KR20200089760A - 동시적인 전기수술 봉합 및 절단 - Google Patents

동시적인 전기수술 봉합 및 절단 Download PDF

Info

Publication number
KR20200089760A
KR20200089760A KR1020207020323A KR20207020323A KR20200089760A KR 20200089760 A KR20200089760 A KR 20200089760A KR 1020207020323 A KR1020207020323 A KR 1020207020323A KR 20207020323 A KR20207020323 A KR 20207020323A KR 20200089760 A KR20200089760 A KR 20200089760A
Authority
KR
South Korea
Prior art keywords
cutting
signal
electrodes
impedance
suture
Prior art date
Application number
KR1020207020323A
Other languages
English (en)
Other versions
KR102446776B1 (ko
Inventor
지그네쉬 엠 샤
제이슨 더블유 헴필
포레스트 알 룬드스트롬
두에인 더블유 메리언
Original Assignee
인튜어티브 서지컬 오퍼레이션즈 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 filed Critical 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드
Priority to KR1020227032355A priority Critical patent/KR20220132048A/ko
Publication of KR20200089760A publication Critical patent/KR20200089760A/ko
Application granted granted Critical
Publication of KR102446776B1 publication Critical patent/KR102446776B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B18/1233Generators therefor with circuits for assuring patient safety
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00137Details of operation mode
    • A61B2017/00154Details of operation mode pulsed
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00601Cutting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/0063Sealing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • A61B2018/00654Sensing and controlling the application of energy with feedback, i.e. closed loop control with individual control of each of a plurality of energy emitting elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00666Sensing and controlling the application of energy using a threshold value
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00666Sensing and controlling the application of energy using a threshold value
    • A61B2018/00678Sensing and controlling the application of energy using a threshold value upper
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • A61B2018/00708Power or energy switching the power on or off
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/0072Current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00726Duty cycle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00755Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00761Duration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/0091Handpieces of the surgical instrument or device
    • A61B2018/00916Handpieces of the surgical instrument or device with means for switching or controlling the main function of the instrument or device
    • A61B2018/00922Handpieces of the surgical instrument or device with means for switching or controlling the main function of the instrument or device by switching or controlling the treatment energy directly within the hand-piece
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/124Generators therefor switching the output to different electrodes, e.g. sequentially
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • A61B2018/1452Probes having pivoting end effectors, e.g. forceps including means for cutting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/35Surgical robots for telesurgery

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Otolaryngology (AREA)
  • Plasma & Fusion (AREA)
  • Robotics (AREA)
  • Surgical Instruments (AREA)

Abstract

생물학적 조직을 봉합하고 절단하는 방법이 제공된다. 교류(AC) 봉합 신호는 한 세트의 봉합 전극들 사이에 부여된다. 봉합 전극들 사이의 생물학적 조직 임피던스가 제1 임피던스 임계값에 도달하는 것에 응답하여 AC 절단 신호가 한 세트의 절단 전극들 사이에 부여된다. AC 봉합 신호는 한 세트의 봉합 전극들 사이에 배치된 생물학적 조직의 임피던스가 제2 임피던스 임계값에 도달하는 것에 응답하여, AC 절단 신호가 절단 전극들 사이에 부여되는 중에 시작하는 시간 간격의 끝에서 정지된다.

