KR102197621B1 - Method for pretreatment of capacitive deionization based on ingredient of raw water - Google Patents

Method for pretreatment of capacitive deionization based on ingredient of raw water Download PDF

Info

Publication number
KR102197621B1
KR102197621B1 KR1020180158530A KR20180158530A KR102197621B1 KR 102197621 B1 KR102197621 B1 KR 102197621B1 KR 1020180158530 A KR1020180158530 A KR 1020180158530A KR 20180158530 A KR20180158530 A KR 20180158530A KR 102197621 B1 KR102197621 B1 KR 102197621B1
Authority
KR
South Korea
Prior art keywords
raw water
tds
pretreatment
ppm
adsorption
Prior art date
Application number
KR1020180158530A
Other languages
Korean (ko)
Other versions
KR20200070888A (en
Inventor
최재우
홍석원
정경원
진용쉰
김희곤
최예슬
이승학
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020180158530A priority Critical patent/KR102197621B1/en
Publication of KR20200070888A publication Critical patent/KR20200070888A/en
Application granted granted Critical
Publication of KR102197621B1 publication Critical patent/KR102197621B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2055Carbonaceous material
    • B01D39/2058Carbonaceous material the material being particulate
    • B01D39/2062Bonded, e.g. activated carbon blocks
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4691Capacitive deionisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/10Solids, e.g. total solids [TS], total suspended solids [TSS] or volatile solids [VS]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/11Turbidity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/20Total organic carbon [TOC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Abstract

본 발명은 하폐수처리장의 방류수에 대해 축전식 탈염공정을 적용함에 있어서 하폐수처리장의 방류수의 성상 즉, 원수의 성상에 따라 응집, 여과, 흡착 공정을 축전식 탈염공정의 전처리공정으로서 선택적으로 적용함으로써 축전식 탈염공정에서의 전극 활성을 최적화할 수 있는 원수의 성상에 따른 축전식 탈염공정의 전처리 방법에 관한 것으로서, 본 발명에 따른 원수의 성상에 따른 축전식 탈염공정의 전처리 방법은 축전식 탈염장치에 유입되는 원수에 대한 전처리공정으로서, 원수의 성상을 TDS 200ppm 미만, TDS 200∼700ppm, TDS 701∼4000ppm으로 구분하고, 원수의 성상이 TDS 200ppm 미만이면 전처리공정으로 막여과공정(MF)을 적용하고, 원수의 성상이 TDS 701∼4000ppm이면 전처리공정으로 응집공정, 여과공정, 흡착공정을 순차적으로 적용하거나 세라믹분리막 공정, 여과공정, 흡착공정을 순차적으로 적용하며, 원수의 성상이 TDS 200∼700ppm이면 전처리공정으로 흡착공정만을 적용하거나 여과공정과 흡착공정을 순차적으로 적용하는 것을 특징으로 한다. In the present invention, in applying the capacitive desalination process to the effluent of a wastewater treatment plant, the condensation, filtration, and adsorption processes are selectively applied as the pretreatment process of the capacitive desalination process according to the properties of the effluent of the wastewater treatment plant, that is, the properties of the raw water. It relates to a pretreatment method of a capacitive desalination process according to the properties of raw water that can optimize electrode activity in a food desalination process.The pretreatment method of the capacitive desalination process according to the properties of raw water according to the present invention is provided in a capacitive desalination device. As a pretreatment process for the incoming raw water, the properties of the raw water are classified into less than 200ppm TDS, 200~700ppm TDS, and 701~4000ppm TDS.If the properties of the raw water are less than 200ppm TDS, a membrane filtration process (MF) is applied as a pretreatment process. If the nature of the raw water is TDS 701~4000ppm, the coagulation process, the filtration process, and the adsorption process are sequentially applied as the pretreatment process, or the ceramic separation membrane process, the filtration process, and the adsorption process are sequentially applied, and if the property of the raw water is TDS 200~700ppm It is characterized in that only the adsorption process is applied as the pretreatment process or the filtration process and the adsorption process are sequentially applied.

Figure R1020180158530
Figure R1020180158530

Description

원수의 성상에 따른 축전식 탈염공정의 전처리 방법{Method for pretreatment of capacitive deionization based on ingredient of raw water}Method for pretreatment of capacitive deionization based on ingredient of raw water{Method for pretreatment of capacitive deionization based on ingredient of raw water}

본 발명은 원수의 성상에 따른 축전식 탈염공정의 전처리 방법에 관한 것으로서, 보다 상세하게는 하폐수처리장의 방류수에 대해 축전식 탈염공정을 적용함에 있어서 하폐수처리장의 방류수의 성상 즉, 원수의 성상에 따라 응집, 여과, 흡착 공정을 축전식 탈염공정의 전처리공정으로서 선택적으로 적용함으로써 축전식 탈염공정에서의 전극 활성을 최적화할 수 있는 원수의 성상에 따른 축전식 탈염공정의 전처리 방법에 관한 것이다.The present invention relates to a pretreatment method of a storage type desalination process according to the nature of raw water, and more particularly, in applying the storage type desalination process to the effluent of a wastewater treatment plant, the properties of the effluent from a wastewater treatment plant, that is, according to the properties of the raw water. The present invention relates to a pretreatment method of a capacitive desalination process according to the properties of raw water capable of optimizing electrode activity in a capacitive desalination process by selectively applying coagulation, filtration, and adsorption processes as a pretreatment process of a capacitive desalination process.

