.5 -- DLT2DLT2 8 : 2 : 48: 2: 4 0.50.5 -- DLT3DLT3 7 : 3 : 3.57: 3: 3.5 0.50.5 -- DLT4DLT4 6 : 4 : 36: 4: 3 0.50.5 -- LTOLTO 10 : 0 : 510: 0: 5 -- 0.50.5 DLTO1DLTO1 9 : 1 : 4.59: 1: 4.5 -- 0.50.5 DLTO2DLTO2 8 : 2 : 48: 2: 4 -- 0.50.5 DLTO3DLTO3 7 : 3 : 3.57: 3: 3.5 -- 0.50.5 DLTO4DLTO4 6 : 4 : 36: 4: 3 -- 0.50.5

표 1은 탄성 리포좀의 조성을 나타내고, S : polyglyceryl-2 caprate or polyglyceryl-10 stearate.Table 1 shows the composition of the elastic liposome, S: polyglyceryl-2 caprate or polyglyceryl-10 stearate.

실시예Example 2: 입자 사이즈 및 제타 2: particle size and zeta 포텐셜Potential

리포좀의 입자 사이즈는 dynamic light scattering(Otsuka ELS-Z2, Otsuka Electronics, Japan)을 이용하여 측정하였다. 측정 온도는 25 ℃, 산란각은 165°, 광원으로는 argon 레이저를 사용하였다. 평균 입자 크기는 cumulative 분석법으로 나타내었고 분포도는 contin 법을 이용하여 해석하였다. 입자 사이즈는 70번씩 3회를 측정하여 평균을 나타내었다. 제타 포텐셜은 zetasizer (Otsuka ELS-Z2, Otsuka Electronics, Japan)를 이용하였으며 10번씩 3회 측정하였다.The particle size of the liposome was measured using dynamic light scattering (Otsuka ELS-Z2, Otsuka Electronics, Japan). The measurement temperature was 25°C, the scattering angle was 165°, and an argon laser was used as a light source. The average particle size was expressed by the cumulative analysis method and the distribution was analyzed by the contin method. The particle size was measured three times each 70 times and indicated the average. The zeta potential was measured 3 times each 10 times using a zetasizer (Otsuka ELS-Z2, Otsuka Electronics, Japan).

실시예Example 3: 탄성 3: elastic 리포좀의Liposomal 안정성 stability

제조된 리포좀 제형들의 안정성을 확인하기 위해 리포좀 현탁액을 4주간 4 ℃에서 보관하며 관찰하였다. 4주간 입자 크기, 다분산 지수(polydispersity index, P.I.)값의 변화를 측정하였으며 침전 형성의 여부를 관찰하였다. 입자 크기, P.I. 값 및 제타 포텐셜 측정은 앞서 언급한 방법과 동일하게 진행하였다.In order to confirm the stability of the prepared liposome formulations, the liposome suspension was stored at 4° C. for 4 weeks and observed. Changes in particle size and polydispersity index (P.I.) values for 4 weeks were measured, and the formation of precipitates was observed. Particle size, P.I. The measurement of the value and the zeta potential was performed in the same manner as the aforementioned method.

실시예Example 4: 약물 4: drugs 포집Capture 효율 efficiency

담지되지 않은 약물은 0.45 μm 필터를 이용해 제거한 후, 리포좀 현탁액 1 mL를 취하여 에탄올 10 mL를 넣고, sonicate하여 리포좀 막을 파괴시킨다. 회전 증발기를 이용하여 용매를 증발시킨 후 약물을 1 mL 에탄올에 다시 녹인다. 약물의 농도는 UV-vis spectrometer를 이용하여 UV wavelength nm에서 측정하였고, 표준용액을 이용하여 농도별 약물의 표준 검정 곡선을 작성한 후 포집된 약물의 농도를 산출하였다. 이 때 얻은 값을 식 (1)에 대입하여 리포좀의 포집 효율을 계산하였다.After removing the unsupported drug using a 0.45 μm filter, take 1 mL of the liposome suspension, add 10 mL of ethanol, and sonicate to destroy the liposome membrane. After evaporating the solvent using a rotary evaporator, the drug is dissolved again in 1 mL ethanol. The concentration of the drug was measured at UV wavelength nm using a UV-vis spectrometer, and a standard calibration curve of the drug by concentration was created using a standard solution, and the concentration of the collected drug was calculated. The value obtained at this time was substituted into Equation (1) to calculate the capture efficiency of liposomes.

Entrapment efficiency(%) =

Figure pat00001
× 100 (1)Entrapment efficiency(%) =
Figure pat00001
× 100 (1)

Ci: 처음 넣어준 약물의 농도C i : Concentration of the first drug

Ce: 포집된 약물의 농도C e : Concentration of captured drug

실시예Example 5: 5: 가변형률Variable rate 측정 Measure

제조된 탄성 리포좀의 가변형성 평가를 위해 mini extruder를 사용하여 탄성 리포좀이 인공 투과장벽을 통과하는 정도를 측정하였다. 탄성리포좀을 0.2MPa의 압력을 1분간 가했을 때 0.08 um 크기의 기공을 갖는 polycarbonate membrane을 통과하여 나온 리포좀액의 양을 측정하고 membrane을 통과한 리포좀 입자 크기를 측정하였다. 탄성 리포좀 막의 탄성 값은 식(1)에 비례한다.To evaluate the variability of the prepared elastic liposomes, a mini extruder was used to measure the degree to which the elastic liposomes pass through the artificial permeation barrier. When a pressure of 0.2 MPa was applied to the elastic liposome for 1 minute, the amount of liposome liquid that passed through the polycarbonate membrane having a pore size of 0.08 um was measured, and the size of the liposome particles passed through the membrane was measured. The elasticity value of the elastic liposome membrane is proportional to Equation (1).

