KR20200048621A - Energy-saving heat pump that heats cooling water using condensation heat - Google Patents

Energy-saving heat pump that heats cooling water using condensation heat Download PDF

Info

Publication number
KR20200048621A
KR20200048621A KR1020180130877A KR20180130877A KR20200048621A KR 20200048621 A KR20200048621 A KR 20200048621A KR 1020180130877 A KR1020180130877 A KR 1020180130877A KR 20180130877 A KR20180130877 A KR 20180130877A KR 20200048621 A KR20200048621 A KR 20200048621A
Authority
KR
South Korea
Prior art keywords
heat
water
condenser
cooling
compressor
Prior art date
Application number
KR1020180130877A
Other languages
Korean (ko)
Inventor
허성민
Original Assignee
허성민
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 허성민 filed Critical 허성민
Priority to KR1020180130877A priority Critical patent/KR20200048621A/en
Publication of KR20200048621A publication Critical patent/KR20200048621A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • F25B41/003
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/26Disposition of valves, e.g. of on-off valves or flow control valves of fluid flow reversing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fluid Mechanics (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

The present invention relates to a water-cooled energy-saving heat pump for heating coolant by using condensation heat. In a refrigerator, which uses only a cooling action as a high-pressure gas refrigeration principle, in which the energy use efficiency of the refrigeration or heating capacity as an output for input compressor power is not less than 4, and uses an air-cooled condenser having caused many side effects while emitting condensation heat to the atmosphere, the energy-saving heat pump reduces a high pressure in the condenser and raises a low pressure in a suction side of a compressor by using a heat pump action together using a cooling action for absorbing heat and a heating action for emitting heat to reduce the work done of a refrigerator compressor, thereby leading to power saving. The energy-saving heat pump obtains a double effect of obtaining hot water by using that water is heated by heat emitted by the condenser while effectively cooling a high-temperature condenser by using the water as a coolant instead of air for cooling the condenser, allows the power of the compressor to be used less by the movement of the heat, thereby increasing energy efficiency, and makes hot water by using the heat emitted from the condenser together with a cooling action of absorbing heat from a general refrigerator.

Description

응축열을 이용하여 냉각수를 가열하는 에너지 절감형 히트펌프{Energy-saving heat pump that heats cooling water using condensation heat}Energy-saving heat pump that heats cooling water using condensation heat

기계적인 냉장고가 발명되기 이전에는 천연 얼음을 이용한 냉동이 사용되었으며, 냉동기술이 발전되면서 냉동용 인공얼음이 대량으로 생산되었다.소모냉매 냉동방식, 열전냉동방식, 흡수냉동방식들이 각분야에서 사용되다가 고압가스냉매 압축기를 이용한 냉동장치가 실용화되면서부터, 대부분의 냉동장치는 성적계수가 4이상으로 효율이 높은 고압가스압축기의 히트펌프 냉동방식을사용하며, 가정용냉장고나 상업용냉장고 및 에어컨장치에도 응용하고 있으나, 열에너지 이용효율과 실용상에 몇 가지문제점과 부작용이 있다Before the mechanical refrigerator was invented, refrigeration using natural ice was used, and as the refrigeration technology developed, artificial ice for refrigeration was produced in large quantities. Consumed refrigerant refrigeration, thermoelectric refrigeration, and absorption refrigeration were used in each field. Since the refrigeration system using a high-pressure gas refrigerant compressor has been put into practical use, most refrigeration systems use a heat pump refrigeration method of a high-pressure gas compressor with a high performance factor of 4 or higher, and are also applied to household refrigerators, commercial refrigerators, and air conditioners. However, there are some problems and side effects in terms of efficiency and practical use of thermal energy.