하폐수처리장 등 환경기초시설에서 처리된 방류수는 수질 및 수량 측면에서 매우 안정적인 대체수자원이다. 깨끗하게 처리된 방류수는 갈수기간 중 상류에서 오염된 하천의 희석수 역할을 할 수 있고, 양질의 공업용수로도 사용 가능하며, 도시화로 건천화된 도심하천에 생태유량으로 공급할 수도 있다. The effluent treated at basic environmental facilities such as a sewage treatment plant is a very stable alternative water resource in terms of water quality and quantity. Cleanly treated effluent can serve as dilution water for contaminated rivers upstream during the dry season, can be used as high-quality industrial water, and can be supplied as ecological flow to urban rivers that have been dried up by urbanization.

최근에는 하폐수처리장의 방류수를 대상으로 축전식 탈염공정을 적용하여 방류수의 수질을 보다 더 개선하고 있다. 하지만, 하폐수처리장에 유입되는 오염원에 따라 방류수의 성상이 달라지며, 하폐수처리장과 축전식 탈염공정을 결합시키는 경우 방류수의 성상은 축전식 탈염공정에도 영향을 미친다. 방류수의 성상 즉, 축전식 탈염공정에 유입되는 원수의 성상에 있어서 탁도(Turbidity) 및 총유기탄소(TOC)가 지나치게 높으면 축전식 탈염공정에서의 전극 활성을 저해하는 요인으로 작용한다. Recently, the water quality of the effluent has been further improved by applying a capacitive desalination process to the effluent of a wastewater treatment plant. However, the properties of the effluent water vary depending on the pollutant introduced into the wastewater treatment plant, and when the wastewater treatment plant and the capacitive desalination process are combined, the properties of the effluent also affect the capacitive desalination process. If the turbidity and total organic carbon (TOC) are too high in the properties of the effluent, that is, the properties of the raw water flowing into the capacitive desalination process, it acts as a factor that inhibits the electrode activity in the capacitive desalination process.

한국공개특허공보 제2013-61366호Korean Patent Publication No. 2013-61366

본 발명은 상기와 같은 문제점을 해결하기 위해 안출한 것으로서, 하폐수처리장의 방류수에 대해 축전식 탈염공정을 적용함에 있어서 하폐수처리장의 방류수의 성상 즉, 원수의 성상에 따라 응집, 여과, 흡착 공정을 축전식 탈염공정의 전처리공정으로서 선택적으로 적용함으로써 축전식 탈염공정에서의 전극 활성을 최적화할 수 있는 원수의 성상에 따른 축전식 탈염공정의 전처리 방법을 제공하는데 그 목적이 있다.The present invention was conceived to solve the above problems, and in applying a storage-type desalination process to the effluent of a wastewater treatment plant, the condensation, filtration, and adsorption processes are stored according to the properties of the effluent of the wastewater treatment plant, that is, the properties of the raw water. An object thereof is to provide a pretreatment method for a capacitive desalination process according to the properties of raw water that can optimize electrode activity in a capacitive desalination process by selectively applying it as a pretreatment process for a food desalination process.

상기의 목적을 달성하기 위한 본 발명에 따른 원수의 성상에 따른 축전식 탈염공정의 전처리 방법은 축전식 탈염장치에 유입되는 원수에 대한 전처리공정으로서, 원수의 성상을 TDS 200ppm 미만, TDS 200∼700ppm, TDS 701∼4000ppm으로 구분하고, 원수의 성상이 TDS 200ppm 미만이면 전처리공정으로 막여과공정(MF)을 적용하고, 원수의 성상이 TDS 701∼4000ppm이면 전처리공정으로 응집공정, 여과공정, 흡착공정을 순차적으로 적용하거나 세라믹분리막 공정, 여과공정, 흡착공정을 순차적으로 적용하며, 원수의 성상이 TDS 200∼700ppm이면 전처리공정으로 흡착공정만을 적용하거나 여과공정과 흡착공정을 순차적으로 적용하는 것을 특징으로 한다. The pretreatment method of the capacitive desalination process according to the characteristics of the raw water according to the present invention to achieve the above object is a pretreatment process for raw water flowing into the capacitive desalination device, and the properties of the raw water are less than 200 ppm TDS and 200 ~ 700 ppm TDS. , TDS 701~4000ppm.If the property of raw water is less than 200ppm of TDS, the membrane filtration process (MF) is applied as the pretreatment process, and if the property of the raw water is TDS 701~4000ppm, the coagulation process, filtration process, adsorption process are used as the pretreatment process. Is applied sequentially or a ceramic separation membrane process, a filtration process, and an adsorption process are sequentially applied.If the property of the raw water is TDS 200-700 ppm, only the adsorption process is applied as the pretreatment process, or the filtration process and the adsorption process are sequentially applied. do.

원수의 성상이 TDS 200∼700ppm인 경우, 탁도가 0.5∼1.5이고, 총유기탄소(TOC)가 1∼12이면 전처리공정으로 흡착공정만이 적용되며, 탁도가 1.5∼8이고, 총유기탄소(TOC)가 12∼30이면 전처리공정으로 여과공정과 흡착공정이 순차적으로 적용된다. If the property of raw water is TDS 200 to 700 ppm, turbidity is 0.5 to 1.5, and total organic carbon (TOC) is 1 to 12, only the adsorption process is applied as a pretreatment process, turbidity is 1.5 to 8, and total organic carbon ( If the TOC) is 12-30, the filtration process and the adsorption process are sequentially applied as a pretreatment process.

TDS 200ppm 미만의 원수는 막오염지수(SDI)가 2보다 작고, TDS 200∼700ppm의 원수는 막오염지수(SDI)가 2∼5이며, TDS가 700ppm을 초과하는 원수는 막오염지수(SDI)가 5를 초과한다. Raw water with TDS less than 200ppm has a membrane pollution index (SDI) less than 2, raw water with TDS 200~700ppm has a membrane pollution index (SDI) of 2-5, and raw water with TDS exceeding 700ppm has a membrane fouling index (SDI) Exceeds 5.

