KR20200070888A - Method for pretreatment of capacitive deionization based on ingredient of raw water - Google Patents

Method for pretreatment of capacitive deionization based on ingredient of raw water Download PDF

Info

Publication number
KR20200070888A
KR20200070888A KR1020180158530A KR20180158530A KR20200070888A KR 20200070888 A KR20200070888 A KR 20200070888A KR 1020180158530 A KR1020180158530 A KR 1020180158530A KR 20180158530 A KR20180158530 A KR 20180158530A KR 20200070888 A KR20200070888 A KR 20200070888A
Authority
KR
South Korea
Prior art keywords
raw water
tds
ppm
adsorption
filtration
Prior art date
Application number
KR1020180158530A
Other languages
Korean (ko)
Other versions
KR102197621B1 (en
Inventor
최재우
홍석원
정경원
진용쉰
김희곤
최예슬
이승학
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020180158530A priority Critical patent/KR102197621B1/en
Publication of KR20200070888A publication Critical patent/KR20200070888A/en
Application granted granted Critical
Publication of KR102197621B1 publication Critical patent/KR102197621B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2055Carbonaceous material
    • B01D39/2058Carbonaceous material the material being particulate
    • B01D39/2062Bonded, e.g. activated carbon blocks
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4691Capacitive deionisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/10Solids, e.g. total solids [TS], total suspended solids [TSS] or volatile solids [VS]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/11Turbidity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/20Total organic carbon [TOC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Abstract

The present invention relates to a method for pre-treating a capacitive deionization process according to an ingredient of raw water, in which when a capacitive deionization process is applied to discharged water of a sewage/waste water treatment facility, activation of an electrode in the capacitive deionization process can be optimized by selectively applying a coagulation process, a filtering process, and a desorption process as a pre-treatment process of the capacitive deionization process according to an ingredient of the discharged water of a sewage/waste water treatment facility, that is, the gradient of the raw water. The method for pre-treating a capacitive deionization process according to an ingredient of raw water according to the present invention is a pre-treatment process for raw water introduced into a capacitive deionization apparatus, and the ingredient of the raw water is classified into less than TDS 200 ppm, TDS 200 to 700 ppm, and TDS 701 to 4000 ppm, a membrane filtering (MF) process is applied as the pre-treatment process if the ingredient of the raw water is less than TDS 200 ppm, a coagulation process, a filtering process, and an adsorption process are sequentially applied as the pre-treatment process or a ceramic separation membrane process, a filtering process, and an adsorption process are sequentially applied as the pre-treatment process if the ingredient of the raw water is TDS 701 to 4000 ppm, and only an adsorption process is applied as the pre-treatment process or a filtering process and an adsorption process are sequentially applied as the pre-treatment process if if the ingredient of the raw water is TDS 200 to 700 ppm.

Description

원수의 성상에 따른 축전식 탈염공정의 전처리 방법{Method for pretreatment of capacitive deionization based on ingredient of raw water}Method for pretreatment of capacitive deionization based on ingredient of raw water

본 발명은 원수의 성상에 따른 축전식 탈염공정의 전처리 방법에 관한 것으로서, 보다 상세하게는 하폐수처리장의 방류수에 대해 축전식 탈염공정을 적용함에 있어서 하폐수처리장의 방류수의 성상 즉, 원수의 성상에 따라 응집, 여과, 흡착 공정을 축전식 탈염공정의 전처리공정으로서 선택적으로 적용함으로써 축전식 탈염공정에서의 전극 활성을 최적화할 수 있는 원수의 성상에 따른 축전식 탈염공정의 전처리 방법에 관한 것이다.The present invention relates to a pretreatment method of a capacitive desalination process according to the properties of raw water, and more specifically, in applying a capacitive desalination process to effluents of a sewage treatment plant, according to the properties of the effluents of a sewage treatment plant, that is, the properties of raw water. It relates to a pretreatment method of a capacitive desalination process according to the properties of raw water capable of optimizing electrode activity in a capacitive desalination process by selectively applying a coagulation, filtration and adsorption process as a pretreatment process of the capacitive desalination process.

하폐수처리장 등 환경기초시설에서 처리된 방류수는 수질 및 수량 측면에서 매우 안정적인 대체수자원이다. 깨끗하게 처리된 방류수는 갈수기간 중 상류에서 오염된 하천의 희석수 역할을 할 수 있고, 양질의 공업용수로도 사용 가능하며, 도시화로 건천화된 도심하천에 생태유량으로 공급할 수도 있다. Discharged water treated in environmental basic facilities such as wastewater treatment plants is a very stable alternative water resource in terms of water quality and quantity. The clean treated effluent can serve as a dilution water for contaminated rivers in the upstream during the dry season, can be used as high-quality industrial water, or can be supplied as an ecological flow to urban streams that have been urbanized.

최근에는 하폐수처리장의 방류수를 대상으로 축전식 탈염공정을 적용하여 방류수의 수질을 보다 더 개선하고 있다. 하지만, 하폐수처리장에 유입되는 오염원에 따라 방류수의 성상이 달라지며, 하폐수처리장과 축전식 탈염공정을 결합시키는 경우 방류수의 성상은 축전식 탈염공정에도 영향을 미친다. 방류수의 성상 즉, 축전식 탈염공정에 유입되는 원수의 성상에 있어서 탁도(Turbidity) 및 총유기탄소(TOC)가 지나치게 높으면 축전식 탈염공정에서의 전극 활성을 저해하는 요인으로 작용한다. Recently, the water quality of the effluent has been further improved by applying a capacitive desalination process to the effluent from the wastewater treatment plant. However, the properties of the effluent vary depending on the pollutant entering the wastewater treatment plant, and when the wastewater treatment plant and the capacitive desalination process are combined, the properties of the effluent also affect the capacitive desalination process. If the turbidity and the total organic carbon (TOC) are too high in the properties of the effluent, that is, the raw water flowing into the capacitive desalination process, it acts as a factor inhibiting the electrode activity in the capacitive desalination process.