Deformability index = JFlux X

Figure pat00002
(1)Deformability index = J Flux X
Figure pat00002
(One)

JFlux : membrane을 통과한 리포좀의 양J Flux : The amount of liposome that has passed through the membrane

rv : extrusion 후 리포좀의 입자 크기rv: particle size of liposome after extrusion

rp : membrane의 기공 크기rp: pore size of membrane

실시예Example 6: 탄성 6: elastic 리포좀의Liposomal 결정화도 ( Crystallinity ( DSCDSC ))

리포좀의 결정화도를 평가하기 위해 시차주사 열량계 (Differential Scanning Calorimetry, DSC-60)를 이용하여 일반리포좀(TL, TLO)와 탄성리포좀들의 전이 엔탈피 (ΔH°)와 피크 온도(Tpeak)를 비교하였다. Nitrogen 존재 하에 100 ml/min의 Flow rate로 측정하였다. In order to evaluate the crystallinity of liposomes, the transition enthalpy (ΔH°) and the peak temperature (T peak ) of general liposomes (TL, TLO) and elastic liposomes were compared using a differential scanning calorimetry (DSC-60). It was measured at a flow rate of 100 ml/min in the presence of Nitrogen.

실시예Example 7: 형태학적 관찰 7: Morphological observation

제조된 탄성 리포좀의 형태학적 관찰을 위해 transmission electron microscopy (TEM) (JEOL Ltd., Tokyo, Japan)을 이용하였다. 샘플을 200-mesh copper grid에 2분간 흡착시키고, 0.2% (w/v%) phosphotungstic acid 용액으로 45s간 염색시킨 후 건조시켰다. 분석은 80 kV에서 수행되었다. Transmission electron microscopy (TEM) (JEOL Ltd., Tokyo, Japan) was used for morphological observation of the prepared elastic liposome. The sample was adsorbed on a 200-mesh copper grid for 2 minutes, dyed with 0.2% (w/v%) phosphotungstic acid solution for 45s and dried. Analysis was performed at 80 kV.

실시예Example 8: 탄성 8: elastic 리포좀의Liposomal In Vitro 피부 투과 발명 Invention of In Vitro skin penetration

약물을 포집한 유사 세라마이드 리포좀의 in vitro 피부투과 발명는 Franz diffusion cells (permegear, USA)를 이용하여 수행하였다. 실험에는 피하지방과 과도한 조직들이 제거된 52세 남성의 등 피부를 사용하였다. Donor와 receptor phase 사이에 각질층이 위로 향하도록 피부를 고정시켰다. Receptor chamber에 receptor phase (HCO-60 : EtOH : PBS = 2 : 20 : 78, weight ratio)를 채우고 24 h 동안 150 rpm으로 교반하였다. 항온수조를 이용하여 온도는 37 ℃로 유지하였다. 대조군으로는 1,3-BG/PB에 동일 농도로 용해시킨 약물 용액을 각각 사용하였다. Donor compartment 내 피부에 동일한 농도의 리포좀을 처리하였다. 각 시간당 sampling port를 통해 receptor phase를 채취하였다. 24h 후, 각질층과 피부가 함유하고 있는 약물의 양을 측정하기 위해 피부의 표면을 PBS 용액으로 세척한 후, 각질층을 3 M scotch tape (Korea 3M)를 이용하여 stripping 방법으로 3회 제거하였다. 이 후 tape와 피부 내에 있는 약물은 각각 100% 에탄올로 sonication을 이용하여 용해시켰다. 채취된 약물의 농도는 UV/Vis 분광 광도계를 이용하여 측정하였다.Invention of in vitro skin permeation of drug-captured ceramide liposomes was carried out using Franz diffusion cells (permegear, USA). In the experiment, the back skin of a 52-year-old male with subcutaneous fat and excess tissue removed was used. The skin was immobilized with the stratum corneum facing up between the donor and receptor phases. Receptor phase (HCO-60: EtOH: PBS = 2: 20: 78, weight ratio) was filled in the receptor chamber and stirred at 150 rpm for 24 h. The temperature was maintained at 37 °C using a constant temperature water bath. As a control, a drug solution dissolved in 1,3-BG/PB at the same concentration was used, respectively. The skin in the donor compartment was treated with the same concentration of liposomes. The receptor phase was collected through the sampling port for each time. After 24h, the surface of the skin was washed with a PBS solution to measure the amount of drug contained in the stratum corneum and the skin, and then the stratum corneum was removed three times by a stripping method using 3 M scotch tape (Korea 3M). After that, the tape and the drug in the skin were each dissolved in 100% ethanol using sonication. The concentration of the collected drug was measured using a UV/Vis spectrophotometer.

상기 실시예의 결과는 하기와 같다.The results of the above example are as follows.