본 발명은 고압가스냉매 상태변화 특성으로 열이 이동하는 효과를 이용하는 기존 냉장고의 냉매 배관계통에, 수냉식응축기의 냉각수를 온수로 이용하기 위하여, 열교환기를 함께 결합시켜서 열에너지가 잘 전달되도록 구성한다. 이하 첨부된 도면을 참조하여 본 고안의 내용을 설명하고자 한다.The present invention is configured to combine the heat exchangers together to use the coolant of the water-cooled condenser as hot water in the refrigerant piping system of the existing refrigerator that uses the effect of heat transfer due to the high-pressure gas refrigerant state change characteristics. Hereinafter, the contents of the present invention will be described with reference to the accompanying drawings.

본 발명에서는 선박이나 항공기의 냉동기나 공조기의 히트펌프장치 열교환 기술을 응용하여, 냉장고의 응축효율을 높이고 성적계수를 향상시킨다.첫째로, 냉장고의 증발기에서 열을 흡수하는 냉각작용을 이용하면서, 상대적으로 고온 고압의 응축기를 물로서 냉각시켜서 응축효율을 높이며, 응축기에서 방출되는 열에 의해서 냉수를 온수로 이용하는 수냉식응축기를 채용한다. 둘째로,증발기 출구와 압축기 흡입측에 열을 가해서 저압측 압력을 높이고, 응축기를 빠르게 냉각시켜서 고압측의 압력을 낮추고, 고압가스냉매 압축기의 저압측과 고압측의 압력차이를 적게 하여 압축기의 동력을 감소시킨다. 셋째로, 수냉식 응축기에서, 냉각수가 흐르는 배관 내부에, 고온고압의 냉매배관이 통과하도록 결합하여 열 교환이 잘되도록 하며, 표면을 일체식으로 단순하게 처리하여 틈 사이가 없는 수냉식 응축기를 구성한다.상기와 같이 기존 냉장고의 기능으로 열을 흡수하는 냉각작용을 이용하고, 수냉식 응축기에서 방출되는 열로 냉각수를온수로 가열시키는 방열작용을 함께 이용하면서, 열교환 작용으로 냉매압축기의 일량을 줄여서 소비전력을 적게 소모하는 열역학의장치로서, 실용성과 경제성을 갖춘 수냉식 응축열로 냉각수를 가열하는 절전형 히트펌프를 제작하는 기술을제공함에 있다.In the present invention, by applying heat exchange technology of a heat pump device of a refrigerator or an air conditioner of a ship or aircraft, the condensation efficiency of the refrigerator is improved and the performance coefficient is improved. First, while using a cooling action to absorb heat from the evaporator of the refrigerator, relative As it cools the condenser of high temperature and high pressure as water, it increases the condensing efficiency, and adopts a water-cooled condenser that uses cold water as hot water by the heat emitted from the condenser. Second, increase the pressure on the low pressure side by applying heat to the outlet of the evaporator and the suction side of the compressor, rapidly cool the condenser to lower the pressure on the high pressure side, and reduce the pressure difference between the low pressure side and the high pressure side of the high pressure gas refrigerant compressor to reduce the power of the compressor. Reduces it. Third, in the water-cooled condenser, the heat exchange is performed by passing the refrigerant pipe of high temperature and high pressure inside the pipe through which the cooling water flows, so that the surface is integrally treated simply to form a water-cooled condenser without gaps. As described above, using the cooling action to absorb heat as a function of the existing refrigerator, and using the heat dissipation action to heat the cooling water to hot water with the heat emitted from the water-cooled condenser, the heat exchange action reduces the amount of refrigerant compressor to reduce the power consumption. As a device for consuming thermodynamics, the present invention provides a technology for manufacturing a power-saving heat pump that heats cooling water with water-cooled condensation heat with practicality and economy.