TDS 200ppm 미만의 원수는 탁도가 0.5NTU 미만, 총유기탄소(TOC)가 2ppm 미만이며, TDS가 700ppm을 초과하는 원수는 탁도가 10NTU 초과, 총유기탄소(TOC)가 30ppm을 초과한다. Raw water with a TDS of less than 200 ppm has a turbidity of less than 0.5 NTU and a total organic carbon (TOC) of less than 2 ppm, and a raw water with a TDS of more than 700 ppm has a turbidity of more than 10 NTU and a total organic carbon (TOC) of more than 30 ppm.

상기 여과공정과 흡착공정은 여과조와 흡착조를 각각 구비시켜 독립적으로 진행시키거나, 하나의 반응조 내에 여과담체와 흡착담체를 모두 충진시켜 하나의 여과공정 및 흡착공정이 모두 진행되도록 할 수 있다. The filtration process and the adsorption process may be carried out independently by providing a filtration tank and an adsorption tank, respectively, or by filling both a filter carrier and an adsorption carrier in one reaction tank, one filtration process and an adsorption process may both proceed.

상기 여과담체는 AFM(activated filter media), 흡착담체로는 입상활성탄(GAC)을 이용할 수 있다.The filter carrier may be AFM (activated filter media), and the adsorption carrier may be granular activated carbon (GAC).

본 발명에 따른 원수의 성상에 따른 축전식 탈염공정의 전처리 방법은 다음과 같은 효과가 있다. The pretreatment method of the capacitive desalination process according to the properties of raw water according to the present invention has the following effects.

축전식 탈염공정에 유입되는 원수의 성상별로 전처리공정을 달리 적용하여 원수의 탁도 및 총유기탄소(TOC) 농도를 최소화할 수 있으며, 이를 통해 축전식 탈염공정의 탈염 효율을 향상시킬 수 있다.The turbidity and total organic carbon (TOC) concentration of raw water can be minimized by applying a different pretreatment process according to the nature of the raw water flowing into the capacitive desalination process, thereby improving the desalination efficiency of the capacitive desalination process.

도 1은 본 발명의 일 실시예에 따른 원수의 성상에 따른 축전식 탈염공정의 전처리 방법을 설명하기 위한 참고도.
도 2a 및 도 2b는 소용량의 여과컬럼 및 흡착컬럼을 이용한 탁도 및 TOC 제거효율을 나타낸 실험결과.
도 3a 및 도 3b는 대용량의 여과컬럼 및 흡착컬럼을 이용한 탁도 및 TOC 제거효율을 나타낸 실험결과.
도 4a 및 도 4b는 여과컬럼 및 흡착컬럼을 순차적으로 배치한 장치에서의 탁도 및 TOC 제거효율을 나타낸 실험결과.
1 is a reference diagram for explaining a pretreatment method of a capacitive desalination process according to the properties of raw water according to an embodiment of the present invention.
2A and 2B are experimental results showing turbidity and TOC removal efficiency using a small-capacity filtration column and adsorption column.
3A and 3B are experimental results showing turbidity and TOC removal efficiency using a large-capacity filtration column and adsorption column.
4A and 4B are experimental results showing turbidity and TOC removal efficiency in a device in which a filtration column and an adsorption column are sequentially arranged.

원수를 전기분해하여 원수 내에 포함되어 있는 염을 제거하는 공정인 축전식 탈염공정을 진행함에 있어서 전극의 활성에 중요한 영향을 미치는 인자는 탁도(Turbidity)와 총유기탄소(TOC)이다. 원수의 탁도와 총유기탄소(TOC)가 높으면 축전식 탈염공정에서의 전극 활성을 저해시켜 탈염 효율이 저하된다. 따라서, 축전식 탈염공정의 탈염 효율을 향상시키기 위해서는 원수의 탁도와 총유기탄소(TOC)가 적절한 수치로 관리되어야 한다. In the capacitive desalination process, which is a process of removing salts contained in raw water by electrolyzing raw water, factors that have an important influence on the activity of electrodes are turbidity and total organic carbon (TOC). If the turbidity of raw water and the total organic carbon (TOC) are high, the electrode activity in the capacitive desalination process is inhibited and the desalination efficiency decreases. Therefore, in order to improve the desalination efficiency of the capacitive desalination process, the turbidity and total organic carbon (TOC) of raw water must be managed to an appropriate value.

원수의 탁도 및 총유기탄소(TOC)가 축전식 탈염공정의 탈염 효율에 중요한 영향을 미치는 원수의 성상이고, 본 발명은 원수의 탁도 및 총유기탄소(TOC)에 연관하여 선택적인 전처리공정을 적용함을 제시하고 있지만, 탁도 및 총유기탄소(TOC)는 그 수치의 크기가 작아 탁도 및 총유기탄소(TOC)를 기준으로 본 발명의 전처리공정을 구분하여 적용하기에는 공정 적합성이 떨어질 수 있다. The turbidity and total organic carbon (TOC) of raw water are properties of raw water that have an important effect on the desalination efficiency of the capacitive desalination process, and the present invention applies a selective pretreatment process in relation to the turbidity and total organic carbon (TOC) of raw water. Although it is suggested that, the turbidity and total organic carbon (TOC) are small in size, and the process suitability may be inferior to apply the pretreatment process of the present invention separately based on turbidity and total organic carbon (TOC).

이에, 본 발명은 축전식 탈염공정의 선택적인 전처리공정을 적용함에 있어서 원수의 성상을 구분하는 기준으로 TDS(total dissolved solids)를 적용한다. 즉, TDS의 수치를 기준으로 원수의 성상을 구분하고, 각 성상의 원수에 대해 선택적인 전처리공정을 적용한다. Accordingly, the present invention applies TDS (total dissolved solids) as a criterion for classifying the properties of raw water in applying the selective pretreatment process of the capacitive desalination process. That is, the properties of raw water are classified based on the value of TDS, and a selective pretreatment process is applied to the raw water of each property.

원수의 성상에 따라 선택적으로 적용되는 본 발명의 전처리공정은 기본적으로 응집공정, 여과공정, 흡착공정을 기반으로 한다. 원수의 TDS가 200∼700ppm인 경우 여과공정과 흡착공정을 모두 적용하거나 흡착공정만을 적용하며, 원수의 TDS가 200ppm보다 작으면 여과공정과 흡착공정을 모두 생략하고 막여과공정(MF)으로 전처리공정을 대체할 수 있다. 또한, 원수의 TDS가 701∼4000ppm인 경우 여과공정 및 흡착공정을 진행하기 전에 응집공정 또는 세라믹분리막 공정을 추가하여 전처리공정을 구성할 수 있다. The pretreatment process of the present invention, which is selectively applied according to the properties of raw water, is basically based on a coagulation process, a filtration process, and an adsorption process. If the TDS of raw water is 200-700 ppm, apply both the filtration and adsorption process or only the adsorption process. If the TDS of the raw water is less than 200 ppm, skip both the filtration and adsorption process and pretreat with the membrane filtration process (MF). Can be replaced. In addition, when the TDS of raw water is 701 to 4000 ppm, a pretreatment process may be configured by adding a coagulation process or a ceramic separation membrane process before proceeding with the filtration process and the adsorption process.

본 발명은 이와 같은 전처리공정을 통해 축전식 탈염공정에 유입되는 원수의 탁도 및 총유기탄소(TOC)를 탁도 0.5NTU 이하, 총유기탄소(TOC) 4ppm 이하로 제어함을 목적으로 한다. An object of the present invention is to control the turbidity and total organic carbon (TOC) of raw water introduced into the capacitive desalination process through such a pretreatment process to a turbidity of 0.5 NTU or less and a total organic carbon (TOC) of 4 ppm or less.

선택적인 전처리공정을 적용하기 위한 원수의 TDS 수치로 TDS 200ppm 미만, TDS 200∼700ppm, TDS 701∼4000ppm으로 구분한 근거는 오염원에 따른 원수의 특성에 따른 것이다. 실험을 통해 측정한 결과, 축전식 탈염공정의 원수 중 하나인 하수처리장의 방류수는 TDS가 200ppm 미만이며, 각종 시설에서 배출되는 냉각수의 경우 TDS가 200∼700ppm이며, 공업단지 폐수의 경우 701∼4000ppm의 TDS 수치를 보이고 있다. The TDS value of raw water for applying the selective pretreatment process is classified as less than 200ppm TDS, 200~700ppm TDS, and 701~4000ppm TDS according to the characteristics of the raw water depending on the pollutant source. As a result of measurement through experiments, the TDS of the sewage treatment plant, which is one of the raw water of the storage desalination process, has a TDS of less than 200 ppm, and the cooling water discharged from various facilities has a TDS of 200-700 ppm, and industrial complex wastewater is 701-4000 ppm. Is showing the TDS value of

이에, TDS 200ppm 미만의 하수처리장 방류수의 경우 막여과공정(MF)을 전처리공정을 적용한 후 축전식 탈염공정에 의해 처리되며, TDS 200∼700ppm인 냉각수의 경우 전처리공정으로 여과공정과 흡착공정을 모두 적용하거나 흡착공정만을 적용하며, TDS 701∼4000ppm인 공업단지 폐수의 경우 여과공정 및 흡착공정을 진행하기 전에 응집공정 또는 세라믹분리막 공정이 추가 적용된 전처리공정을 거친 후에 축전식 탈염공정이 진행된다. Therefore, in the case of effluent water from a sewage treatment plant with TDS less than 200 ppm, the membrane filtration process (MF) is treated by a capacitive desalination process after applying a pre-treatment process, and in the case of cooling water with TDS 200-700 ppm, both the filtration process and the adsorption process are pre-processed In the case of industrial complex wastewater with a TDS of 701 to 4000 ppm, the capacitive desalination process is performed after a coagulation process or a pretreatment process with additional ceramic separation membrane process applied before proceeding with the filtration process and adsorption process.

한편, 원수의 성상을 결정하는 인자 중에서 막오염지수(SDI, Silt Density Index), 탁도(Turbidity), 총유기탄소(TOC)는 TDS(Total Dissolved Solids)와 유사한 경향성을 나타낸다. 구체적으로, TDS 200ppm 미만의 원수는 막오염지수(SDI)가 2보다 작고, TDS 200∼700ppm의 원수는 막오염지수(SDI)가 2∼5이며, TDS가 700ppm을 초과하는 원수는 막오염지수(SDI)가 5를 초과하는 경향성을 보인다. 또한, 탁도와 총유기탄소(TOC)의 경향성 또한 막오염지수(SDI) 및 TDS의 경향성과 일치한다. TDS 200ppm 미만의 원수는 탁도가 0.5NTU 미만, 총유기탄소(TOC)가 2ppm 미만이며, TDS가 700ppm을 초과하는 원수는 탁도가 10NTU 초과, 총유기탄소(TOC)가 30ppm을 초과하는 경향성을 보인다. TDS 200∼700ppm의 원수 즉, 막오염지수(SDI)가 2∼5인 경우에는 2가지 형태로 세분화된다. 이는 전처리공정을 보다 효과적으로 적용하기 위함이다. TDS 200∼700ppm 즉, 막오염지수(SDI)가 2∼5이면 탁도는 0.5∼1.5이고 총유기탄소(TOC)는 1∼12인 경우와 탁도는 1.5∼8이고 총유기탄소(TOC)는 12∼30인 경우로 구분될 수 있다. 전자의 경우 즉, 탁도는 0.5∼1.5이고 총유기탄소(TOC)는 1∼12인 경우에는 흡착공정만이 적용되며, 후자의 경우 즉, 탁도는 1.5∼8이고 총유기탄소(TOC)는 12∼30인 경우에는 여과공정과 흡착공정이 함께 적용된다. On the other hand, among the factors that determine the properties of raw water, the membrane contamination index (SDI, Silt Density Index), turbidity, and total organic carbon (TOC) have similar tendency to TDS (Total Dissolved Solids). Specifically, raw water with TDS less than 200 ppm has a membrane pollution index (SDI) less than 2, raw water with TDS 200-700 ppm has a membrane pollution index (SDI) of 2-5, and raw water with a TDS exceeding 700 ppm has a membrane pollution index (SDI) tends to exceed 5. In addition, the tendency of turbidity and total organic carbon (TOC) is also consistent with the tendency of membrane contamination index (SDI) and TDS. Raw water with a TDS of less than 200 ppm has a turbidity of less than 0.5 NTU and a total organic carbon (TOC) of less than 2 ppm, and a raw water with a TDS of more than 700 ppm tends to have a turbidity of more than 10 NTU and a total organic carbon (TOC) of more than 30 ppm. . In the case of raw water with TDS of 200 to 700 ppm, that is, with a membrane contamination index (SDI) of 2 to 5, it is subdivided into two types. This is to apply the pretreatment process more effectively. If the TDS is 200 to 700 ppm, that is, when the membrane contamination index (SDI) is 2 to 5, the turbidity is 0.5 to 1.5 and the total organic carbon (TOC) is 1 to 12, and the turbidity is 1.5 to 8 and the total organic carbon (TOC) is 12 It can be classified into the case of ∼30. In the former case, that is, when the turbidity is 0.5 to 1.5 and the total organic carbon (TOC) is 1 to 12, only the adsorption process is applied. In the latter case, that is, the turbidity is 1.5 to 8 and the total organic carbon (TOC) is 12 In the case of ∼30, both filtration and adsorption processes are applied.

전술한 바와 같이, 본 발명에 따른 전처리공정은 응집공정, 여과공정, 흡착공정을 기반으로 하는데, 응집공정, 여과공정, 흡착공정은 순차적으로 적용되는 것을 원칙으로 하며, 응집공정, 여과공정, 흡착공정이 순차적으로 적용됨에 있어서 어느 한 공정은 생략될 수 있다. 또한, 앞서 언급한 바와 같이 TDS 200ppm 미만의 원수는 막여과공정(MF)이 적용되고, TDS 701∼4000ppm의 원수는 응집공정(또는 세라믹분리막 공정), 여과공정, 흡착공정이 순차적으로 적용되며, TDS 200∼700ppm의 원수는 탁도 0.5∼1.5, 총유기탄소(TOC) 1∼12인 경우 흡착공정만이 적용되며, 탁도는 1.5∼8, 총유기탄소(TOC) 12∼30인 경우 여과공정과 흡착공정이 순차적으로 적용된다. As described above, the pretreatment process according to the present invention is based on a coagulation process, a filtration process, and an adsorption process. In principle, the coagulation process, filtration process, and adsorption process are applied sequentially. Since the processes are sequentially applied, any one process may be omitted. In addition, as mentioned above, a membrane filtration process (MF) is applied to raw water of less than 200 ppm TDS, and a coagulation process (or ceramic separation membrane process), filtration process, and adsorption process are sequentially applied to raw water of TDS 701 to 4000 ppm. For raw water with TDS of 200 to 700 ppm, only the adsorption process is applied when the turbidity is 0.5 to 1.5 and total organic carbon (TOC) is 1 to 12, and the turbidity is 1.5 to 8 and the filtration process and total organic carbon (TOC) is 12 to 30. The adsorption process is applied sequentially.

여과공정과 흡착공정은 여과조와 흡착조를 각각 구비시켜 독립적으로 진행시키거나, 하나의 반응조 내에 여과담체와 흡착담체를 모두 충진시켜 하나의 여과공정 및 흡착공정이 모두 진행되도록 할 수 있다. 여기서, 일 실시예로 여과담체로는 AFM(activated filter media)을 이용하고, 흡착담체로는 입상활성탄(GAC)을 이용할 수 있다. The filtration process and the adsorption process may be carried out independently by providing a filtration tank and an adsorption tank, respectively, or by filling both a filter carrier and an adsorption carrier in one reaction tank, one filtration process and an adsorption process may both proceed. Here, as an embodiment, activated filter media (AFM) may be used as the filter carrier, and granular activated carbon (GAC) may be used as the adsorption carrier.

이상, 본 발명의 일 실시예에 따른 원수의 성상에 따른 축전식 탈염공정의 전처리 방법을 설명하였다. 이하에서는, 실험을 통해 본 발명을 보다 구체적으로 설명하기로 한다. In the above, the pretreatment method of the capacitive desalination process according to the properties of raw water according to an embodiment of the present invention has been described. Hereinafter, the present invention will be described in more detail through experiments.

<실험예 1 : 원수의 성상><Experimental Example 1: Characteristics of raw water>

하수처리장의 방류수, 제 1 공단폐수, 제 2 공단폐수 및 냉각수에 대해 성상을 분석하였으며, 그 결과는 아래의 표 1에 나타낸 바와 같다. The properties were analyzed for the discharged water from the sewage treatment plant, the first industrial complex wastewater, the second industrial complex wastewater, and the cooling water, and the results are as shown in Table 1 below.

<원수의 성상><Constellation of the enemy>
하수 sewer
방류수Effluent
제1First
공단폐수Industrial complex wastewater
제2Second
공단폐수Industrial complex wastewater
냉각수cooling water
1월January 2월February 4월April 8월August 10월October TOC
(ppm)
TOC
(ppm)
20.0720.07 82.4182.41 114114 10.4910.49 11.1411.14 12.4612.46 10.4210.42 3.263.26
탁도
(NTU)
Turbidity
(NTU)
1.331.33 26.6526.65 35.1035.10 1.751.75 2.182.18 23.4623.46 7.077.07 7.397.39
Cond.
(uS/cm)
Cond.
(uS/cm)
11.3311.33 44504450 55105510 12401240 10801080 1063.51063.5 760.25760.25 734734
pHpH 7.837.83 8.938.93 7.847.84 6.896.89 7.647.64 7.937.93 8.158.15 7.677.67 Fe
(ppm)
Fe
(ppm)
- - - - - -  -- 0.050.05 0.1650.165 0.0750.075 0.05250.0525
Si
(ppm)
Si
(ppm)
6.706.70 7.107.10 -- 7.67.6 9.959.95 12.9512.95 22.5722.57 31.231.2
Al
(ppm)
Al
(ppm)
- - - - - -  -- 0.0030.003 0.00630.0063 0.11320.1132 0.0940.094
T-N
(ppm)
TN
(ppm)
9.009.00 10.0010.00 20.0020.00 99  -- -- 5.35.3 --
T-P
(ppm)
TP
(ppm)
- - - - - -  --  -- -- 5.1755.175 --
TDS
(ppm)
TDS
(ppm)
7.257.25 2848.002848.00 3526.403526.40 849.4849.4 723.6723.6 712.545712.545 509.3675509.3675 491.78491.78

<실험예 2 : 담체의 성능평가><Experimental Example 2: Performance evaluation of carrier>

여과담체 또는 흡착담체로 입상활성탄(GAC), 세라믹분리막, AFM, MS(miracle sand)를 준비하고 각 담체의 TOC 및 탁도 제거능을 평가하였다. Granular activated carbon (GAC), ceramic separation membrane, AFM, and MS (miracle sand) were prepared as a filter carrier or adsorption carrier, and the TOC and turbidity removal ability of each carrier was evaluated.

직경 3cm, 높이 12cm의 컬럼에 GAC, AFM, MS를 각각 충진하고 각 컬럼에 TDS 700ppm 이하의 방류수를 5ml/min의 속도로 공급한 후, 각 컬럼에서의 TOC 및 탁도 변화를 측정하였다. 또한, 기공크기 0.1㎛의 알루미나 재질의 세라믹분리막을 준비하고 TDS 700ppm 이하의 방류수를 5ml/min의 속도로 공급한 후, 각 컬럼에서의 TOC 및 탁도 변화를 측정하였다.A column having a diameter of 3 cm and a height of 12 cm was filled with GAC, AFM, and MS, respectively, and effluent water of 700 ppm or less of TDS was supplied to each column at a rate of 5 ml/min, and changes in TOC and turbidity in each column were measured. In addition, a ceramic separation membrane made of alumina having a pore size of 0.1 μm was prepared, and effluent water having a TDS of 700 ppm or less was supplied at a rate of 5 ml/min, and changes in TOC and turbidity in each column were measured.

도 2a를 참조하면, 총유기탄소(TOC)의 경우 입상활성탄(GAC)을 충진한 컬럼에서 가장 높은 효율을 나타냈으며(TOC 제거효율 : GAC > 세라믹분리막 > MS > AFM), 탁도의 경우 도 2b에 도시한 바와 같이 세라믹분리막이 가장 우수한 성능을 보였다(세라믹분리막 > AFM > MS > GAC). Referring to Figure 2a, in the case of total organic carbon (TOC), the column filled with granular activated carbon (GAC) showed the highest efficiency (TOC removal efficiency: GAC> ceramic separator> MS> AFM), and in the case of turbidity, Figure 2b As shown in, the ceramic separator showed the best performance (ceramic separator> AFM> MS> GAC).

이어, 컬럼의 크기를 증가시켜 GAC 및 AFM의 성능을 평가하였다. 직경 30cm, 높이 50cm의 컬럼에 AFM 약 23100g, GAC 약 10400g을 각각 충진시킨 후, TDS 700ppm 이하의 방류수를 30ml/min의 속도로 공급한 후, GAC가 충진된 컬럼에서는 TOC 변화를 측정하고 AFM이 충진된 컬럼에서는 탁도 변화를 측정하였다. Then, the size of the column was increased to evaluate the performance of GAC and AFM. After filling a column with a diameter of 30cm and a height of 50cm with about 23100g of AFM and about 10400g of GAC, respectively, after supplying effluent less than 700ppm of TDS at a rate of 30ml/min, the TOC change was measured in the column filled with GAC, and the AFM was The turbidity change was measured in the packed column.

도 3a를 참조하면, 총유기탄소(TOC)의 경우 여과시간 100분 경과 후 증가하는 경향이 확인되지만 목표치(4ppm)는 달성하고 있음을 확인하였다. 탁도의 경우 초기 200분 동안 목표치(0.5NTU) 이하로 유지되면서 점차 증가하는 경향을 보이고 있다. Referring to Figure 3a, in the case of the total organic carbon (TOC), a tendency to increase after 100 minutes of filtration time was confirmed, but it was confirmed that the target value (4 ppm) was achieved. The turbidity tends to increase gradually while maintaining below the target value (0.5 NTU) for the initial 200 minutes.

다음 실험으로, AFM이 충진된 컬럼과 GAC가 충진된 컬럼을 순차적으로 배시키고 TDS 700ppm 이하의 방류수가 두 컬럼을 순차적으로 모두 거치도록 한 다음, TOC 및 탁도 변화를 측정하였다. 도 4a 및 도 4b를 참조하면, GAC 단독 컬럼에 대비하여 TOC가 일정하게 유지됨을 확인할 수 있다. In the next experiment, a column filled with AFM and a column filled with GAC were sequentially drained, and water having a TDS of 700 ppm or less was sequentially passed through both columns, and then TOC and turbidity changes were measured. Referring to FIGS. 4A and 4B, it can be seen that the TOC is kept constant compared to the GAC alone column.

Claims (6)

축전식 탈염장치에 유입되는 원수에 대한 전처리공정으로서,
원수의 성상을 TDS 200ppm 미만, TDS 200∼700ppm, TDS 701∼4000ppm으로 구분하고,
원수의 성상이 TDS 200ppm 미만이면 전처리공정으로 막여과공정(MF)을 적용하고, 원수의 성상이 TDS 701∼4000ppm이면 전처리공정으로 응집공정, 여과공정, 흡착공정을 순차적으로 적용하거나 세라믹분리막 공정, 여과공정, 흡착공정을 순차적으로 적용하며,
원수의 성상이 TDS 200∼700ppm이면 전처리공정으로 흡착공정만을 적용하거나 여과공정과 흡착공정을 순차적으로 적용하며,
원수의 성상이 TDS 200∼700ppm인 경우,
탁도가 0.5∼1.5이고, 총유기탄소(TOC)가 1∼12이면 전처리공정으로 흡착공정만이 적용되며,
탁도가 1.5∼8이고, 총유기탄소(TOC)가 12∼30이면 전처리공정으로 여과공정과 흡착공정이 순차적으로 적용되며,
상기 전처리공정을 통해 축전식 탈염공정에 유입되는 원수의 탁도는 0.5NTU 이하, 총유기탄소(TOC)는 4ppm 이하로 제어되는 것을 특징으로 하는 원수의 성상에 따른 축전식 탈염공정의 전처리 방법.
As a pretreatment process for raw water flowing into the storage type desalination device,
The properties of raw water are classified into less than 200ppm TDS, 200~700ppm TDS, and 701~4000ppm TDS,
If the property of the raw water is less than 200 ppm of TDS, the membrane filtration process (MF) is applied as the pretreatment process, and when the property of the raw water is TDS 701 to 4000 ppm, the coagulation process, filtration process, and adsorption process are sequentially applied as the pretreatment process, or the ceramic separator process, Filtration process and adsorption process are sequentially applied,
If the nature of the raw water is TDS 200~700ppm, only the adsorption process is applied as the pretreatment process or the filtration process and the adsorption process are applied sequentially.
If the nature of raw water is 200-700 ppm TDS,
If the turbidity is 0.5 to 1.5 and the total organic carbon (TOC) is 1 to 12, only the adsorption process is applied as the pretreatment process.
If the turbidity is 1.5-8 and the total organic carbon (TOC) is 12-30, the filtration process and the adsorption process are sequentially applied as a pretreatment process.
The pretreatment method of the capacitive desalination process according to the properties of the raw water, characterized in that the turbidity of the raw water flowing into the capacitive desalination process through the pretreatment process is controlled to 0.5 NTU or less and the total organic carbon (TOC) to 4 ppm or less.
삭제delete 제 1 항에 있어서, TDS 200ppm 미만의 원수는 막오염지수(SDI)가 2보다 작고, TDS 200∼700ppm의 원수는 막오염지수(SDI)가 2∼5이며, TDS가 700ppm을 초과하는 원수는 막오염지수(SDI)가 5를 초과하는 것을 특징으로 하는 원수의 성상에 따른 축전식 탈염공정의 전처리 방법.
The method of claim 1, wherein the raw water having a TDS of less than 200 ppm has a membrane contamination index (SDI) of less than 2, the raw water having a TDS of 200 to 700 ppm has a membrane contamination index (SDI) of 2 to 5, and the raw water having a TDS exceeding 700 ppm is A pretreatment method of a capacitive desalination process according to the properties of raw water, characterized in that the membrane contamination index (SDI) exceeds 5.
제 1 항에 있어서, TDS 200ppm 미만의 원수는 탁도가 0.5NTU 미만, 총유기탄소(TOC)가 2ppm 미만이며, TDS가 700ppm을 초과하는 원수는 탁도가 10NTU 초과, 총유기탄소(TOC)가 30ppm을 초과하는 것을 특징으로 하는 원수의 성상에 따른 축전식 탈염공정의 전처리 방법.
The method of claim 1, wherein the raw water having a TDS of less than 200 ppm has a turbidity of less than 0.5 NTU and a total organic carbon (TOC) of less than 2 ppm, and the raw water having a TDS of more than 700 ppm has a turbidity of more than 10 NTU and a total organic carbon (TOC) of 30 ppm. Pretreatment method of the capacitive desalination process according to the properties of the raw water, characterized in that exceeding.
제 1 항에 있어서, 상기 여과공정과 흡착공정은 여과조와 흡착조를 각각 구비시켜 독립적으로 진행시키거나, 하나의 반응조 내에 여과담체와 흡착담체를 모두 충진시켜 하나의 여과공정 및 흡착공정이 모두 진행되도록 할 수 있는 것을 특징으로 하는 원수의 성상에 따른 축전식 탈염공정의 전처리 방법.
The method of claim 1, wherein the filtration process and the adsorption process are carried out independently by providing a filtration tank and an adsorption tank, respectively, or one filtration process and an adsorption process are both carried out by filling both the filter carrier and the adsorption carrier in one reaction tank. The pretreatment method of the capacitive desalination process according to the properties of the raw water, characterized in that it can be.
제 5 항에 있어서, 상기 여과담체는 AFM(activated filter media)이고, 흡착담체로는 입상활성탄(GAC)인 것을 특징으로 하는 원수의 성상에 따른 축전식 탈염공정의 전처리 방법. The method of claim 5, wherein the filter carrier is activated filter media (AFM), and the adsorption carrier is granular activated carbon (GAC).
KR1020180158530A 2018-12-10 2018-12-10 Method for pretreatment of capacitive deionization based on ingredient of raw water KR102197621B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180158530A KR102197621B1 (en) 2018-12-10 2018-12-10 Method for pretreatment of capacitive deionization based on ingredient of raw water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180158530A KR102197621B1 (en) 2018-12-10 2018-12-10 Method for pretreatment of capacitive deionization based on ingredient of raw water

Publications (2)

Publication Number Publication Date
KR20200070888A KR20200070888A (en) 2020-06-18
KR102197621B1 true KR102197621B1 (en) 2021-01-04

Family

ID=71142962

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180158530A KR102197621B1 (en) 2018-12-10 2018-12-10 Method for pretreatment of capacitive deionization based on ingredient of raw water

Country Status (1)

Country Link
KR (1) KR102197621B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220153781A (en) * 2021-05-12 2022-11-21 한국과학기술연구원 Apparatus for pretreatment of capacitive deionization

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050012875A (en) * 2005-01-13 2005-02-02 아쿠아셀 주식회사 A water reclamation and reuse system with an equipment for removing TDS
KR100720140B1 (en) * 2005-09-29 2007-05-18 주식회사 태영건설 Operation selection device using water code of membrane filtration device and method thereof
KR20120025104A (en) * 2010-09-07 2012-03-15 최지연 Variable selection method and apparatus for waste water reclamation and reusing system
KR101418738B1 (en) * 2012-07-03 2014-07-11 대림산업 주식회사 Immersion type-pressure type hybrid membrane filtration system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220153781A (en) * 2021-05-12 2022-11-21 한국과학기술연구원 Apparatus for pretreatment of capacitive deionization
KR102501340B1 (en) * 2021-05-12 2023-02-21 한국과학기술연구원 Apparatus for pretreatment of capacitive deionization

Also Published As

Publication number Publication date
KR20200070888A (en) 2020-06-18

Similar Documents

Publication Publication Date Title
Valavala et al. Pretreatment in reverse osmosis seawater desalination: a short review
Fan et al. Low-pressure membrane filtration of secondary effluent in water reuse: Pre-treatment for fouling reduction
Al Abdulgader et al. Hybrid ion exchange–Pressure driven membrane processes in water treatment: A review
Fabris et al. Pre-treatments to reduce fouling of low pressure micro-filtration (MF) membranes
Kim et al. Study on feed pretreatment for membrane filtration of secondary effluent
Shon et al. Effect of pretreatment on the fouling of membranes: application in biologically treated sewage effluent
Xia et al. Study of drinking water treatment by ultrafiltration of surface water and its application to China
EP2798149B1 (en) Method and system for enhancing oil recovery (eor) by injecting treated water into an oil bearing formation
Ernst et al. An integrated wastewater treatment and reuse concept for the Olympic Park 2008, Beijing
Smol et al. Effectiveness in the removal of Polycyclic Aromatic Hydrocarbons from industrial wastewater by ultrafiltration technique
EP3375759B1 (en) Method for purifying water as well as plant suitable for said method
Peldszus et al. Direct biofiltration pretreatment for fouling control of ultrafiltration membranes
KR100521628B1 (en) Water purifier having electrodeionization system
Ding et al. Effect of PAC particle layer on the performance of gravity-driven membrane filtration (GDM) system during rainwater treatment
Ersahin et al. Treatment of produced water originated from oil and gas production wells: a pilot study and cost analysis
Meyn et al. Comparison of optional process configurations and operating conditions for ceramic membrane MF coupled with coagulation/flocculation pre-treatment for the removal of NOM in drinking water production
KR101447838B1 (en) Treatment apparatus of wastewater using reverse osmosis membrane and treatment method using the same
Zielińska et al. Adsorption–Membrane process for treatment of stabilized municipal landfill leachate
Qu et al. A pilot study of hybrid biological activated carbon (BAC) filtration-ultrafiltration process for water supply in rural areas: role of BAC pretreatment in alleviating membrane fouling
KR102197621B1 (en) Method for pretreatment of capacitive deionization based on ingredient of raw water
Rahman et al. Fouling of low-pressure membranes during drinking water treatment: effect of NOM components and biofiltration pretreatment
Aryal et al. Synergistic effect of biological activated carbon and enhanced coagulation in secondary wastewater effluent treatment
Kim et al. Pretreatment for capacitive deionization: Feasibility tests using activated filter media and granule activated carbon filtration
Ferrer‐Polonio et al. Fractionation of secondary effluents of wastewater treatment plants in view of the evaluation of membrane fouling in a further ultrafiltration step
Zheng et al. Ceramic microfiltration–influence of pretreatment on operational performance

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right