입자사이즈 및 제타 Particle size and zeta 포텐셜Potential

계면활성제인 PGL-2 caprate 와 PGL-10 stearate의 비율을 달리하여 제조한 탄성리포좀에 각각 taxifolin, taxifolin tetra octanoate를 담지하였다. 대조군으로는 taxifolin, taxifolin tetra octanoate을 각각 담지한 일반 리포좀(LT, LTO)을 제조하여 비교하였다(표 1). 제조된 탄성 리포좀의 1일 후 입자사이즈, polydispersity Index (P.I.) 및 제타 포텐셜을 표 2에 나타내었다. PGL-2 caprate를 이용한 탄성 리포좀들의 입자사이즈를 비교해 본 결과, 담지된 약물에 상관없이 계면활성제가 증가할수록 입자사이즈가 감소하는 경향을 나타냈다. 반면 PGL-10 stearate를 이용한 탄성 리포좀은 계면활성제 함량이 증가할수록 사이즈가 커지다가 함량이 최대(40%)가 되었을 때 오히려 감소하였다. 이는 계면활성제의 과량 첨가로 인해 PC로 구성된 지질막이 붕괴된 것으로 사료된다. PGL-2 caprate와 PGL-10 stearate를 이용한 탄성 리포좀을 비교하였을 땐, PGL-10 stearate를 이용한 탄성 리포좀의 입자사이즈가 더 크게 나타났다. 이는 PGL-10 stearate가 PGL-2 caprate에 비해 glycerin 수와 소수성 꼬리부분의 탄소수가 더 많기 때문인 것으로 사료된다. Taxifolin과 taxifolin tetra octanoate를 담지한 탄성 리포좀의 입자사이즈를 비교해 보았을 땐, taxifolin tetra octanoate를 담지한 리포좀의 입자사이즈가 약간씩 더 증가하였다. Taxifolin에 비해 taxifolin tetra octanoate의 분자 크기가 더 크기 때문에 담지된 후 리포좀의 사이즈가 증가된 것으로 사료된다. 리포좀의 P.I. 값은 0.3 이하일 경우 단분산, 0.3 이상일 경우 다분산을 나타내는데, 모든 리포좀의 P.I.는 모두 0.3 이하로 단분산을 나타내었다. Zeta potential은 리포좀의 표면 전하를 나타내며 이 값으로 안정성을 예측할 수 있다. 리포좀들의 zeta potential은 CDLTO4를 제외하고 모두 -25 mV 이하 값을 나타내는 것으로 보아 안정함을 의미한다. 또한 계면활성제의 함량이 증가할수록 이 값은 약간씩 증가하는 경향을 나타냈다.Taxifolin and taxifolin tetra octanoate were supported on elastic liposomes prepared by varying the ratios of surfactants PGL-2 caprate and PGL-10 stearate. As a control group, general liposomes (LT, LTO) each carrying taxifolin and taxifolin tetra octanoate were prepared and compared (Table 1). Table 2 shows the particle size, polydispersity Index (P.I.) and zeta potential after 1 day of the prepared elastic liposome. As a result of comparing the particle size of elastic liposomes using PGL-2 caprate, the particle size tended to decrease as the surfactant increased regardless of the loaded drug. On the other hand, elastic liposomes using PGL-10 stearate increased in size as the surfactant content increased, but decreased when the content reached the maximum (40%). It is believed that the lipid membrane composed of PC was collapsed due to the excessive addition of surfactant. When comparing the elastic liposomes using PGL-2 caprate and PGL-10 stearate, the particle size of the elastic liposomes using PGL-10 stearate was larger. This is thought to be due to the fact that PGL-10 stearate has more glycerin and hydrophobic tail carbons than PGL-2 caprate. When comparing the particle sizes of the elastic liposomes carrying taxifolin and taxifolin tetra octanoate, the particle size of the liposomes carrying taxifolin tetra octanoate increased slightly. Since the molecular size of taxifolin tetra octanoate is larger than that of Taxifolin, it is thought that the size of liposomes increased after loading. Liposomal P.I. A value of 0.3 or less indicates monodispersion, and a value of 0.3 or more indicates polydispersity. Zeta potential represents the surface charge of liposomes, and stability can be predicted from this value. It means that the zeta potential of liposomes is stable as all except CDLTO4 show values below -25 mV. In addition, as the content of the surfactant increased, this value tended to increase slightly.