고압가스 냉동기의 성적계수(COP)를 높이기 위해서, 응축기의 열방출작용과 증발기의 열흡수작용을 빠르게 하여, 응축기의 고압을 낮추고 증발기의 저압을 높여, 고 저압의 압력차이를 줄여서, 압축기의 일량을 감소시킨 것이다. 제 2도에서 설명하고자 하는 것은 성적계수(COP)가 4이상인 히트펌프장치의 열에너지를 이용하면 에너지이용효율을 크게 높일 수가 있다는 것이다. 입력 동력에 비하여 출력 열에너지(열흡수 냉방능력 또는 열방출 난방능력)를 한편만을 이용하고 있음에도 성적계수(COP)가 4배이기 때문에, 열흡수와 열방출을 동시에 이용하면 8배이고, 열교환기로 열이동이 잘되도록 구성하면 압축기의 입력동력을 감소시킬 수 있기 때문에 전체적인 성적계수(COP)는 8이상으로서 더욱 크게 높일 수 있게되는 것이다.제 3도의 전기회로도는 대부분 일반냉장고를 구동하는 것과 유사하며, 물의 온도를 감지하는 감온센서에 의해서 선택되는 접촉자에 의해서 전기적으로 연동되어 있어서, 냉각수 순환펌프(WCP) 또는 냉각수전자변(W.SV)중에서 하나가 선택되어 작동하게 된다.본 발명은, 기존냉장고의 공랭식응축기에서 성적계수가 낮았던 비효율적인 문제점과, 여름철에 응축기의 방열작용으로주위온도를 상승시켰던 부작용을 제거하기 위하여, 증발기에서 열을 흡수하는 냉각작용을 이용하면서 상대적으로 응축기에서 열을 방출하는 가열작용을 이용할 수 있도록,수냉식응축기와 냉각수 순환계통의 열 교환기를 결합시켜서, 고압가스냉매 히트펌프장치의 열에너지가 잘 흐르게하여, 에너지 이용효율인 성적계수가 향상된 수냉식 응축열로 냉각수를가열하는 절전형 히트펌프를 구성하게된 것이다.In order to increase the COP of the high-pressure gas freezer, the heat dissipation action of the condenser and the heat absorption action of the evaporator are quickened to lower the high pressure of the condenser, increase the low pressure of the evaporator, reduce the pressure difference of high and low pressure, and reduce the pressure difference of the compressor. Is reduced. What is intended to be described in FIG. 2 is that if the heat energy of the heat pump device having a coefficient of performance (COP) of 4 or more is used, energy use efficiency can be greatly improved. The output coefficient of heat (heat absorption cooling capacity or heat release heating capacity) is only 4 times compared to the input power, so the coefficient of performance (COP) is 4 times, so if heat absorption and heat dissipation are used simultaneously, it is 8 times. If configured properly, the input power of the compressor can be reduced, so the overall coefficient of performance (COP) can be increased to 8 or more. The electrical circuit diagram of FIG. 3 is similar to that of driving a general refrigerator. Since it is electrically interlocked by a contactor selected by a temperature sensor that senses temperature, one of the coolant circulation pump (WCP) or the coolant solenoid valve (W.SV) is selected to operate. The present invention, the air cooling of the existing refrigerator Inefficient problem that the coefficient of performance was low in the condenser, and the trilogy that raised the ambient temperature in the summer due to the heat dissipation of the condenser In order to remove, while using a cooling action to absorb heat from the evaporator while using a heating action to dissipate heat from the condenser, a water-cooled condenser and a heat exchanger of a cooling water circulation system are combined to form a high-pressure gas refrigerant heat pump device. It is to construct a power-saving heat pump that heats the cooling water with the water-cooled condensation heat, which improves the energy efficiency and improves the performance coefficient of energy efficiency.

생활이 윤택해 지면서 점점 대형화되어가고 있는 가정용냉장고는 물론이며, 상업용 냉장고나 공조에어컨 등 고압가스냉매 히트펌프장치의 응축기에서 무방비상태로 버려지고 있었던 열에너지를 활용하면서 전기를 절약하므로, 가정과 사회의 국민경제를 비롯하여, 국가경제에 기여하는 수냉식 응축열로 냉각수를 가열하는 절전형 히트펌프가 제공된다.As household life is getting bigger and larger as well as household refrigerators, it saves electricity while utilizing heat energy that has been left unprotected in the condenser of high-pressure gas refrigerant heat pump devices such as commercial refrigerators and air-conditioning air conditioners. In addition to the economy, there is provided a power saving heat pump that heats the cooling water with water-cooled condensation heat contributing to the national economy.