Description

동시적인 전기수술 봉합 및 절단
[우선권의 주장]
본 출원은 2017년 12월 19일에 출원된 "동시적인 봉합 및 절단을 위한 전기수술 시스템 및 방법"이라는 명칭의 미국 가특허 출원 제62/607,817호의 우선권의 이익을 주장하며, 이는 본 명세서에 전체적으로 참조로 포함된다.
전기수술은 생물학적 조직 내에 열을 축적하여, 예를 들어 건조, 응고 또는 기화 중 하나 이상을 통해 조직의 절개, 제거 또는 봉합을 초래하는 열 조직 손상을 야기하는 전기의 사용을 수반한다. 이점들은 제한된 혈액 손실로 정확한 절단을 할 수 있는 능력을 포함한다. 전기수술 디바이스들은 병원 수술실이나 외래 환자 처치에서 혈액 손실의 방지를 돕기 위해 외과적 시술들 동안 빈번하게 사용된다. 고주파 전기수술은 전형적으로 조직을 통과할 때 저항에 의해 열로 변환되는 무선 주파수(RF) 교류(AC)를 포함한다.
전형적인 전기수술 신호 발생기는 다단 전압 변환기를 사용하여, AC 라인 전력을 전기수술 절차를 수행하는 데 요구되는 제어된 고주파 신호로 변환한다. 이 접근법은 일반적으로 AC 라인 입력을 직류(DC) 신호로 변환하고, DC 신호를 RF 신호로 변환하는 것을 포함한다. RF 출력은 외과의가 해부학적 조직을 봉합 또는 절단하기 위해 고주파 에너지를 부여하도록 조작하는 수술 기구 엔드 이펙터에서 전극들에 부여된다.
혈관들 및/또는 조직의 봉합 및 절단 둘 다를 하기 위한 엔드 이펙터를 포함하는 이전의 전기수술 기구가 제공되었다. 종래의 엔드 이펙터는 한 쌍의 대향하는 제1 및 제2 턱부(jaw)를 포함하고, 그것들은 제1의 이격된 위치로부터 그들 사이에 조직을 파지하기 위한 제2 위치로 서로에 대해 이동가능하다. 각각의 턱부는 전기수술 에너지 소스에 의해 에너지를 공급받도록 구성되고 조직 표면에 접촉하도록 구성되는 전기 전도성 조직 봉합 표면을 포함한다. 턱부들 중 적어도 하나는 턱부에 정의된 절연체 내에 배치된 전기 전도성 절단 표면을 포함한다. 절단 표면은 전기수술 에너지 소스에 의해 에너지를 공급받도록 구성되고, 조직 표면과 접촉하도록 구성된다.
일 양태에서, 생물학적 조직을 봉합 및 절단하기 위한 방법이 제공된다. 교류(AC) 봉합 신호는 한 세트의 봉합 전극들 사이에 부여된다. 봉합 전극들 사이의 생물학적 조직 임피던스가 제1 임피던스 임계값에 도달한 것에 응답하여, AC 절단 신호가 한 세트의 절단 전극들 사이에 부여된다. 한 세트의 봉합 전극들 사이에 배치된 생물학적 조직의 임피던스가 제2 임피던스 임계값에 도달한 것에 응답하여, AC 절단 신호가 절단 전극들 사이에 부여되는 중에 시작하는 시간 간격의 끝에서 AC 봉합 신호가 정지된다.
다른 양태에서, 전기수술 시스템이 제공된다. 전기수술 신호 발생기 봉합 스테이지는 한 세트의 봉합 전극들 상에 AC 봉합 신호를 제공하도록 구성된다. 전기수술 신호 발생기 절단 스테이지는 한 세트의 절단 전극들 상에 AC 절단 신호를 제공하도록 구성된다. 한 세트의 봉합 전극들과 한 세트의 절단 전극들은 적어도 하나의 전극을 공통으로 공유한다.
도 1은 수술대에 누워있는 환자에 대해 최소 침습적 진단 또는 외과적 시술을 수행하기 위한 최소 침습적 원격 수술 시스템의 예시적인 평면도이다.
도 2는 외과의의 콘솔의 예시적인 사시도이다.
도 3은 최소 침습적 원격 수술 시스템의 환자측 카트의 예시적인 사시도이다.
도 4는 수술 기구의 예시적인 사시도이다.
도 5는 일부 실시예들에 따른 전기수술 신호 발생기 회로를 나타내는 예시적인 블록도이다.
도 6a는 일부 실시예들에 따라 개방 위치로 보여진, 한 세트의 조직 봉합 표면들 및 한 세트의 조직 절단 표면들을 포함하는 엔드 이펙터의 한 쌍의 턱부의 예시적인 사시도이다.
도 6b는 일부 실시예들에 따라 생물학적 조직이 그들 사이에 파지된 폐쇄 위치에 보여진, 도 6a의 한 쌍의 엔드 이펙터 턱부들의 원위 단부도이다.
도 7은 일부 실시예들에 따른 동시적인 봉합 및 절단 신호들의 피크-투-피크 전류 신호 레벨들을 보여주는 예시적인 신호 타이밍 다이어그램이다.
도 8은 일부 실시예들에 따른 동시적인 조직 봉합 및 조직 절단 활동들 동안 생물학적 조직의 봉합 및 절단을 독립적으로 제어하는 프로세스를 나타내는 예시적인 임피던스 대 시간 다이어그램이다.
도 9a 내지 도 9b는 일부 실시예들에 따른 동시적인 봉합 및 절단 활동들을 수행하기 위한 제1 프로세스를 나타내는 예시적인 흐름도이다.
도 10은 일부 실시예들에 따른 동시적인 봉합 및 절단 활동들 동안 아크를 억제하기 위한 제2 프로세스를 나타내는 예시적인 흐름도이다.
도 11은 일부 실시예들에 따라 조직 봉합 표면들 사이의 생물학적 조직의 부재에 응답하여 봉합 및 절단 활동을 정지시키는 제3 프로세스를 나타내는 예시적인 흐름도이다.
원격 수술 시스템
도 1은 수술대(14)에 누워있는 환자(12)에 대해 최소 침습적 진단 또는 외과적 시술을 수행하기 위한 최소 침습적 원격 수술 시스템(10)의 예시적인 평면도이다. 시스템은 시술 동안 외과의(18)가 사용할 외과의의 콘솔(16)을 포함한다. 하나 이상의 어시스턴트(20)는 또한 시술에 참여할 수 있다. 최소 침습적 원격 수술 시스템(10)은 하나 이상의 환자측 카트(22) 및 전자 카트(24)를 더 포함한다. 외과의(18)가 외과의의 콘솔(16)을 통해 수술 부위를 관찰하는 동안, 환자측 카트(22)는 환자(12)의 신체에서 최소 침습적 절개를 통해 적어도 하나의 수술 기구(26)를 조작할 수 있다. 수술 부위의 이미지는 입체 내시경과 같은 내시경(28)을 배향시키기 위해 환자측 카트(22)에 의해 조작될 수 있는 내시경(28)에 의해 획득될 수 있다. 전자 카트(24) 상에 위치된 컴퓨터 프로세서들은 외과의의 콘솔(16)을 통해 외과의(18)에게 후속하여 디스플레이하기 위해 수술 부위의 이미지를 처리하는 데 사용될 수 있다. 일부 실시예들에서, 입체 이미지들이 캡처될 수 있으며, 이는 외과적 시술 동안 깊이의 인식을 허용한다. 한 번에 사용되는 수술 기구들(26)의 수는 일반적으로 다른 요인들 중에서도, 진단 또는 외과적 시술 및 수술 부위 내의 공간 제약에 의존할 것이다. 시술 동안 사용되는 수술 기구들(26) 중 하나 이상을 바꿀 필요가 있는 경우, 어시스턴트(20)는 환자측 카트(22)로부터 수술 기구(26)를 제거하고 수술실 내의 트레이(30)로부터의 다른 수술 기구(26)로 교체할 수 있다.
도 2는 외과의의 콘솔(16)의 사시도이다. 외과의의 콘솔(16)은 외과의(18)에게 깊이 인식을 가능하게 하는 수술 부위의 조정된 입체도를 제시하기 위한 좌안 디스플레이(32) 및 우안 디스플레이(34)를 포함하는 뷰어 디스플레이(31)를 포함한다. 콘솔(16)은 더 큰 규모의 손 제어 움직임들을 수신하기 위한 하나 이상의 손-조작 제어 입력부들(36)을 더 포함하고, 하나 이상의 풋 페달 제어부들(37)을 포함한다. 환자측 카트(22)에서 사용하기 위해 설치된 하나 이상의 수술 기구는 하나 이상의 제어 입력부(36)의 외과의(18)의 큰 규모 조작에 응답하여 더 작은 규모의 거리를 이동한다. 제어 입력부들(36)은 외과의(18)에게 텔레프레즌스(telepresence), 또는 외과의가 기구들(26)을 직접적으로 제어한다는 강한 감각을 지니도록 제어 입력들(36)이 기구들(26)과 통합된다는 인식을 제공하기 위해 연관된 수술 기구들(26)과 동일한 기계적 자유도를 제공할 수 있다. 이를 위해, 위치, 힘 및 촉각 피드백 센서들(도시되지 않음)은 통신 지연 제약들에 종속되어, 수술 기구들(26)로부터의 위치, 힘 및 촉각 감각들을 제어 입력부들(36)을 통해 외과의의 손에 전송하기 위해 사용될 수 있다.
도 3은 실시예들에 따른 최소 침습적 원격 수술 시스템(10)의 환자측 카트(22)의 사시도이다. 환자측 카트(22)는 4개의 기계적 지지 암(72)을 포함한다. 기구 모션을 제어하기 위한 모터들을 포함하는 수술 기구 조작기(73)는 각각의 지지 암 조립체(72)의 단부에 장착된다. 추가로, 각각의 지지 암(72)은 부착된 수술 기구 조작기(73)를 수술할 환자와 관련하여 위치시키는 데 사용되는 하나 이상의 셋업 조인트(예를 들어, 전동식이 아니고 및/또는 잠금가능함)를 임의로 포함할 수 있다. 환자측 카트(22)는 4개의 수술 기구 조작기(73)를 포함하는 것으로 도시되어 있지만, 더 많거나 적은 수술 기구 조작기(73)가 사용될 수 있다. 원격 수술 시스템은 일반적으로 비디오 이미지들을 캡처하기 위한 내시경 카메라 기구(28) 및 캡처된 비디오 이미지들을 디스플레이하기 위한 하나 이상의 비디오 디스플레이를 전형적으로 포함하는 비전 시스템을 포함할 것이다. 기구 전체 또는 기구의 컴포넌트들을 제어하기 위해 제어 콘솔(16)에서 제공되는 사용자 입력들은 외과의 또는 다른 의료인에 의해 제어 입력부에 제공된 입력("마스터" 커맨드)이 수술 기구에 의한 대응하는 동작("슬레이브" 응답)으로 변환되도록 하는 것이다.