Particle size
(nm)
Particle size
(nm)
Polydispersity index (P. I.)Polydispersity index (P. I.) Zeta potential (mV)Zeta potential (mV) Entrapment efficiency
(%)
Entrapment efficiency
(%)
LTLT 88.40 ± 0.5088.40 ± 0.50 0.24 ± 0.000.24 ± 0.00 -34.31 ± 2.50-34.31 ± 2.50 78.03 ± 0.0278.03 ± 0.02 CDLT1CDLT1 87.80 ± 0.2087.80 ± 0.20 0.24 ± 0.010.24 ± 0.01 -29.45 ± 1.20-29.45 ± 1.20 77.94 ± 0.0377.94 ± 0.03 CDLT2CDLT2 80.10 ± 1.2080.10 ± 1.20 0.24 ± 0.000.24 ± 0.00 -27.92 ± 1.33-27.92 ± 1.33 78.34 ± 0.0478.34 ± 0.04 CDLT3CDLT3 74.70 ± 1.5074.70 ± 1.50 0.24 ± 0.000.24 ± 0.00 -26.42 ± 0.32-26.42 ± 0.32 78.76 ± 0.1278.76 ± 0.12 CDLT4CDLT4 64.70 ± 2.5064.70 ± 2.50 0.23 ± 0.000.23 ± 0.00 -25.41 ± 0.20-25.41 ± 0.20 79.10 ± 0.0979.10 ± 0.09 SDLT1SDLT1 90.20 ± 0.2090.20 ± 0.20 0.19 ± 0.000.19 ± 0.00 -34.87 ± 1.22-34.87 ± 1.22 77.87 ± 0.0277.87 ± 0.02 SDLT2SDLT2 100.60 ± 1.30100.60 ± 1.30 0.20 ± 0.010.20 ± 0.01 -30.29 ± 0.50-30.29 ± 0.50 78.22 ± 0.0478.22 ± 0.04 SDLT3SDLT3 103.20 ± 0.50103.20 ± 0.50 0.22 ± 0.010.22 ± 0.01 -28.57 ± 0.35-28.57 ± 0.35 78.43 ± 0.1778.43 ± 0.17 SDLT4SDLT4 101.60 ± 0.60101.60 ± 0.60 0.22 ± 0.010.22 ± 0.01 -26.22 ± 0.25-26.22 ± 0.25 78.38 ± 0.1378.38 ± 0.13 LTOLTO 91.30 ± 0.3091.30 ± 0.30 0.23 ± 0.010.23 ± 0.01 -35.99 ± 1.23-35.99 ± 1.23 80.23 ± 0.2480.23 ± 0.24 CDLTO1CDLTO1 88.00 ± 0.5088.00 ± 0.50 0.23 ± 0.000.23 ± 0.00 -31.32 ± 0.30-31.32 ± 0.30 79.44 ± 0.0679.44 ± 0.06 CDLTO2CDLTO2 81.80 ± 0.2081.80 ± 0.20 0.22 ± 0.010.22 ± 0.01 -27.42 ± 0.52-27.42 ± 0.52 79.29 ± 0.0479.29 ± 0.04 CDLTO3CDLTO3 75.50 ± 1.3075.50 ± 1.30 0.25 ± 0.010.25 ± 0.01 -25.23 ± 0.32-25.23 ± 0.32 79.17 ± 0.0879.17 ± 0.08 CDLTO4CDLTO4 70.00 ± 0.3070.00 ± 0.30 0.26 ± 0.000.26 ± 0.00 -22.86 ± 0.26-22.86 ± 0.26 78.84 ± 0.0678.84 ± 0.06 SDLTO1SDLTO1 95.50 ± 0.2095.50 ± 0.20 0.21 ± 0.010.21 ± 0.01 -30.12 ± 0.22-30.12 ± 0.22 78.67 ± 0.0978.67 ± 0.09 SDLTO2SDLTO2 109.60 ± 1.20109.60 ± 1.20 0.22 ± 0.020.22 ± 0.02 -29.35 ± 0.13-29.35 ± 0.13 78.73 ± 0.0478.73 ± 0.04 SDLTO3SDLTO3 110.70 ± 1.50110.70 ± 1.50 0.23 ± 0.010.23 ± 0.01 -28.23 ± 0.35-28.23 ± 0.35 78.96 ± 0.0178.96 ± 0.01 SDLTO4SDLTO4 103.40 ± 0.50103.40 ± 0.50 0.23 ± 0.000.23 ± 0.00 -27.56 ± 0.55-27.56 ± 0.55 78.66 ± 0.1078.66 ± 0.10 CDLT : Taxifolin loaded polyglyceryl-2 caprate deformable liposomes, SDLT : Taxifolin loaded polyglyceryl-10 stearate deformable liposomes, CDLTO : Taxifolin tetra octanoate loaded polyglyceryl-2 caprate deformable liposomes, SDLTO : Taxifolin tetra octanoate loaded polyglyceryl-10 stearate deformable liposomes.CDLT: Taxifolin loaded polyglyceryl-2 caprate deformable liposomes, SDLT: Taxifolin loaded polyglyceryl-10 stearate deformable liposomes, CDLTO: Taxifolin tetra octanoate loaded polyglyceryl-2 caprate deformable liposomes, SDLTO: Taxifolin tetra octanoate loaded polyglyceryl-10 stearate deformable liposomes.

표 2는 탄성 리포좀의 평균 입자 크기, 다분산 지수, Zeta Potential, 및 포집 효율을 나타낸 표Table 2 is a table showing the average particle size, polydispersity index, Zeta Potential, and collection efficiency of elastic liposomes.

리포좀의Liposomal 안정성 stability

제조된 탄성 리포좀의 안정성을 평가하기 위하여 4주간 4 ℃에서 보관 후 리포좀의 입자사이즈 변화를 측정하였다(도 2). 일반적으로 리포좀이 불안정할 경우 입자들이 서로 응집되어 평균 입자사이즈가 커지게 된다. 4주 후 리포좀들의 입자사이즈는 약간 증가했을 뿐 큰 변화는 보이지 않았으며, 제타 포텐셜 또한 절대값이 약간 증가한 것으로 보아 리포좀들의 안정성이 매우 높음을 확인하였다. 특히 CDLT3, SDLT3, SDLTO3, SDLTO3의 입자사이즈는 0주차 (74.70, 103.20, 75.50, 110.70 nm), 4주차 (74.80, 104.30, 75.90, 111.80 nm)로 변화폭이 작아 안정성이 가장 크게 나타났다.In order to evaluate the stability of the prepared elastic liposome, the change in particle size of the liposome was measured after storage at 4°C for 4 weeks (FIG. 2). In general, when the liposome is unstable, the particles aggregate with each other to increase the average particle size. After 4 weeks, the particle size of the liposomes slightly increased, but there was no significant change, and the absolute value of the zeta potential was also slightly increased, confirming that the stability of the liposomes was very high. Particularly, the particle size of CDLT3, SDLT3, SDLTO3, and SDLTO3 showed the greatest stability due to small changes in week 0 (74.70, 103.20, 75.50, 110.70 nm) and week 4 (74.80, 104.30, 75.90, 111.80 nm).