제 1도는 수냉식응축기의 냉각수를 온수로 만들고 열교환작용으로 압축기의 동력을 감소시키는 절전냉장고의 냉매와냉각수 계통도.제 2도는 고압가스 냉동기의 성적계수를 결정하는 냉매압축기의 입력동력과 증발기와 응축기의 출력 열에너지 이동을설명하기 위한 도시도.제 3도는 본 발명의 수냉식 응축열로 냉각수를 가열하는 절전형 히트펌프를 구동하기 위한 전기회로도1 is a system diagram of a refrigerant and a coolant system of a power-saving refrigerator that converts the power of a water-cooled condenser into hot water and reduces the power of the compressor through a heat exchange action. FIG. 2 is an input power of the refrigerant compressor that determines the performance coefficient of the high-pressure gas freezer, and of the evaporator and condenser. FIG. 3 is an electrical circuit diagram for driving a power saving heat pump that heats cooling water with water-cooled condensation heat of the present invention.

제 1도는 수냉식 응축기의 냉각수를 온수로 이용하고, 열교환기의 작용으로 압축기의 동력을 감소시키는 절전냉장고의냉매와 냉각수 계통도이고, 제 2도는 고압가스 냉동기의 성적계수를 결정하는 냉매압축기의 입력동력과 증발기와 응축기의 출력 열에너지 이동을 설명하기 위한 도시도이며, 제 3도는 본 발명의 절전냉장고를 구동하기 위한 전기 회로도이다.냉매압축기(COMP)가 정상적동을 할 때 유체냉매의 흐름은 화살표방향으로 진행하고 있으며, 굵은 실선은 고온 고압측을 표시하였고, 굵은실선 외부에 2중의 가는 실선은 저온 저압측을 표시하고 있다.유체냉매의 순환계통은, 냉매압축기(COMP) - 공랭식응축기(ACD) - 고온가스전자변(HG.SV) - 수냉식응축기(WCD) - 필터드라이어(FD) - 열교환기(HEXC) - 자동팽창밸브(EXPV) - 1차증발기(EVP1) - 2차축냉증발기(EVP2)- 열교환기(HEXC) - 압축기오일냉각기(COC) - 냉매압축기(COMP)로 구성되어 있는데, 수냉식 응축기(WCD)출구측에 남아있는 열과, 2차 축냉증발기(EVP2)출구측에 남아있는 냉각상태가 상호 보완적으로, 열교환기(HEXC)에서 열에너지가 이동되면서, 냉매압축기(COMP)의 흡입측의 저압을 높이고, 냉매압축기(COMP)의 토출측의 고압은 낮추기 때문에, 냉매압축기(COMP)의 압축동력 부하가 감소되어서, 일차적으로 절전이 된다.고온 고압의 수냉식응축기(WCD)를 냉각시키는 냉각수로 이용되는 온도가 낮은 수돗물을 온수로 이용하기 위하여,냉각수전자변(W.SV) - 수냉식응축기(WCD) - 냉각수 순환펌프(WCP) - 역지변(CV) - 온수탱크(HWT) - 온수밸브(HWV)가 수도배관에 연결되어 있으며, 수냉식응축기(WCD)의 냉각수 온도가 낮을 때는, 냉각수전자변(W.SV)은차단되고, 냉각수순환펌프(WCP)가 작동되어 냉각을 하게되며, 수냉식응축기(WCD)의 냉각수 온도가 높아지면, 냉각수전자변(W.SV)이 열리고, 냉각수 순환펌프(WCP)가 차단되어서, 가열된 냉각수는 수돗물에 밀려서 역지변(CV)을통해서 온수탱크(HWT)에 저장되고, 필요할 때 사용한다.1 is a diagram of a refrigerant and cooling water system of a power-saving refrigerator that uses cooling water from a water-cooled condenser as hot water and reduces the power of the compressor by the action of a heat exchanger, and 2 is an input power of a refrigerant compressor that determines the performance coefficient of a high-pressure gas freezer. It is a city diagram for explaining the output heat energy transfer of the evaporator and the condenser, and FIG. 3 is an electric circuit diagram for driving the power saving refrigerator of the present invention. When the refrigerant compressor (COMP) is in normal operation, the flow of fluid refrigerant is in the direction of the arrow. The thick solid line indicates the high-temperature and high-pressure side, and the double thin solid line indicates the low-temperature and low-pressure side outside the thick solid line. The circulation system of fluid refrigerant is refrigerant compressor (COMP)-air-cooled condenser (ACD). -High temperature gas electromagnetic valve (HG.SV)-Water-cooled condenser (WCD)-Filter dryer (FD)-Heat exchanger (HEXC)-Automatic expansion valve (EXPV)-Primary evaporator (EVP1)-Secondary refrigerant evaporator (EVP2) )-Heat exchanger (HEXC)-Compressor oil cooler (COC)-Refrigerant compressor (COMP), consisting of heat remaining at the water-cooled condenser (WCD) outlet side, and secondary refrigerant storage evaporator (EVP2) outlet side As the cooling state complements each other, as the heat energy moves in the heat exchanger (HEXC), the low pressure at the suction side of the refrigerant compressor (COMP) is increased, and the high pressure at the discharge side of the refrigerant compressor (COMP) is lowered, thereby reducing the refrigerant compressor (COMP). The compressive power load of the motor is reduced, which is primarily power saving. In order to use low-temperature tap water used as cooling water to cool the high-temperature and high-pressure water-cooled condensers (WCD) as hot water, cooling water electromagnetic valves (W.SV)-water-cooled condensers (WCD)-Cooling water circulation pump (WCP)-Reverse valve (CV)-Hot water tank (HWT)-Hot water valve (HWV) is connected to the water pipe, and when the cooling water temperature of the water cooling condenser (WCD) is low, the cooling water electromagnetic valve (W.SV) is blocked, and the cooling water circulation pump (WCP) When the cooling water temperature of the water-cooled condenser (WCD) increases, the cooling water solenoid valve (W.SV) opens, and the cooling water circulation pump (WCP) is blocked, so that the heated cooling water is pushed into the tap water to reverse the water (CV ) To be stored in a hot water tank (HWT) and used when needed.

COMP : 냉매압축기 ACD : 공랭식응축기 WCD : 수냉식응축기 EXPV : 자동팽창밸브 EXPV1 : 1차증발기 EXPV2 : 2차측 냉증발기 HEXC : 열교환기 COC:압축기오일냉각기 HGL :고온가스라인 HG.SV :고온가스전자변 FD : 필터드라이어 W.SV:냉각수전자변 WCP : 냉각수순환펌프 CV : 역지변 HWT : 온수탱크 HWV:온수밸브COMP: refrigerant compressor ACD: air-cooled condenser WCD: water-cooled condenser EXPV: automatic expansion valve EXPV1: primary evaporator EXPV2: secondary side evaporator HEXC: heat exchanger COC: compressor oil cooler HGL: high temperature gas line HG.SV: high temperature gas electromagnetic FD : Filter dryer W.SV: Cooling water solenoid valve WCP: Cooling water circulation pump CV: Reverse valve HWT: Hot water tank HWV: Hot water valve

Claims (1)

유체냉매의 순환계통은, 냉매압축기(COMP) - 공랭식응축기(ACD) - 고온가스 전자변(HG.SV) - 수냉식응축기(WCD) - 필터드라이어(FD) - 열교환기(HEXC) - 자동팽창밸브(EXPV) - 1차증발기(EXPV1) - 2차축냉증발기(EXPV2) - 열교환기(HEXC) - 압축기오일냉각기(COC) - 냉매압축기(COMP)를 동튜브 배관으로 연결하여 완전밀폐형 순환싸이클로 결합시키고, 수냉식응축기(WCD)를 냉각시키면서 교환되는 열로 수돗물의 온도를 높이는 온수배관에냉각수전자변(W.SV) - 수냉식응축기(WCD) - 냉각수 순환펌프(WCP)- 역지변(CV)-온수탱크(HWT)-온수밸브(HWV)를 결합시킨 구성으로, 증발기의 냉각작용과 고온응축기의 방출열을 상대적으로 활용하는 특징을 겸비한 수냉식 응축열로 냉각수를 가열하는 절전형 히트펌프.The circulation system of fluid refrigerant is: refrigerant compressor (COMP)-air-cooled condenser (ACD)-high temperature gas electromagnetic valve (HG.SV)-water-cooled condenser (WCD)-filter dryer (FD)-heat exchanger (HEXC)-automatic expansion valve ( EXPV)-1st evaporator (EXPV1)-2nd axis cold evaporator (EXPV2)-Heat exchanger (HEXC)-Compressor oil cooler (COC)-Refrigerant compressor (COMP) connected by copper tube piping and combined into a complete hermetic circulation cycle, Cooling of water cooled condenser (WCD) while heating water to increase the temperature of tap water with heat exchanged. Cooling water solenoid valve (W.SV)-Water cooled condenser (WCD)-Cooling water circulation pump (WCP)-Reverse water (CV)-Hot water tank (HWT) ) -A combination of hot water valves (HWV), a power-saving heat pump that heats the cooling water with water-cooled condensation heat that combines the cooling action of the evaporator and the heat dissipation of the high-temperature condenser.
KR1020180130877A 2018-10-30 2018-10-30 Energy-saving heat pump that heats cooling water using condensation heat KR20200048621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180130877A KR20200048621A (en) 2018-10-30 2018-10-30 Energy-saving heat pump that heats cooling water using condensation heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180130877A KR20200048621A (en) 2018-10-30 2018-10-30 Energy-saving heat pump that heats cooling water using condensation heat

Publications (1)

Publication Number Publication Date
KR20200048621A true KR20200048621A (en) 2020-05-08

Family

ID=70676960

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180130877A KR20200048621A (en) 2018-10-30 2018-10-30 Energy-saving heat pump that heats cooling water using condensation heat

Country Status (1)

Country Link
KR (1) KR20200048621A (en)

Similar Documents

Publication Publication Date Title
KR100402366B1 (en) Heat pump system
CN111811190B (en) Semiconductor refrigeration module, space air-cooled heat dissipation device and space equipment
CN100371662C (en) Refrigerator
CN112325509B (en) Intermediate cooling heat recovery triple heat supply pump system
US10578344B2 (en) Reversible liquid suction gas heat exchanger
CN201014825Y (en) Centrifugal refrigerating unit cooling system
KR20100059176A (en) Storage system
GB2455579A (en) Heat pump comprising an inverter drive compressor
CN106585318B (en) Battery cooling system of electric vehicle
CN105135553A (en) Multiple-on-line system and method for enhancing supercooling degree of multiple-on-line system
US20080173023A1 (en) Refrigerator with thermal-electric semiconductor
CN112146301A (en) Evaporative cold screw cold and hot water unit with total heat recovery
CN101153763A (en) Split type full-isolation electric refrigerating and heating device
CN213687346U (en) Evaporation cold and hot pump unit
KR20200048621A (en) Energy-saving heat pump that heats cooling water using condensation heat
KR200308194Y1 (en) Energy-saving heat pump that heats the cooling water with water-cooled condensation heat
KR20100005735U (en) storage system
JP6613404B2 (en) Refrigeration system
KR200426794Y1 (en) Heat pump
CN108870818B (en) Water vapor energy heat pump system
CN203454323U (en) Evaporation water-cooling chiller
KR20020090957A (en) Energy-saving heat pump that heats the cooling water with water-cooled condensation heat
JP2013044239A (en) Exhaust heat recovery system for vehicle
CN106949668B (en) A kind of IDC computer room heat pump refrigerating power generator and working method
CN112146302B (en) Evaporation cold and hot pump unit