한국공개특허공보 제2013-61366호Korea Patent Publication No. 2013-61366

본 발명은 상기와 같은 문제점을 해결하기 위해 안출한 것으로서, 하폐수처리장의 방류수에 대해 축전식 탈염공정을 적용함에 있어서 하폐수처리장의 방류수의 성상 즉, 원수의 성상에 따라 응집, 여과, 흡착 공정을 축전식 탈염공정의 전처리공정으로서 선택적으로 적용함으로써 축전식 탈염공정에서의 전극 활성을 최적화할 수 있는 원수의 성상에 따른 축전식 탈염공정의 전처리 방법을 제공하는데 그 목적이 있다.The present invention has been devised to solve the above problems, and when applying the capacitive desalination process to the effluent of a wastewater treatment plant, condensing, filtering, and adsorbing processes according to the properties of the effluent of the wastewater treatment plant, that is, raw water. An object of the present invention is to provide a pretreatment method of a capacitive desalination process according to the properties of raw water, which can optimize electrode activity in a capacitive desalination process by selectively applying it as a pretreatment process of a desalination process.

상기의 목적을 달성하기 위한 본 발명에 따른 원수의 성상에 따른 축전식 탈염공정의 전처리 방법은 축전식 탈염장치에 유입되는 원수에 대한 전처리공정으로서, 원수의 성상을 TDS 200ppm 미만, TDS 200∼700ppm, TDS 701∼4000ppm으로 구분하고, 원수의 성상이 TDS 200ppm 미만이면 전처리공정으로 막여과공정(MF)을 적용하고, 원수의 성상이 TDS 701∼4000ppm이면 전처리공정으로 응집공정, 여과공정, 흡착공정을 순차적으로 적용하거나 세라믹분리막 공정, 여과공정, 흡착공정을 순차적으로 적용하며, 원수의 성상이 TDS 200∼700ppm이면 전처리공정으로 흡착공정만을 적용하거나 여과공정과 흡착공정을 순차적으로 적용하는 것을 특징으로 한다. In order to achieve the above object, the pre-treatment method of the electricity storage desalination process according to the properties of the raw water according to the present invention is a pre-treatment process for raw water flowing into the electricity storage desalination device, wherein the properties of the raw water are less than TDS 200ppm, TDS 200-700ppm , TDS 701 ~ 4000ppm, if the property of raw water is less than TDS 200ppm, membrane filtration process (MF) is applied as a pretreatment process, and if the property of raw water is TDS 701~4000ppm, it is a coagulation process, filtration process, adsorption process as pretreatment process Is applied sequentially or ceramic separation membrane process, filtration process, adsorption process are applied sequentially, and if the property of raw water is TDS 200~700ppm, only adsorption process is applied as pretreatment process or filtration process and adsorption process are applied sequentially. do.

원수의 성상이 TDS 200∼700ppm인 경우, 탁도가 0.5∼1.5이고, 총유기탄소(TOC)가 1∼12이면 전처리공정으로 흡착공정만이 적용되며, 탁도가 1.5∼8이고, 총유기탄소(TOC)가 12∼30이면 전처리공정으로 여과공정과 흡착공정이 순차적으로 적용된다. If the raw water has a TDS of 200 to 700 ppm, the turbidity is 0.5 to 1.5, and if the total organic carbon (TOC) is 1 to 12, only the adsorption process is applied as a pretreatment process, the turbidity is 1.5 to 8, and the total organic carbon ( If TOC) is 12 to 30, filtration and adsorption are sequentially applied as pretreatment.

TDS 200ppm 미만의 원수는 막오염지수(SDI)가 2보다 작고, TDS 200∼700ppm의 원수는 막오염지수(SDI)가 2∼5이며, TDS가 700ppm을 초과하는 원수는 막오염지수(SDI)가 5를 초과한다. Raw water with a TDS of less than 200 ppm has a membrane contamination index (SDI) of less than 2, raw water with a TDS of 200 to 700 ppm has a membrane pollution index (SDI) of 2 to 5, and a raw water with a TDS of more than 700 ppm has a membrane contamination index (SDI). Exceeds 5

TDS 200ppm 미만의 원수는 탁도가 0.5NTU 미만, 총유기탄소(TOC)가 2ppm 미만이며, TDS가 700ppm을 초과하는 원수는 탁도가 10NTU 초과, 총유기탄소(TOC)가 30ppm을 초과한다. Raw water with a TDS of less than 200 ppm has a turbidity of less than 0.5 NTU, total organic carbon (TOC) is less than 2 ppm, and raw water with a TDS of more than 700 ppm has a turbidity of more than 10 NTU and total organic carbon (TOC) exceeds 30 ppm.