약물 drug 포집Capture 효율 efficiency

Taxifolin과 taxifolin tetra octanoate가 담지된 탄성 리포좀들의 약물 포집효율(encapsulation efficiency)을 표 2, 도 3에 나타내었다. Taxifolin을 담지한 일반 리포좀(LT)의 포집효율은 78.03%였으며, taxifolin을 담지한 PGL-2 caprate 탄성 리포좀(CDLT)의 경우 계면활성제가 증가할수록 그 값이 증가하였다. 반면 taxifolin tetra octanoate를 담지한 일반 리포좀(LTO)의 경우 80.23%로 증가된 포집효율을 나타냈으며, PGL-2 caprate 탄성 리포좀(CDLTO)은 계면활성제가 증가할수록 그 값이 감소하였다. PGL-10 stearate을 이용한 탄성 리포좀(SDLT, SDLTO)의 경우 계면활성제 함량이 증가할수록 포집효율이 증가하다가 최대함량(40%)의 계면활성제를 이용한 리포좀(SDLT4, SDLTO4)에서 78.38, 78.66%로 다시 감소하였다. 이는 과량의 계면활성제로 인해 형성된 마이셀이 약물을 용매에 분산시켜 상대적으로 약물의 포집효율이 감소되는 것으로 사료된다.Tables 2 and 3 show the drug encapsulation efficiency of elastic liposomes loaded with taxifolin and taxifolin tetra octanoate. The trapping efficiency of general liposomes (LT) carrying taxifolin was 78.03%, and the value of PGL-2 caprate elastic liposomes (CDLT) carrying taxifolin increased as the surfactant increased. On the other hand, in the case of general liposome (LTO) carrying taxifolin tetra octanoate, the collection efficiency increased to 80.23%, and the value of PGL-2 caprate elastic liposome (CDLTO) decreased as the surfactant increased. In the case of elastic liposomes (SDLT, SDLTO) using PGL-10 stearate, the collection efficiency increases as the surfactant content increases, and then in the liposomes (SDLT4, SDLTO4) using the maximum content (40%) of surfactants to 78.38, 78.66% again. Decreased. It is believed that the micelles formed due to an excessive amount of surfactant disperse the drug in the solvent, resulting in a relatively reduced drug capture efficiency.

가변형률Variable rate

가변형성이 클수록 리포좀이 탄성으로 인해 피부 각질층을 쉽게 통과할 수 있으며, 이는 유효 성분을 피부 깊숙이 전달할 수 있다는 장점이 있다. 리포좀들의 가변형성을 평가하기 위해 extrusion method를 이용하였으며, 식(1)을 이용하여 Deformability Index를 측정하였다 (표 3). LT및 LTO의 deformability Index는 각각 6.40, 6.79로 나타났다. 반면 탄성리포좀들의 deformability index는 일반 리포좀보다 약2배정도 높게 나타났다. 특히 CDLTO가 가장 높은 deformability index를 나타냈으며, 다음으로 SDLTO, CDLT, SDLT순으로 나타났다. 또한 이 값은 PGL-2 caprate를 이용한 탄성 리포좀에서는 계면활성제 함량이 증가할수록 증가하였으며, PGL-10 stearate를 이용한 탄성 리포좀에서는 계면활성제 함량에 따라 증가하다가 최대 계면활성제 함량(SDLT4, SDLTO4)에서 오히려 감소하는 경향을 나타냈다. 이러한 결과들과 포집효율, 안정성을 고려하여 높은 가변형성 및 안정성을 갖는 CDLT3, CDLTO3 SDLT3 그리고 SDLTO3를 최종적으로 선정하여 결정화도 및 피부투과 연구를 진행하였다.The greater the variability, the more easily the liposome can pass through the stratum corneum of the skin due to its elasticity, which has the advantage of being able to deliver the active ingredient deep into the skin. To evaluate the variability of liposomes, an extrusion method was used, and the Deformability Index was measured using Equation (1) (Table 3). The deformability index of LT and LTO were 6.40 and 6.79, respectively. On the other hand, the deformability index of elastic liposomes was about 2 times higher than that of general liposomes. In particular, CDLTO showed the highest deformability index, followed by SDLTO, CDLT, and SDLT. In addition, this value increased with increasing surfactant content in the elastic liposome using PGL-2 caprate, and increased with the surfactant content in the elastic liposome using PGL-10 stearate, but rather decreased in the maximum surfactant content (SDLT4, SDLTO4). Showed a tendency to do. In consideration of these results, collection efficiency, and stability, CDLT3, CDLTO3 SDLT3 and SDLTO3 with high variability and stability were finally selected to conduct crystallinity and skin permeation studies.

Deformability indexDeformability index Deformability indexDeformability index LTLT 6.40 ± 0.126.40 ± 0.12 LTOLTO 6.79 ± 0.016.79 ± 0.01 CDLT1CDLT1 11.46 ± 0.1511.46 ± 0.15 CDLTO1CDLTO1 11.67 ± 0.3611.67 ± 0.36 CDLT2CDLT2 12.94 ± 0.1912.94 ± 0.19 CDLTO2CDLTO2 13.27 ± 0.2413.27 ± 0.24 CDLT3CDLT3 14.58 ± 0.2014.58 ± 0.20 CDLTO3CDLTO3 14.92 ± 0.1314.92 ± 0.13 CDLT4CDLT4 17.33 ± 0.0917.33 ± 0.09 CDLTO4CDLTO4 17.97 ± 0.1917.97 ± 0.19 SDLT1SDLT1 11.34 ± 0.5011.34 ± 0.50 SDLTO1SDLTO1 11.46 ± 0.3311.46 ± 0.33 SDLT2SDLT2 12.13 ± 0.2312.13 ± 0.23 SDLTO2SDLTO2 12.82 ± 0.2112.82 ± 0.21 SDLT3SDLT3 13.99 ± 0.2213.99 ± 0.22 SDLTO3SDLTO3 14.79 ± 0.1214.79 ± 0.12 SDLT4SDLT4 12.55 ± 0.3512.55 ± 0.35 SDLTO4SDLTO4 13.56 ± 0.5213.56 ± 0.52 CDLT : Taxifolin loaded polyglyceryl-2 caprate deformable liposomes, SDLT : Taxifolin loaded polyglyceryl-10 stearate deformable liposomes, CDLTO : Taxifolin tetra octanoate loaded polyglyceryl-2 caprate deformable liposomes, SDLTO : Taxifolin tetra octanoate loaded polyglyceryl-10 stearate deformable liposomes.CDLT: Taxifolin loaded polyglyceryl-2 caprate deformable liposomes, SDLT: Taxifolin loaded polyglyceryl-10 stearate deformable liposomes, CDLTO: Taxifolin tetra octanoate loaded polyglyceryl-2 caprate deformable liposomes, SDLTO: Taxifolin tetra octanoate loaded polyglyceryl-10 stearate deformable liposomes.