도 4는 중심선 종축(411)을 갖는 길쭉한 중공 튜브형 샤프트(410), 환자의 체강 내로 삽입하기 위한 원위(제1) 단부(450), 및 인접한 제어 메커니즘(440)에 결합되는 근위(제2) 단부(456)를 포함하는 수술 기구(26)의 사시도이고, 제어 메커니즘은 턱부들의 개방 및 폐쇄, 및 손목부의 (x, y) 손목 모션과 같은 모션을 엔드 이펙터(454)에 부여하기 위해 결합된 와이어 케이블들에 힘을 가하는 복수의 액추에이터 모터(445, 447)(점선으로 도시됨)를 포함한다. 수술 기구(26)는 외과적 또는 진단 시술들을 수행하기 위해 사용된다. 수술 기구(26)의 원위 부분(450)은 도시된 겸자, 니들 드라이버, 소작 디바이스, 절단 도구, 이미징 디바이스(예를 들어, 내시경 또는 초음파 프로브) 등과 같은 다양한 엔드 이펙터(454) 중 임의의 것을 제공할 수 있다. 수술용 엔드 이펙터(454)는 개방 또는 폐쇄되는 턱부들, 또는 경로를 따라 이동하는 나이프, 또는 x 및 y 방향으로 이동할 수 있는 손목부와 같은 기능적 기계적 자유도를 포함할 수 있다. 도시된 실시예에서, 엔드 이펙터(454)는 엔드 이펙터가 길쭉한 튜브 중심선 축(411)에 대해 배향되는 것을 허용하는 손목부(452)에 의해 길쭉한 중공 샤프트(410)에 결합된다. 제어 메커니즘(440)은 전체 기구 및 그것의 원위 부분에 있는 엔드 이펙터의 움직임을 제어한다.
전기수술 신호 발생기
도 5는 일부 실시예들에 따른 전기수술 신호 발생기 회로(500)를 나타내는 예시적인 블록도이다. 전기수술 신호 발생기(500)는 전기수술 신호 발생기 봉합 스테이지(502) 및 전기수술 신호 발생기 절단 스테이지(504)를 포함한다. 봉합 스테이지(502)는 한 세트의 봉합 전극들(506, 508)(seal+, seal-) 사이에서 고주파(HF) AC 봉합 신호를 생성한다. 절단 스테이지(504)는 한 세트의 절단 전극들(510, 512)(cut+, cut-) 사이에서 HF AC 절단 신호를 생성한다. 전형적으로, 주파수는 약 100-500kHz의 범위 내에 있다. 일부 실시예들에서, 한 세트의 봉합 스테이지 전극들(506, 508) 및 한 세트의 절단 스테이지 전극들(510, 512)은 공통적으로 적어도 하나의 전극(508, 512)(seal-, cut-)을 공유하며, 이는 본 명세서에서 집합적으로 리턴 전극으로 지칭될 수 있다.
전기수술 신호 발생기(500)는 AC 라인 전압을 전압 버스 라인(516) 상의 DC 전압으로 변환하기 위한 AC-대-DC 전원(514)을 포함한다. 전압 버스 라인(516)은 DC 입력 전압 신호를 봉합 스테이지 회로(502)에 제공하도록 결합된다. 전압 버스 라인(516)은 또한 DC 입력 전압 신호를 절단 스테이지 회로(504)에 제공하도록 결합된다. 일부 실시예들에서, DC 입력 전압 신호는 예를 들어 대략 48V이다.
봉합 스테이지(502)는 DC 입력 전압 신호를 제1 제어된 DC 전압 신호로 변환하기 위한 제1 벅 레귤레이터 회로(518)를 포함하고, 제1 제어된 DC 전압 신호에 기초하여 AC 봉합 신호를 생성하도록 결합된 제1 출력 변압기(520)를 포함한다. 제1 출력 변압기(520)는 봉합 신호를 한 세트의 봉합 전극들(506, 508)에 제공하도록 결합된다. 더 구체적으로, 제1 출력 변압기(520)는 제1 봉합 전극(506)에 전기적으로 결합된 제1 단자(522)를 포함하고, 제2 봉합 전극(508)에 전기적으로 결합된 제2 단자(524)를 포함한다. 제1 제어된 DC 전압 신호는 어느 한 극성 방향으로 제1 출력 변압기(520)의 단자들(522, 524) 양단에 제1 제어 전압을 제공하도록 구성되는 제1 출력 스테이지(526)에 제공된다. 일부 실시예들에서, 제1 출력 스테이지는 제1 H-브리지 스위치 회로를 포함한다. 제1 및 제2 봉합 전극들(506, 508)은 출력 소켓(528)을 통해, 도 6a 내지 도 6b를 참조하여 아래에 설명되는 턱부 엔드 이펙터를 포함하는 수술 기구 엔드 이펙터(454)에 전기적으로 결합된다. 제1 전압 및 전류 모니터링 회로(530)는 한 세트의 봉합 전극들 양단에서 전류 및 전압을 모니터링하도록 구성된다. 제1 마이크로 컨트롤러(532)는 제1 벅 레귤레이터 회로(518)에 의해 부여되는 전압 변환을 결정하기 위해, 펄스 폭 변조(PWM) 신호를 제1 벅 레귤레이터 회로(518)에 제공하도록 구성된다. 제1 마이크로 컨트롤러(532)는 또한 출력 스테이지 스위치 회로(526)의 스위칭을 제어하기 위한 제어 신호를 생성하고, 그에 의해 듀티 사이클 및 주파수를 포함하여 HF 봉합 신호 파형 패턴을 결정하도록 구성된다. 제1 신호 컨디셔닝 및 취득 회로(534)는 RMS V, I를 계산하기 위해 사용되는 전압 및 전류 측정값들을 취득하고; 전력의 평균을 구한다. 제1 마이크로 컨트롤러(532)는 또한 한 세트의 봉합 전극들(506, 508) 양단의 모니터링된 전압 및 전류에 기초하여 그들 사이의 제1 임피던스를 결정하도록 구성된다.
마찬가지로, 절단 스테이지(504)는 DC 입력 전압 신호를 제2 제어된 DC 전압 신호로 변환하기 위한 제2 벅 레귤레이터 회로(548)를 포함하고, 제2 제어된 DC 전압 신호에 기초하여 절단 신호를 생성하도록 결합된 제2 출력 변압기(550)를 포함한다. 제2 출력 변압기(550)는 AC 절단 신호를 한 세트의 절단 전극들(510, 512)에 제공하도록 결합된다. 더 구체적으로, 제2 출력 변압기(550)는 제1 절단 전극(510)에 전기적으로 결합된 제1 단자(552)를 포함하고, 제2 절단 전극(512)에 전기적으로 결합된 제2 단자(554)를 포함한다. 제2 제어된 DC 전압 신호는 어느 한 극성 방향으로 제2 출력 변압기(550)의 단자들(552, 554) 양단에 제2 제어 전압을 제공하도록 구성되는 제2 출력 스위칭 회로(556)에 제공된다. 한 세트의 절단 전극들(510, 512)은 출력 소켓(528)을 통해, 도 6a 내지 도 6b를 참조하여 아래에 설명되는 턱부 엔드 이펙터를 포함하는 수술 기구 엔드 이펙터(454)에 전기적으로 결합된다. 제2 전류 및 전압 모니터링 회로(560)는 한 세트의 절단 전극(510, 512) 양단에서 전류 및 전압을 모니터링하도록 구성된다. 제2 마이크로 컨트롤러(562)는 제2 벅 레귤레이터 회로(548)에 의해 부여되는 전압 변환을 결정하기 위해, 펄스 폭 변조(PWM) 신호를 제2 벅 레귤레이터 회로(548)에 제공하도록 구성된다. 제2 마이크로 컨트롤러(562)는 또한 출력 스테이지 스위치 회로(556)의 스위칭을 제어하기 위한 제어 신호를 생성하고, 그에 의해 예를 들어 듀티 사이클 및 주파수를 포함하여 절단 신호 파형 패턴을 결정하도록 구성된다. 제2 신호 컨디셔닝 및 취득 회로(564)는 RMS V, I를 계산하기 위해 사용되는 전압 및 전류 측정값들을 취득하고; 전력의 평균을 구한다. 제2 마이크로 컨트롤러(562)는 또한 한 세트의 절단 전극들(510, 512) 양단의 모니터링된 전압 및 전류에 기초하여 그들 사이의 제2 임피던스를 결정하도록 구성된다.
제어 콘솔(16)에 통합될 수 있는 사용자 인터페이스 회로(UI) 블록(570)은 하나 이상의 손 제어부들 및 풋 페달 제어부들, 및 봉합 및 절단 활동을 시작 및 정지하라는 사용자 입력 커맨드들을 수신하고, 예를 들어 전압, 전류, 신호 주파수 및 체류 시간과 같이, 봉합 및 절단 신호 파형들을 위해 사용할 파라미터들을 나타내기 위한 디스플레이 콘솔을 포함할 수 있다. UI 회로 블록(570)은 또한 전달된 전력량, 봉합이 성공적으로 완료되었는지, 오류 조건이 발생했는지와 같은 피드백 정보를 사용자에게 제공할 수 있다. 외과의는 예를 들어 특정 환자 또는 외과적 시술의 요건들에 기초하여 전압 및 전류 레벨들, 봉합 신호 패턴 및 절단 신호 패턴을 선택하기 위해, UI를 사용하여 사용자 입력을 제공할 수 있다. 전자 카트(24)에 통합될 수 있는 메인 컨트롤러(572)는 UI 블록(570)과 정보를 교환하고 제1 및 제2 마이크로 컨트롤러(532, 562)와 통신하도록 결합된다. 메인 컨트롤러(572)는 예를 들어 전류 및 전압 레벨들을 포함하여, 제1 및 제2 마이크로 컨트롤러의 제어 하에서 봉합 및 절단 신호들의 파형들을 결정하기 위한 제어 신호들을 생성하도록 구성될 수 있다. 메인 컨트롤러(572)는 또한 제1 및 제2 마이크로 컨트롤러의 제어 하에서 봉합 및 절단 동작들의 시작 및 정지 시간들을 결정하기 위한 제어 신호들을 생성할 수 있다. 일부 실시예들에서, 메인 컨트롤러(572)는 또한 아크 억제 및 다른 시간 의존적 기능들을 위해 제어 신호들을 제1 및 제2 마이크로 컨트롤러에 제공하도록 구성될 수 있다. 예를 들어, 사용자 세팅들의 함수에 따라 또는 다른 스테이지에서 발생하는 것에 따라 값들이 변경될 수 있다.