상기 여과공정과 흡착공정은 여과조와 흡착조를 각각 구비시켜 독립적으로 진행시키거나, 하나의 반응조 내에 여과담체와 흡착담체를 모두 충진시켜 하나의 여과공정 및 흡착공정이 모두 진행되도록 할 수 있다. The filtration process and the adsorption process may be carried out independently by providing a filtration tank and an adsorption tank, respectively, or by filling both the filtration carrier and the adsorption carrier in one reaction tank so that both the filtration process and the adsorption process are performed.

상기 여과담체는 AFM(activated filter media), 흡착담체로는 입상활성탄(GAC)을 이용할 수 있다.The filter carrier may be activated filter media (AFM), or granular activated carbon (GAC) as an adsorbent carrier.

본 발명에 따른 원수의 성상에 따른 축전식 탈염공정의 전처리 방법은 다음과 같은 효과가 있다. The pretreatment method of the capacitive desalination process according to the properties of raw water according to the present invention has the following effects.

축전식 탈염공정에 유입되는 원수의 성상별로 전처리공정을 달리 적용하여 원수의 탁도 및 총유기탄소(TOC) 농도를 최소화할 수 있으며, 이를 통해 축전식 탈염공정의 탈염 효율을 향상시킬 수 있다.Turbidity and total organic carbon (TOC) concentration of the raw water can be minimized by differently applying a pretreatment process according to the nature of the raw water flowing into the electricity storage desalination process, thereby improving the desalination efficiency of the electricity storage desalination process.

도 1은 본 발명의 일 실시예에 따른 원수의 성상에 따른 축전식 탈염공정의 전처리 방법을 설명하기 위한 참고도.
도 2a 및 도 2b는 소용량의 여과컬럼 및 흡착컬럼을 이용한 탁도 및 TOC 제거효율을 나타낸 실험결과.
도 3a 및 도 3b는 대용량의 여과컬럼 및 흡착컬럼을 이용한 탁도 및 TOC 제거효율을 나타낸 실험결과.
도 4a 및 도 4b는 여과컬럼 및 흡착컬럼을 순차적으로 배치한 장치에서의 탁도 및 TOC 제거효율을 나타낸 실험결과.
1 is a reference diagram for explaining a pre-treatment method of a capacitive desalination process according to the properties of raw water according to an embodiment of the present invention.
2A and 2B are experimental results showing the turbidity and TOC removal efficiency using small-capacity filtration and adsorption columns.
3A and 3B are experimental results showing turbidity and TOC removal efficiency using large-capacity filtration columns and adsorption columns.
4A and 4B are experimental results showing turbidity and TOC removal efficiency in a device in which filtration columns and adsorption columns are sequentially arranged.

원수를 전기분해하여 원수 내에 포함되어 있는 염을 제거하는 공정인 축전식 탈염공정을 진행함에 있어서 전극의 활성에 중요한 영향을 미치는 인자는 탁도(Turbidity)와 총유기탄소(TOC)이다. 원수의 탁도와 총유기탄소(TOC)가 높으면 축전식 탈염공정에서의 전극 활성을 저해시켜 탈염 효율이 저하된다. 따라서, 축전식 탈염공정의 탈염 효율을 향상시키기 위해서는 원수의 탁도와 총유기탄소(TOC)가 적절한 수치로 관리되어야 한다. Turbidity and total organic carbon (TOC) are factors that have an important effect on the activity of the electrode during the electrolytic desalination process, which is a process of removing salts contained in the raw water by electrolysis of raw water. When the turbidity and total organic carbon (TOC) of the raw water are high, the electrode deactivation is inhibited by inhibiting the electrode activity in the capacitive desalination process. Therefore, in order to improve the desalination efficiency of the capacitive desalination process, the turbidity of the raw water and the total organic carbon (TOC) must be managed at appropriate values.

원수의 탁도 및 총유기탄소(TOC)가 축전식 탈염공정의 탈염 효율에 중요한 영향을 미치는 원수의 성상이고, 본 발명은 원수의 탁도 및 총유기탄소(TOC)에 연관하여 선택적인 전처리공정을 적용함을 제시하고 있지만, 탁도 및 총유기탄소(TOC)는 그 수치의 크기가 작아 탁도 및 총유기탄소(TOC)를 기준으로 본 발명의 전처리공정을 구분하여 적용하기에는 공정 적합성이 떨어질 수 있다. Turbidity and total organic carbon (TOC) of raw water is a property of raw water having an important effect on desalination efficiency of a capacitive desalination process, and the present invention applies a selective pretreatment process in relation to turbidity and total organic carbon (TOC) of raw water Although it is suggested that turbidity and total organic carbon (TOC) are small in size, process suitability may be poor to classify and apply the pretreatment process of the present invention based on turbidity and total organic carbon (TOC).

이에, 본 발명은 축전식 탈염공정의 선택적인 전처리공정을 적용함에 있어서 원수의 성상을 구분하는 기준으로 TDS(total dissolved solids)를 적용한다. 즉, TDS의 수치를 기준으로 원수의 성상을 구분하고, 각 성상의 원수에 대해 선택적인 전처리공정을 적용한다. Accordingly, the present invention applies TDS (total dissolved solids) as a criterion for distinguishing the properties of raw water in applying the selective pretreatment process of the capacitive desalination process. That is, the properties of the raw water are classified based on the values of the TDS, and an optional pretreatment process is applied to the raw water of each property.