표 3은 일반 리포좀 (LT, LTO) 및 탄성 리포좀의 가변형율을 나타낸 표Table 3 is a table showing the variation ratio of general liposomes (LT, LTO) and elastic liposomes

탄성 Shout 리포좀의Liposomal 결정화도 ( Crystallinity ( DSCDSC ))

리포좀에 첨가된 계면활성제는 지질간 결합을 방해하여 결정화도를 감소시킨다. 이는 리포좀 지질막의 유동성을 증가시켜 리포좀의 가변형성이 증가됨을 의미한다. 따라서 계면활성제 종류 및 담지된 약물의 종류에 따른 결정화도 변화를 비교하고자 DSC를 이용하여 일반리포좀(LT, LTO)과 탄성리포좀들(CDLT3, CDLTO3, SDLT3, SDLTO3)의 전이 엔탈피 (△H°) 및 피크 온도(Tpeak)를 비교하였다(도 4).Surfactants added to liposomes reduce the degree of crystallinity by interfering with the binding between lipids. This means that the variability of liposomes is increased by increasing the fluidity of the liposome lipid membrane. Therefore, to compare the change in crystallinity according to the type of surfactant and the type of drug supported, the transition enthalpy (△H°) of general liposomes (LT, LTO) and elastic liposomes (CDLT3, CDLTO3, SDLT3, SDLTO3) and The peak temperature (T peak ) was compared (FIG. 4).

LT 및 LTO의 전이엔탈피 (△H°)는 각각 45.27, 48.26 cal/g, 그리고 피크 온도(Tpeak)는 8.35, 8.70 °C로 나타났다. 피크 온도는 SDLT3, CDLT3, SDLTO3, CDLTO3 순으로 감소하였으며, CDLTO3에서 7.55 °C로 가장 낮게 나타났다. 따라서 계면활성제에 의한 리포좀의 융점감소가 결정화도를 약화시켜 리포좀의 막유동성이 증가되고, 이로 인해 리포좀의 가변형성이 증가됨을 확인하였다.The transition enthalpy (ΔH°) of LT and LTO were 45.27 and 48.26 cal/g, respectively, and the peak temperatures (Tpeak) were 8.35 and 8.70 °C. The peak temperature decreased in the order of SDLT3, CDLT3, SDLTO3, and CDLTO3, and the lowest was 7.55 °C in CDLTO3. Therefore, it was confirmed that the decrease in the melting point of the liposome by the surfactant weakens the crystallinity, thereby increasing the membrane fluidity of the liposome, and thereby increasing the variability of the liposome.

형태학적 관찰Morphological observation

Taxifolin과 taxifolin tetra octanoate가 담지된 일반 리포좀 및 탄성리포좀들의 형태학적 관찰을 위해 TEM을 이용하여 측정하였다(도 5). 일반 리포좀 및 탄성리포좀들의 입자 사이즈는 dynamic light scattering를 이용하여 측정한 결과와 비슷하였다. TEM images를 통해 구형의 형태를 가진 리포좀들이 잘 형성되었음을 확인하였다. Taxifolin and taxifolin tetra octanoate were measured using TEM for morphological observation of the general liposomes and elastic liposomes supported (FIG. 5). The particle size of general liposomes and elastic liposomes was similar to the results measured using dynamic light scattering. It was confirmed that liposomes having a spherical shape were well formed through TEM images.