동작 시에, AC 봉합 신호는 제1 출력 변압기(520)를 통해 한 세트의 봉합 전극들(506, 508) 양단에 제공되고, AC 절단 신호는 제2 출력 변압기(550)를 통해 한 세트의 절단 전극들(510, 512) 양단에 제공된다. 일부 실시예들에서, 제1 및 제2 마이크로 컨트롤러(532, 562)는 동위상의 주기적 봉합 및 절단 신호를 생성하기 위해 단일 PWM 마스터 신호를 제1 및 제2 H-브리지 스위치들(526, 556)에 제공하도록 협력한다. 봉합 및 절단 신호들은 서로 동위상인 주기적인 신호들이지만 전형적으로 상이한 피크-투-피크 전압 전위들을 갖는다. 제1 및 제2 출력 변압기들(520, 550)은 예를 들어 봉합 및 절단 전압들에 대해 상이한 전압 레벨들을 생성하기 위해 상이한 권선비를 가질 수 있다. 일반적으로, 조직을 절개하는 데 요구되는 플라즈마 방전에 연관된 더 높은 임피던스로 인해, 절단 활동 동안에 비해 봉합 활동 동안의 임피던스가 더 낮다. 따라서, 일반적으로 봉합 동안에는 절단 동안 사용되는 것보다 더 낮은 전압이 통상적으로 사용될 수 있다. 일부 실시예들에서, 예를 들어, 봉합 활동을 위한 피크-투-피크 전압은 대략 75-150V이고, 절단 활동을 위한 피크-투-피크 전압은 대략 300-600V이다. 반대로, 일반적으로, 봉합 동안에는 절단 동안 사용되는 것보다 더 높은 전류가 사용될 수 있다.
도 6a는 일부 실시예들에 따라 개방 위치로 보여진, 한 세트의 조직 봉합 표면들(606-612) 및 한 세트의 조직 절단 표면들(610, 612 및 614)을 포함하는 엔드 이펙터(454)의 한 쌍의 턱부(602, 604)의 예시적인 사시도이다. 따라서, 봉합 표면들(610, 612)은 봉합 스테이지(502)와 절단 스테이지(504) 사이에 공유된다. 도 6b는 일부 실시예들에 따라 생물학적 조직(618)이 그 사이에 파지되는 폐쇄 위치로 보여진, 도 6a의 한 쌍의 엔드 이펙터 턱부들(602, 604)의 원위 단부도이다. 도 6a를 참조하면, 엔드 이펙터(454)는 대향하는 작업면들(620, 622)을 갖는 제1 및 제2 턱부(602, 604) 및 피봇 축(624)을 포함한다. 제1 및 제2 턱부(602, 604) 중 적어도 하나는 제1 및 제2 턱부(602, 604)가 서로 이격되어 있는 개방 위치와 그들 사이에 생물학적 조직(618)을 파지하기 위한 폐쇄 위치 사이에서 피봇 축(624)을 중심으로 회전가능하게 피봇하도록 장착된다.
제1 턱부(602)는 소켓(528)에서 활성 봉합 전극(506)에 전기적으로 결합되고 제1 턱부(602)의 외측 부분들을 따라 종방향으로 연장되는 제1 및 제2 전기 전도성 조직 봉합 표면(606, 608)을 포함한다. 제1 턱부(602)는 소켓(528)에서 활성 절단 전극(510)에 전기적으로 결합되고 제1 및 제2 조직 봉합 표면(606, 608) 사이에서 제1 턱부(602)를 따라 종방향으로 연장되는 전기 전도성 조직 절단 표면(614)을 또한 포함한다. 제2 턱부(604)는 소켓(528)에서 공유 리턴 봉합 전극(508)에 전기적으로 결합되고 제1 및 제2 턱부(602, 604)가 폐쇄 위치에 있을 때 제1 및 제2 조직 봉합 표면(606, 608)과 정렬되도록 제2 턱부(604)의 외측 부분들을 따라 종방향으로 연장되는, 제3 및 제4 전기 전도성 조직 봉합 표면들(610, 612)을 포함한다. 제2 턱부(604)는 또한 제1 및 제2 턱부(602, 604)가 폐쇄 위치에 있을 때 제1 조직 절단 표면(614)과 정렬되도록 제3 및 제4 조직 봉합 표면들(610, 612) 사이에서 제2 턱부(604)를 따라 종방향으로 연장되는 수동/절연 표면(616)을 포함한다.
도 6b를 참조하면, 조직 봉합 활동 동안, 봉합 신호는 제1 및 제3 봉합 표면들(606, 610) 사이에 배치된 조직 부분(618)을 통해, 그리고 제2 및 제4 조직 봉합 표면들(608, 612) 사이에 배치된 조직 부분(618)을 통해 전도된다. 조직 절단 동안, 절단 신호는 제1 및 제2 조직 절단 표면들(610, 612, 614) 사이에 배치된 조직 부분(618)을 통해 전도된다. 종종, 임상적 위험을 감소시키기 위해 절단 활동 전에 봉합 활동을 시작하는 것이 유리하다. 이러한 방식으로, 혈관과 같은 생물학적 조직이 절단의 시작 전에 미리 결정된 정도로 봉합되면, 나중에 시작되는 절단 활동 동안 혈액 누출의 위험이 최소화된다.
일반적으로, 절개에 요구되는 플라즈마 방전을 달성하기 위해 더 높은 전압 및 전류 밀도가 요구되기 때문에, 생물학적 조직에 인가되는 전압 및 전류 밀도는 조직의 절단이 발생하는지 또는 봉합이 발생하는지를 결정한다. 낮은 전류 밀도는 전형적으로 덜 급속한 조직 가열을 야기하며, 이는 본 명세서에서 사용될 때 조직 탈수, 혈관벽 수축 및 혈액 성분의 응고, 및 콜라겐 변성 및 결합을 지칭하는 봉합을 야기할 수 있다. 더 높은 전류 밀도는 전형적으로 플라즈마 방전의 생성을 초래하고, 이는 본 명세서에서 사용될 때 예를 들어 기화를 통한 조직의 절개를 지칭하는 절단을 야기할 수 있다. 전기수술 봉합 신호들과 전기수술 절단 신호들은 동일한 전력을 전달할 수 있지만, 그것들은 통상적으로 상이한 전압 및 전류 레벨들을 사용하여 그렇게 한다.
봉합 및 절단 활동 둘 다를 수반하는 전형적인 전기수술 절차는 한 쌍의 턱부가 조직 부분을 파지하고, 전기수술 발생기가 봉합 및 절단 신호를 제공하여 그것을 봉합하고 절단한 후, 조직의 다음 부분이 파지되고 봉합되고 절단되는 등의 "바이트들"의 시퀀스를 수반할 수 있다. 봉합 활동 및 각각의 절단 활동의 각각의 바이트는 예를 들어 봉합하는 데 2초, 절단하는 데 2초와 같은 짧은 시간 간격만을 요구할 수 있다. 전기수술 절차에 요구되는 전체 시간은 바이트 수가 증가함에 따라 증가한다. 예를 들어, 봉합 및 절단 활동들이 순차적으로 수행되는 5-6 바이트를 수반하는 전기수술 절차는 20-24초를 필요로 할 수 있다. 또한, 단일 스테이지 전기수술 발생기가 사용된다면, 예를 들어 봉합과 절단 활동 사이의 각각의 전이에서 상이한 신호 패턴을 생성하도록 발생기를 재구성하기 위해, 바이트 당 아마도 4-5초의 추가 시간 지연이 요구될 수 있고, 이는 예를 들어, 전기수술 절차의 전체 시간을 추가로 20-30초 더 증가시킬 수 있다. 따라서, 전기수술 절차에 요구되는 시간을 단축시키기 위해 동시적인 봉합 및 절단이 필요하다.
봉합 및 절단 신호들
도 7은 일부 실시예들에 따른 동시적인 봉합 및 절단 신호들의 예시적인 피크-투-피크 전류 신호 레벨들을 보여주는 예시적인 신호 타이밍 다이어그램이다. 도면은 예시적인 것이며, 전류 레벨 단위 및 시간 단위는 임의적이고 오직 예시를 위한 것임이 이해될 것이다. RF 봉합 전류 신호(702)의 피크-투-피크 전류 값은 RF 절단 전류 신호 펄스들(704-1 내지 704-N)의 피크-투-피크 전류 값보다 크다. 봉합 신호(702)는 연속 RF 신호로서 제공된다. 반면, 절단 신호(704)는 이산 시간 간격 동안 이산 RF 신호 펄스(704-1 내지 704-N)로 제공되며, 각각의 펄스 사이의 데드 신호 체류 시간 지연 동안에는 절단 신호가 제공되지 않는다. 각각의 RF 신호 펄스는 펄스 시간 간격 동안 연속적으로 부여되는 RF 절단 신호를 포함한다. 각각의 데드 신호 체류 시간 지연은 RF 절단 신호가 부여되지 않는 시간 간격을 포함한다. 도 9a 내지 도 9b를 참조하여 아래에 설명되는 바와 같이, 절단 펄스들의 수는 한 세트의 절단 전극들(510, 512) 사이의 임피던스의 측정값에 기초하여 만족스러운 절단을 달성하기 위해 요구되는 대로 변할 수 있다. 봉합 및 절단 신호들은 실질적으로 동일한 전력을 제공하고, 따라서, 봉합 신호 전류 레벨이 절단 신호 전류 레벨보다 큰 반면에, 봉합 신호 전압 레벨(도시되지 않음)은 절단 신호 전압 레벨(도시되지 않음)보다 작다.
봉합 및 절단 신호들의 제어