원수의 성상에 따라 선택적으로 적용되는 본 발명의 전처리공정은 기본적으로 응집공정, 여과공정, 흡착공정을 기반으로 한다. 원수의 TDS가 200∼700ppm인 경우 여과공정과 흡착공정을 모두 적용하거나 흡착공정만을 적용하며, 원수의 TDS가 200ppm보다 작으면 여과공정과 흡착공정을 모두 생략하고 막여과공정(MF)으로 전처리공정을 대체할 수 있다. 또한, 원수의 TDS가 701∼4000ppm인 경우 여과공정 및 흡착공정을 진행하기 전에 응집공정 또는 세라믹분리막 공정을 추가하여 전처리공정을 구성할 수 있다. The pretreatment process of the present invention, which is selectively applied according to the properties of raw water, is basically based on a coagulation process, a filtration process, and an adsorption process. If the raw water has a TDS of 200 to 700ppm, both the filtration process and the adsorption process are applied or only the adsorption process is applied. If the TDS of the raw water is less than 200ppm, both the filtration process and the adsorption process are omitted, and the membrane filtration process (MF) pretreatment process Can replace In addition, when the raw water has a TDS of 701 to 4000 ppm, a pretreatment process may be configured by adding a coagulation process or a ceramic separation membrane process before proceeding with a filtration process and an adsorption process.

본 발명은 이와 같은 전처리공정을 통해 축전식 탈염공정에 유입되는 원수의 탁도 및 총유기탄소(TOC)를 탁도 0.5NTU 이하, 총유기탄소(TOC) 4ppm 이하로 제어함을 목적으로 한다. The present invention aims to control the turbidity and total organic carbon (TOC) of the raw water flowing into the capacitive desalination process to a turbidity of 0.5 NTU or less and a total organic carbon (TOC) of 4 ppm or less through the pretreatment process.

선택적인 전처리공정을 적용하기 위한 원수의 TDS 수치로 TDS 200ppm 미만, TDS 200∼700ppm, TDS 701∼4000ppm으로 구분한 근거는 오염원에 따른 원수의 특성에 따른 것이다. 실험을 통해 측정한 결과, 축전식 탈염공정의 원수 중 하나인 하수처리장의 방류수는 TDS가 200ppm 미만이며, 각종 시설에서 배출되는 냉각수의 경우 TDS가 200∼700ppm이며, 공업단지 폐수의 경우 701∼4000ppm의 TDS 수치를 보이고 있다. The TDS value of raw water for applying the optional pretreatment process is classified as less than 200 ppm of TDS, 200 to 700 ppm of TDS, and 701 to 4000 ppm of TDS, depending on the characteristics of the raw water according to the pollutant. As a result of experiments, TDS is less than 200ppm, and TDS is 200~700ppm for cooling water discharged from various facilities, and 701~4000ppm for industrial complex wastewater. Is showing the TDS level.

이에, TDS 200ppm 미만의 하수처리장 방류수의 경우 막여과공정(MF)을 전처리공정을 적용한 후 축전식 탈염공정에 의해 처리되며, TDS 200∼700ppm인 냉각수의 경우 전처리공정으로 여과공정과 흡착공정을 모두 적용하거나 흡착공정만을 적용하며, TDS 701∼4000ppm인 공업단지 폐수의 경우 여과공정 및 흡착공정을 진행하기 전에 응집공정 또는 세라믹분리막 공정이 추가 적용된 전처리공정을 거친 후에 축전식 탈염공정이 진행된다. Thus, in the case of effluent treatment plants with a TDS of less than 200 ppm, the membrane filtration process (MF) is applied by a pre-treatment process and then treated by a capacitive desalination process. In the case of a cooling water with a TDS of 200 to 700 ppm, both the filtration process and the adsorption process are pretreated. Applying or applying only the adsorption process, in the case of industrial complex wastewater with TDS of 701~4000ppm, after the filtration process and the adsorption process, a pre-treatment process in which a coagulation process or a ceramic separation membrane process is additionally applied, followed by a capacitive desalination process.