Franz Cell을 이용한 In Vitro 피부투과 연구In Vitro skin penetration study using Franz Cell

Franz cell을 이용하여 리포좀에 담지된 taxifolin 및 taxifolin tetra octanoate의 피부 투과 연구를 진행하였다(도 6, 도 7). 시간 별 taxifolin 의 피부 투과 양은 1,3 BG < 일반 리포좀(LT) < PGL-10 stearate 탄성 리포좀 (SDLT3) < PGL-2 caprate 탄성 리포좀(CDLT3)로 나타났다(도 6). 시간 별 taxifolin tetra octanoate의 피부 투과 양은 taxifolin에 비해 현저하게 증가하였으며, 1,3 BG < 일반 리포좀(LTO) < PGL-10 stearate 탄성 리포좀 (SDLTO3) < PGL-2 caprate 탄성 리포좀(CDLTO3)로 나타났다(도 6). 24 h 후 taxifolin와 taxifolin tetra octanoate의 피부 투과 발명에서도 비슷한 경향을 보였다(도 7). Taxifolin의 피부 투과 발명에서 대조군인 1,3 BG의 경우 24 h 후 각질층(Tape), 표피 및 진피층(Skin)에 존재하는 양 그리고 피부 전체(Transdermal)를 투과한 양은 각각 2.51, 16.20, 15.97μg/cm3 이였다. 일반 리포좀(LT)에 담지된 taxifolin의 경우 각질층(Tape), 표피 및 진피층(Skin)에 존재하는 양 그리고 피부 전체(Transdermal)를 투과한 양은 5.50, 23.55, 24.46 μg/cm3 로 1,3 BG에 비해 증가된 약물 투과 양을 나타냈다. 탄성 리포좀인 CDLT3와 SDLT3에 담지된 taxifolin은 1,3 BG 및 일반 리포좀에 담지된 taxifolin에 비해 피부 투과양이 더욱 증가하였다. 특히 CDLT3에 담지된 taxifolin의 각질층(Tape), 표피 및 진피층(Skin)에 존재하는 양 그리고 피부 전체(Transdermal)를 투과한 양은 14.86, 35.53, 36.68 μg/cm3 로 현저하게 증가하였다. 이는 PGL-10 stearate에 비해 PGL-2 caprate를 이용한 탄성 리포좀의 사이즈가 더욱 작기 때문인 것으로 사료된다. Taxifolin tetra octanoate의 피부 투과 연구에서는 전체적으로 taxifolin에 비해 투과 양이 더 증가하였다. 대조군인 1,3 BG의 경우 각질층(Tape), 표피 및 진피층(Skin)에 존재하는 양 그리고 피부 전체(Transdermal)를 투과한 양은 각각 8.81, 30.77, 57.63μg/cm3 이였으며, 일반 리포좀(LTO) 및 탄성 리포좀 (CDLTO3, SDLTO3)에 담지된 taxifolin tetra octanoate의 투과 양은 현저하게 증가하였다. 특히 CDLTO3에 담지된 taxifolin tetra octanoate의 각질층(Tape), 표피 및 진피층(Skin)에 존재하는 양 그리고 피부 전체(Transdermal)를 투과한 양은 7.90, 60.11, 73.43 μg/cm3으로 가장 큰 투과 양을 나타냈다.Skin penetration studies of taxifolin and taxifolin tetra octanoate carried on liposomes were conducted using Franz cells (FIGS. 6 and 7). The skin penetration amount of taxifolin per time was 1,3 BG <normal liposome (LT) <PGL-10 stearate elastic liposome (SDLT3) <PGL-2 caprate elastic liposome (CDLT3) (Fig. 6). The skin penetration amount of taxifolin tetra octanoate over time was significantly increased compared to taxifolin, and 1,3 BG <normal liposome (LTO) <PGL-10 stearate elastic liposome (SDLTO3) <PGL-2 caprate elastic liposome (CDLTO3) was found ( Fig. 6). After 24 h, the skin penetration of taxifolin and taxifolin tetra octanoate showed a similar trend (Fig. 7). In the case of Taxifolin's skin penetration invention, in the case of 1,3 BG, which is a control group, the amount present in the stratum corneum (Tape), epidermis and dermis layer (Skin) after 24 h, and the amount that penetrated the entire skin (Transdermal) was 2.51, 16.20, 15.97 μg/g/, respectively. cm 3 It was this. In the case of taxifolin loaded on a general liposome (LT), the amount present in the stratum corneum (Tape), the epidermis, and the dermal layer (Skin), and the amount that penetrated the entire skin (Transdermal) was 5.50, 23.55, 24.46 μg/cm 3 As compared to 1,3 BG, the amount of drug permeation was increased. The amount of taxifolin loaded on the elastic liposomes CDLT3 and SDLT3 was further increased compared to taxifolin loaded on 1,3 BG and normal liposomes. In particular, the amount of taxifolin supported on CDLT3 in the stratum corneum (Tape), epidermis, and dermis (Skin), and the amount that penetrated the entire skin (Transdermal) was 14.86, 35.53, 36.68 μg/cm 3 Increased significantly. This is thought to be due to the smaller size of elastic liposomes using PGL-2 caprate compared to PGL-10 stearate. In the skin permeation study of Taxifolin tetra octanoate, the amount of permeation was higher than that of taxifolin. In the case of 1,3 BG, which is a control group, the amounts present in the stratum corneum (Tape), epidermis and dermis layers (Skin), and the amount that penetrated the entire skin (Transdermal) were 8.81, 30.77, and 57.63 μg/cm 3 , respectively. The amount of permeation of taxifolin tetra octanoate supported on normal liposomes (LTO) and elastic liposomes (CDLTO3, SDLTO3) was remarkably increased. In particular, the amount of taxifolin tetra octanoate supported on CDLTO3 in the stratum corneum (Tape), epidermis and dermis (Skin), and the amount that penetrated the entire skin (Transdermal) was 7.90, 60.11, 73.43 μg/cm 3 , showing the largest amount of penetration. .

Claims (4)

인지질에 폴리글리세릴(polyglyceryl)-2 카프레이트(caprate) 또는 폴리글리세릴-10- 스테아레이트(stearate)를 엣지 활성제(edge activator)로 사용하여 제조된 탄성 리포좀.An elastic liposome prepared by using polyglyceryl-2 caprate or polyglyceryl-10-stearate as an edge activator in phospholipids. 제1항에 있어서, 상기 리포좀은 포스파티딜콜린: 엣지 활성제: 콜레스테롤의 혼합 중량비가 7 : 3 : 3.5인 것을 특징으로 하는 탄성 리포좀.The elastic liposome according to claim 1, wherein the liposome has a mixture weight ratio of phosphatidylcholine: edge activator: cholesterol of 7:3:3.5. 제1항 또는 제2항의 탄성 리포좀에 생리 활성 물질을 포집시켜 제조된 피부 전달체 조성물.A skin delivery system composition prepared by trapping a physiologically active substance in the elastic liposome of claim 1 or 2. 탄성 리포좀 제조 과정에서 인지질에 폴리글리세릴(polyglyceryl)-2 카프레이트(caprate) 또는 폴리글리세릴-10- 스테아레이트(stearate)를 엣지 활성제(edge activator)로 사용하여 탄성 리포좀을 제조하는 방법.