도 8은 일부 실시예들에 따른 동시적인 조직 봉합 및 조직 절단 활동들 동안 생물학적 조직의 봉합 및 절단을 독립적으로 제어하는 프로세스를 나타내는 예시적인 임피던스 대 시간 다이어그램이다. 도면에 표시된 임피던스 값 및 시간 단위들은 임의적이며 설명의 목적으로 이해될 것이다. 시간 t = 0에서 시작하는 제1 시간 간격(T1) 동안, 봉합 스테이지(502)는 봉합 신호 전압 레벨을 갖는 봉합 신호를 생성한다. 제1 시간 간격(T1) 동안, 한 세트의 봉합 전극들(506, 508) 사이에서 측정된 전류 및 전압은 그들 사이의 임피던스를 결정하기 위해 사용될 수 있다. 봉합 전극들(506, 508) 사이의 모니터링된 전압 및 전류는 예를 들어 도 6b에 도시된 바와 같이 제1 및 제2 턱부들(602, 604) 사이에 캡처된 생물학적 조직의 임피던스를 나타낸다. 임피던스는 예를 들어 조직 수분 함량을 나타낼 수 있다. 일반적으로, 조직 수분 함량은 절단을 시작하기에 적합한 전압 및 전류 밀도가 전달되는 것을 허용할 정도로 충분히 낮아야 한다. 제2 마이크로 컨트롤러(562)는 봉합 전극들(506, 508) 사이의 임피던스가 미리 결정된 절단 시작 임계값에 도달하는 것에 적어도 부분적으로 기초하여, 제2 출력 변압기(550)가 절단 신호를 생성하게 하도록 구성된다. 이 예에서 대략 시간 t = 0.9에서 시작하는 제2 시간 간격(T2) 동안, 봉합 전극들(506, 508) 사이의 임피던스가 미리 결정된 절단 시작 임계값에 도달할 때, 절단 스테이지(504)는 절단 신호를 생성한다. 제2 시간 간격(T2) 동안, 봉합 스테이지(502)는 봉합 신호를 계속 생성하는 한편, 절단 스테이지(504)는 동시에 절단 신호를 생성한다. 도 7의 타이밍 다이어그램을 참조하여 위에서 설명한 바와 같이, 봉합 신호와 전압 신호는 서로 동위상이지만, 위에서 설명된 바와 같이 절단을 위해서는 일반적으로 더 높은 전압이 요구되므로, 봉합 신호는 통상적으로 절단 신호보다 낮은 피크-투-피크 전압을 갖는다. 제2 시간 간격(T2) 동안, 한 세트의 봉합 전극들(510, 512) 사이에서 측정된 전압 및 전류는 그들 사이의 임피던스를 결정하기 위해 사용될 수 있다. 제1 마이크로 컨트롤러(532)는 제1 출력 변압기(520)가 체류 모드를 개시하게 하도록 구성되며, 그러한 체류 모드에서, 봉합 전극들(510, 512) 사이의 임피던스가 예를 들어 미리 결정된 조직 레벨을 나타내는 미리 결정된 봉합 정지 임계값에 도달하는 것에 적어도 부분적으로 기초하여, 추가의 미리 결정된 제3 시간 간격(T3) 동안 제1 출력 변압기(520)에 의해 봉합 신호가 생성된다. 이 예에서, 대략 t = 1.8의 시간에서, 봉합 전극들(510, 512) 사이의 임피던스가 미리 결정된 봉합 정지 임계값에 도달할 때, 봉합 스테이지(502)는 체류 모드로 진입하고, 여기서 봉합 스테이지(502)는 이 예에서 대략 t = 2.5까지 연장되는 추가의 미리 결정된 제3 시간 간격 동안 봉합 신호를 계속 전달하는, 다음으로 제1 마이크로 컨트롤러(532)는 봉합 스테이지(502)가 봉합 신호를 정지시키게 한다. 절단 스테이지(504)는 미리 결정된 시간 간격(도시되지 않음) 동안 절단 신호를 계속 생성할 수 있고, 이어서 제2 마이크로 컨트롤러(562)는 절단 스테이지(504)가 절단 신호를 정지시키게 한다. 본 기술분야의 통상의 기술자는, 낮은 임피던스가 수분의 존재를 나타내며, 이는 절단 전극들 사이에 조직의 존재가 여전히 있음을 나타낸다는 것을 이해할 것이다. 더 높은 임피던스는 수분의 부재/감소를 나타내고, 이는 전극들 사이의 조직의 부재/감소를 나타내며, 이는 전극들 사이의 조직의 부재/감소 및/또는 깨끗한 절단을 나타낸다. 대안적으로, 일부 실시예들에서, 제4 시간 간격의 끝에서, 한 세트의 절단 전극들(510, 512) 사이에서 측정된 전류 및 전압이 그들 사이의 임피던스가 절단 정지 임피던스 임계값보다 작음을 나타내는 것에 응답하여, 제2 마이크로 컨트롤러(562)는 생물학적 조직의 만족스러운 절단을 보장하기 위해 추가의 절단 신호 펄스들을 개시할 수 있다.
일부 실시예들에서, 절단 시작 임피던스 임계값은 체류 시간 개시 임피던스 임계값보다 작고, 절단 정지 임피던스 임계값은 체류 시간 개시 임피던스 임계값보다 크다. 특히, 예를 들어, 일부 실시예들에서, 전형적인 절단 시작 임피던스 임계값은 20-200옴 범위일 수 있고, 전형적인 체류 시간 개시 임피던스 임계값은 150-500옴 범위일 수 있으며, 전형적인 절단 정지 임피던스 임계값은 500-2000옴의 범위에 있을 수 있다. 일부 실시예들에 따르면, 절단 시작 임피던스는 봉합 전극들 양단에서 측정되고, 체류 시간 임피던스 임계값은 또한 봉합 전극들 양단에서 측정된다. 그러나, 절단 정지 임피던스는 절단 전극들 양단에서 측정될 것이다.
대안적인 실시예들에서, 제1 턱부와 제2 턱부 사이에 전달된 전압, 전류 또는 전력 사이의 위상 각은 또한 절단 시작 임계값 및 봉합 정지 임계값을 결정하기 위해 사용될 수 있다. 이러한 대안적인 접근법은 반응성 임피던스가 고려되는 것을 허용하며, 이는 일반적으로 봉합의 시작에서 더 낮고 조직이 소멸됨에 따라 증가한다.
도 9a 내지 도 9b는 일부 실시예들에 따른 동시적인 봉합 및 절단 활동을 수행하기 위한 제1 프로세스를 나타내는 예시적인 흐름도이다. 제1 및 제2 마이크로 컨트롤러(532, 562) 및 메인 컨트롤러(572)는 도 1의 전기수술 시스템(500)의 제1 및 제2 스테이지(502, 504)가 동시적인 봉합 및 절단 활동을 수행하게 하는 명령어들로 구성될 수 있다. 블록(902)에서, 풋 페달 UI 액추에이터에서, 예를 들어 전기수술 절차를 시작하라는 사용자 커맨드를 나타내는 사용자 입력이 수신된다. 블록(904)에서, 봉합 또는 절단 전극들 사이의 테스트 전압 및/또는 전류, 턱부 각도 및 턱부 파지 강도 중 적어도 하나를 포함하는 하나 이상의 바이트 파라미터가 측정된다. 테스트 전압 또는 전류를 생성하기 위해 봉합 전극 또는 절단 전극들 사이에 테스트 신호가 제공될 수 있다. 턱부들(602, 604)은 턱부 각도 및 파지력을 결정하기 위해 센서들(도시되지 않음)로 구성될 수 있다. 결정 블록(906)에서, 턱부들 사이에 생물학적 조직이 적절하게 파지되는지에 대한 결정이 이루어진다. 블록(908)에서, 조직이 턱부들 사이에 적절하게 배치되지 않았다는 결정에 응답하여, 예를 들어, 턱부들 사이에 조직이 불충분하거나 부적절하게 위치된 것을 나타내는 메시지가 UI를 통해 사용자에게 제공된다.
블록(910)에서, 제1 마이크로 컨트롤러(532)는 조직이 턱부들(602, 604) 사이에 적절하게 배치되어 있다는 결정에 응답하여 봉합 활동을 시작한다. 봉합 활동은 봉합 스테이지가 한 세트의 봉합 전극들(506, 508)에 봉합 신호를 제공하여, 제1 및 제3 봉합 표면(606, 610) 사이에 배치된 조직(618) 내에 봉합 신호를 부여하고 제2 및 제4 봉합 표면(608, 612) 사이에 배치된 조직 내에 봉합 신호를 전송하는 것을 포함한다. 결정 블록(912)에서, 제1 전압 및 전류 모니터링 회로(530)는 한 세트의 봉합 전극들(506, 508)에서 전압 및 전류를 모니터링한다. 결정 블록(914)에서, 제1 마이크로 컨트롤러(532)는 제2 마이크로 컨트롤러(562)가 절단 신호를 부여하기 시작했는지를 결정한다.
결정 블록(916)에서, 절단 신호가 시작되었다는 결정에 응답하여, 제1 마이크로 컨트롤러는 한 세트의 봉합 전극들 사이의 모니터링된 전류 및 전압이 봉합 정지 임피던스 임계값보다 큰지를 결정한다. 모니터링된 임피던스가 봉합 정지 임피던스 임계값에 도달하지 않은 것에 응답하여, 제어는 블록(912)으로 되돌아가고 전류 및 전압 모니터링이 계속된다. 블록(918)에서, 모니터링된 임피던스가 봉합 정지 임피던스 임계값에 도달한 것에 응답하여, 제1 마이크로 컨트롤러는 미리 결정된 봉합 신호 체류 시간 간격(T3) 동안 봉합 신호를 계속 전파한다. 블록(920)에서, 봉합 신호 체류 시간 간격의 끝에서, 제1 마이크로 컨트롤러는 봉합 프로세스를 정지시킨다.
결정 블록(922)에서, 절단 신호가 시작되지 않았다는 결정에 응답하여, 제2 마이크로 컨트롤러(562)는 한 세트의 봉합 전극들(506, 508) 사이의 모니터링된 전압 및 전류가 절단 시작 임피던스 임계값보다 큰 임피던스를 나타내는지를 결정한다. 한 세트의 봉합 전극들 사이의 임피던스가 절단 시작 임피던스 임계값보다 크지 않다는 결정에 응답하여 제어는 결정 블록(916)으로 진행된다. 블록(924)에서, 제2 마이크로 컨트롤러(562)는 조직 임피던스가 절단 시작 임계값에 도달했다는 표시에 응답하여 절단 활동을 시작한다. 절단 활동은 절단 스테이지가 제1 및 제2 절단 표면들(610, 612 및 614) 사이에 배치된 조직(618) 내에 절단 신호를 부여하기 위해 한 세트의 절단 전극들(510, 512)에 절단 신호를 제공하는 것을 포함한다. 블록(926)에서, 제2 전압 및 전류 모니터링 회로(560)는 한 세트의 절단 전극들(510, 512)에서 전압 및 전류를 모니터링한다. 결정 블록(928)에서, 제2 마이크로 컨트롤러(562)는 절단 시간이 절단 시간 임계값을 초과하는지를 결정한다. 절단 시간 임계값에 도달하지 않았다는 결정에 응답하여, 제어는 블록(926)으로 다시 진행한다. 결정 블록(930)에서, 절단 시간 임계값에 도달했다는 결정에 응답하여, 제2 마이크로 컨트롤러(562)는 한 세트의 절단 전극들(510, 512) 사이의 모니터링된 임피던스가 절단 정지 임피던스 임계값보다 큰지를 결정한다. 블록(932)에서, 한 세트의 절단 전극들(510, 512) 사이의 임피던스가 절단 정지 임피던스 임계값보다 크지 않다는 결정에 응답하여, 제2 마이크로 컨트롤러(562)는 절단을 완료하기 위해 추가의 절단 펄스들이 요구된다고 결정한다. 일부 실시예들에 따르면, 제2 마이크로 컨트롤러(562)는 그에 기초하여 제공될 추가 절단 펄스들의 수를 결정한다. 블록(934)에서, 제2 마이크로 컨트롤러는 미리 결정된 데드타임 지연 시간 동안 추가 절단 펄스들의 개시를 지연시키며, 그러한 지연 시간 동안에는 플라즈마가 소실되고 후속 펄스들에서 새로운 배출물이 생성되는 것을 허용하기 위해 절단 신호가 제공되지 않으며, 이는 배출물이 완전히 절단되지 않고 하나의 특정 위치에 매달리는 것을 방지할 수 있다. 블록(936)에서, 지연 후에, 제2 마이크로 컨트롤러는 절단 신호를 다시 개시하고, 제어는 블록(926)으로 다시 진행된다. 결정 블록(938)에서, 절단 시간 임계값에 도달했다는 결정에 응답하여, 제2 마이크로 컨트롤러(562)는 추가적인 절단 펄스들이 요구되지 않는다고 결정한다. 블록(940)에서, 제2 마이크로 컨트롤러(562)는 절단 프로세스를 정지시킨다.
일부 실시예들에서, 봉합 출력 스테이지 내에서의 체류를 초기화하고 절단 출력 스테이지 시작을 초기화하기 위해 사용되는 임계값들은 턱부 각도, 파지력, 또는 다른 유사한 측정들에 기초하여 달라질 수 있다. 턱부 각도 및 파지력과 같은 측정들은 턱부들 사이의 조직 상태에 대한 추가 정보를 제공할 수 있다. 예를 들어, 턱부 각도의 감소는 수분 손실 또는 조직 건조 또는 깨끗한 절단을 암시한다. 또한, 절단 출력 스테이지 및 봉합 출력 스테이지의 타이밍은 턱부 각도, 파지력 또는 다른 유사한 측정들에 기초하여 달라질 수 있다.
또한, 일부 실시예들에서, 미리 정의된 시간으로 단일 절단 시퀀스를 수행하는 대신에, 복수의 더 짧은 절단 활성화가 수행될 수 있으며, 각각의 더 짧은 활성화 사이에 데드타임 기간이 도입된다. 시퀀스의 시작, 정지 및 재시작이 절단 전극에서 불완전한 절단을 야기할 수 있는 잔류 조직 가닥들을 기화시킬 가능성이 더 높기 때문에, 이는 신뢰가능한 절단 성능을 초래할 수 있다. 또한, 절단 활성화를 시작하기 전에 조직이 냉각되고 조직 절단 표면과 조직 사이의 임의의 증기 장벽이 소멸되는 것을 허용하도록 소정의 미리 결정된 시간 동안 봉합 시퀀스의 활성화를 일시정지하는 것이 바람직할 수 있다. 이로 인해 더 균일한 절단 배출물과 향상된 절단 성능이 야기될 수 있다. 더욱이, 절단 활성화가 종료될 때, 미리 정의된 기간 동안 봉합 활성화를 일시정지시키고, 조직이 절단 활성화 동안 전달된 에너지로부터 회복되는 것을 허용하고, 봉합 시퀀스가 시퀀스의 다음 스테이지보다 앞서야 할 때를 결정하기 위해 이용되는 전기적 파라미터들의 더 정확한 측정을 허용하는 것이 또한 바람직할 수 있다. 봉합 및 절단 신호들이 독립적으로 제공되고, 일부 상황들에서는 봉합 신호가 항상 절단 신호의 종료 후에 종료할 수 있음을 알 것이다.
도 10은 일부 실시예들에 따른 동시적인 봉합 및 절단 활동들 동안 아크들을 억제하기 위한 제2 프로세스를 표현하는 예시적인 흐름도이다. 제1 및 제2 마이크로 컨트롤러(532, 562) 및 메인 컨트롤러(572)는 도 1의 전기수술 시스템(500)의 제1 및 제2 스테이지(502, 504)가 동시적인 봉합 및 절단 활동들을 수행하게 하는 명령어들로 구성될 수 있다. 결정 블록(1002)은 절단 신호가 활성인지를 결정한다. 절단 신호가 활성이라는 결정에 응답하여, 결정 블록(1004)에서, 제2 마이크로 컨트롤러(562)는 한 세트의 절단 전극들(510, 512) 사이의 모니터링된 전류가 절단 아크 임계값보다 큰지를 결정한다. 블록(1006)에서, 한 세트의 절단 전극들(510, 512) 사이의 모니터링된 전류가 절단 아크 임계값보다 크다는 결정에 응답하여, 제2 마이크로 컨트롤러(562)는 절단 신호를 정지시킨다. 제어는 블록(1004) 다음에, 또는 절단 신호가 활성이 아니라는 결정 블록(1002)에서의 결정 후에, 또는 한 세트의 절단 전극들(510, 512) 사이의 모니터링된 전류가 절단 아크 임계값보다 크지 않다는 결정 블록(1004)에서의 결정 후에 결정 블록(1008)으로 진행된다. 결정 블록(1008)은 봉합 신호가 활성인지를 결정한다. 봉합 신호가 활성이라는 결정에 응답하여, 결정 블록(1010)에서, 제1 마이크로 컨트롤러(532)는 한 세트의 봉합 전극들(506, 508) 사이의 모니터링된 전류가 봉합 아크 임계값보다 큰지를 결정한다. 블록(1012)에서, 한 세트의 봉합 전극들(506, 508) 사이의 모니터링된 전류가 봉합 아크 임계값보다 크다는 결정에 응답하여, 제1 마이크로 컨트롤러(532)는 봉합 신호를 정지시키고 제2 마이크로 컨트롤러(562)는 절단 신호를 정지시킨다. 봉합없는 절단은 출혈을 초래할 수 있으며, 이는 절단 아크에 응답하지 않고 봉합 아크에 응답하여 절단 및 봉합 둘 다를 정지시키는 이유임이 이해될 것이다. 제어는 봉합 신호가 활성이 아니라는 결정 블록(1008)에서의 결정 후에, 또는 한 세트의 절단 전극들(510, 512) 사이의 모니터링된 전류가 봉합 아크 임계값보다 크지 않다는 결정 블록(1010)에서의 결정 후에 결정 블록(1002)으로 진행된다.
도 11은 일부 실시예들에 따라 조직 봉합 표면들 사이의 생물학적 조직의 부재에 응답하여 봉합 및 절단 활동을 정지시키는 제3 프로세스를 나타내는 예시적인 흐름도이다. 제1 및 제2 마이크로 컨트롤러(532, 562) 및 메인 컨트롤러(572)는 도 1의 전기수술 시스템(500)의 제1 및 제2 스테이지(502, 504)가 동시적인 봉합 및 절단 활동을 수행하게 하는 명령어들로 구성될 수 있다. 봉합 신호가 활성인 동안 제3 프로세스가 발생한다. 블록(1102)에서, 제1 전압 및 전류 모니터링 회로는 한 세트의 봉합 전극들(506, 508) 사이의 전류 및 전압을 모니터링한다. 블록(1104)에서, 제1 마이크로 컨트롤러(532)는 한 세트의 봉합 전극들(506, 508) 사이의 모니터링된 전압 및 전류가 임의의 조직 봉합 표면들(606-612) 사이, 즉 제1 및 제3 조직 봉합 표면(606, 610) 사이 또는 제2 및 제4 조직 봉합 표면(608, 612) 사이의 직접적인 전기적 접촉을 나타내는지를 결정한다. 단락을 야기할 수 있는 조직 봉합 표면들 사이의 직접적인 접촉은 봉합 표면들 사이의 생물학적 조직의 부재에 기인할 수 있다. 한 세트의 봉합 전극들(506, 508) 사이의 모니터링된 전압 및 전류가 임의의 조직 봉합 표면들(606-612) 사이의 직접적인 전기적 접촉을 나타내지 않는다는 결정에 응답하여, 제어는 블록(1102)으로 다시 진행된다. 결정 블록(1106)에서, 한 세트의 봉합 전극들(506, 508) 사이의 모니터링된 전압 및 전류가 임의의 조직 봉합 표면들(606-612) 사이의 직접적인 전기적 접촉을 나타내지 않는다는 결정에 응답하여, 제2 마이크로 컨트롤러(562)는 절단 신호가 활성인지를 결정한다. 블록(1108)에서, 절단 신호가 활성이라는 결정에 응답하여, 제2 마이크로 컨트롤러(562)는 절단 신호를 정지시킨다. 블록(1110)에서, 블록(1108) 이후 또는 절단 스테이지가 활성이 아니라는 블록(1106)에서의 결정 이후, 제1 마이크로 컨트롤러(532)는 봉합 신호를 정지시킨다. 아크로부터 전달된 높은 에너지는 기구 자체를 손상시킬 수 있고, 그것이 비효과적이게, 즉 봉합 성능이 불량해지게 할 수 있음을 알 것이다.
예시적인 실시예들이 도시되고 설명되었지만, 상기 개시내용 및 일부 경우들에서, 광범위한 수정, 변경 및 대체가 예상되고, 실시예들의 일부 특징들은 다른 특징들의 대응하는 사용 없이 이용될 수 있다. 본 기술분야의 통상의 기술자는 많은 변형, 대안 및 수정을 인식할 것이다. 따라서, 본 개시내용의 범위는 이하의 청구항들에 의해서만 제한되어야 하고, 청구항들은 본 명세서에 개시된 실시예들의 범위와 일치하는 방식으로 광범위하게 해석되는 것이 적절하다. 위의 설명은 본 기술분야의 임의의 통상의 기술자가 생물학적 조직을 동시에 봉합 및 절단하기 위해 전기수술 신호들을 생성 및 사용할 수 있게 하도록 제시된다. 실시예들에 대한 다양한 수정들이 본 기술분야의 통상의 기술자들에게 명백할 것이며, 여기에 정의된 일반적인 원리들은 본 발명의 범위를 벗어나지 않고 다른 실시예들 및 응용들에 적용될 수 있다. 앞의 설명에서, 설명의 목적으로 다수의 세부사항이 제시된다. 예를 들어, 전기수술 신호 발생기 회로는 봉합기 스테이지 및 절개 스테이지를 제어하기 위해 별개의 프로세스들을 실행하는 명령들로 구성된 단일 프로세서를 포함할 수 있다. 그러나, 본 기술분야의 통상의 기술자는 본 발명이 이들 특정 세부 사항을 사용하지 않고서 실시될 수 있음을 인식할 것이다. 다른 경우들에서, 본 발명의 설명을 불필요한 세부사항들로 모호하게 하지 않기 위해, 잘 알려진 프로세스들은 블록도 형태로 도시되어 있다. 상이한 도면들에서 동일하거나 유사한 항목의 상이한 뷰들을 나타내기 위해 동일한 참조 부호들이 사용될 수 있다. 따라서, 본 발명에 따른 실시예들의 상술한 설명 및 도면은 단지 본 발명의 원리를 예시하는 것이다. 그러므로, 첨부된 청구항들에 정의된 본 발명의 범위를 벗어나지 않고서, 본 기술분야의 통상의 기술자에 의해 실시예에 대한 다양한 수정이 이루어질 수 있음이 이해될 것이다.

Claims (22)

  1. 생물학적 조직을 봉합 및 절단하는 방법으로서,
    한 세트의 봉합 전극들 사이에 교류(AC) 봉합 신호를 부여하는 단계;
    상기 AC 봉합 신호가 상기 한 세트의 봉합 전극들 사이에 부여되는 동안, 상기 한 세트의 봉합 전극들 사이에 배치된 생물학적 조직의 임피던스를 결정하는 단계;
    상기 봉합 전극들 사이에 배치된 생물학적 조직의 임피던스가 제1 임피던스 임계값에 도달하는 것에 응답하여, 한 세트의 절단 전극들 사이에 상기 AC 봉합 신호가 부여되는 동안 상기 절단 전극들 사이에 AC 절단 신호를 부여하는 단계;
    상기 AC 절단 신호가 상기 한 세트의 절단 전극들 사이에 부여되는 동안 상기 한 세트의 봉합 전극들 사이에 배치된 생물학적 조직의 임피던스를 결정하는 단계;
    상기 한 세트의 봉합 전극들 사이에 배치된 생물학적 조직의 임피던스가 제2 임피던스 임계값에 도달한 것에 응답하여, 상기 한 세트의 봉합 전극들 사이의 상기 AC 봉합 신호를 정지시키는 단계; 및
    상기 AC 절단 신호를 정지시키는 단계
    를 포함하는 방법.
  2. 제1항에 있어서,
    상기 AC 절단 신호를 정지시키는 단계는 상기 AC 봉합 신호를 정지시키는 단계 이후에 발생하는, 방법.
  3. 제1항에 있어서,
    상기 한 세트의 봉합 전극들 사이에 AC 봉합 신호를 부여하는 단계는 상기 한 세트의 봉합 전극들 사이에 배치된 생물학적 조직의 임피던스가 상기 제2 임피던스 임계값에 도달한 후 연장되는 봉합 체류 시간 동안 AC 봉합 전류를 부여하는 단계를 포함하는, 방법.
  4. 제1항에 있어서,
    상기 AC 봉합 신호는 상기 AC 절단 신호와 동위상(in-phase)인, 방법.
  5. 제1항에 있어서,
    상기 한 세트의 봉합 전극들 사이에 AC 봉합 신호를 부여하는 단계 및 상기 한 세트의 절단 전극들 사이에 AC 절단 신호를 부여하는 단계는, 상기 한 세트의 봉합 전극들과 상기 한 세트의 절단 전극들 사이에 공통으로 공유되는 적어도 하나의 전극에 상기 교류(AC) 봉합 신호를 부여하는 단계 및 상기 AC 절단 신호를 부여하는 단계를 포함하는, 방법.
  6. 제1항에 있어서,
    상기 한 세트의 절단 전극들 사이에 AC 절단 신호를 부여하는 단계는 상기 한 세트의 절단 전극들 사이에 복수의 절단 펄스를 부여하는 단계를 포함하는, 방법.
  7. 제1항에 있어서,
    상기 한 세트의 절단 전극들 사이에 AC 절단 신호를 부여하는 단계는 상기 한 세트의 절단 전극들 사이에 복수의 절단 신호 펄스를 부여하는 단계를 포함하고;
    상기 한 세트의 절단 전극들 사이에 배치된 생물학적 조직의 임피던스 값에 기초하여 절단 신호 펄스들의 수를 조절하는 단계
    를 더 포함하는, 방법.
  8. 제1항에 있어서,
    상기 한 세트의 절단 전극들 사이에 AC 절단 신호를 부여하는 단계는 상기 한 세트의 절단 전극들 사이에 복수의 절단 신호 펄스를 부여하는 단계를 포함하고;
    상기 한 세트의 봉합 전극들 사이에 배치된 생물학적 조직의 임피던스 값에 기초하여 절단 신호 펄스들 사이의 봉합 체류 시간을 조절하는 단계
    를 더 포함하는, 방법.
  9. 제1항에 있어서,
    상기 제1 임피던스 임계값은 상기 제2 임피던스 임계값보다 낮은, 방법.
  10. 제1항에 있어서,
    상기 AC 절단 신호가 상기 한 세트의 절단 전극들 사이에 부여되는 동안 상기 한 세트의 절단 전극들 사이에 배치된 생물학적 조직의 임피던스를 결정하는 단계
    를 더 포함하고;
    상기 AC 절단 신호를 정지시키는 단계는 상기 한 세트의 절단 전극들 사이에 배치된 생물학적 조직의 임피던스가 제3 임피던스 임계값에 도달한 것에 응답하여, 상기 AC 절단 신호를 정지시키는 단계
    를 포함하는, 방법.
  11. 제1항에 있어서,
    상기 제1 임피던스 임계값은 상기 제2 임피던스 임계값보다 낮고, 상기 제3 임피던스 임계값은 상기 제2 임피던스 임계값보다 큰, 방법.
  12. 제1항에 있어서,
    상기 AC 봉합 신호의 피크-투-피크 전압은 상기 AC 절단 신호의 피크-투-피크 전압보다 작은, 방법.
  13. 제1항에 있어서,
    상기 AC 절단 신호가 상기 한 세트의 절단 전극들 사이에 부여되는 동안, 상기 한 세트의 봉합 전극들 사이에 배치된 생물학적 조직의 임피던스를 결정하는 단계; 및
    상기 한 세트의 봉합 전극들 사이에 배치된 생물학적 조직의 임피던스가 봉합 아크 임계값에 도달한 것에 응답하여, 상기 AC 봉합 신호 및 상기 AC 절단 신호를 정지시키는 단계
    를 더 포함하는 방법.
  14. 제1항에 있어서,
    상기 AC 절단 신호가 상기 한 세트의 절단 전극들 사이에 부여되는 동안 상기 한 세트의 봉합 전극들 사이에 배치된 생물학적 조직의 임피던스를 결정하는 단계;
    상기 AC 봉합 신호가 상기 한 세트의 봉합 전극들 사이에 부여되는 동안, 상기 한 세트의 절단 전극들 사이에 배치된 생물학적 조직의 임피던스를 결정하는 단계; 및
    상기 한 세트의 절단 전극들 사이에 배치된 생물학적 조직의 임피던스가 절단 아크 임계값에 도달하고, 상기 한 세트의 봉합 전극들 사이에 배치된 생물학적 조직의 임피던스가 봉합 아크 임계값에 도달하지 않는 것에 응답하여, 상기 AC 봉합 신호를 계속 부여하는 동안 상기 AC 절단 신호를 정지시키는 단계
    를 더 포함하는 방법.
  15. 전기수술 시스템으로서,
    한 세트의 봉합 전극들 상에 AC 봉합 신호를 제공하는 전기수술 신호 발생기 봉합 스테이지; 및
    한 세트의 절단 전극들 상에 AC 절단 신호를 제공하는 전기수술 신호 발생기 절단 스테이지
    를 포함하고, 상기 한 세트의 봉합 전극들과 상기 한 세트의 절단 전극들은 적어도 하나의 전극을 공통으로 공유하는, 전기수술 시스템.
  16. 제15항에 있어서,
    상기 AC 봉합 신호와 상기 AC 절단 신호는 동위상인, 전기수술 시스템.
  17. 제15항에 있어서,
    상기 전기수술 신호 발생기 절단 스테이지는 상기 한 세트의 봉합 전극들 사이에 배치된 생물학적 조직의 임피던스가 제1 임피던스 임계값에 도달하는 것에 응답하여, 상기 한 세트의 절단 전극들 사이에 상기 AC 절단 신호를 부여하도록 구성되고;
    상기 전기수술 신호 발생기 봉합 스테이지는 상기 한 세트의 봉합 전극들 사이에 배치된 생물학적 조직의 임피던스가 제2 임피던스 임계값에 도달하는 것에 응답하여, 상기 절단 전극들 사이에 상기 AC 절단 신호가 부여되는 중에 시작하는 미리 정해진 시간 간격의 끝에서 상기 한 세트의 봉합 전극들 사이의 상기 AC 봉합 신호를 정지시키도록 구성되는, 전기수술 시스템.
  18. 제17항에 있어서,
    상기 전기수술 신호 발생기 절단 스테이지는 상기 한 세트의 절단 전극들 사이에 배치된 생물학적 조직의 임피던스가 제3 임피던스 임계값에 도달하는 것에 응답하여, 상기 AC 절단 신호를 정지시키도록 구성되는, 전기수술 시스템.
  19. 제18항에 있어서,
    상기 제1 임피던스 임계값은 상기 제2 임피던스 임계값보다 낮고, 상기 제3 임피던스 임계값은 상기 제2 임피던스 임계값보다 큰, 전기수술 시스템.
  20. 제15항에 있어서,
    상기 전기수술 신호 발생기 절단 스테이지는 이산 펄스 간격들로 상기 AC 절단 신호를 제공하도록 구성되는, 전기수술 시스템.
  21. 제15항에 있어서,
    상기 전기수술 신호 발생기 절단 스테이지는 이산 펄스 간격들로 상기 AC 절단 신호를 제공하도록 구성되고;
    상기 전기수술 신호 발생기 절단 스테이지는 상기 한 세트의 절단 전극들 사이에 배치된 생물학적 조직의 임피던스 값에 기초하여 절단 신호 펄스들의 수를 조절하도록 구성되는, 전기수술 시스템.
  22. 제15항에 있어서,
    상기 전기수술 신호 발생기 절단 스테이지는 이산 펄스 간격들로 상기 AC 절단 신호를 제공하도록 구성되고;
    상기 전기수술 신호 발생기 절단 스테이지는 상기 한 세트의 봉합 전극들 사이에 배치된 생물학적 조직의 임피던스 값에 기초하여 절단 신호 펄스들 사이의 체류 시간을 조절하도록 구성되는, 전기수술 시스템.
KR1020207020323A 2017-12-19 2018-12-19 동시적인 전기수술 봉합 및 절단 KR102446776B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020227032355A KR20220132048A (ko) 2017-12-19 2018-12-19 동시적인 전기수술 봉합 및 절단

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762607817P 2017-12-19 2017-12-19
US62/607,817 2017-12-19
PCT/US2018/066575 WO2019126370A1 (en) 2017-12-19 2018-12-19 Simultaneous electrosurgical sealing and cutting

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020227032355A Division KR20220132048A (ko) 2017-12-19 2018-12-19 동시적인 전기수술 봉합 및 절단

Publications (2)

Publication Number Publication Date
KR20200089760A true KR20200089760A (ko) 2020-07-27
KR102446776B1 KR102446776B1 (ko) 2022-09-23

Family

ID=66994303

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020207020323A KR102446776B1 (ko) 2017-12-19 2018-12-19 동시적인 전기수술 봉합 및 절단
KR1020227032355A KR20220132048A (ko) 2017-12-19 2018-12-19 동시적인 전기수술 봉합 및 절단

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020227032355A KR20220132048A (ko) 2017-12-19 2018-12-19 동시적인 전기수술 봉합 및 절단

Country Status (6)

Country Link
US (1) US20210093369A1 (ko)
EP (1) EP3727178A4 (ko)
JP (2) JP6982188B2 (ko)
KR (2) KR102446776B1 (ko)
CN (2) CN111526832B (ko)
WO (1) WO2019126370A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3895642B1 (de) 2020-04-14 2023-09-27 Erbe Elektromedizin GmbH Vorrichtung zur koagulation und/oder dissektion von biologischem gewebe und ein verfahren zum betreiben einer vorrichtung
EP4216853A1 (en) * 2020-09-24 2023-08-02 Covidien LP End effector assembly with thermal cutting element
US20240004369A1 (en) 2020-11-30 2024-01-04 Intuitive Surgical Operations, Inc. Haptic profiles for input controls of a computer-assisted device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020058933A1 (en) * 1998-07-07 2002-05-16 Medtronic, Inc. Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US20100137854A1 (en) * 2008-05-23 2010-06-03 Gyrus Medical Limited Electrosurgical generator and system
US8357151B2 (en) * 2006-12-06 2013-01-22 Boston Scientific Scimed, Inc. Tissue ablation using pulse modulated radio frequency energy
KR20170016403A (ko) * 2014-05-30 2017-02-13 어플라이드 메디컬 리소시스 코포레이션 조직을 융합시키고 커팅하기 위한 전기수술용 기구 및 전기수술용 발전기
US20170164998A1 (en) * 2009-04-22 2017-06-15 St. Jude Medical, Atrial Fibrillation Division, Inc. Method and apparatus for radiofrequency ablation with increased depth and/or decreased volume of ablated tissue

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3699967A (en) * 1971-04-30 1972-10-24 Valleylab Inc Electrosurgical generator
US5702390A (en) * 1996-03-12 1997-12-30 Ethicon Endo-Surgery, Inc. Bioplar cutting and coagulation instrument
US6626901B1 (en) * 1997-03-05 2003-09-30 The Trustees Of Columbia University In The City Of New York Electrothermal instrument for sealing and joining or cutting tissue
US6152923A (en) * 1999-04-28 2000-11-28 Sherwood Services Ag Multi-contact forceps and method of sealing, coagulating, cauterizing and/or cutting vessels and tissue
US20040116922A1 (en) * 2002-09-05 2004-06-17 Arthrocare Corporation Methods and apparatus for treating intervertebral discs
US7276068B2 (en) * 2002-10-04 2007-10-02 Sherwood Services Ag Vessel sealing instrument with electrical cutting mechanism
GB0305018D0 (en) * 2003-03-05 2003-04-09 Gyrus Medical Ltd Electrosurgical generator and system
DE502004009815D1 (de) * 2003-10-29 2009-09-10 Celon Ag Medical Instruments Medizingerät für die Elektrotomie
US20160045248A1 (en) 2006-01-24 2016-02-18 Covidien Lp System and method for tissue sealing
US7651492B2 (en) * 2006-04-24 2010-01-26 Covidien Ag Arc based adaptive control system for an electrosurgical unit
EP2076195B1 (en) * 2006-07-20 2015-12-02 Medtronic, Inc. Transmural ablation systems
US8597297B2 (en) * 2006-08-29 2013-12-03 Covidien Ag Vessel sealing instrument with multiple electrode configurations
GB0709994D0 (en) * 2007-05-24 2007-07-04 Gyrus Medical Ltd Electrosurgical generator
US9089360B2 (en) * 2008-08-06 2015-07-28 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US8858547B2 (en) * 2009-03-05 2014-10-14 Intuitive Surgical Operations, Inc. Cut and seal instrument
US8672934B2 (en) * 2009-03-17 2014-03-18 Stryker Corporation Method for adjusting source impedance and maximizing output by RF generator
US8663220B2 (en) * 2009-07-15 2014-03-04 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
GB2480498A (en) * 2010-05-21 2011-11-23 Ethicon Endo Surgery Inc Medical device comprising RF circuitry
JP5916237B2 (ja) * 2010-06-15 2016-05-11 アベヌ メディカル インコーポレイテッドAvenu Medical,Inc. 血管内の動脈と静脈の吻合及び組織溶着カテーテル
ES2664081T3 (es) * 2010-10-01 2018-04-18 Applied Medical Resources Corporation Sistema electro-quirúrgico con un amplificador de radio frecuencia y con medios para la adaptación a la separación entre electrodos
US9782214B2 (en) * 2010-11-05 2017-10-10 Ethicon Llc Surgical instrument with sensor and powered control
US20120239024A1 (en) * 2011-03-17 2012-09-20 Vivant Medical, Inc. Energy-Based Ablation Completion Algorithm
DE102011076071A1 (de) * 2011-05-18 2012-11-22 Olympus Winter & Ibe Gmbh Elektrochirurgisches Greifelement
US9237921B2 (en) * 2012-04-09 2016-01-19 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US9113911B2 (en) * 2012-09-06 2015-08-25 Medtronic Ablation Frontiers Llc Ablation device and method for electroporating tissue cells
US9526564B2 (en) * 2012-10-08 2016-12-27 Covidien Lp Electric stapler device
US9375262B2 (en) * 2013-02-27 2016-06-28 Covidien Lp Limited use medical devices
US9427251B2 (en) * 2013-03-13 2016-08-30 Covidien Lp Saber tooth harvester
US9649151B2 (en) * 2013-05-31 2017-05-16 Covidien Lp End effector assemblies and methods of manufacturing end effector assemblies for treating and/or cutting tissue
US9295514B2 (en) * 2013-08-30 2016-03-29 Ethicon Endo-Surgery, Llc Surgical devices with close quarter articulation features
WO2015094493A1 (en) * 2013-12-18 2015-06-25 Covidien Lp Electrosurgical end effectors
WO2015093409A1 (ja) * 2013-12-20 2015-06-25 オリンパス株式会社 熱凝固切開デバイス
US9737355B2 (en) * 2014-03-31 2017-08-22 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US10278768B2 (en) * 2014-04-02 2019-05-07 Covidien Lp Electrosurgical devices including transverse electrode configurations
US9649148B2 (en) * 2014-07-24 2017-05-16 Arthrocare Corporation Electrosurgical system and method having enhanced arc prevention
JP5932187B1 (ja) * 2014-08-05 2016-06-08 オリンパス株式会社 治療用処置システム及び治療用処置システムの作動方法
EP3708101A1 (de) * 2014-09-08 2020-09-16 Erbe Elektromedizin GmbH System zur gleichzeitigen gewebekoagulation und gewebedissektion
US10722293B2 (en) * 2015-05-29 2020-07-28 Covidien Lp Surgical device with an end effector assembly and system for monitoring of tissue before and after a surgical procedure
EP3138522B1 (de) * 2015-09-03 2020-11-04 Erbe Elektromedizin GmbH Instrument zum fassen, trennen und/oder koagulieren von biologischem gewebe
US11020166B2 (en) * 2015-09-25 2021-06-01 Gyrus Acmi, Inc. Multifunctional medical device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020058933A1 (en) * 1998-07-07 2002-05-16 Medtronic, Inc. Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US8357151B2 (en) * 2006-12-06 2013-01-22 Boston Scientific Scimed, Inc. Tissue ablation using pulse modulated radio frequency energy
US20100137854A1 (en) * 2008-05-23 2010-06-03 Gyrus Medical Limited Electrosurgical generator and system
US20170164998A1 (en) * 2009-04-22 2017-06-15 St. Jude Medical, Atrial Fibrillation Division, Inc. Method and apparatus for radiofrequency ablation with increased depth and/or decreased volume of ablated tissue
KR20170016403A (ko) * 2014-05-30 2017-02-13 어플라이드 메디컬 리소시스 코포레이션 조직을 융합시키고 커팅하기 위한 전기수술용 기구 및 전기수술용 발전기

Also Published As

Publication number Publication date
EP3727178A1 (en) 2020-10-28
CN111526832A (zh) 2020-08-11
JP2022027783A (ja) 2022-02-14
JP7403519B2 (ja) 2023-12-22
WO2019126370A1 (en) 2019-06-27
CN117257436A (zh) 2023-12-22
US20210093369A1 (en) 2021-04-01
JP6982188B2 (ja) 2021-12-17
KR20220132048A (ko) 2022-09-29
EP3727178A4 (en) 2021-09-29
CN111526832B (zh) 2023-10-10
JP2021506454A (ja) 2021-02-22
KR102446776B1 (ko) 2022-09-23

Similar Documents

Publication Publication Date Title
US10098690B2 (en) Instruments, systems, and methods for sealing tissue structures
JP7403519B2 (ja) 同時の電気手術シーリング及び切断
US10349999B2 (en) Controlling impedance rise in electrosurgical medical devices
JP6482560B2 (ja) 電気外科手術用エンドエフェクタ
US8273085B2 (en) Electrosurgical instrument and system
US10231776B2 (en) Tissue sealing instrument with tissue-dissecting electrode
JP2020182871A (ja) 電気外科的密封・切開システム
EP2762101A2 (en) Electrosurgical instrument
US20230129956A1 (en) Surgical instruments and methods incorporating ultrasonic and electrosurgical functionality
US20220175410A1 (en) Cutting device, forceps and gripping/cutting method
US20240032987A1 (en) Surgical instruments, systems, and methods incorporating ultrasonic and electrosurgical functionality
US20240238039A1 (en) Surgical instruments, systems, and methods incorporating ultrasonic and electrosurgical functionality
EP4108189A1 (en) Energy based surgical instruments and systems
WO2022243773A1 (en) Surgical instruments and systems incorporating ultrasonic and three-phase electrosurgical functionality
WO2022234389A1 (en) Surgical instruments, systems, and methods incorporating ultrasonic and electrosurgical functionality
WO2024033750A1 (en) Surgical instruments, systems, and methods incorporating ultrasonic and electrosurgical functionality
US20170252093A1 (en) Device and method for energizing surgical instruments

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right