한편, 원수의 성상을 결정하는 인자 중에서 막오염지수(SDI, Silt Density Index), 탁도(Turbidity), 총유기탄소(TOC)는 TDS(Total Dissolved Solids)와 유사한 경향성을 나타낸다. 구체적으로, TDS 200ppm 미만의 원수는 막오염지수(SDI)가 2보다 작고, TDS 200∼700ppm의 원수는 막오염지수(SDI)가 2∼5이며, TDS가 700ppm을 초과하는 원수는 막오염지수(SDI)가 5를 초과하는 경향성을 보인다. 또한, 탁도와 총유기탄소(TOC)의 경향성 또한 막오염지수(SDI) 및 TDS의 경향성과 일치한다. TDS 200ppm 미만의 원수는 탁도가 0.5NTU 미만, 총유기탄소(TOC)가 2ppm 미만이며, TDS가 700ppm을 초과하는 원수는 탁도가 10NTU 초과, 총유기탄소(TOC)가 30ppm을 초과하는 경향성을 보인다. TDS 200∼700ppm의 원수 즉, 막오염지수(SDI)가 2∼5인 경우에는 2가지 형태로 세분화된다. 이는 전처리공정을 보다 효과적으로 적용하기 위함이다. TDS 200∼700ppm 즉, 막오염지수(SDI)가 2∼5이면 탁도는 0.5∼1.5이고 총유기탄소(TOC)는 1∼12인 경우와 탁도는 1.5∼8이고 총유기탄소(TOC)는 12∼30인 경우로 구분될 수 있다. 전자의 경우 즉, 탁도는 0.5∼1.5이고 총유기탄소(TOC)는 1∼12인 경우에는 흡착공정만이 적용되며, 후자의 경우 즉, 탁도는 1.5∼8이고 총유기탄소(TOC)는 12∼30인 경우에는 여과공정과 흡착공정이 함께 적용된다. On the other hand, among the factors that determine the properties of raw water, the membrane contamination index (SDI, Silt Density Index), turbidity, and total organic carbon (TOC) show a similar tendency to TDS (Total Dissolved Solids). Specifically, raw water having a TDS of less than 200 ppm has a membrane contamination index (SDI) of less than 2, raw water having a TDS of 200 to 700 ppm has a membrane pollution index (SDI) of 2 to 5, and a raw water having a TDS exceeding 700 ppm has a membrane contamination index. (SDI) tends to exceed 5. In addition, the tendency of turbidity and total organic carbon (TOC) is also consistent with the tendency of membrane contamination index (SDI) and TDS. Raw water with TDS less than 200ppm has a turbidity of less than 0.5NTU, total organic carbon (TOC) is less than 2ppm, and raw water with TDS exceeding 700ppm tends to have a turbidity greater than 10NTU and total organic carbon (TOC) more than 30ppm. . When the raw water of TDS 200 to 700 ppm, that is, the membrane contamination index (SDI) is 2 to 5, it is subdivided into two types. This is to apply the pretreatment process more effectively. TDS 200~700ppm, that is, if the membrane pollution index (SDI) is 2~5, turbidity is 0.5~1.5, total organic carbon (TOC) is 1-12, turbidity is 1.5-8, and total organic carbon (TOC) is 12 It can be divided into cases of ∼30. In the former case, the turbidity is 0.5 to 1.5 and the total organic carbon (TOC) is 1 to 12, only the adsorption process is applied. In the latter case, the turbidity is 1.5 to 8 and the total organic carbon (TOC) is 12. In the case of ∼30, the filtration process and the adsorption process are applied together.

전술한 바와 같이, 본 발명에 따른 전처리공정은 응집공정, 여과공정, 흡착공정을 기반으로 하는데, 응집공정, 여과공정, 흡착공정은 순차적으로 적용되는 것을 원칙으로 하며, 응집공정, 여과공정, 흡착공정이 순차적으로 적용됨에 있어서 어느 한 공정은 생략될 수 있다. 또한, 앞서 언급한 바와 같이 TDS 200ppm 미만의 원수는 막여과공정(MF)이 적용되고, TDS 701∼4000ppm의 원수는 응집공정(또는 세라믹분리막 공정), 여과공정, 흡착공정이 순차적으로 적용되며, TDS 200∼700ppm의 원수는 탁도 0.5∼1.5, 총유기탄소(TOC) 1∼12인 경우 흡착공정만이 적용되며, 탁도는 1.5∼8, 총유기탄소(TOC) 12∼30인 경우 여과공정과 흡착공정이 순차적으로 적용된다. As described above, the pretreatment process according to the present invention is based on a coagulation process, a filtration process, and an adsorption process. The agglomeration process, the filtration process, and the adsorption process are in principle applied sequentially, and the coagulation process, the filtration process, and the adsorption Either process can be omitted because the process is applied sequentially. In addition, as mentioned above, raw water having a TDS of less than 200 ppm is subjected to a membrane filtration process (MF), and raw water with a TDS of 701 to 4000 ppm is subjected to an agglomeration process (or ceramic separation membrane process), a filtration process, and an adsorption process sequentially. For raw water of TDS 200~700ppm, turbidity is 0.5~1.5, total organic carbon (TOC) 1~12 is applied only adsorption process, turbidity is 1.5~8, total organic carbon (TOC) 12~30 is filtration process The adsorption process is applied sequentially.

여과공정과 흡착공정은 여과조와 흡착조를 각각 구비시켜 독립적으로 진행시키거나, 하나의 반응조 내에 여과담체와 흡착담체를 모두 충진시켜 하나의 여과공정 및 흡착공정이 모두 진행되도록 할 수 있다. 여기서, 일 실시예로 여과담체로는 AFM(activated filter media)을 이용하고, 흡착담체로는 입상활성탄(GAC)을 이용할 수 있다. The filtration process and the adsorption process can be carried out independently by providing a filtration tank and an adsorption tank, respectively, or by filling both the filtration carrier and the adsorption carrier in one reaction tank so that both the filtration process and the adsorption process can proceed. Here, in one embodiment, AFM (activated filter media) may be used as the filter carrier, and granular activated carbon (GAC) may be used as the adsorbent carrier.

이상, 본 발명의 일 실시예에 따른 원수의 성상에 따른 축전식 탈염공정의 전처리 방법을 설명하였다. 이하에서는, 실험을 통해 본 발명을 보다 구체적으로 설명하기로 한다. In the above, the pretreatment method of the capacitive desalination process according to the properties of raw water according to an embodiment of the present invention has been described. Hereinafter, the present invention will be described in more detail through experiments.

<실험예 1 : 원수의 성상><Experimental Example 1: The nature of the enemy>

하수처리장의 방류수, 제 1 공단폐수, 제 2 공단폐수 및 냉각수에 대해 성상을 분석하였으며, 그 결과는 아래의 표 1에 나타낸 바와 같다. The properties of the effluent from the sewage treatment plant, the first industrial wastewater, the second industrial wastewater, and the cooling water were analyzed, and the results are shown in Table 1 below.

<원수의 성상><The image of the enemy>
하수 sewer
방류수Effluent
제1The first
공단폐수Industrial wastewater
제22nd
공단폐수Industrial wastewater
냉각수cooling water
1월January 2월February 4월April 8월August 10월October TOC
(ppm)
TOC
(ppm)
20.0720.07 82.4182.41 114114 10.4910.49 11.1411.14 12.4612.46 10.4210.42 3.263.26
탁도
(NTU)
Turbidity
(NTU)
1.331.33 26.6526.65 35.1035.10 1.751.75 2.182.18 23.4623.46 7.077.07 7.397.39
Cond.
(uS/cm)
Cond.
(uS/cm)
11.3311.33 44504450 55105510 12401240 10801080 1063.51063.5 760.25760.25 734734
pHpH 7.837.83 8.938.93 7.847.84 6.896.89 7.647.64 7.937.93 8.158.15 7.677.67 Fe
(ppm)
Fe
(ppm)
- - - - - -  -- 0.050.05 0.1650.165 0.0750.075 0.05250.0525
Si
(ppm)
Si
(ppm)
6.706.70 7.107.10 -- 7.67.6 9.959.95 12.9512.95 22.5722.57 31.231.2
Al
(ppm)
Al
(ppm)
- - - - - -  -- 0.0030.003 0.00630.0063 0.11320.1132 0.0940.094
T-N
(ppm)
TN
(ppm)
9.009.00 10.0010.00 20.0020.00 99  -- -- 5.35.3 --
T-P
(ppm)
TP
(ppm)
- - - - - -  --  -- -- 5.1755.175 --
TDS
(ppm)
TDS
(ppm)
7.257.25 2848.002848.00 3526.403526.40 849.4849.4 723.6723.6 712.545712.545 509.3675509.3675 491.78491.78

<실험예 2 : 담체의 성능평가><Experimental Example 2: Performance evaluation of carrier>

여과담체 또는 흡착담체로 입상활성탄(GAC), 세라믹분리막, AFM, MS(miracle sand)를 준비하고 각 담체의 TOC 및 탁도 제거능을 평가하였다. Granular activated carbon (GAC), ceramic separator, AFM, and miracle sand were prepared as a filter carrier or an adsorbent carrier, and the TOC and turbidity removal performance of each carrier was evaluated.

직경 3cm, 높이 12cm의 컬럼에 GAC, AFM, MS를 각각 충진하고 각 컬럼에 TDS 700ppm 이하의 방류수를 5ml/min의 속도로 공급한 후, 각 컬럼에서의 TOC 및 탁도 변화를 측정하였다. 또한, 기공크기 0.1㎛의 알루미나 재질의 세라믹분리막을 준비하고 TDS 700ppm 이하의 방류수를 5ml/min의 속도로 공급한 후, 각 컬럼에서의 TOC 및 탁도 변화를 측정하였다.GAC, AFM, and MS were respectively charged to a column having a diameter of 3 cm and a height of 12 cm, and effluent of TDS 700 ppm or less was supplied to each column at a rate of 5 ml/min, and the TOC and turbidity changes in each column were measured. In addition, a ceramic separation membrane made of alumina material having a pore size of 0.1 µm was prepared, and after a TDS of 700 ppm or less of effluent was supplied at a rate of 5 ml/min, TOC and turbidity changes in each column were measured.

도 2a를 참조하면, 총유기탄소(TOC)의 경우 입상활성탄(GAC)을 충진한 컬럼에서 가장 높은 효율을 나타냈으며(TOC 제거효율 : GAC > 세라믹분리막 > MS > AFM), 탁도의 경우 도 2b에 도시한 바와 같이 세라믹분리막이 가장 우수한 성능을 보였다(세라믹분리막 > AFM > MS > GAC). Referring to Figure 2a, the total organic carbon (TOC) showed the highest efficiency in the column filled with granular activated carbon (GAC) (TOC removal efficiency: GAC> ceramic separator> MS> AFM), Figure 2b for turbidity As shown in, the ceramic separator showed the best performance (ceramic separator> AFM> MS> GAC).

이어, 컬럼의 크기를 증가시켜 GAC 및 AFM의 성능을 평가하였다. 직경 30cm, 높이 50cm의 컬럼에 AFM 약 23100g, GAC 약 10400g을 각각 충진시킨 후, TDS 700ppm 이하의 방류수를 30ml/min의 속도로 공급한 후, GAC가 충진된 컬럼에서는 TOC 변화를 측정하고 AFM이 충진된 컬럼에서는 탁도 변화를 측정하였다. Then, the performance of GAC and AFM was evaluated by increasing the size of the column. After filling a column of 30 cm in diameter and 50 cm in height with about 23100 g of AFM and about 10400 g of GAC, after supplying effluent of TDS 700 ppm or less at a rate of 30 ml/min, the TOC change was measured and the AFM was measured in a column filled with GAC. The turbidity change was measured in the filled column.

도 3a를 참조하면, 총유기탄소(TOC)의 경우 여과시간 100분 경과 후 증가하는 경향이 확인되지만 목표치(4ppm)는 달성하고 있음을 확인하였다. 탁도의 경우 초기 200분 동안 목표치(0.5NTU) 이하로 유지되면서 점차 증가하는 경향을 보이고 있다. Referring to FIG. 3A, in the case of total organic carbon (TOC), a tendency to increase after 100 minutes of filtration time was confirmed, but it was confirmed that a target value (4 ppm) was achieved. The turbidity tends to increase gradually while remaining below the target value (0.5 NTU) during the initial 200 minutes.

다음 실험으로, AFM이 충진된 컬럼과 GAC가 충진된 컬럼을 순차적으로 배시키고 TDS 700ppm 이하의 방류수가 두 컬럼을 순차적으로 모두 거치도록 한 다음, TOC 및 탁도 변화를 측정하였다. 도 4a 및 도 4b를 참조하면, GAC 단독 컬럼에 대비하여 TOC가 일정하게 유지됨을 확인할 수 있다. In the next experiment, the column filled with AFM and the column filled with GAC were sequentially placed, and the effluent under TDS 700 ppm was passed through both columns sequentially, and then the TOC and turbidity changes were measured. 4A and 4B, it can be confirmed that the TOC is kept constant compared to the GAC-only column.

Claims (6)

축전식 탈염장치에 유입되는 원수에 대한 전처리공정으로서,
원수의 성상을 TDS 200ppm 미만, TDS 200∼700ppm, TDS 701∼4000ppm으로 구분하고,
원수의 성상이 TDS 200ppm 미만이면 전처리공정으로 막여과공정(MF)을 적용하고, 원수의 성상이 TDS 701∼4000ppm이면 전처리공정으로 응집공정, 여과공정, 흡착공정을 순차적으로 적용하거나 세라믹분리막 공정, 여과공정, 흡착공정을 순차적으로 적용하며,
원수의 성상이 TDS 200∼700ppm이면 전처리공정으로 흡착공정만을 적용하거나 여과공정과 흡착공정을 순차적으로 적용하는 것을 특징으로 하는 원수의 성상에 따른 축전식 탈염공정의 전처리 방법.
As a pre-treatment process for raw water flowing into the electricity storage desalination device,
The properties of raw water are divided into TDS less than 200ppm, TDS 200-700ppm, and TDS 701-4000ppm.
If the property of raw water is less than TDS 200ppm, the membrane filtration process (MF) is applied as a pre-treatment process, and when the property of raw water is TDS 701~4000ppm, a coagulation process, a filtration process, an adsorption process are sequentially applied, or a ceramic separation membrane process. Filtration process and adsorption process are applied sequentially,
If the property of the raw water is TDS 200~700ppm, the pretreatment method of the power storage type desalination process according to the property of the raw water, characterized in that only the adsorption process is applied as the pretreatment process or the filtration process and the adsorption process are sequentially applied.
제 1 항에 있어서, 원수의 성상이 TDS 200∼700ppm인 경우,
탁도가 0.5∼1.5이고, 총유기탄소(TOC)가 1∼12이면 전처리공정으로 흡착공정만이 적용되며,
탁도가 1.5∼8이고, 총유기탄소(TOC)가 12∼30이면 전처리공정으로 여과공정과 흡착공정이 순차적으로 적용되는 것을 특징으로 하는 원수의 성상에 따른 축전식 탈염공정의 전처리 방법.
According to claim 1, When the property of the raw water is TDS 200 ~ 700ppm,
If the turbidity is 0.5 to 1.5 and the total organic carbon (TOC) is 1 to 12, only the adsorption process is applied as a pretreatment process.
If turbidity is 1.5 to 8, and the total organic carbon (TOC) is 12 to 30, the pre-treatment method of the electricity storage type desalination process according to the properties of the raw water, characterized in that the filtration process and the adsorption process are sequentially applied as a pretreatment process.
제 1 항에 있어서, TDS 200ppm 미만의 원수는 막오염지수(SDI)가 2보다 작고, TDS 200∼700ppm의 원수는 막오염지수(SDI)가 2∼5이며, TDS가 700ppm을 초과하는 원수는 막오염지수(SDI)가 5를 초과하는 것을 특징으로 하는 원수의 성상에 따른 축전식 탈염공정의 전처리 방법.
The raw water of claim 1, wherein the raw water having a TDS of less than 200 ppm has a membrane fouling index (SDI) of less than 2, the raw water of a TDS 200 to 700 ppm has a membrane fouling index (SDI) of 2 to 5, and the raw water having a TDS exceeding 700 ppm is Pre-treatment method of the capacitive desalination process according to the nature of the raw water, characterized in that the membrane contamination index (SDI) exceeds 5.
제 1 항에 있어서, TDS 200ppm 미만의 원수는 탁도가 0.5NTU 미만, 총유기탄소(TOC)가 2ppm 미만이며, TDS가 700ppm을 초과하는 원수는 탁도가 10NTU 초과, 총유기탄소(TOC)가 30ppm을 초과하는 것을 특징으로 하는 원수의 성상에 따른 축전식 탈염공정의 전처리 방법.
The method of claim 1, wherein the raw water having a TDS of less than 200 ppm has a turbidity of less than 0.5 NTU, a total organic carbon (TOC) of less than 2 ppm, and a raw water having a TDS of more than 700 ppm has a turbidity of more than 10 NTU and a total organic carbon (TOC) of 30 ppm. Pretreatment method of the capacitive desalination process according to the properties of the raw water, characterized in that it exceeds.
제 1 항에 있어서, 상기 여과공정과 흡착공정은 여과조와 흡착조를 각각 구비시켜 독립적으로 진행시키거나, 하나의 반응조 내에 여과담체와 흡착담체를 모두 충진시켜 하나의 여과공정 및 흡착공정이 모두 진행되도록 할 수 있는 것을 특징으로 하는 원수의 성상에 따른 축전식 탈염공정의 전처리 방법.
The method of claim 1, wherein the filtration process and the adsorption process are carried out independently by providing a filtration tank and an adsorption tank, respectively, or both a filtration process and an adsorption process are performed by filling both a filtration carrier and an adsorption carrier in one reaction tank. Pre-treatment method of the capacitive desalination process according to the properties of the raw water, characterized in that it can be.
제 1 항에 있어서, 상기 여과담체는 AFM(activated filter media)이고, 흡착담체로는 입상활성탄(GAC)인 것을 특징으로 하는 원수의 성상에 따른 축전식 탈염공정의 전처리 방법. The method of claim 1, wherein the filtration carrier is AFM (activated filter media), and the adsorption carrier is granular activated carbon (GAC).
KR1020180158530A 2018-12-10 2018-12-10 Method for pretreatment of capacitive deionization based on ingredient of raw water KR102197621B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180158530A KR102197621B1 (en) 2018-12-10 2018-12-10 Method for pretreatment of capacitive deionization based on ingredient of raw water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180158530A KR102197621B1 (en) 2018-12-10 2018-12-10 Method for pretreatment of capacitive deionization based on ingredient of raw water

Publications (2)

Publication Number Publication Date
KR20200070888A true KR20200070888A (en) 2020-06-18
KR102197621B1 KR102197621B1 (en) 2021-01-04

Family

ID=71142962

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180158530A KR102197621B1 (en) 2018-12-10 2018-12-10 Method for pretreatment of capacitive deionization based on ingredient of raw water

Country Status (1)

Country Link
KR (1) KR102197621B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102501340B1 (en) * 2021-05-12 2023-02-21 한국과학기술연구원 Apparatus for pretreatment of capacitive deionization

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050012875A (en) * 2005-01-13 2005-02-02 아쿠아셀 주식회사 A water reclamation and reuse system with an equipment for removing TDS
KR20070036221A (en) * 2005-09-29 2007-04-03 주식회사 태영 Operation selection device using water code of membrane filtration device and method thereof
KR20120025104A (en) * 2010-09-07 2012-03-15 최지연 Variable selection method and apparatus for waste water reclamation and reusing system
KR20140004969A (en) * 2012-07-03 2014-01-14 대림산업 주식회사 Immersion type-pressure type hybrid membrane filtration system and operation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050012875A (en) * 2005-01-13 2005-02-02 아쿠아셀 주식회사 A water reclamation and reuse system with an equipment for removing TDS
KR20070036221A (en) * 2005-09-29 2007-04-03 주식회사 태영 Operation selection device using water code of membrane filtration device and method thereof
KR20120025104A (en) * 2010-09-07 2012-03-15 최지연 Variable selection method and apparatus for waste water reclamation and reusing system
KR20140004969A (en) * 2012-07-03 2014-01-14 대림산업 주식회사 Immersion type-pressure type hybrid membrane filtration system and operation method thereof

Also Published As

Publication number Publication date
KR102197621B1 (en) 2021-01-04

Similar Documents

Publication Publication Date Title
Al Abdulgader et al. Hybrid ion exchange–Pressure driven membrane processes in water treatment: A review
Valavala et al. Pretreatment in reverse osmosis seawater desalination: a short review
US8097163B1 (en) Purification of oil field production water for beneficial use
Johir et al. Performance of submerged membrane bioreactor (SMBR) with and without the addition of the different particle sizes of GAC as suspended medium
Ernst et al. An integrated wastewater treatment and reuse concept for the Olympic Park 2008, Beijing
Seo et al. Sorption characteristics of biological powdered activated carbon in BPAC-MF (biological powdered activated carbon-microfiltration) system for refractory organic removal
Smol et al. Effectiveness in the removal of Polycyclic Aromatic Hydrocarbons from industrial wastewater by ultrafiltration technique
EP3375759B1 (en) Method for purifying water as well as plant suitable for said method
Ersahin et al. Treatment of produced water originated from oil and gas production wells: a pilot study and cost analysis
Jamil et al. Enhanced nanofiltration rejection of inorganic and organic compounds from a wastewater-reclamation plant’s micro-filtered water using adsorption pre-treatment
Ng et al. Treatment of RO brine–towards sustainable water reclamation practice
KR100515849B1 (en) Leachate and Sewage Recycling Method
Löwenberg et al. PAC/UF processes: current application, potentials, bottlenecks and fundamentals: a review
Aziz et al. Municipal landfill leachate treatment techniques: an overview
KR20200070888A (en) Method for pretreatment of capacitive deionization based on ingredient of raw water
EP3309130A1 (en) Process and facility for treating produced water from an oil &amp; gas field
Meier et al. Nanofiltration in landfill leachate treatment
KR100314714B1 (en) System of manufactured for ultra pure water
CN103303995A (en) Method for carrying out advanced treatment on waste water by utilizing diatomite
Ferrer‐Polonio et al. Fractionation of secondary effluents of wastewater treatment plants in view of the evaluation of membrane fouling in a further ultrafiltration step
Wang Characterisation and removal of organic matter from a reverse osmosis concentrate by a PAC accumulative countercurrent four-stage adsorption-MF hybrid process
CN107531511B (en) Method and apparatus for treating water by contact with adsorbent material
Aryal et al. Synergistic effect of biological activated carbon and enhanced coagulation in secondary wastewater effluent treatment
Kim et al. Comparison of different pretreatments for seawater desalination
Marañón et al. Tertiary treatment of landfill leachates by adsorption

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right