A method of preparing an elastic liposome by using polyglyceryl-2 caprate or polyglyceryl-10-stearate as an edge activator as a phospholipid in the process of manufacturing an elastic liposome.


KR1020190013084A 2019-01-31 2019-01-31 A deformable liposome prepared with natural surfactants and use of the same KR102160629B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190013084A KR102160629B1 (en) 2019-01-31 2019-01-31 A deformable liposome prepared with natural surfactants and use of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190013084A KR102160629B1 (en) 2019-01-31 2019-01-31 A deformable liposome prepared with natural surfactants and use of the same

Publications (2)

Publication Number Publication Date
KR20200095244A true KR20200095244A (en) 2020-08-10
KR102160629B1 KR102160629B1 (en) 2020-09-28

Family

ID=72049568

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190013084A KR102160629B1 (en) 2019-01-31 2019-01-31 A deformable liposome prepared with natural surfactants and use of the same

Country Status (1)

Country Link
KR (1) KR102160629B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114886786A (en) * 2022-05-25 2022-08-12 科玛化妆品(无锡)有限公司 Elastic liposome composition and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150008825A (en) * 2014-12-17 2015-01-23 서울과학기술대학교 산학협력단 Cosmetic composition for reinforcing skin barrier containing isoquercitrin, and the liposome for enhancing transdermal delivery of isoquercitrin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150008825A (en) * 2014-12-17 2015-01-23 서울과학기술대학교 산학협력단 Cosmetic composition for reinforcing skin barrier containing isoquercitrin, and the liposome for enhancing transdermal delivery of isoquercitrin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114886786A (en) * 2022-05-25 2022-08-12 科玛化妆品(无锡)有限公司 Elastic liposome composition and preparation method and application thereof
CN114886786B (en) * 2022-05-25 2024-04-12 科玛化妆品(无锡)有限公司 Elastic liposome composition and preparation method and application thereof

Also Published As

Publication number Publication date
KR102160629B1 (en) 2020-09-28

Similar Documents

Publication Publication Date Title
EP3025732B1 (en) Hyalurosomes, their use in topical cosmetic or pharmaceutical compositions and their preparation process
KR102621819B1 (en) Nano multilamella liposome containg skin lipid ingredient and manufacturing method thereof
EP1513492B1 (en) Microemulsions having a binary phase differentiability and active substance differentiability, the production thereof and their use, particularly for the topical supply of oxygen
KR102037354B1 (en) Nano-lipid carrier for encapsulation of physiologically active substance and preparation method thereof
KR101249716B1 (en) Cosmetic composition comprising double-shell Nano-structure
DE19640092A1 (en) Structures with lipid double membranes, in the lipophilic area of which longer-chain molecules are immersed or which are docked to such molecules through hydrophobic interactions
KR101821207B1 (en) Solubilization cosmetic composition containing oleanolic acid
KR20020092622A (en) Stabilization method of nano-emulsion using tocopheryl derivatives and external application for skin containing the stabilized nano-emulsion
KR102164218B1 (en) Multilayer cationic liposome for enhancing the skin penetration and preparation method thereof
Manconi et al. Eco-scalable baicalin loaded vesicles developed by combining phospholipid with ethanol, glycerol, and propylene glycol to enhance skin permeation and protection
Singh et al. Niosomes-a novel tool for anti-ageing cosmeceuticals
KR102081180B1 (en) Elastic liposome composition comprising sucrose based surfactant, and cosmetic composition containing the same
KR101727974B1 (en) Natural liposome comprising ceramide, process for the preparation thereof, and cosmetic composition comprising the same
KR102160629B1 (en) A deformable liposome prepared with natural surfactants and use of the same
WO2021192861A1 (en) Ionic liquid, solvent, preparation, and transdermally absorbable agent
KR100768151B1 (en) Nanoliposome using esterified lecithin
KR102190935B1 (en) Nano-lipid carrier for encapsulation of physiologically active substance and preparation method thereof
Sabeti et al. Characterization of diclofenac liposomes formulated with palm oil fractions
KR20090009054A (en) Cosmetic composition comprising nanovesicle vitatox which having the effect of anti-oxidation and the effect of anti- wrinkle around the eye
KR101512684B1 (en) Liposome-cellulose hydrogel complex composition for enhanced transdermal delivery of flavonoids
KR100803925B1 (en) Cosmetic Composition for Preventing Skin Aging Comprising Radix glycyrrhizae, Phellodendri Cortex, Radix Cynanchi Wilfordii and Cortex mori Extract Stabilized in Nanoliposome
KR102373604B1 (en) Cosmetic composition for strengthening skin barrier or promoting skin bioactive substance absorption
KR102436044B1 (en) Transparent antioxidant cosmetic composition and method for manufacturing the same
KR20190102753A (en) elastic liposome composition for accelerating skin absorption, elastic liposome containing thereof and manufacturing method thereof
KR101607166B1 (en) Whitening cosmetic composition containing liposomes comprising phosphatidyl ethanolamine and phosphatidyl choline

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant