KR20200021320A - Method for inducing reactive oxygen species-mediated base mutation of target gene - Google Patents

Method for inducing reactive oxygen species-mediated base mutation of target gene Download PDF

Info

Publication number
KR20200021320A
KR20200021320A KR1020180096931A KR20180096931A KR20200021320A KR 20200021320 A KR20200021320 A KR 20200021320A KR 1020180096931 A KR1020180096931 A KR 1020180096931A KR 20180096931 A KR20180096931 A KR 20180096931A KR 20200021320 A KR20200021320 A KR 20200021320A
Authority
KR
South Korea
Prior art keywords
leu
ser
ala
glu
gly
Prior art date
Application number
KR1020180096931A
Other languages
Korean (ko)
Other versions
KR102208031B1 (en
Inventor
김재연
마하데브 쉘케 라훌
Original Assignee
경상대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상대학교산학협력단 filed Critical 경상대학교산학협력단
Priority to KR1020180096931A priority Critical patent/KR102208031B1/en
Publication of KR20200021320A publication Critical patent/KR20200021320A/en
Application granted granted Critical
Publication of KR102208031B1 publication Critical patent/KR102208031B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/03Oxidoreductases acting on the CH-OH group of donors (1.1) with a oxygen as acceptor (1.1.3)
    • C12Y101/03015(S)-2-Hydroxy-acid oxidase (1.1.3.15)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Botany (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention relates to a method for inducing reactive oxygen species-mediated base mutation of a target gene. In the present invention, an inactive dCas9 can be combined with an enzyme component that produces free radicals to induce various kinds of base changes in a specific gene, thereby inducing various mutations in an in vivo state to produce many alleles. Therefore, the present invention may be used for various purposes in the fields of biotechnology and agricultural biotechnology.

Description

표적 유전자의 활성산소종 매개 염기 돌연변이 유도 방법{Method for inducing reactive oxygen species-mediated base mutation of target gene}Method for inducing reactive oxygen species-mediated base mutation of target gene}

본 발명은 표적 유전자의 활성산소종 매개 염기 돌연변이 유도 방법에 관한 것이다.The present invention relates to a method for inducing reactive oxygen species mediated base mutation of a target gene.

DNA의 당(오탄당) 및 질소성 염기 모이어티는 활성산소종(reactive oxygen species, ROS)에 의한 산화에 민감하다. ROS가 세포의 구성요소와 반응하기 전 평균 분산 거리는 단지 3nm로 전형적인 단백질의 평균 직경 수준이다. 다양한 종류의 ROS의 반감기, 반응성 및 확산성은 세포 및 DNA에 손상을 가할 수 있는 각 ROS의 잠재력에 많은 영향을 미친다. 그래서, DNA의 매우 근접된 부위에 생성된 ROS는 DNA를 산화시킬 수 있다. 원핵생물 및 진핵생물에서 ROS-유도 DNA 손상은 BER(base-excision repair), NER(nucleotide excision repair), MMR(mismatch repair), 직접 수선 또는 단일- 및 이중-가닥 절단의 수선과 같은 내생의 DNA 복구 경로에 의해 복구된다.Sugars (orthosaccharides) and nitrogenous base moieties of DNA are sensitive to oxidation by reactive oxygen species (ROS). The average dispersion distance before ROS reacts with the components of the cell is only 3 nm, which is the average diameter level of a typical protein. The half-life, reactivity and proliferation of various types of ROS have a great influence on the potential of each ROS to damage cells and DNA. Thus, ROS generated in very close regions of DNA can oxidize DNA. In prokaryotes and eukaryotes, ROS-induced DNA damage is endogenous DNA, such as base-excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), direct repair, or repair of single- and double-stranded cleavage. It is recovered by the recovery path.

다양한 미생물 및 식물의 형질 개량은 돌연변이에 기반한다. 고전적인 돌연변이 유도방식은 화학물질의 처리, 방사선 조사 또는 트랜스포존(transposon)을 사용하는 방법으로, 이들 방법은 전 게놈(whole genome)에서 무작위방식으로 돌연변이를 유도하였다. 본 발명은 CRISPR 시스템(dCAS9, 엔도뉴클레아제 활성이 없는 Cas9의 돌연변이; 또는 dCpf1)을 사용하여 특정 유전자로 ROS를 생산하는 효소를 보내어 표적 유전자 내에 단일 염기 돌연변이를 유발시키는 시스템에 관한 것이다.Transformation of various microorganisms and plants is based on mutations. Classical mutagenesis methods use chemical treatment, irradiation or transposon, which randomly induce mutations in the whole genome. The present invention relates to a system that uses a CRISPR system (dCAS9, a mutant of Cas9 without endonuclease activity; or dCpf1) to send an enzyme that produces ROS to a specific gene to cause a single base mutation in the target gene.

한편, 한국공개특허 제2001-0022652호에는 '식물에서 국소적인 유전자변형을 유발하기 위한 혼성이중나선올리고뉴클레오티드의 용도'가 개시되어 있고, 한국공개특허 제2016-0128306호에는 뉴클레아제 상호작용성 RNA 절편으로 스플라이싱된 전사된 엑손을 포함하는 키메라 스플라이싱된 RNA 분자를 이용한 '돌연변이 유발 방법'이 개시되어 있으나, 본 발명의 표적 유전자의 활성산소종 매개 염기 돌연변이 유도 방법에 대해서는 기재된 바가 없다.Meanwhile, Korean Patent Laid-Open Publication No. 2001-0022652 discloses the use of hybrid helix oligonucleotides to induce local genetic modification in plants, and Korean Patent Publication No. 2016-0128306 discloses nuclease interactions. Although a 'mutagenic method' using a chimeric spliced RNA molecule comprising a transcribed exon spliced into an RNA fragment is disclosed, a method for inducing reactive oxygen species mediated base mutation of a target gene of the present invention has been described. none.

본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명자들은 하이그로마이신 저항성 유전자(hygromycin phosphotransferase) 내에 인위적으로 종결코돈을 삽입한 플라스미드(Hygro-linker2-mRuby2)로 형질전환되어 하이그로마이신에 저항성을 갖지 못하는 효모에 대해서, 글리콜산산화효소(glycolate oxidase); 비활성 dCas9; 및 상기 Hygro-linker2-mRuby2의 하이그로마이신 저항성 유전자에 대한 가이드 RNA;를 포함하는 재조합 벡터로 형질전환시킨 결과, 하이그로마이신에 저항성을 보이는 효모의 성장을 확인할 수 있었다. 또한, 상기 하이그로마이신 저항성 효모를 배양하고 플라스미드를 추출하여 하이그로마이신 저항성 유전자의 염기서열을 분석한 결과, 인위적으로 삽입한 종결코돈 위치에 돌연변이가 발생하여 하이그로마이신 저항성을 가지게 된 효모가 29% 수준으로 확인되어, 글리콜산화효소-dCas9 시스템에 기반한 표적 유전자의 유전체 편집이 가능한 것을 확인함으로써, 본 발명을 완성하였다.The present invention is derived from the above requirements, and the present inventors are transformed into a plasmid (Hygro-linker2-mRuby2) artificially inserted with a stop codon in a hygromycin phosphotransferase, which is resistant to hygromycin. For yeasts that do not have, glycolylate oxidase; Inactive dCas9; And a guide RNA for the hygromycin resistance gene of Hygro-linker2-mRuby2. As a result, the growth of the yeast showing resistance to hygromycin was confirmed. In addition, as a result of culturing the hygromycin-resistant yeast and extracting the plasmid to analyze the sequencing of the hygromycin resistance gene, mutations occurred at the artificially inserted stop codon positions, resulting in the yeast having hygromycin resistance 29 The present invention was completed by confirming that the genome editing of the target gene based on the glycol oxidase-dCas9 system was confirmed at the% level.

상기 과제를 해결하기 위해, 본 발명은 활성산소종(reactive oxygen species)을 생산하는 효소를 코딩하는 폴리뉴클레오티드; 비활성화된 Cas9(CRISPR associated protein 9) 단백질 또는 이의 기능적 유사체를 코딩하는 폴리뉴클레오티드; 및 가이드 RNA 코딩 서열을 포함하는 재조합 벡터를 제공한다.In order to solve the above problems, the present invention is a polynucleotide encoding an enzyme that produces reactive oxygen species; Polynucleotides encoding an inactivated Cas9 (CRISPR associated protein 9) protein or a functional analog thereof; And a recombinant vector comprising a guide RNA coding sequence.

또한, 본 발명은 상기 재조합 벡터로 형질전환된 숙주세포를 제공한다.The present invention also provides a host cell transformed with the recombinant vector.

또한, 본 발명은 상기 재조합 벡터로 숙주세포를 형질전환시키는 단계를 포함하는 표적 유전자의 단일 염기(base) 돌연변이 유도 방법을 제공한다.The present invention also provides a method of inducing a single base mutation of a target gene comprising the step of transforming a host cell with the recombinant vector.

또한, 본 발명은 상기 재조합 벡터를 유효성분으로 포함하는 단일 염기 돌연변이 유도용 조성물을 제공한다.In addition, the present invention provides a composition for inducing a single base mutation comprising the recombinant vector as an active ingredient.

본 발명은 비활성 dCas9에 활성산소를 생산하는 효소 부품을 결합하여 특정 유전자에서 다양한 종류의 염기 변화를 유도하여 in vivo 상태에서 다양한 돌연변이를 유도하여 많은 대립유전자(allele)를 만들어낼 수 있고, DNA 염기 하나만을 표적으로 하여 특정 염기 하나를 다른 염기로 바로 전환하기 때문에 DNA 절단 없이도 교정할 수 있는 장점이 있으므로, 생물공학 및 농업생물공학 분야에 다양한 용도로 활용될 수 있을 것이다.The present invention combines enzyme components that produce free radicals with inactive dCas9 to induce various kinds of base changes in specific genes, thereby inducing various mutations in vivo to produce many alleles, and DNA bases. Since only one target is converted to another base directly to another base, there is an advantage that can be corrected without DNA cleavage, it can be used for a variety of applications in the field of biotechnology and agricultural biotechnology.

도 1은 돌연변이 유발 효모 세포를 선별하기 위한 모식도이다.
도 2는 애기장대 유래 글리콜산산화효소 유전자(AtGOX3)를 이용하여 표적 유전자(Hygro-linker2-mRuby2)에 대한 돌연변이 유발을 위해 제조한 GOX3-dCas9-guide RNA 컨스트럭트의 모식도이다.
도 3은 효모 세포를 대상으로 수행한 GOX3-dCas9-guide RNA 시스템의 돌연변이 유발 결과를 분석한 결과이다.
도 4는 AtGOX3를 이용한 시스템에서 유발된 돌연변이의 범위(window)를 보여주는 그래프이다.
도 5는 AtGOX3 유전자를 이용하여 표적 유전자(Hygro-linker3-mTurqiose2)에 대한 돌연변이 유발을 위해 제조한 GOX3-dCas9-guide RNA 컨스트럭트의 모식도이다.
도 6은 애기장대 유래 크립토크롬 유전자(AtCRY1)를 이용하여 표적 유전자(Hygro-linker3-mTurqiose2)에 대한 돌연변이 유발을 위해 제조한 CRY1-dCas9-guide RNA 컨스트럭트의 모식도이다.
도 7은 CCE(CRY C-terminal Extension) 도메인이 제거된 AtCRY1 유전자를 이용하여 표적 유전자(Hygro-linker3-mTurqiose2)에 대한 돌연변이 유발을 위해 제조한 CRY1△CCE-dCas9-guide RNA 컨스트럭트의 모식도이다.
도 8은 애기장대 유래 크립토크롬 유전자(AtCRY2)를 이용하여 표적 유전자(Hygro-linker3-mTurqiose2)에 대한 돌연변이 유발을 위해 제조한 CRY2-dCas9-guide RNA 컨스트럭트의 모식도이다.
도 9는 CCE 도메인이 제거된 AtCRY2 유전자를 이용하여 표적 유전자(Hygro-linker3-mTurqiose2)에 대한 돌연변이 유발을 위해 제조한 CRY2△CCE-dCas9-guide RNA 컨스트럭트의 모식도이다.
도 10은 AtGOX3-ydCas9-6XHis-2XNLS의 염기서열을 보여주는 것으로, 밑줄은 효모 코돈 최적화된 AtGOX3의 서열; 파란색 소문자는 SGGS2-XTEN-SGGS2 링커 서열; 회색 음영 부분은 Hig 태그 서열(2XNLS 내 프레임 시프트를 피하기 위해 ATCCCG 서열 포함); 이중 밑줄은 2XNLS 서열; 그리고 박스로 표시된 부분은 Cas9 단백질의 비활성화를 위한 돌연변이 코돈 위치를 나타낸다.
도 11은 Hygro-linker2-mRuby2의 염기서열을 보여준다.
도 12는 Hygro-linker3-mTurqiose2의 염기서열을 보여준다.
1 is a schematic diagram for selecting mutagenic yeast cells.
2 is a schematic diagram of a GOX3-dCas9-guide RNA construct prepared for mutagenesis of the target gene (Hygro-linker2-mRuby2) using the Arabidopsis-derived glycolic acid oxidase gene ( AtGOX3 ).
Figure 3 shows the results of analyzing the mutagenesis results of the GOX3-dCas9-guide RNA system performed on yeast cells.
4 is a graph showing the window of mutations induced in a system using AtGOX3.
5 is a schematic diagram of a GOX3-dCas9-guide RNA construct prepared for mutagenesis of a target gene (Hygro-linker3-mTurqiose2) using the AtGOX3 gene.
FIG. 6 is a schematic diagram of a CRY1-dCas9-guide RNA construct prepared for mutagenesis of a target gene (Hygro-linker3-mTurqiose2) using the Arabidopsis-derived Cryptochrome gene ( AtRYRY ).
7 is a schematic diagram of a CRY1ΔCCE-dCas9-guide RNA construct prepared for mutagenesis of a target gene (Hygro-linker3-mTurqiose2) using the AtCRY1 gene from which the CRY C-terminal Extension (CCE) domain was removed. to be.
8 is a schematic diagram of a CRY2-dCas9-guide RNA construct prepared for mutagenesis of a target gene (Hygro-linker3-mTurqiose2) using the Arabidopsis-derived cryptochromium gene ( AtRYRY ).
9 is a schematic diagram of the CRY2ΔCCE-dCas9-guide RNA construct prepared for mutagenesis of the target gene (Hygro-linker3-mTurqiose2) using the AtCRY2 gene from which the CCE domain was removed.
Figure 10 shows the nucleotide sequence of AtGOX3-ydCas9-6XHis-2XNLS, the underlined sequence of the yeast codon optimized AtGOX3 ; Lowercase blue letters show the SGGS 2 -XTEN-SGGS 2 linker sequence; Gray shaded portions include Hig tag sequences (including ATCCCG sequences to avoid frame shifts in 2XNLS); Double underlines are 2XNLS sequences; And the boxed portion shows the mutant codon position for inactivation of Cas9 protein.
Figure 11 shows the nucleotide sequence of Hygro-linker2-mRuby2.
12 shows the nucleotide sequence of Hygro-linker3-mTurqiose2.

본 발명의 목적을 달성하기 위하여, 본 발명은 활성산소종(reactive oxygen species)을 생산하는 효소를 코딩하는 폴리뉴클레오티드; 비활성화된 Cas9(CRISPR associated protein 9) 단백질 또는 이의 기능적 유사체를 코딩하는 폴리뉴클레오티드; 및 가이드 RNA 코딩 서열을 포함하는 재조합 벡터를 제공한다.In order to achieve the object of the present invention, the present invention is a polynucleotide encoding an enzyme that produces a reactive oxygen species; Polynucleotides encoding an inactivated Cas9 (CRISPR associated protein 9) protein or a functional analog thereof; And a recombinant vector comprising a guide RNA coding sequence.

본 명세서에서 용어 '활성산소종'은, 보통으로 존재하는 기저상태의 삼중항산소(3O2)보다 반응성이 크고 활성이 풍부한 산소종으로, 산소원자를 포함한 화학적으로 반응성이 있는 분자를 의미한다. 슈퍼옥시드(O2-), 과산화수소(H2O2), 히드록시라디칼(·OH), 일중항산소(1O2), 알콕시라디칼(RO·). 퍼옥시라디칼(ROO·), 오존(O3), 이산화질소(NO2) 등의 반응성이 높은 산소화합물을 포함하고 있으며, 짝지어지지 않은 전자 때문에 반응성이 매우 높은 것이 특징이다. 활성산소종은 산소의 정상적인 대사작용에 의해서 자연스럽게 생기며, 자외선이나 높은 열에 노출되는 것처럼 환경적인 스트레스로 인하여 활성산소의 농도가 매우 빠르게 증가할 수 있으며, 증가된 활성산소종은 세포구조를 손상시킬 수 있으며, 이것이 산화적 스트레스이다.As used herein, the term 'active oxygen species' refers to a chemically reactive molecule including an oxygen atom, which is more reactive and rich in oxygen species than the tribasic oxygen ( 3 O 2 ) which is usually present. . Superoxide (O 2 −), hydrogen peroxide (H 2 O 2 ), hydroxy radical (· OH), singlet oxygen ( 1 O 2 ), alkoxy radical (RO ·). It contains highly reactive oxygen compounds such as peroxy radicals (ROO ·), ozone (O 3 ) and nitrogen dioxide (NO 2 ), and is highly reactive due to unpaired electrons. Free radicals occur naturally due to the normal metabolism of oxygen, and the concentration of free radicals can increase very rapidly due to environmental stresses such as exposure to ultraviolet rays or high heat, and increased free radical species can damage cell structure. This is oxidative stress.

본 발명에 따른 재조합 벡터에 있어서, 상기 활성산소종을 생산하는 효소는 글리콜산산화효소(glycolate oxidase, GOX) 또는 크립토크롬(cryptochrome, CRY)일 수 있고, 더욱 구체적으로는 애기장대(Arabidopsis thaliana) 유래 AtGOX3(At4g18360), AtCRY1(At4g08920) 또는 AtCRY2(At1g04400)일 수 있으나, 이에 제한되지 않는다. 상기 AtGOX3, AtCRY1 또는 AtCRY2 단백질은 각각 서열번호 1, 서열번호 3 또는 서열번호 5의 아미노산 서열로 이루어진 것일 수 있다.In the recombinant vector according to the present invention, the enzyme producing the active oxygen species may be glycolic acid oxidase (Glycolate oxidase, GOX) or cryptochrome (Cryrochrome, CRY), more specifically Arabidopsis thaliana Origin AtGOX3 (At4g18360), AtCRY1 (At4g08920) or AtCRY2 (At1g04400), but is not limited thereto. The AtGOX3, AtCRY1 or AtCRY2 protein may be composed of the amino acid sequence of SEQ ID NO: 1, SEQ ID NO: 3 or SEQ ID NO: 5, respectively.

본 발명의 일 구현 예에 따른 AtGOX3, AtCRY1 또는 AtCRY2 단백질을 코딩하는 폴리뉴클레오티드는 서열번호 2, 서열번호 4 또는 서열번호 6의 염기서열로 이루어진 것일 수 있으나, 이에 제한되지 않으며, 형질전환 대상 숙주세포의 코돈에 최적화시킨 염기서열일 수도 있다. 또한 상기 AtGOX3 단백질을 코딩하는 폴리뉴클레오티드는 카복시 말단의 peroxisome targeting signal(PTS) 부분을 코딩하는 염기 부분(서열번호 2의 염기서열에서 1,069~1,104번째)을 제외하고 클로닝에 사용하였으며, AtCRY1 또는 AtCRY2 단백질의 CCE 도메인 코딩 서열은 각각 서열번호 4 또는 서열번호 6의 염기서열에서 1,504~2,043번째, 또는 1,507~1,836번째에 대응된다.Polynucleotide encoding the AtGOX3, AtCRY1 or AtCRY2 protein according to an embodiment of the present invention may be composed of the nucleotide sequence of SEQ ID NO: 2, SEQ ID NO: 4 or SEQ ID NO: 6, but is not limited thereto, the host cell to be transformed The base sequence may be optimized for codon of. In addition, the polynucleotide encoding the AtGOX3 protein was used for cloning except for the base portion (1069 to 1,104th in the nucleotide sequence of SEQ ID NO: 2) encoding the peroxisome targeting signal (PTS) portion of the carboxy terminus, and the AtCRY1 or AtCRY2 protein. The CCE domain coding sequence of corresponds to the 1,504-2,043, or 1,507-1,836 th in the nucleotide sequence of SEQ ID NO: 4 or SEQ ID NO: 6, respectively.

글리콜산산화효소는 글리콜산(glycolic acid)이 산소에 의해 산화되어 글리옥실산(glyoxylic acid)과 과산화수소를 생성하는 반응을 촉매하는 효소이고, 크립토크롬은 식물과 동물에서 플라빈과 테린을 발색단으로 사용하는 청색광을 감지하는 플라보 단백질로서, 청색광 조건 하에서 과산화수소수를 만들 수 있다. 이렇게 만들어진 과산화수소수는 DNA에 작용하여 염기변이(transition) 및 염기전환(transversion) 돌연변이를 유도할 수 있다.Glycolic acid oxidase is an enzyme that catalyzes the reaction of glycolic acid by oxygen to produce glyoxylic acid and hydrogen peroxide.Cryptochrome is a chromophore of flavin and terin in plants and animals. As a flavo protein that senses blue light to be used, hydrogen peroxide solution can be produced under blue light conditions. The hydrogen peroxide solution thus produced can act on DNA to induce transition and transversion mutations.

또한, 본 발명에 따른 재조합 벡터에 있어서, 상기 비활성화된 Cas9(catallytically-dead Cas9, dCas9)은 엔도뉴클레아제(endonuclease) 도메인 내에 돌연변이를 통해 엔도뉴클레아제 활성을 잃어버린 것으로, D10A와 H840A 점 돌연변이가 엔도뉴클레아제 비활성화에 중요한 잔기로 알려져 있다. dCas9은 엔도뉴클레아제 활성은 상실되었으나, 표적 유전자의 DNA 서열에 결합할 수 있다. 또한, 상기 비활성화된 Cas9 단백질의 기능적 유사체는 dCpf1(dead Centromere and Promoter Factor 1) 등일 수 있으나, 이에 제한되지 않는다.In addition, in the recombinant vector according to the present invention, the inactivated Cas9 (catallytically-dead Cas9, dCas9) is a loss of endonuclease activity through mutations in the endonuclease domain, D10A and H840A point mutation Is known as an important residue for endonuclease inactivation. dCas9 has lost endonuclease activity but can bind to the DNA sequence of the target gene. In addition, the functional analog of the inactivated Cas9 protein may be, but not limited to, dCpf1 (dead centromere and promoter factor 1).

Cas9(CRISPR associated protein 9)은 CRISPR(Clustered Regularly Interspaced Short Palindromic Repeats) type Ⅱ RNA-guided DNA endonuclease의 하나로, RNA 가이드 엔도뉴클레아제(RNA-guided endonuclease; RGEN)이다. 본 발명에 따른 Cas9 단백질은 화농성연쇄상구균(Streptococcus pyogenes) 유래일 수 있으나, 이에 제한되지 않는다.Cas9 (CRISPR associated protein 9) is one of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) type II RNA-guided DNA endonuclease and is RNA-guided endonuclease (RGEN). Cas9 protein according to the present invention may be derived from Streptococcus pyogenes , but is not limited thereto.

본 명세서에서 용어 '가이드 RNA(guide RNA)'는 교정하려는 DNA 위치를 찾아내는 역할을 수행하는 단일 가닥 RNA를 의미하며, 본 발명의 염기 돌연변이 유도용 조성물에 있어서, 상기 가이드 RNA는 PAM 자리와 인접한 10~20bp의 염기 서열과 상보적인 서열을 포함하는 것일 수 있으나, 이에 제한되지 않는다.As used herein, the term 'guide RNA' refers to a single-stranded RNA that serves to find a DNA position to be corrected. In the composition for inducing base mutation of the present invention, the guide RNA is adjacent to the PAM site. It may include a sequence complementary to the base sequence of ~ 20bp, but is not limited thereto.

본 명세서에서 용어 'PAM(protospacer adjacent motif) 자리'는 Cas9 단백질이 표적 DNA에 결합하기 위해 필수적으로 필요한 서열로, 표적 서열에 뒤이어 위치하는 서열을 의미한다. 박테리아는 침입한 바이러스의 서열 일부를 박테리아 게놈 일부에 저장시켜 놓는데, 이 서열을 protospacer라 한다. 상기 protospacer 서열은 일부이므로, 그 인접 서열은 박테리아 본연의 서열이게 된다. PAM 자리의 역할은 박테리아 내에 많은 서열이 protospacer와 일치할 수 있지만, PAM이 그 옆에 붙어있지 않으면 해당 서열은 절단되지 않게 하는 기능을 한다. 화농성연쇄상구균 유래 Cas9의 PAM으로는 NGG 시퀀스가 있고, 이중나선의 DNA 구조를 생각할 때 매 8bp마다 목표유전자의 내부에 타겟 시퀀스를 설정할 수 있다.As used herein, the term 'protospacer adjacent motif (PAM) site' refers to a sequence necessary for the Cas9 protein to bind to the target DNA, and is positioned after the target sequence. Bacteria store part of the sequence of invading viruses in parts of the bacterial genome, which is called the protospacer. Since the protospacer sequence is part, its contiguous sequence is the bacterial sequence. The role of the PAM site is that many sequences within the bacterium can match the protospacer, but if the PAM is not attached next to it, the sequence will not be cut. The PAM of Cas9-derived Streptococcus pneumoniae is an NGG sequence, and considering the double-stranded DNA structure, the target sequence can be set inside the target gene every 8bp.

본 명세서에서 용어 '재조합'은 세포가 이종의 핵산을 복제하거나, 상기 핵산을 발현하거나 또는 펩티드, 이종의 펩티드 또는 이종의 핵산에 의해 코딩된 단백질을 발현하는 것을 지칭하는 것이다. 재조합 세포는 상기 세포의 천연 형태에서는 발견되지 않는 유전자 또는 유전자 절편을, 센스 또는 안티센스 형태 중 하나로 발현할 수 있다. 또한 재조합 세포는 천연 상태의 세포에서 발견되는 유전자를 발현할 수 있으나 상기 유전자는 변형된 것으로서 인위적인 수단에 의해 세포 내 재도입된 것이다.The term 'recombinant' as used herein refers to a cell replicating a heterologous nucleic acid, expressing the nucleic acid or expressing a protein encoded by a peptide, a heterologous peptide or a heterologous nucleic acid. Recombinant cells can express genes or gene fragments that are not found in the natural form of the cell in either the sense or antisense form. Recombinant cells may also express genes found in natural cells, but the genes are modified and reintroduced into cells by artificial means.

본 명세서에서 용어 '벡터'는 세포 내로 전달하는 DNA 단편(들), 핵산 분자를 지칭할 때 사용된다. 벡터는 DNA를 복제시키고, 숙주세포에서 독립적으로 재생산될 수 있다. 용어 "전달체"는 흔히 "벡터"와 호환하여 사용된다. 재조합 벡터는 세균 플라스미드, 파아지, 효모 플라스미드, 식물 세포 바이러스, 포유동물 세포 바이러스 벡터, 또는 다른 벡터를 의미한다. 대체로, 임의의 플라스미드 및 벡터는 숙주 내에서 복제 및 안정화할 수 있다면 사용될 수 있다. 상기 발현 벡터의 중요한 특성은 복제 원점, 프로모터, 마커 유전자 및 번역 조절 요소(translation control element)를 가지는 것이다.The term 'vector' is used herein to refer to DNA fragment (s), nucleic acid molecules that are delivered into a cell. Vectors can replicate DNA and be reproduced independently in host cells. The term "carrier" is often used interchangeably with "vector". By recombinant vector is meant bacterial plasmid, phage, yeast plasmid, plant cell virus, mammalian cell viral vector, or other vector. In principle, any plasmid and vector can be used as long as it can replicate and stabilize in the host. An important feature of the expression vector is that it has a origin of replication, a promoter, a marker gene and a translation control element.

본 발명은 또한, 상기 재조합 벡터로 형질전환된 숙주세포를 제공한다.The present invention also provides a host cell transformed with the recombinant vector.

본 발명에 따른 재조합 벡터의 동식물 세포 및 개체로의 형질전환 방법은 PEG(polyethylene glycol) 기반 원형질체 형질전환(protoplast transformation), 미세주입법(microinjection), 전기천공법(electroporation), 유전자총(gene gun, particle bombardment), 리포좀 매개 형질도입(transfection) 및 아그로박테리움(Agrobacterium) 매개 형질전환법이 이용될 수 있으나, 이에 제한되지 않으며, 이와 같은 형질전환 또는 형질도입 방법은 당업계에 잘 알려져 있다.Method for transforming the recombinant vector to the flora and fauna cells and individuals according to the present invention is polyethylene glycol (PEG) -based protoplast transformation, microinjection, electroporation, gene gun, Particle bombardment), liposome mediated transfection and Agrobacterium mediated transformation may be used, but are not limited thereto, and such transformation or transduction methods are well known in the art.

본 발명에 따른 상기 숙주세포는 식물세포, 박테리아 또는 곰팡이균 등일 수 있으나, 이에 제한되지 않는다.The host cell according to the present invention may be plant cells, bacteria or fungi, but is not limited thereto.

본 발명은 또한, 상기 재조합 벡터로 숙주세포를 형질전환시키는 단계를 포함하는 표적 유전자의 염기 돌연변이 유도 방법을 제공한다.The present invention also provides a method of inducing base mutation of a target gene comprising the step of transforming a host cell with the recombinant vector.

본 발명에 따른 표적 유전자의 염기 돌연변이 유도 방법에 있어서, 상기 숙주세포 형질전환법은 전술한 것과 같다.In the method of inducing base mutation of a target gene according to the present invention, the host cell transformation method is as described above.

본 발명의 일 구현 예에 있어서, 효모의 경우 대장균-효모 셔틀벡터를 기반으로 골든 게이트 어셈블리(golden gate assembly)를 통해 염기 돌연변이 유도 모듈 복합체가 클로닝되고, 화학적인 쇼크 또는 전기천공법 방식을 통해 효모 세포로 형질전환 되어졌다.In one embodiment of the present invention, in the case of yeast, the base mutation induction module complex is cloned through a golden gate assembly based on an E. coli-yeast shuttle vector, and a yeast through a chemical shock or electroporation method. Transformed into cells.

본 발명에 따른 표적 유전자의 염기 돌연변이 유도 방법은 숙주세포로 도입된 재조합 벡터로부터 전사 및 번역되어 발현되는 활성산소종(reactive oxygen species)을 생산하는 효소; 비활성화된 Cas9(dCas9) 단백질; 및 가이드 RNA가 융합된 RNP(ribonucleoproteins complex)에 의해 표적 유전자의 염기에 돌연변이가 유도되는 것일 수 있다. 구체적으로는, 가이드 RNA 서열을 통해 표적 유전자의 DNA 서열 위치로 dCas9가 이동되고 상기 dCas9에 융합되어 있는 활성산소종을 생산하는 효소로부터 발생되는 활성산소종에 의해 표적 유전자에 산화적 스트레스가 유발되어 염기 돌연변이가 유도되는 것이다.The method of inducing base mutation of a target gene according to the present invention comprises an enzyme producing a reactive oxygen species that is transcribed and translated from a recombinant vector introduced into a host cell; Inactivated Cas9 (dCas9) protein; And mutations may be induced in the base of the target gene by a ribonucleoprotein complex (RNP) fused with a guide RNA. Specifically, oxidative stress is induced in the target gene by the active oxygen species generated from the enzyme that produces the active oxygen species fused to the dCas9 is moved to the DNA sequence position of the target gene through the guide RNA sequence Base mutations are induced.

본 발명의 염기 돌연변이 유도 방법은 활성산소종(reactive oxygen species) 매개 표적 유전자의 무작위 염기 돌연변이, 바람직하게는 무작위 단일 염기 돌연변이를 특징으로 하며, 상기 돌연변이는 염기전이(transition) 뿐만 아니라 염기 변환(transversion)을 포함할 수 있다. 상기 활성산소종은 글리콜산산화효소(GOX) 또는 크립토크롬(CRY)과 같은 활성산소종 생산 효소로부터 유래된 것일 수 있으나, 이에 제한되지 않는다.The method of inducing base mutations of the present invention is characterized by random base mutations, preferably random single base mutations, of reactive oxygen species mediated target genes, the mutations of which are not only a base transition but also a transversion. ) May be included. The reactive oxygen species may be derived from an active oxygen species producing enzyme such as glycolic acid oxidase (GOX) or cryptochrome (CRY), but is not limited thereto.

본 발명에 따른 염기 돌연변이 유도 방법은, 표적하는 유전자에서 다양한 종류의 염기 변화를 유도하여 in vivo 상태에서 다양한 돌연변이를 유도하여 많은 대립유전자(allele)를 만들어낼 수 있고, dCas9을 사용하므로 DNA 절단 없이도 표적 유전자에 돌연변이를 유도할 수 있다.The base mutation induction method according to the present invention can induce a variety of base changes in the target gene to induce a variety of mutations in vivo to produce a large number of alleles (allele), and because dCas9 is used without DNA cleavage Mutations can be induced in the target gene.

본 발명은 또한, 상기 재조합 벡터를 유효성분으로 포함하는 염기 돌연변이 유도용 조성물을 제공한다. 본 발명의 조성물은 활성산소종(reactive oxygen species)을 생산하는 효소를 코딩하는 폴리뉴클레오티드; 비활성화된 Cas9(CRISPR associated protein 9) 단백질 또는 이의 기능적 유사체를 코딩하는 폴리뉴클레오티드; 및 가이드 RNA 코딩 서열을 포함하는 재조합 벡터를 유효성분으로 포함하고 있어, 활성산소종 매개 표적 유전자의 무작위 염기 변이를 유도할 수 있으므로, 본 발명의 염기 돌연변이 유도용 조성물을 교정 대상 숙주세포에 처리하면 표적하는 유전자의 염기에 돌연변이를 유도할 수 있다.The present invention also provides a composition for inducing base mutations comprising the recombinant vector as an active ingredient. Compositions of the present invention include polynucleotides encoding enzymes that produce reactive oxygen species; Polynucleotides encoding an inactivated Cas9 (CRISPR associated protein 9) protein or a functional analog thereof; And a recombinant vector comprising a guide RNA coding sequence as an active ingredient, which can induce random base mutations of reactive oxygen species-mediated target genes. Mutations can be induced in the base of the gene of interest.

본 발명의 염기 돌연변이 유도용 조성물은 in vitroin vivo, 원핵세포/생물 및 진핵세포/생물의 염색체, 또는 진핵세포의 미토콘드리아 또는 플라스티드의 DNA를 돌연변이시키는데 이용될 수 있으나, 이에 제한되지 않는다.The base mutation induction composition of the present invention can be used to mutate DNA in the mitochondria or plastids of eukaryotic cells, or in vitro and in vivo , prokaryotic cells / living cells and eukaryotic cells / living chromosomes.

이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by way of examples. However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited to the following examples.

재료 및 방법Materials and methods

1. 효모 균주 및 배양 조건1. Yeast Strains and Culture Conditions

모든 실험에 사용된 기본 효모(Saccharomyces cerevisiae) 균주는 반수체 PJ69-4A(유전형 MATa trp1-901 leu2-3, 112 ura3-52, his3-200, gal4△ gal80△, Met2::GAL7-lacZ, LYS2::GAL1-HIS3 GAL2-ADE2)로, 경상대학교 한창덕 교수로부터 분양받아 사용하였다. 야생형 효모는 YPD(10g Bacto Yeast extract, 20g peptone 및 20g D-glucose for 1L.) 배지에 배양시켰으며, 형질전환된 효모는 합성한 제한 배지(26.7g Minimal SD Base with 2% glucose and without amino acids(Clontech); 0.77g appropriate(-Ura) drop-out supplement(Clontech, USA))에 배양시키며 영양요구성(auxotrophic) 마커(URA3)를 사용하여 선별하였다. 효모 형질전환체는 탄소원(예컨대, D-glucose, L-lactate, glycolate)의 다른 조합의 조성에서 배양시켰다. Saccharomyces cerevisiae strains used in all experiments were haploid PJ69-4A (genotype MATa trp1-901 leu2-3, 112 ura3-52, his3-200, gal4Δ gal80Δ, Met2 :: GAL7-lacZ, LYS2: : GAL1-HIS3 GAL2-ADE2), which was sold by Professor Han Chang-deok of Gyeongsang National University. Wild-type yeast was cultured in YPD (10 g Bacto Yeast extract, 20 g peptone and 20 g D-glucose for 1 L.) medium, and the transformed yeast was synthesized in a restriction medium (26.7 g Minimal SD Base with 2% glucose and without amino acids). (Clontech); 0.77g appropriate (-Ura) drop-out supplement (Clontech, USA)) and selected using an axoxotrophic marker (URA3). Yeast transformants were cultured in different combinations of carbon sources (eg, D-glucose, L-lactate, glycolate).

2. 플라스미드 컨스트럭트2. Plasmid Construct

Phusion Taq PCR master mix(Thermo Scientific, USA)를 사용하여 PCR 반응을 수행하였다. 모든 출발 유전자 주형은 세균 또는 Integrated DNA Technologies(USA)사의 온라인 툴을 이용하여 효모 코돈 최적화한 것을 사용하였다. PCR에 사용된 프라이머 정보는 하기 표 1 및 표 2와 같다.PCR reactions were performed using a Phusion Taq PCR master mix (Thermo Scientific, USA). All starting gene templates were either bacterial or yeast codon optimized using an online tool from Integrated DNA Technologies (USA). Primer information used in the PCR is shown in Table 1 and Table 2.

Figure pat00001
Figure pat00001

Figure pat00002
Figure pat00002

골든 게이트 어셈블리 반응물은 10-β 컴피턴트 대장균 세포(New England Biolabs, USA)에 열-충격 방법으로 형질전환하였고, 형질전환 세포들은 항생제를 포함하는 LB 배지에 배양하며 선별하였다. 모든 박테리아 컨스트럭트는 컴피턴트 세포에 형질전환하여 글리세롤 동결보존제를 사용하여 -80℃에서 보관하거나, 분리 정제한 플라스미드 형태로 -20℃에서 보관하였다. 모든 실험에는 초순수(ultrapure water, Arioso, 18.2MΩcm, Human Corporation, Korea)를 사용하였으며, 모든 PCR 부산물 및 플라스미드는 HiGene Gel and PCR purification kit 및 HiGene Plasmid mini prep kit(Biofact, Korea)를 사용하였다.Golden Gate assembly reactants were transformed by heat-shock method into 10-β competent E. coli cells (New England Biolabs, USA), and the transformed cells were selected by culturing in LB medium containing antibiotics. All bacterial constructs were transformed into competent cells and stored at −80 ° C. using a glycerol cryopreservative, or stored at −20 ° C. in the form of isolated and purified plasmids. Ultrapure water (ultrapure water, Arioso, 18.2MΩcm, Human Corporation, Korea) was used for all experiments, and all PCR by-products and plasmids were used with HiGene Gel and PCR purification kit and HiGene Plasmid mini prep kit (Biofact, Korea).

효모 발현 카세트는 이 등(ACS Synth Biol 2015; 4(9):975-986)의 보고에 서술된 골든 게이트 어셈블리를 사용하여 고안하였다(BsmBI 및 BsaI 제한효소 자리 이용). 모든 효모 컨스트럭트는 복제 기점으로서 CEN6/ARS4(Chromosome VI centromere/Autonomously Replicating Sequence 4)를 포함하여 효모 세포 내에서 낮은 복제개수(2~5 copies per haploid cell) 및 episomal 복제가 되도록 하였다. 효모 코돈 최적화한 화농성연쇄상구균(S. pyogenes) 유래 cas9 유전자는 특이적 프라이머 세트를 이용하여 PCR을 통해 효소 활성이 비활화된 형태(D10A and H840A)를 제작하였다. 상기 효소 활성이 비활화된 형태의 Cas9은 dCas9으로 표시하였고, 상기 dCas9의 카복시 말단에 히스-태그와 두 카피의 NLS(nuclear location signal)를 연결하였다(dCas9-6XHis-2XNLS). 애기장대 유래 글리콜산산화효소(AtGOX3)는 PTS(peroxisome targeting signal)를 제외하고 클로닝하였다. 활성산소종을 생산하는 효소를 코딩하는 유전자(AtGOX3, AtCRY1, AtCRY2)는 (SGGS)2-XTEN-(SGGS)2 링커를 사용하여 dCas9-6XHis-2XNLS의 아미노 말단에 연결시켰다. 발현 카세트는 SNR52 프로모터에 뒤따라 표적 유전자의 20bp 크기에 대한 가이드 RNA를 위한 코딩 서열과 가이드 RNA-스캐폴드 서열을 포함하고 있으며, SUP4 터미네이터를 포함한다.Yeast expression cassettes were designed using the Golden Gate assembly described in this report (ACS Synth Biol 2015; 4 (9): 975-986) (using BsmB I and Bsa I restriction sites). All yeast constructs included CEN6 / ARS4 (Chromosome VI centromere / Autonomously Replicating Sequence 4) as the origin of replication, resulting in low and 2-5 copies per haploid cell and episomal replication in yeast cells. The yeast codon-optimized cas9 gene from S. pyogenes was prepared using PCR specific primer sets (D10A and H840A) to inactivate enzyme activity. Cas9 of the enzyme-inactivated form was expressed as dCas9, and a heath-tag and two copies of a nuclear location signal (NLS) were connected to the carboxy terminus of dCas9 (dCas9-6XHis-2XNLS). Arabidopsis derived glycolic acid oxidase ( AtGOX3 ) was cloned except for the peroxisome targeting signal (PTS). Genes encoding enzymes that produce reactive oxygen species ( AtGOX3 , AtCRY1 , AtCRY2 ) were linked to the amino terminus of dCas9-6XHis-2XNLS using (SGGS) 2 -XTEN- (SGGS) 2 linker. The expression cassette contains the coding sequence for the guide RNA and the guide RNA-scaffold sequence for the 20 bp size of the target gene following the SNR52 promoter and includes a SUP4 terminator.

3. 효모 형질전환3. Yeast Transformation

효모 세포는 YPD 평판배지에 접종하여 30℃에서 이틀간 배양하였다. 단일 효모 콜로니를 3㎖의 YPD 배지에 접종하여 30℃에서 교반하며 하룻밤 배양하였다. 세포 밀도(OD600)는 배양액을 멸균된 증류수에 1/10 희석하여 측정하였고, 5×106 세포/㎖(OD600=0.1)의 세포 밀도로 50㎖의 배양액에 접종하기 위해 필요한 효모 배양액의 양을 산출하고, 효모 배양을 OD600 값이 0.6~0.8이 될 때까지 30℃에서, 180~250rpm의 속도로 교반하며 배양하였다. Yeast cells were inoculated in YPD plate medium and incubated at 30 ° C. for 2 days. Single yeast colonies were inoculated in 3 ml of YPD medium and incubated overnight at 30 ° C. with stirring. The cell density (OD 600 ) was measured by diluting the culture solution 1/10 in sterile distilled water, and the amount of yeast culture required to inoculate 50 ml culture medium at a cell density of 5 × 10 6 cells / mL (OD 600 = 0.1). The amount was calculated, and the yeast culture was incubated with stirring at a speed of 180-250 rpm at 30 ° C. until the OD 600 value was 0.6-0.8.

배양된 세포는 3,000rpm, 10분, 4℃의 조건으로 원심분리하여 회수하고, 세포 펠릿을 차가운 물로 현탁시킨 후 3,000rpm, 8분, 4℃의 조건으로 재원심분리하여 상층액은 버리고 세포 펠릿만 회수하였다. 상기 세포 펠릿을 멸균된 증류수를 이용하여 재현탁시킨 후, 3,000rpm, 5분, 4℃의 조건으로 재원심분리하여 세포 펠릿을 회수하였다. 그 후, 상기 세포 펠릿을 차가운 1M 소르비톨 2㎖을 이용하여 현탁시키고, 3,000rpm, 8분, 5℃의 조건으로 원심분리하였다. 상기 원심분리를 통해 얻어진 세포 펠릿에 100mM의 LiAc(Lithium Acetate), 1X TE 버퍼 및 25mM DTT(dithiothreitol)로 이루어진 버퍼 2㎖을 처리한 후, 3,000rpm, 5분, 4℃의 조건으로 원심분리하여 얻어진 세포 펠릿에 다시 차가운 1M 소르비톨 2㎖을 넣고 세포를 현탁시킨 후, 3,000rpm, 5분, 4℃로 원심분리하여 상층액을 제거하였다. 그 후 차가운 1M 소르비톨 1.5㎖을 넣고 세포를 현탁시킨 후 60㎕ 씩 앨리쿼트 (aliquot) 하였다. 형질전환을 위해, 세포 현탁액에 5㎕의 DNA(200ng)를 혼합한 후, 효모 세포/DNA 혼합물을 0.2cm 냉각한 큐벳에 옮기고 큐벳의 바닥을 가볍게 두드려주었다. 1.5kV, 200mA, 25μF(펄스 시간 5ms)의 펄스 전하로 전기천공법을 실시하고, 즉시 1㎖의 YPF 배지를 첨가해주었다. 세포를 30℃에서 180rpm의 속도로 1시간 동안 교반시켜 회복되도록 한 후, 3,000rpm, 10분, 상온의 조건으로 원심분리하여 상층액을 제거하였다. 1㎖의 1M 소르비톨로 현탁시킨 세포를 영양요구성 마커(URA3)에 상응하는 dropout plate 위에 도포하고 배양시켜 콜로니의 성장을 확인하였다. 상기 플레이트에서 성장한 콜로니를 추가 분석을 위해 사용하였다.The cultured cells were recovered by centrifugation at 3,000 rpm, 10 minutes, and 4 ° C., the cell pellets were suspended in cold water, and then recentrifuged at 3,000 rpm, 8 minutes, and 4 ° C. to discard the supernatant. Only recovered. The cell pellet was resuspended using sterile distilled water, and then recentrifuged at 3,000 rpm, 5 minutes, and 4 ° C. to recover the cell pellet. The cell pellet was then suspended using 2 ml of cold 1M sorbitol and centrifuged at 3,000 rpm for 8 minutes at 5 ° C. Cell pellets obtained through the centrifugation were treated with 2 ml of a buffer consisting of 100 mM LiAc (Lithium Acetate), 1X TE buffer and 25 mM DTT (dithiothreitol), followed by centrifugation at 3,000 rpm, 5 minutes, and 4 ° C. 2 ml of cold 1M sorbitol was added to the obtained cell pellet and the cells were suspended. The supernatant was removed by centrifugation at 3,000 rpm for 5 minutes at 4 ° C. Thereafter, 1.5 ml of cold 1M sorbitol was added thereto, and the cells were suspended and aliquoted with 60 µl. For transformation, 5 μl of DNA (200 ng) was mixed in the cell suspension, and the yeast cell / DNA mixture was transferred to a 0.2 cm cooled cuvette and the bottom of the cuvette was lightly tapped. Electroporation was performed with a pulse charge of 1.5 kV, 200 mA, and 25 μF (pulse time 5 ms), and immediately added 1 ml of YPF medium. After the cells were allowed to recover by stirring at 30 ° C. at a speed of 180 rpm for 1 hour, the supernatant was removed by centrifugation at 3,000 rpm for 10 minutes at room temperature. Cells suspended with 1 ml of 1M sorbitol were applied onto a dropout plate corresponding to the trophic marker (URA3) and cultured to confirm colony growth. Colonies grown on the plates were used for further analysis.

4. 활성산소종-매개 돌연변이 유발 및 염기 시퀀싱4. Free radical species-mediated mutagenesis and base sequencing

원하는 플라스미드를 함유하고 있는 효모 형질전환체 콜로니는 글루코스, 락테이트(lactate) 및 글리콜레이트(glycolate)의 다양한 농도 및 조합의 조건에서도 성장하였다. 글리콜레이트와 락테이트는 글리콜산산화효소(GOX3)의 기질로 사용되었다. GOX3는 다중체(multimeric) 형태로 보고되었기에, 본 발명에서는 GOX3를 특이적 링커를 사용하여 dCas9-6XHis-2XNLS의 아미노 말단 위치에 연결하였고, 2XNLS 서열과 함께 유리 형태(free form)의 GOX3를 발현하도록 플라스미드를 제작하였다.Yeast transformant colonies containing the desired plasmids also grew under conditions of varying concentrations and combinations of glucose, lactate and glycolate. Glycolate and lactate were used as substrates for glycolic acid oxidase (GOX3). Since GOX3 has been reported in a multimeric form, in the present invention, GOX3 is linked to the amino terminal position of dCas9-6XHis-2XNLS using a specific linker, and expresses free form of GOX3 with 2XNLS sequence. A plasmid was prepared to make.

하이그로마이신을 포함하는 YPD에 성장한 효모 콜로니로부터 Easy Yeast Plasmid Isolation Kit(Clontech)를 사용하여 플라스미드를 분리하였다. 분리된 플라스미드를 10-β 컴피턴트 대장균 세포에 재형질전환하여, 형질전환된 대장균 세포로부터 분리된 플라스미드를 시퀀싱 분석(Solgent, Korea)에 사용하였다.Plasmids were isolated from the yeast colonies grown on YPD containing hygromycin using the Easy Yeast Plasmid Isolation Kit (Clontech). The isolated plasmid was retransformed into 10-β competent E. coli cells, and the plasmid isolated from the transformed E. coli cells was used for sequencing analysis (Solgent, Korea).

실시예 1. 활성산소종 매개 돌연변이 유발 효율 분석Example 1. Analysis of reactive oxygen species-mediated mutagenesis efficiency

70개의 플라스미드에 대해서, 전반부에 인위적으로 종결코돈을 넣어준 하이그로마이신 저항성 유전자 부위의 약 500bp의 염기서열을 분석한 결과, 31개(44%)에서는 하이그로마이신 저항성 유전자 내에 어떠한 돌연변이도 발견되지 않았고, 20개(29%)는 인위적으로 넣어준 종결코돈 내에 돌연변이가 일어나 하이그로마이신 저항성 단백질의 발현이 가능하게 된 것을 알 수 있었다. 또한, 나머지 19개(27%)는 상기 종결코돈의 22~26bp 상류(upstream)에서 8개, 그리고 PAM 자리 주변에서(-2~2bp) 19개의 돌연변이가 발생한 것을 확인할 수 있었으나, 기타 다른 위치에서는 어떠한 돌연변이도 발견되지 않아 발생된 돌연변이는 가이드 RNA에 유도된 GOX3-dCas9에 특이적인 것을 알 수 있었다. 즉, 총 조사된 70개의 플라스미드 중에서 19개는 하이그로마이신 저항성과 상관없는 위치에 돌연변이가 발생하여, GOX3-dCas9에 기초한 시스템은 표적 유전자(또는 염기서열)에 대한 돌연변이 제조 효율이 최대 29% 수준인 것을 알 수 있었다(도 3).For 70 plasmids, approximately 500 bp of the sequence of the hygromycin resistance gene region artificially added with a stop codon was found in 31 (44%) no mutations were found in the hygromycin resistance gene. Twenty (29%) mutations occurred in artificially inserted stop codons, indicating that the expression of hygromycin resistance protein was possible. In addition, the remaining 19 (27%) was found to be 8 mutations 22-26bp upstream of the stop codon and 19 mutations around the PAM site (-2-2bp), but in other locations No mutation was found, indicating that the mutation was specific for GOX3-dCas9 induced in the guide RNA. That is, out of a total of 70 plasmids surveyed, 19 mutated at positions not related to hygromycin resistance, so that GOX3-dCas9-based systems had up to 29% mutagenesis efficiency for target genes (or sequences). It was found that (Fig. 3).

<110> INDUSTRY-ACADEMIC COOPERATION FOUNDATION GYEONGSANG NATIONAL UNIVERSITY <120> Method for inducing reactive oxygen species-mediated base mutation of target gene <130> PN18188 <160> 57 <170> KoPatentIn 3.0 <210> 1 <211> 368 <212> PRT <213> Arabidopsis thaliana <400> 1 Met Glu Ile Thr Asn Val Met Glu Tyr Glu Lys Ile Ala Lys Glu Lys 1 5 10 15 Leu Pro Lys Met Val Tyr Asp Tyr Tyr Ala Ser Gly Ala Glu Asp Gln 20 25 30 Trp Thr Leu Gln Glu Asn Arg Asn Ala Phe Ser Arg Ile Leu Phe Arg 35 40 45 Pro Arg Ile Leu Ile Asp Val Ser Lys Ile Asp Val Ser Thr Thr Val 50 55 60 Leu Gly Phe Asn Ile Ser Met Pro Ile Met Ile Ala Pro Thr Ala Met 65 70 75 80 Gln Lys Met Ala His Pro Asp Gly Glu Leu Ala Thr Ala Arg Ala Thr 85 90 95 Ser Ala Ala Gly Thr Ile Met Thr Leu Ser Ser Trp Ala Thr Cys Ser 100 105 110 Val Glu Glu Val Ala Ser Thr Gly Pro Gly Ile Arg Phe Phe Gln Leu 115 120 125 Tyr Val Tyr Lys Asp Arg Asn Val Val Ile Gln Leu Val Lys Arg Ala 130 135 140 Glu Glu Ala Gly Phe Lys Ala Ile Ala Leu Thr Val Asp Thr Pro Arg 145 150 155 160 Leu Gly Arg Arg Glu Ser Asp Ile Lys Asn Arg Phe Ala Leu Pro Arg 165 170 175 Gly Leu Thr Leu Lys Asn Phe Glu Gly Leu Asp Leu Gly Lys Ile Asp 180 185 190 Lys Thr Asn Asp Ser Gly Leu Ala Ser Tyr Val Ala Gly Gln Val Asp 195 200 205 Gln Ser Leu Ser Trp Lys Asp Ile Lys Trp Leu Gln Ser Ile Thr Ser 210 215 220 Leu Pro Ile Leu Val Lys Gly Val Ile Thr Ala Glu Asp Ala Arg Ile 225 230 235 240 Ala Val Glu Tyr Gly Ala Ala Gly Ile Ile Val Ser Asn His Gly Ala 245 250 255 Arg Gln Leu Asp Tyr Val Pro Ala Thr Ile Val Ala Leu Glu Glu Val 260 265 270 Val Lys Ala Val Glu Gly Arg Ile Pro Val Phe Leu Asp Gly Gly Val 275 280 285 Arg Arg Gly Thr Asp Val Phe Lys Ala Leu Ala Leu Gly Ala Ser Gly 290 295 300 Val Phe Val Gly Arg Pro Ser Leu Phe Ser Leu Ala Ala Asp Gly Glu 305 310 315 320 Ala Gly Val Arg Lys Met Leu Gln Met Leu Arg Asp Glu Phe Glu Leu 325 330 335 Thr Met Ala Leu Ser Gly Cys Arg Ser Leu Arg Glu Ile Ser Arg Thr 340 345 350 His Ile Lys Thr Asp Trp Asp Thr Pro His Tyr Leu Ser Ala Lys Leu 355 360 365 <210> 2 <211> 1107 <212> DNA <213> Arabidopsis thaliana <400> 2 atggagataa caaacgtgat ggaatatgag aagatcgcaa aggagaaatt accaaagatg 60 gtttatgatt actatgcatc tggtgctgaa gatcaatgga ctcttcaaga gaatcgaaac 120 gctttctcta ggattctatt taggcctcgg attcttatcg atgtaagcaa gattgatgtg 180 agcacaacgg ttttagggtt taatatttct atgccaatta tgattgctcc tactgcaatg 240 cagaaaatgg ctcatcctga tggcgagctt gcaaccgcga gagctacttc tgctgctgga 300 acaatcatga ctttatcttc atgggctact tgtagtgttg aggaagttgc ttcaaccgga 360 ccagggattc gttttttcca actttatgtt tataaggata gaaatgtggt tatacagctt 420 gtgaaacgag ctgaagaagc tggattcaaa gctattgctc ttactgtaga tactccaagg 480 cttggacgca gagaatctga catcaaaaac agattcgcgc ttcctcgagg tctaacgttg 540 aagaacttcg aagggttgga tcttgggaaa atagacaaga cgaatgactc agggctagct 600 tcatatgttg ctggtcaagt tgatcaatca cttagctgga aggatataaa atggctccaa 660 tctatcacaa gcttgccaat tcttgtcaag ggtgttatta cagctgagga tgcaagaatt 720 gctgttgaat atggagctgc agggataata gtctctaacc acggagctcg tcagctagat 780 tatgttcctg caactatagt ggccttagaa gaggtggtta aagccgtgga gggtcggatt 840 ccggtttttc ttgacggtgg ggttcgccgt ggaaccgatg tctttaaggc attggctctt 900 ggcgcttcag gtgtctttgt cgggaggccg agcttgttct cgcttgcagc ggatggagaa 960 gcgggagtta ggaagatgct acaaatgcta agagatgagt ttgagcttac aatggcacta 1020 agtggttgcc gttcactgag agagatcagc cgaacccaca tcaagactga ttgggacact 1080 cctcattacc tctcggccaa gctgtag 1107 <210> 3 <211> 681 <212> PRT <213> Arabidopsis thaliana <400> 3 Met Ser Gly Ser Val Ser Gly Cys Gly Ser Gly Gly Cys Ser Ile Val 1 5 10 15 Trp Phe Arg Arg Asp Leu Arg Val Glu Asp Asn Pro Ala Leu Ala Ala 20 25 30 Ala Val Arg Ala Gly Pro Val Ile Ala Leu Phe Val Trp Ala Pro Glu 35 40 45 Glu Glu Gly His Tyr His Pro Gly Arg Val Ser Arg Trp Trp Leu Lys 50 55 60 Asn Ser Leu Ala Gln Leu Asp Ser Ser Leu Arg Ser Leu Gly Thr Cys 65 70 75 80 Leu Ile Thr Lys Arg Ser Thr Asp Ser Val Ala Ser Leu Leu Asp Val 85 90 95 Val Lys Ser Thr Gly Ala Ser Gln Ile Phe Phe Asn His Leu Tyr Asp 100 105 110 Pro Leu Ser Leu Val Arg Asp His Arg Ala Lys Asp Val Leu Thr Ala 115 120 125 Gln Gly Ile Ala Val Arg Ser Phe Asn Ala Asp Leu Leu Tyr Glu Pro 130 135 140 Trp Glu Val Thr Asp Glu Leu Gly Arg Pro Phe Ser Met Phe Ala Ala 145 150 155 160 Phe Trp Glu Arg Cys Leu Ser Met Pro Tyr Asp Pro Glu Ser Pro Leu 165 170 175 Leu Pro Pro Lys Lys Ile Ile Ser Gly Asp Val Ser Lys Cys Val Ala 180 185 190 Asp Pro Leu Val Phe Glu Asp Asp Ser Glu Lys Gly Ser Asn Ala Leu 195 200 205 Leu Ala Arg Ala Trp Ser Pro Gly Trp Ser Asn Gly Asp Lys Ala Leu 210 215 220 Thr Thr Phe Ile Asn Gly Pro Leu Leu Glu Tyr Ser Lys Asn Arg Arg 225 230 235 240 Lys Ala Asp Ser Ala Thr Thr Ser Phe Leu Ser Pro His Leu His Phe 245 250 255 Gly Glu Val Ser Val Arg Lys Val Phe His Leu Val Arg Ile Lys Gln 260 265 270 Val Ala Trp Ala Asn Glu Gly Asn Glu Ala Gly Glu Glu Ser Val Asn 275 280 285 Leu Phe Leu Lys Ser Ile Gly Leu Arg Glu Tyr Ser Arg Tyr Ile Ser 290 295 300 Phe Asn His Pro Tyr Ser His Glu Arg Pro Leu Leu Gly His Leu Lys 305 310 315 320 Phe Phe Pro Trp Ala Val Asp Glu Asn Tyr Phe Lys Ala Trp Arg Gln 325 330 335 Gly Arg Thr Gly Tyr Pro Leu Val Asp Ala Gly Met Arg Glu Leu Trp 340 345 350 Ala Thr Gly Trp Leu His Asp Arg Ile Arg Val Val Val Ser Ser Phe 355 360 365 Phe Val Lys Val Leu Gln Leu Pro Trp Arg Trp Gly Met Lys Tyr Phe 370 375 380 Trp Asp Thr Leu Leu Asp Ala Asp Leu Glu Ser Asp Ala Leu Gly Trp 385 390 395 400 Gln Tyr Ile Thr Gly Thr Leu Pro Asp Ser Arg Glu Phe Asp Arg Ile 405 410 415 Asp Asn Pro Gln Phe Glu Gly Tyr Lys Phe Asp Pro Asn Gly Glu Tyr 420 425 430 Val Arg Arg Trp Leu Pro Glu Leu Ser Arg Leu Pro Thr Asp Trp Ile 435 440 445 His His Pro Trp Asn Ala Pro Glu Ser Val Leu Gln Ala Ala Gly Ile 450 455 460 Glu Leu Gly Ser Asn Tyr Pro Leu Pro Ile Val Gly Leu Asp Glu Ala 465 470 475 480 Lys Ala Arg Leu His Glu Ala Leu Ser Gln Met Trp Gln Leu Glu Ala 485 490 495 Ala Ser Arg Ala Ala Ile Glu Asn Gly Ser Glu Glu Gly Leu Gly Asp 500 505 510 Ser Ala Glu Val Glu Glu Ala Pro Ile Glu Phe Pro Arg Asp Ile Thr 515 520 525 Met Glu Glu Thr Glu Pro Thr Arg Leu Asn Pro Asn Arg Arg Tyr Glu 530 535 540 Asp Gln Met Val Pro Ser Ile Thr Ser Ser Leu Ile Arg Pro Glu Glu 545 550 555 560 Asp Glu Glu Ser Ser Leu Asn Leu Arg Asn Ser Val Gly Asp Ser Arg 565 570 575 Ala Glu Val Pro Arg Asn Met Val Asn Thr Asn Gln Ala Gln Gln Arg 580 585 590 Arg Ala Glu Pro Ala Ser Asn Gln Val Thr Ala Met Ile Pro Glu Phe 595 600 605 Asn Ile Arg Ile Val Ala Glu Ser Thr Glu Asp Ser Thr Ala Glu Ser 610 615 620 Ser Ser Ser Gly Arg Arg Glu Arg Ser Gly Gly Ile Val Pro Glu Trp 625 630 635 640 Ser Pro Gly Tyr Ser Glu Gln Phe Pro Ser Glu Glu Asn Gly Ile Gly 645 650 655 Gly Gly Ser Thr Thr Ser Ser Tyr Leu Gln Asn His His Glu Ile Leu 660 665 670 Asn Trp Arg Arg Leu Ser Gln Thr Gly 675 680 <210> 4 <211> 2046 <212> DNA <213> Arabidopsis thaliana <400> 4 atgtctggtt ctgtatctgg ttgtggttct ggtggttgta gtattgtatg gtttagaaga 60 gatcttaggg ttgaagataa tccagcttta gcagcagcag taagagctgg tccagtgatt 120 gctctgtttg tttgggcacc agaagaagaa ggacactatc atccaggtag ggtttctagg 180 tggtggctca agaacagttt ggctcagctt gattcttctc ttagaagtct tggtacttgt 240 cttatcacca agagatctac tgatagtgtt gcttctcttc ttgatgttgt taaatccact 300 ggtgcttctc agatcttctt caaccatttg tatgatccat tgtctttggt gcgtgatcac 360 cgagctaaag atgttttgac ggcgcaaggc atagcggttc gatcattcaa cgcagacttg 420 ctttatgagc catgggaagt gactgatgaa ttaggccgtc ctttctctat gtttgctgcg 480 ttttgggaga gatgtcttag tatgccttat gaccctgagt ctcctcttct tccacctaag 540 aagatcattt caggggatgt gtctaaatgt gttgcggatc cattggtgtt tgaggatgac 600 tctgagaaag gaagcaatgc acttctggct cgtgcttggt ctcctggatg gagtaatggt 660 gataaagctc tcacaacgtt tataaacggt ccattgcttg aatactctaa gaaccgcaga 720 aaagccgata gtgctacaac ctcgtttctt tctccacact tgcattttgg ggaagtgagt 780 gtgagaaaag tttttcatct tgttcggatc aaacaggtcg cgtgggcaaa cgaaggaaac 840 gaggccgggg aagaaagcgt gaatcttttc ctgaaatcta ttggtctcag ggagtattct 900 aggtacataa gttttaacca tccatattcc catgaaagac cacttcttgg ccatctaaag 960 ttcttccctt gggctgtgga tgagaactat ttcaaggcat ggaggcaagg ccggactgga 1020 tatccgttgg tcgatgccgg gatgagagag ttatgggcta ctggttggtt gcatgatcgc 1080 ataagagtag ttgtttcaag cttctttgtt aaagtgcttc aattaccatg gagatggggg 1140 atgaagtatt tctgggacac acttcttgat gcggatttag aaagcgatgc tcttggttgg 1200 caatacatta ccggtactct cccggatagc cgggagtttg atcgcataga taaccctcag 1260 tttgaagggt acaagtttga tccaaatggt gaatacgtaa ggcgatggct tcctgaactc 1320 tctagactcc cgacagactg gatacatcat ccgtggaacg cacctgagtc cgttcttcaa 1380 gctgctggta tcgagcttgg atcaaactat cctctaccaa ttgtaggatt agacgaagca 1440 aaagcacggc ttcatgaagc gctttcacag atgtggcaac tagaagctgc ttcaagagct 1500 gcaatagaga acggatccga agaaggactt ggagattctg ctgaggtaga ggaagctcct 1560 atagagttcc caagggacat tacaatggaa gagactgaac caaccagact caacccaaac 1620 aggagatatg aggatcagat ggttccaagc attacttctt ctttgatcag acctgaagaa 1680 gacgaagagt cgtctcttaa tttgagaaat tcagtaggag atagcagagc agaggttcca 1740 aggaacatgg ttaacaccaa ccaagctcag cagcggagag cagaaccggc ttcaaaccaa 1800 gtcactgcta tgattccaga atttaatatc agaattgttg cagagagcac tgaagactca 1860 acagcggaat cttccagcag cggaaggaga gaaagaagcg gaggcatagt ccccgagtgg 1920 tctccagggt actcagagca gttccctagt gaagaaaatg gtattggagg aggaagtaca 1980 acgtctagct acttgcagaa tcaccatgaa atactgaact ggagacggct ttcacaaacc 2040 gggtga 2046 <210> 5 <211> 612 <212> PRT <213> Arabidopsis thaliana <400> 5 Met Lys Met Asp Lys Lys Thr Ile Val Trp Phe Arg Arg Asp Leu Arg 1 5 10 15 Ile Glu Asp Asn Pro Ala Leu Ala Ala Ala Ala His Glu Gly Ser Val 20 25 30 Phe Pro Val Phe Ile Trp Cys Pro Glu Glu Glu Gly Gln Phe Tyr Pro 35 40 45 Gly Arg Ala Ser Arg Trp Trp Met Lys Gln Ser Leu Ala His Leu Ser 50 55 60 Gln Ser Leu Lys Ala Leu Gly Ser Asp Leu Thr Leu Ile Lys Thr His 65 70 75 80 Asn Thr Ile Ser Ala Ile Leu Asp Cys Ile Arg Val Thr Gly Ala Thr 85 90 95 Lys Val Val Phe Asn His Leu Tyr Asp Pro Val Ser Leu Val Arg Asp 100 105 110 His Thr Val Lys Glu Lys Leu Val Glu Arg Gly Ile Ser Val Gln Ser 115 120 125 Tyr Asn Gly Asp Leu Leu Tyr Glu Pro Trp Glu Ile Tyr Cys Glu Lys 130 135 140 Gly Lys Pro Phe Thr Ser Phe Asn Ser Tyr Trp Lys Lys Cys Leu Asp 145 150 155 160 Met Ser Ile Glu Ser Val Met Leu Pro Pro Pro Trp Arg Leu Met Pro 165 170 175 Ile Thr Ala Ala Ala Glu Ala Ile Trp Ala Cys Ser Ile Glu Glu Leu 180 185 190 Gly Leu Glu Asn Glu Ala Glu Lys Pro Ser Asn Ala Leu Leu Thr Arg 195 200 205 Ala Trp Ser Pro Gly Trp Ser Asn Ala Asp Lys Leu Leu Asn Glu Phe 210 215 220 Ile Glu Lys Gln Leu Ile Asp Tyr Ala Lys Asn Ser Lys Lys Val Val 225 230 235 240 Gly Asn Ser Thr Ser Leu Leu Ser Pro Tyr Leu His Phe Gly Glu Ile 245 250 255 Ser Val Arg His Val Phe Gln Cys Ala Arg Met Lys Gln Ile Ile Trp 260 265 270 Ala Arg Asp Lys Asn Ser Glu Gly Glu Glu Ser Ala Asp Leu Phe Leu 275 280 285 Arg Gly Ile Gly Leu Arg Glu Tyr Ser Arg Tyr Ile Cys Phe Asn Phe 290 295 300 Pro Phe Thr His Glu Gln Ser Leu Leu Ser His Leu Arg Phe Phe Pro 305 310 315 320 Trp Asp Ala Asp Val Asp Lys Phe Lys Ala Trp Arg Gln Gly Arg Thr 325 330 335 Gly Tyr Pro Leu Val Asp Ala Gly Met Arg Glu Leu Trp Ala Thr Gly 340 345 350 Trp Met His Asn Arg Ile Arg Val Ile Val Ser Ser Phe Ala Val Lys 355 360 365 Phe Leu Leu Leu Pro Trp Lys Trp Gly Met Lys Tyr Phe Trp Asp Thr 370 375 380 Leu Leu Asp Ala Asp Leu Glu Cys Asp Ile Leu Gly Trp Gln Tyr Ile 385 390 395 400 Ser Gly Ser Ile Pro Asp Gly His Glu Leu Asp Arg Leu Asp Asn Pro 405 410 415 Ala Leu Gln Gly Ala Lys Tyr Asp Pro Glu Gly Glu Tyr Ile Arg Gln 420 425 430 Trp Leu Pro Glu Leu Ala Arg Leu Pro Thr Glu Trp Ile His His Pro 435 440 445 Trp Asp Ala Pro Leu Thr Val Leu Lys Ala Ser Gly Val Glu Leu Gly 450 455 460 Thr Asn Tyr Ala Lys Pro Ile Val Asp Ile Asp Thr Ala Arg Glu Leu 465 470 475 480 Leu Ala Lys Ala Ile Ser Arg Thr Arg Glu Ala Gln Ile Met Ile Gly 485 490 495 Ala Ala Pro Asp Glu Ile Val Ala Asp Ser Phe Glu Ala Leu Gly Ala 500 505 510 Asn Thr Ile Lys Glu Pro Gly Leu Cys Pro Ser Val Ser Ser Asn Asp 515 520 525 Gln Gln Val Pro Ser Ala Val Arg Tyr Asn Gly Ser Lys Arg Val Lys 530 535 540 Pro Glu Glu Glu Glu Glu Arg Asp Met Lys Lys Ser Arg Gly Phe Asp 545 550 555 560 Glu Arg Glu Leu Phe Ser Thr Ala Glu Ser Ser Ser Ser Ser Ser Val 565 570 575 Phe Phe Val Ser Gln Ser Cys Ser Leu Ala Ser Glu Gly Lys Asn Leu 580 585 590 Glu Gly Ile Gln Asp Ser Ser Asp Gln Ile Thr Thr Ser Leu Gly Lys 595 600 605 Asn Gly Cys Lys 610 <210> 6 <211> 1839 <212> DNA <213> Arabidopsis thaliana <400> 6 atgaagatgg acaaaaagac tatagtttgg tttagaagag acctaaggat tgaggataat 60 cctgcattag cagcagctgc tcacgaagga tctgtttttc ctgtcttcat ttggtgtcct 120 gaagaagaag gacagtttta tcctggaaga gcttcaagat ggtggatgaa acaatcactt 180 gctcacttat ctcaatcctt gaaggctctt ggatctgacc tcactttaat caaaacccac 240 aacacgattt cagcgatctt ggattgtatc cgcgttaccg gtgctacaaa agtcgtcttt 300 aaccacctct atgatcctgt ttcgttagtt cgggaccata ccgtaaagga gaagctggtg 360 gaacgtggga tctctgtgca aagctacaat ggagatctat tgtatgaacc gtgggagata 420 tactgcgaaa agggcaaacc ttttacgagt ttcaattctt actggaagaa atgcttagat 480 atgtcgattg aatccgttat gcttcctcct ccttggcggt tgatgccaat aactgcagcg 540 gctgaagcga tttgggcgtg ttcgattgaa gaactagggc tggagaatga ggccgagaaa 600 ccgagcaatg cgttgttaac tagagcttgg tctccaggat ggagcaatgc tgataagtta 660 ctaaatgagt tcatcgagaa gcagttgata gattatgcaa agaacagcaa gaaagttgtt 720 gggaattcta cttcactact ttctccgtat ctccatttcg gggaaataag cgtcagacac 780 gttttccagt gtgcccggat gaaacaaatt atatgggcaa gagataagaa cagtgaagga 840 gaagaaagtg cagatctttt tcttagggga atcggtttaa gagagtattc tcggtatata 900 tgtttcaact tcccgtttac tcacgagcaa tcgttgttga gtcatcttcg gtttttccct 960 tgggatgctg atgttgataa gttcaaggcc tggagacaag gcaggaccgg ttatccgttg 1020 gtggatgccg gaatgagaga gctttgggct accggatgga tgcataacag aataagagtg 1080 attgtttcaa gctttgctgt gaagtttctt ctccttccat ggaaatgggg aatgaagtat 1140 ttctgggata cacttttgga tgctgatttg gaatgtgaca tccttggctg gcagtatatc 1200 tctgggagta tccccgatgg ccacgagctt gatcgcttgg acaatcccgc gttacaaggc 1260 gccaaatatg acccagaagg tgagtacata aggcaatggc ttcccgagct tgcgagattg 1320 ccaactgaat ggatccatca tccatgggac gctcctttaa ccgtactcaa agcttctggt 1380 gtggaactcg gaacaaacta tgcgaaaccc attgtagaca tcgacacagc tcgtgagcta 1440 ctagctaaag ctatttcaag aacccgtgaa gcacagatca tgatcggagc agcacctgat 1500 gagattgtag cagatagctt cgaggcctta ggggctaata ccattaaaga acctggtctt 1560 tgcccatctg tgtcttctaa tgaccaacaa gtaccttcgg ctgttcgtta caacgggtca 1620 aagagagtga aacctgagga agaagaagag agagacatga agaaatctag gggattcgat 1680 gaaagggagt tgttttcgac tgctgaatct tcttcttctt cgagtgtgtt tttcgtttcg 1740 cagtcttgct cgttggcatc agaagggaag aatctggaag gtattcaaga ttcatctgat 1800 cagattacta caagtttggg aaaaaatggt tgcaaatga 1839 <210> 7 <211> 1815 <212> DNA <213> Artificial Sequence <220> <223> dHygro-Linker2- mRuby <400> 7 atgtcttaga aatacaccaa atcttggggt aaaaagcctg aactcaccgc gacgtctgtc 60 gagaagtttc tgatcgaaaa gttcgacagc gtgtccgacc tgatgcagct ctcggagggc 120 gaagaatctc gtgctttcag cttcgatgta ggagggcgtg gatatgtcct gcgggtaaat 180 agctgcgccg atggtttcta caaagatcgt tatgtttatc ggcactttgc atcggccgcg 240 ctcccgattc cggaagtgct tgacattggg gaatttagcg agagcctgac ctattgcatc 300 tcccgccgtg cacagggtgt cacgttgcaa gacctgcctg aaaccgaact gcccgctgtt 360 ctgcaaccgg tcgcggaggc catggatgcg atcgctgcgg ccgatcttag ccagacgagc 420 gggttcggcc cattcggacc gcaaggaatc ggtcaataca ctacatggcg tgatttcata 480 tgcgcgattg ctgatcccca tgtgtatcac tggcaaactg tgatggacga caccgtcagt 540 gcgtccgtcg cgcaggctct cgatgagctg atgctttggg ccgaggactg ccccgaagtc 600 cggcacctcg tgcacgcgga tttcggctcc aacaatgtcc tgacggacaa tggccgcata 660 acagcggtca ttgactggag cgaggcgatg ttcggggatt cccaatacga ggtcgccaac 720 atcttcttct ggaggccgtg gttggcttgt atggagcagc agacgcgcta cttcgagcgg 780 aggcatccgg agcttgcagg atcgccgcgg ctccgggcgt atatgctccg cattggtctt 840 gaccaactct atcagagctt ggttgacggc aatttcgatg atgcagcttg ggcgcagggt 900 cgatgcgacg caatcgtccg atccggagcc gggactgtcg ggcgtacaca aatcgcccgc 960 agaagcgcgg ccgtctggac cgatggctgt gtagaagtac tcgccgatag tggaaaccga 1020 cgccccagca ctcgtccgag ggcaaaggaa ttctcaggag gatctgaaga agaagaagga 1080 tcaggatcgg caggaggatc atccgtgtcc aaaggagagg agttaatcaa ggaaaacatg 1140 agaatgaaag ttgtcatgga gggctccgtt aatggtcacc aattcaagtg tacaggggaa 1200 ggtgaaggta atccttacat gggtacacaa actatgagaa ttaaagtaat tgaaggcgga 1260 ccactaccat ttgcatttga cattctggca acgtcattca tgtacggatc acgaactttc 1320 atcaagtacc ctaaaggtat accagacttt ttcaagcaat cttttccaga gggttttaca 1380 tgggaaaggg ttacaagata cgaagatggg ggtgtcgtca cagttatgca agatacttca 1440 ttagaagatg gctgccttgt ctatcatgtg caagtaagag gggtgaattt tccttctaac 1500 ggacctgtga tgcagaaaaa gaccaaaggt tgggaaccaa atactgaaat gatgtaccca 1560 gctgatggag gtttgagagg ctacacacac atggcgctta aagttgatgg tggaggtcat 1620 ttgtcttgta gttttgttac cacttatcgt tctaaaaaga ctgttggcaa tatcaaaatg 1680 ccaggaatac atgctgtaga ccacagacta gaaagactcg aagagagcga taacgaaatg 1740 ttcgttgtac agagagagca tgccgtagcc aaatttgctg gcttaggcgg tggtatggat 1800 gaattgtata agtaa 1815 <210> 8 <211> 1815 <212> DNA <213> Artificial Sequence <220> <223> Hygro-Linker2- mRuby <400> 8 atgtcttata aatacaccaa atcttggggt aaaaagcctg aactcaccgc gacgtctgtc 60 gagaagtttc tgatcgaaaa gttcgacagc gtgtccgacc tgatgcagct ctcggagggc 120 gaagaatctc gtgctttcag cttcgatgta ggagggcgtg gatatgtcct gcgggtaaat 180 agctgcgccg atggtttcta caaagatcgt tatgtttatc ggcactttgc atcggccgcg 240 ctcccgattc cggaagtgct tgacattggg gaatttagcg agagcctgac ctattgcatc 300 tcccgccgtg cacagggtgt cacgttgcaa gacctgcctg aaaccgaact gcccgctgtt 360 ctgcaaccgg tcgcggaggc catggatgcg atcgctgcgg ccgatcttag ccagacgagc 420 gggttcggcc cattcggacc gcaaggaatc ggtcaataca ctacatggcg tgatttcata 480 tgcgcgattg ctgatcccca tgtgtatcac tggcaaactg tgatggacga caccgtcagt 540 gcgtccgtcg cgcaggctct cgatgagctg atgctttggg ccgaggactg ccccgaagtc 600 cggcacctcg tgcacgcgga tttcggctcc aacaatgtcc tgacggacaa tggccgcata 660 acagcggtca ttgactggag cgaggcgatg ttcggggatt cccaatacga ggtcgccaac 720 atcttcttct ggaggccgtg gttggcttgt atggagcagc agacgcgcta cttcgagcgg 780 aggcatccgg agcttgcagg atcgccgcgg ctccgggcgt atatgctccg cattggtctt 840 gaccaactct atcagagctt ggttgacggc aatttcgatg atgcagcttg ggcgcagggt 900 cgatgcgacg caatcgtccg atccggagcc gggactgtcg ggcgtacaca aatcgcccgc 960 agaagcgcgg ccgtctggac cgatggctgt gtagaagtac tcgccgatag tggaaaccga 1020 cgccccagca ctcgtccgag ggcaaaggaa ttctcaggag gatctgaaga agaagaagga 1080 tcaggatcgg caggaggatc atccgtgtcc aaaggagagg agttaatcaa ggaaaacatg 1140 agaatgaaag ttgtcatgga gggctccgtt aatggtcacc aattcaagtg tacaggggaa 1200 ggtgaaggta atccttacat gggtacacaa actatgagaa ttaaagtaat tgaaggcgga 1260 ccactaccat ttgcatttga cattctggca acgtcattca tgtacggatc acgaactttc 1320 atcaagtacc ctaaaggtat accagacttt ttcaagcaat cttttccaga gggttttaca 1380 tgggaaaggg ttacaagata cgaagatggg ggtgtcgtca cagttatgca agatacttca 1440 ttagaagatg gctgccttgt ctatcatgtg caagtaagag gggtgaattt tccttctaac 1500 ggacctgtga tgcagaaaaa gaccaaaggt tgggaaccaa atactgaaat gatgtaccca 1560 gctgatggag gtttgagagg ctacacacac atggcgctta aagttgatgg tggaggtcat 1620 ttgtcttgta gttttgttac cacttatcgt tctaaaaaga ctgttggcaa tatcaaaatg 1680 ccaggaatac atgctgtaga ccacagacta gaaagactcg aagagagcga taacgaaatg 1740 ttcgttgtac agagagagca tgccgtagcc aaatttgctg gcttaggcgg tggtatggat 1800 gaattgtata agtaa 1815 <210> 9 <211> 1812 <212> DNA <213> Artificial Sequence <220> <223> dHygro-Linker3- mTurquiose2 <400> 9 atgtcttaga aatacaccaa atcttggggt aaaaagcctg aactcaccgc gacgtctgtc 60 gagaagtttc tgatcgaaaa gttcgacagc gtgtccgacc tgatgcagct ctcggagggc 120 gaagaatctc gtgctttcag cttcgatgta ggagggcgtg gatatgtcct gcgggtaaat 180 agctgcgccg atggtttcta caaagatcgt tatgtttatc ggcactttgc atcggccgcg 240 ctcccgattc cggaagtgct tgacattggg gaatttagcg agagcctgac ctattgcatc 300 tcccgccgtg cacagggtgt cacgttgcaa gacctgcctg aaaccgaact gcccgctgtt 360 ctgcaaccgg tcgcggaggc catggatgcg atcgctgcgg ccgatcttag ccagacgagc 420 gggttcggcc cattcggacc gcaaggaatc ggtcaataca ctacatggcg tgatttcata 480 tgcgcgattg ctgatcccca tgtgtatcac tggcaaactg tgatggacga caccgtcagt 540 gcgtccgtcg cgcaggctct cgatgagctg atgctttggg ccgaggactg ccccgaagtc 600 cggcacctcg tgcacgcgga tttcggctcc aacaatgtcc tgacggacaa tggccgcata 660 acagcggtca ttgactggag cgaggcgatg ttcggggatt cccaatacga ggtcgccaac 720 atcttcttct ggaggccgtg gttggcttgt atggagcagc agacgcgcta cttcgagcgg 780 aggcatccgg agcttgcagg atcgccgcgg ctccgggcgt atatgctccg cattggtctt 840 gaccaactct atcagagctt ggttgacggc aatttcgatg atgcagcttg ggcgcagggt 900 cgatgcgacg caatcgtccg atccggagcc gggactgtcg ggcgtacaca aatcgcccgc 960 agaagcgcgg ccgtctggac cgatggctgt gtagaagtac tcgccgatag tggaaaccga 1020 cgccccagca ctcgtccgag ggcaaaggaa ttctcaggtg gaggcgggtc tggaggcggg 1080 ggtagtggat catccgtttc taaaggtgaa gaattattca ctggtgttgt cccaattttg 1140 gttgaattag atggtgatgt taatggtcac aaattttctg tctccggtga aggtgaaggt 1200 gatgctactt acggtaaatt gaccttaaaa tttatttgta ctactggtaa attgccagtt 1260 ccatggccaa ccttagtcac tactttatct tggggtgttc aatgttttgc aagataccca 1320 gatcatatga aacaacatga ctttttcaag tctgccatgc cagaaggtta tgttcaagaa 1380 agaactattt ttttcaaaga tgacggtaac tacaagacca gagctgaagt caagtttgaa 1440 ggtgatacct tagttaatag aatcgaatta aaaggtattg attttaaaga agatggtaac 1500 attttaggtc acaaattgga atacaattat ttctctgaca atgtttacat cactgctgac 1560 aaacaaaaga atggtatcaa agctaacttc aaaattagac acaacattga agatggtggt 1620 gttcaattag ctgaccatta tcaacaaaat actccaattg gtgatggtcc agtcttgtta 1680 ccagacaacc attacttatc cactcaatct aagttatcca aagatccaaa cgaaaagagg 1740 gaccacatgg tcttgttaga atttgttact gctgctggta ttaccttggg tatggatgaa 1800 ttgtacaaat aa 1812 <210> 10 <211> 1812 <212> DNA <213> Artificial Sequence <220> <223> Hygro-Linker3- mTurquiose2 <400> 10 atgtcttata aatacaccaa atcttggggt aaaaagcctg aactcaccgc gacgtctgtc 60 gagaagtttc tgatcgaaaa gttcgacagc gtgtccgacc tgatgcagct ctcggagggc 120 gaagaatctc gtgctttcag cttcgatgta ggagggcgtg gatatgtcct gcgggtaaat 180 agctgcgccg atggtttcta caaagatcgt tatgtttatc ggcactttgc atcggccgcg 240 ctcccgattc cggaagtgct tgacattggg gaatttagcg agagcctgac ctattgcatc 300 tcccgccgtg cacagggtgt cacgttgcaa gacctgcctg aaaccgaact gcccgctgtt 360 ctgcaaccgg tcgcggaggc catggatgcg atcgctgcgg ccgatcttag ccagacgagc 420 gggttcggcc cattcggacc gcaaggaatc ggtcaataca ctacatggcg tgatttcata 480 tgcgcgattg ctgatcccca tgtgtatcac tggcaaactg tgatggacga caccgtcagt 540 gcgtccgtcg cgcaggctct cgatgagctg atgctttggg ccgaggactg ccccgaagtc 600 cggcacctcg tgcacgcgga tttcggctcc aacaatgtcc tgacggacaa tggccgcata 660 acagcggtca ttgactggag cgaggcgatg ttcggggatt cccaatacga ggtcgccaac 720 atcttcttct ggaggccgtg gttggcttgt atggagcagc agacgcgcta cttcgagcgg 780 aggcatccgg agcttgcagg atcgccgcgg ctccgggcgt atatgctccg cattggtctt 840 gaccaactct atcagagctt ggttgacggc aatttcgatg atgcagcttg ggcgcagggt 900 cgatgcgacg caatcgtccg atccggagcc gggactgtcg ggcgtacaca aatcgcccgc 960 agaagcgcgg ccgtctggac cgatggctgt gtagaagtac tcgccgatag tggaaaccga 1020 cgccccagca ctcgtccgag ggcaaaggaa ttctcaggtg gaggcgggtc tggaggcggg 1080 ggtagtggat catccgtttc taaaggtgaa gaattattca ctggtgttgt cccaattttg 1140 gttgaattag atggtgatgt taatggtcac aaattttctg tctccggtga aggtgaaggt 1200 gatgctactt acggtaaatt gaccttaaaa tttatttgta ctactggtaa attgccagtt 1260 ccatggccaa ccttagtcac tactttatct tggggtgttc aatgttttgc aagataccca 1320 gatcatatga aacaacatga ctttttcaag tctgccatgc cagaaggtta tgttcaagaa 1380 agaactattt ttttcaaaga tgacggtaac tacaagacca gagctgaagt caagtttgaa 1440 ggtgatacct tagttaatag aatcgaatta aaaggtattg attttaaaga agatggtaac 1500 attttaggtc acaaattgga atacaattat ttctctgaca atgtttacat cactgctgac 1560 aaacaaaaga atggtatcaa agctaacttc aaaattagac acaacattga agatggtggt 1620 gttcaattag ctgaccatta tcaacaaaat actccaattg gtgatggtcc agtcttgtta 1680 ccagacaacc attacttatc cactcaatct aagttatcca aagatccaaa cgaaaagagg 1740 gaccacatgg tcttgttaga atttgttact gctgctggta ttaccttggg tatggatgaa 1800 ttgtacaaat aa 1812 <210> 11 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> AtGOX3-N1-Fwd <400> 11 gcatcgtctc atcggtctca tatggagata acaaacgtga tgga 44 <210> 12 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> AtGOX3-N1-Rev <400> 12 atgccgtctc attgtagcat cttcctaact cccgcttc 38 <210> 13 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> AtGOX3-C1-Fwd <400> 13 gactcgtctc aacaaatgct aagagatgag tttgagct 38 <210> 14 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> AtGOX3-C1-Rev <400> 14 atgccgtctc aggtctcagg atagtcttga tgtgggttcg gctgat 46 <210> 15 <211> 96 <212> DNA <213> Artificial Sequence <220> <223> NLS-2x-4a <400> 15 gcatcgtctc atcggtctca atcccgccaa aaaagaagag aaaggtagat ccaaaaaaga 60 agagaaaggt ataatgcctg agacctgaga cggcat 96 <210> 16 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> NLS-4a-Fwd1 <400> 16 agtgcatcgt ctcatcggtc tcaatcccg 29 <210> 17 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> NLS-4a-Rev1 <400> 17 gacatgccgt ctcaggtctc aggcatta 28 <210> 18 <211> 56 <212> DNA <213> Artificial Sequence <220> <223> ydCas9-N1-Fwd <400> 18 cagtccgtct catcggtctc atatggacaa gaagtattct atcggactgg cgatcg 56 <210> 19 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> ydCas9-N1-Rev <400> 19 cagtccgtct cacgtagtct gagagcctgt tgatatcaag ctcttggtcc 50 <210> 20 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> ydCas9-C1-Fwd <400> 20 cagtccgtct cttacgacgt ggacgcgatc gtccctcaga gcttcctc 48 <210> 21 <211> 66 <212> DNA <213> Artificial Sequence <220> <223> ydCas9-C1-Rev <400> 21 cagtccgtct caggtctcag gatgtgatga tgatgatgat gaccatcccc tccgagctgt 60 gagagg 66 <210> 22 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> NLS-4a-Fwd2 <400> 22 agtgcatcgt ctcatcggtc tcaatcccgc ca 32 <210> 23 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> NLS-4a-Rev2 <400> 23 gacatgccgt ctcaggtctc agccatta 28 <210> 24 <211> 75 <212> DNA <213> Artificial Sequence <220> <223> ydHygro-Fwd1 <400> 24 cagtccgtct catcggtctc atatgtctta gaaatacacc aaatcttggg gtaaaaagcc 60 tgaactcacc gcgac 75 <210> 25 <211> 75 <212> DNA <213> Artificial Sequence <220> <223> yHygro-Fwd1 <400> 25 cagtccgtct catcggtctc atatgtctta taaatacacc aaatcttggg gtaaaaagcc 60 tgaactcacc gcgac 75 <210> 26 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> ydHygro-Rev1 <400> 26 cagtccgtct caggtctcaa gaattccttt gccctcggac gagtgctgg 49 <210> 27 <211> 93 <212> DNA <213> Artificial Sequence <220> <223> Linker2 <400> 27 cagtccgtct catcggtctc attctcagga ggatctgaag aagaagaagg atcaggatcg 60 gcaggaggat catcctgaga cctgagacgg cat 93 <210> 28 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Linker2-Fwd1 <400> 28 agtgcatcgt ctcatcggtc tcattctc 28 <210> 29 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Linker2-Rev1 <400> 29 gacatgccgt ctcaggtctc aggatgatc 29 <210> 30 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> Hygro-gRNA -Fwd1 <400> 30 gcatgaagac ttgatcctta gaaatacacc aaatctgttt atgtcttcac t 51 <210> 31 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> Hygro-gRNA-Rev1 <400> 31 agtgaagaca taaacagatt tggtgtattt ctaaggatca agtcttcatg c 51 <210> 32 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> mRuby2-gRNA -Fwd1 <400> 32 gcatgaagac ttgatcagaa gaagaaggat caggatgttt atgtcttcac t 51 <210> 33 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> mRUby2-gRNA -Fwd1 <400> 33 agtgaagaca taaacatcct gatccttctt cttctgatca agtcttcatg c 51 <210> 34 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> AtGOX3-Rev1 <400> 34 atgccgtctc aggtctcacg gaagtcttga tgtgggttcg gctgat 46 <210> 35 <211> 99 <212> DNA <213> Artificial Sequence <220> <223> Linker1 <400> 35 tccggcgggt catcaggggg gagtagcgga tctgagactc cggggaccag cgaatccgct 60 accccagagt caagcggtgg tagttctggg ggaagttct 99 <210> 36 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> Linker1 Fwd <400> 36 agtgcatcgt ctcatcggtc tcatccggcg ggtcatcagg ggggagt 47 <210> 37 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> Linker1 Rev <400> 37 gacatgccgt ctcaggtctc aagaacttcc cccagaacta ccaccgct 48 <210> 38 <211> 56 <212> DNA <213> Artificial Sequence <220> <223> ydCas9-Fwd1 <400> 38 cagtccgtct catcggtctc attctgacaa gaagtattct atcggactgg cgatcg 56 <210> 39 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> ScTDH3 Pro-Fwd <400> 39 cagtccgtct catcggtctc atgatgacac aaggcaattg acccacgcat g 51 <210> 40 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> ScENO1 Ter-Rev <400> 40 cagtccgtct caggtctcaa tacatgggtg accaaaagag cgg 43 <210> 41 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> mRuby-Fwd1 <400> 41 gtgtccaaag gagaggagtt aatc 24 <210> 42 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> mRuby-Rev1 <400> 42 ttacttatac aattcatcca taccaccgcc 30 <210> 43 <211> 84 <212> DNA <213> Artificial Sequence <220> <223> Linker3 <400> 43 cagtccgtct catcggtctc attctcaggt ggaggcgggt ctggaggcgg gggtagtgga 60 tcatcctgag acctgagacg gcat 84 <210> 44 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> CRY1-Fwd1 <400> 44 gcatcgtctc atcggtctca tatgtctggt tctgtatctg gttgtggttc tggtggt 57 <210> 45 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> CRY1-Rev1 <400> 45 atgccgtctc accagaagtg cattgcttcc tttctcagag tc 42 <210> 46 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> CRY1-Fwd2 <400> 46 gactcgtctc actggctcgt gcttggtcac ctggatggag taatggtgat aaag 54 <210> 47 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> CRY1-Rev2 <400> 47 atgccgtctc acaggaaaag attcacgctt tcttccccgg cct 43 <210> 48 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> CRY1-Fwd3 <400> 48 gactcgtctc acctgaaatc tattggcctc agggagt 37 <210> 49 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> CRY1-Rev3 <400> 49 atgccgtctc aggtctgatc aaagaagaag taatgcttgg aacca 45 <210> 50 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> CRY1-Fwd4 <400> 50 gactcgtctc agacctgaag aagacgaaga gtcgtcactt aatttg 46 <210> 51 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> CRY1-Rev4 <400> 51 atgccgtctc aatgcctccg cttctttctc tccttccgct 40 <210> 52 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> CRY1-Fwd5 <400> 52 gactcgtctc agcatagtcc ccgagtggtc accagggtac tcagagca 48 <210> 53 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> CRY1-Rev5 <400> 53 atgccgtctc aggtctcagg atttacccgg tttgtgaaag ccgcctcca 49 <210> 54 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> CRY2-Fwd1 <400> 54 gcatcgtctc atcggtctca tatgaagatg gacaaaaaga ctatagtttg gtttagaagg 60 gacctaagga 70 <210> 55 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> CRY2-Rev1 <400> 55 atgccgtctc acaacgcatt gctcggtttc tcggcctcat tc 42 <210> 56 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> CRY2-Fwd2 <400> 56 gactcgtctc agttgttaac tagagcttgg tcaccaggat ggagcaat 48 <210> 57 <211> 66 <212> DNA <213> Artificial Sequence <220> <223> CRY2-Rev2 <400> 57 atgccgtctc aggtctcagg attcatttgc aaccattttt tcccaaactt gtagtaatct 60 gatcag 66 <110> INDUSTRY-ACADEMIC COOPERATION FOUNDATION GYEONGSANG NATIONAL UNIVERSITY <120> Method for inducing reactive oxygen species-mediated base          mutation of target gene <130> PN18188 <160> 57 <170> KoPatentIn 3.0 <210> 1 <211> 368 <212> PRT <213> Arabidopsis thaliana <400> 1 Met Glu Ile Thr Asn Val Met Glu Tyr Glu Lys Ile Ala Lys Glu Lys   1 5 10 15 Leu Pro Lys Met Val Tyr Asp Tyr Tyr Ala Ser Gly Ala Glu Asp Gln              20 25 30 Trp Thr Leu Gln Glu Asn Arg Asn Ala Phe Ser Arg Ile Leu Phe Arg          35 40 45 Pro Arg Ile Leu Ile Asp Val Ser Lys Ile Asp Val Ser Thr Thr Val      50 55 60 Leu Gly Phe Asn Ile Ser Met Pro Ile Met Ile Ala Pro Thr Ala Met  65 70 75 80 Gln Lys Met Ala His Pro Asp Gly Glu Leu Ala Thr Ala Arg Ala Thr                  85 90 95 Ser Ala Ala Gly Thr Ile Met Thr Leu Ser Ser Trp Ala Thr Cys Ser             100 105 110 Val Glu Glu Val Ala Ser Thr Gly Pro Gly Ile Arg Phe Phe Gln Leu         115 120 125 Tyr Val Tyr Lys Asp Arg Asn Val Val Ile Gln Leu Val Lys Arg Ala     130 135 140 Glu Glu Ala Gly Phe Lys Ala Ile Ala Leu Thr Val Asp Thr Pro Arg 145 150 155 160 Leu Gly Arg Arg Glu Ser Asp Ile Lys Asn Arg Phe Ala Leu Pro Arg                 165 170 175 Gly Leu Thr Leu Lys Asn Phe Glu Gly Leu Asp Leu Gly Lys Ile Asp             180 185 190 Lys Thr Asn Asp Ser Gly Leu Ala Ser Tyr Val Ala Gly Gln Val Asp         195 200 205 Gln Ser Leu Ser Trp Lys Asp Ile Lys Trp Leu Gln Ser Ile Thr Ser     210 215 220 Leu Pro Ile Leu Val Lys Gly Val Ile Thr Ala Glu Asp Ala Arg Ile 225 230 235 240 Ala Val Glu Tyr Gly Ala Ala Gly Ile Ile Val Ser Asn His Gly Ala                 245 250 255 Arg Gln Leu Asp Tyr Val Pro Ala Thr Ile Val Ala Leu Glu Glu Val             260 265 270 Val Lys Ala Val Glu Gly Arg Ile Pro Val Phe Leu Asp Gly Gly Val         275 280 285 Arg Arg Gly Thr Asp Val Phe Lys Ala Leu Ala Leu Gly Ala Ser Gly     290 295 300 Val Phe Val Gly Arg Pro Ser Leu Phe Ser Leu Ala Ala Asp Gly Glu 305 310 315 320 Ala Gly Val Arg Lys Met Leu Gln Met Leu Arg Asp Glu Phe Glu Leu                 325 330 335 Thr Met Ala Leu Ser Gly Cys Arg Ser Leu Arg Glu Ile Ser Arg Thr             340 345 350 His Ile Lys Thr Asp Trp Asp Thr Pro His Tyr Leu Ser Ala Lys Leu         355 360 365 <210> 2 <211> 1107 <212> DNA <213> Arabidopsis thaliana <400> 2 atggagataa caaacgtgat ggaatatgag aagatcgcaa aggagaaatt accaaagatg 60 gtttatgatt actatgcatc tggtgctgaa gatcaatgga ctcttcaaga gaatcgaaac 120 gctttctcta ggattctatt taggcctcgg attcttatcg atgtaagcaa gattgatgtg 180 agcacaacgg ttttagggtt taatatttct atgccaatta tgattgctcc tactgcaatg 240 cagaaaatgg ctcatcctga tggcgagctt gcaaccgcga gagctacttc tgctgctgga 300 acaatcatga ctttatcttc atgggctact tgtagtgttg aggaagttgc ttcaaccgga 360 ccagggattc gttttttcca actttatgtt tataaggata gaaatgtggt tatacagctt 420 gtgaaacgag ctgaagaagc tggattcaaa gctattgctc ttactgtaga tactccaagg 480 cttggacgca gagaatctga catcaaaaac agattcgcgc ttcctcgagg tctaacgttg 540 aagaacttcg aagggttgga tcttgggaaa atagacaaga cgaatgactc agggctagct 600 tcatatgttg ctggtcaagt tgatcaatca cttagctgga aggatataaa atggctccaa 660 tctatcacaa gcttgccaat tcttgtcaag ggtgttatta cagctgagga tgcaagaatt 720 gctgttgaat atggagctgc agggataata gtctctaacc acggagctcg tcagctagat 780 tatgttcctg caactatagt ggccttagaa gaggtggtta aagccgtgga gggtcggatt 840 ccggtttttc ttgacggtgg ggttcgccgt ggaaccgatg tctttaaggc attggctctt 900 ggcgcttcag gtgtctttgt cgggaggccg agcttgttct cgcttgcagc ggatggagaa 960 gcgggagtta ggaagatgct acaaatgcta agagatgagt ttgagcttac aatggcacta 1020 agtggttgcc gttcactgag agagatcagc cgaacccaca tcaagactga ttgggacact 1080 cctcattacc tctcggccaa gctgtag 1107 <210> 3 <211> 681 <212> PRT <213> Arabidopsis thaliana <400> 3 Met Ser Gly Ser Val Ser Gly Cys Gly Ser Gly Gly Cys Ser Ile Val   1 5 10 15 Trp Phe Arg Arg Asp Leu Arg Val Glu Asp Asn Pro Ala Leu Ala Ala              20 25 30 Ala Val Arg Ala Gly Pro Val Ile Ala Leu Phe Val Trp Ala Pro Glu          35 40 45 Glu Glu Gly His Tyr His Pro Gly Arg Val Ser Arg Trp Trp Leu Lys      50 55 60 Asn Ser Leu Ala Gln Leu Asp Ser Ser Leu Arg Ser Leu Gly Thr Cys  65 70 75 80 Leu Ile Thr Lys Arg Ser Thr Asp Ser Val Ala Ser Leu Leu Asp Val                  85 90 95 Val Lys Ser Thr Gly Ala Ser Gln Ile Phe Phe Asn His Leu Tyr Asp             100 105 110 Pro Leu Ser Leu Val Arg Asp His Arg Ala Lys Asp Val Leu Thr Ala         115 120 125 Gln Gly Ile Ala Val Arg Ser Phe Asn Ala Asp Leu Leu Tyr Glu Pro     130 135 140 Trp Glu Val Thr Asp Glu Leu Gly Arg Pro Phe Ser Met Phe Ala Ala 145 150 155 160 Phe Trp Glu Arg Cys Leu Ser Met Pro Tyr Asp Pro Glu Ser Pro Leu                 165 170 175 Leu Pro Pro Lys Lys Ile Ile Ser Gly Asp Val Ser Lys Cys Val Ala             180 185 190 Asp Pro Leu Val Phe Glu Asp Asp Ser Glu Lys Gly Ser Asn Ala Leu         195 200 205 Leu Ala Arg Ala Trp Ser Pro Gly Trp Ser Asn Gly Asp Lys Ala Leu     210 215 220 Thr Thr Phe Ile Asn Gly Pro Leu Leu Glu Tyr Ser Lys Asn Arg Arg 225 230 235 240 Lys Ala Asp Ser Ala Thr Thr Ser Phe Leu Ser Pro His Leu His Phe                 245 250 255 Gly Glu Val Ser Val Arg Lys Val Phe His Leu Val Arg Ile Lys Gln             260 265 270 Val Ala Trp Ala Asn Glu Gly Asn Glu Ala Gly Glu Glu Ser Val Asn         275 280 285 Leu Phe Leu Lys Ser Ile Gly Leu Arg Glu Tyr Ser Arg Tyr Ile Ser     290 295 300 Phe Asn His Pro Tyr Ser His Glu Arg Pro Leu Leu Gly His Leu Lys 305 310 315 320 Phe Phe Pro Trp Ala Val Asp Glu Asn Tyr Phe Lys Ala Trp Arg Gln                 325 330 335 Gly Arg Thr Gly Tyr Pro Leu Val Asp Ala Gly Met Arg Glu Leu Trp             340 345 350 Ala Thr Gly Trp Leu His Asp Arg Ile Arg Val Val Val Ser Ser Phe         355 360 365 Phe Val Lys Val Leu Gln Leu Pro Trp Arg Trp Gly Met Lys Tyr Phe     370 375 380 Trp Asp Thr Leu Leu Asp Ala Asp Leu Glu Ser Asp Ala Leu Gly Trp 385 390 395 400 Gln Tyr Ile Thr Gly Thr Leu Pro Asp Ser Arg Glu Phe Asp Arg Ile                 405 410 415 Asp Asn Pro Gln Phe Glu Gly Tyr Lys Phe Asp Pro Asn Gly Glu Tyr             420 425 430 Val Arg Arg Trp Leu Pro Glu Leu Ser Arg Leu Pro Thr Asp Trp Ile         435 440 445 His His Pro Trp Asn Ala Pro Glu Ser Val Leu Gln Ala Ala Gly Ile     450 455 460 Glu Leu Gly Ser Asn Tyr Pro Leu Pro Ile Val Gly Leu Asp Glu Ala 465 470 475 480 Lys Ala Arg Leu His Glu Ala Leu Ser Gln Met Trp Gln Leu Glu Ala                 485 490 495 Ala Ser Arg Ala Ala Ile Glu Asn Gly Ser Glu Glu Gly Leu Gly Asp             500 505 510 Ser Ala Glu Val Glu Glu Ala Pro Ile Glu Phe Pro Arg Asp Ile Thr         515 520 525 Met Glu Glu Thr Glu Pro Thr Arg Leu Asn Pro Asn Arg Arg Tyr Glu     530 535 540 Asp Gln Met Val Pro Ser Ile Thr Ser Ser Leu Ile Arg Pro Glu Glu 545 550 555 560 Asp Glu Glu Ser Ser Leu Asn Leu Arg Asn Ser Val Gly Asp Ser Arg                 565 570 575 Ala Glu Val Pro Arg Asn Met Val Asn Thr Asn Gln Ala Gln Gln Arg             580 585 590 Arg Ala Glu Pro Ala Ser Asn Gln Val Thr Ala Met Ile Pro Glu Phe         595 600 605 Asn Ile Arg Ile Val Ala Glu Ser Thr Glu Asp Ser Thr Ala Glu Ser     610 615 620 Ser Ser Ser Gly Arg Arg Glu Arg Ser Gly Gly Ile Val Pro Glu Trp 625 630 635 640 Ser Pro Gly Tyr Ser Glu Gln Phe Pro Ser Glu Glu Asn Gly Ile Gly                 645 650 655 Gly Gly Ser Thr Thr Ser Ser Tyr Leu Gln Asn His His Glu Ile Leu             660 665 670 Asn Trp Arg Arg Leu Ser Gln Thr Gly         675 680 <210> 4 <211> 2046 <212> DNA <213> Arabidopsis thaliana <400> 4 atgtctggtt ctgtatctgg ttgtggttct ggtggttgta gtattgtatg gtttagaaga 60 gatcttaggg ttgaagataa tccagcttta gcagcagcag taagagctgg tccagtgatt 120 gctctgtttg tttgggcacc agaagaagaa ggacactatc atccaggtag ggtttctagg 180 tggtggctca agaacagttt ggctcagctt gattcttctc ttagaagtct tggtacttgt 240 cttatcacca agagatctac tgatagtgtt gcttctcttc ttgatgttgt taaatccact 300 ggtgcttctc agatcttctt caaccatttg tatgatccat tgtctttggt gcgtgatcac 360 cgagctaaag atgttttgac ggcgcaaggc atagcggttc gatcattcaa cgcagacttg 420 ctttatgagc catgggaagt gactgatgaa ttaggccgtc ctttctctat gtttgctgcg 480 ttttgggaga gatgtcttag tatgccttat gaccctgagt ctcctcttct tccacctaag 540 aagatcattt caggggatgt gtctaaatgt gttgcggatc cattggtgtt tgaggatgac 600 tctgagaaag gaagcaatgc acttctggct cgtgcttggt ctcctggatg gagtaatggt 660 gataaagctc tcacaacgtt tataaacggt ccattgcttg aatactctaa gaaccgcaga 720 aaagccgata gtgctacaac ctcgtttctt tctccacact tgcattttgg ggaagtgagt 780 gtgagaaaag tttttcatct tgttcggatc aaacaggtcg cgtgggcaaa cgaaggaaac 840 gaggccgggg aagaaagcgt gaatcttttc ctgaaatcta ttggtctcag ggagtattct 900 aggtacataa gttttaacca tccatattcc catgaaagac cacttcttgg ccatctaaag 960 ttcttccctt gggctgtgga tgagaactat ttcaaggcat ggaggcaagg ccggactgga 1020 tatccgttgg tcgatgccgg gatgagagag ttatgggcta ctggttggtt gcatgatcgc 1080 ataagagtag ttgtttcaag cttctttgtt aaagtgcttc aattaccatg gagatggggg 1140 atgaagtatt tctgggacac acttcttgat gcggatttag aaagcgatgc tcttggttgg 1200 caatacatta ccggtactct cccggatagc cgggagtttg atcgcataga taaccctcag 1260 tttgaagggt acaagtttga tccaaatggt gaatacgtaa ggcgatggct tcctgaactc 1320 tctagactcc cgacagactg gatacatcat ccgtggaacg cacctgagtc cgttcttcaa 1380 gctgctggta tcgagcttgg atcaaactat cctctaccaa ttgtaggatt agacgaagca 1440 aaagcacggc ttcatgaagc gctttcacag atgtggcaac tagaagctgc ttcaagagct 1500 gcaatagaga acggatccga agaaggactt ggagattctg ctgaggtaga ggaagctcct 1560 atagagttcc caagggacat tacaatggaa gagactgaac caaccagact caacccaaac 1620 aggagatatg aggatcagat ggttccaagc attacttctt ctttgatcag acctgaagaa 1680 gacgaagagt cgtctcttaa tttgagaaat tcagtaggag atagcagagc agaggttcca 1740 aggaacatgg ttaacaccaa ccaagctcag cagcggagag cagaaccggc ttcaaaccaa 1800 gtcactgcta tgattccaga atttaatatc agaattgttg cagagagcac tgaagactca 1860 acagcggaat cttccagcag cggaaggaga gaaagaagcg gaggcatagt ccccgagtgg 1920 tctccagggt actcagagca gttccctagt gaagaaaatg gtattggagg aggaagtaca 1980 acgtctagct acttgcagaa tcaccatgaa atactgaact ggagacggct ttcacaaacc 2040 gggtga 2046 <210> 5 <211> 612 <212> PRT <213> Arabidopsis thaliana <400> 5 Met Lys Met Asp Lys Lys Thr Ile Val Trp Phe Arg Arg Asp Leu Arg   1 5 10 15 Ile Glu Asp Asn Pro Ala Leu Ala Ala Ala Ala His Glu Gly Ser Val              20 25 30 Phe Pro Val Phe Ile Trp Cys Pro Glu Glu Glu Gly Gln Phe Tyr Pro          35 40 45 Gly Arg Ala Ser Arg Trp Trp Met Lys Gln Ser Leu Ala His Leu Ser      50 55 60 Gln Ser Leu Lys Ala Leu Gly Ser Asp Leu Thr Leu Ile Lys Thr His  65 70 75 80 Asn Thr Ile Ser Ala Ile Leu Asp Cys Ile Arg Val Thr Gly Ala Thr                  85 90 95 Lys Val Val Phe Asn His Leu Tyr Asp Pro Val Ser Leu Val Arg Asp             100 105 110 His Thr Val Lys Glu Lys Leu Val Glu Arg Gly Ile Ser Val Gln Ser         115 120 125 Tyr Asn Gly Asp Leu Leu Tyr Glu Pro Trp Glu Ile Tyr Cys Glu Lys     130 135 140 Gly Lys Pro Phe Thr Ser Phe Asn Ser Tyr Trp Lys Lys Cys Leu Asp 145 150 155 160 Met Ser Ile Glu Ser Val Met Leu Pro Pro Pro Trp Arg Leu Met Pro                 165 170 175 Ile Thr Ala Ala Ala Glu Ala Ile Trp Ala Cys Ser Ile Glu Glu Leu             180 185 190 Gly Leu Glu Asn Glu Ala Glu Lys Pro Ser Asn Ala Leu Leu Thr Arg         195 200 205 Ala Trp Ser Pro Gly Trp Ser Asn Ala Asp Lys Leu Leu Asn Glu Phe     210 215 220 Ile Glu Lys Gln Leu Ile Asp Tyr Ala Lys Asn Ser Lys Lys Val Val 225 230 235 240 Gly Asn Ser Thr Ser Leu Leu Ser Pro Tyr Leu His Phe Gly Glu Ile                 245 250 255 Ser Val Arg His Val Phe Gln Cys Ala Arg Met Lys Gln Ile Ile Trp             260 265 270 Ala Arg Asp Lys Asn Ser Glu Gly Glu Glu Ser Ala Asp Leu Phe Leu         275 280 285 Arg Gly Ile Gly Leu Arg Glu Tyr Ser Arg Tyr Ile Cys Phe Asn Phe     290 295 300 Pro Phe Thr His Glu Gln Ser Leu Leu Ser His Leu Arg Phe Phe Pro 305 310 315 320 Trp Asp Ala Asp Val Asp Lys Phe Lys Ala Trp Arg Gln Gly Arg Thr                 325 330 335 Gly Tyr Pro Leu Val Asp Ala Gly Met Arg Glu Leu Trp Ala Thr Gly             340 345 350 Trp Met His Asn Arg Ile Arg Val Ile Val Ser Ser Phe Ala Val Lys         355 360 365 Phe Leu Leu Leu Pro Trp Lys Trp Gly Met Lys Tyr Phe Trp Asp Thr     370 375 380 Leu Leu Asp Ala Asp Leu Glu Cys Asp Ile Leu Gly Trp Gln Tyr Ile 385 390 395 400 Ser Gly Ser Ile Pro Asp Gly His Glu Leu Asp Arg Leu Asp Asn Pro                 405 410 415 Ala Leu Gln Gly Ala Lys Tyr Asp Pro Glu Gly Glu Tyr Ile Arg Gln             420 425 430 Trp Leu Pro Glu Leu Ala Arg Leu Pro Thr Glu Trp Ile His His Pro         435 440 445 Trp Asp Ala Pro Leu Thr Val Leu Lys Ala Ser Gly Val Glu Leu Gly     450 455 460 Thr Asn Tyr Ala Lys Pro Ile Val Asp Ile Asp Thr Ala Arg Glu Leu 465 470 475 480 Leu Ala Lys Ala Ile Ser Arg Thr Arg Glu Ala Gln Ile Met Ile Gly                 485 490 495 Ala Ala Pro Asp Glu Ile Val Ala Asp Ser Phe Glu Ala Leu Gly Ala             500 505 510 Asn Thr Ile Lys Glu Pro Gly Leu Cys Pro Ser Val Ser Ser Asn Asp         515 520 525 Gln Gln Val Pro Ser Ala Val Arg Tyr Asn Gly Ser Lys Arg Val Lys     530 535 540 Pro Glu Glu Glu Glu Glu Arg Asp Met Lys Lys Ser Arg Gly Phe Asp 545 550 555 560 Glu Arg Glu Leu Phe Ser Thr Ala Glu Ser Ser Ser Ser Ser Ser Val                 565 570 575 Phe Phe Val Ser Gln Ser Cys Ser Leu Ala Ser Glu Gly Lys Asn Leu             580 585 590 Glu Gly Ile Gln Asp Ser Ser Asp Gln Ile Thr Thr Ser Leu Gly Lys         595 600 605 Asn Gly Cys Lys     610 <210> 6 <211> 1839 <212> DNA <213> Arabidopsis thaliana <400> 6 atgaagatgg acaaaaagac tatagtttgg tttagaagag acctaaggat tgaggataat 60 cctgcattag cagcagctgc tcacgaagga tctgtttttc ctgtcttcat ttggtgtcct 120 gaagaagaag gacagtttta tcctggaaga gcttcaagat ggtggatgaa acaatcactt 180 gctcacttat ctcaatcctt gaaggctctt ggatctgacc tcactttaat caaaacccac 240 aacacgattt cagcgatctt ggattgtatc cgcgttaccg gtgctacaaa agtcgtcttt 300 aaccacctct atgatcctgt ttcgttagtt cgggaccata ccgtaaagga gaagctggtg 360 gaacgtggga tctctgtgca aagctacaat ggagatctat tgtatgaacc gtgggagata 420 tactgcgaaa agggcaaacc ttttacgagt ttcaattctt actggaagaa atgcttagat 480 atgtcgattg aatccgttat gcttcctcct ccttggcggt tgatgccaat aactgcagcg 540 gctgaagcga tttgggcgtg ttcgattgaa gaactagggc tggagaatga ggccgagaaa 600 ccgagcaatg cgttgttaac tagagcttgg tctccaggat ggagcaatgc tgataagtta 660 ctaaatgagt tcatcgagaa gcagttgata gattatgcaa agaacagcaa gaaagttgtt 720 gggaattcta cttcactact ttctccgtat ctccatttcg gggaaataag cgtcagacac 780 gttttccagt gtgcccggat gaaacaaatt atatgggcaa gagataagaa cagtgaagga 840 gaagaaagtg cagatctttt tcttagggga atcggtttaa gagagtattc tcggtatata 900 tgtttcaact tcccgtttac tcacgagcaa tcgttgttga gtcatcttcg gtttttccct 960 tgggatgctg atgttgataa gttcaaggcc tggagacaag gcaggaccgg ttatccgttg 1020 gtggatgccg gaatgagaga gctttgggct accggatgga tgcataacag aataagagtg 1080 attgtttcaa gctttgctgt gaagtttctt ctccttccat ggaaatgggg aatgaagtat 1140 ttctgggata cacttttgga tgctgatttg gaatgtgaca tccttggctg gcagtatatc 1200 tctgggagta tccccgatgg ccacgagctt gatcgcttgg acaatcccgc gttacaaggc 1260 gccaaatatg acccagaagg tgagtacata aggcaatggc ttcccgagct tgcgagattg 1320 ccaactgaat ggatccatca tccatgggac gctcctttaa ccgtactcaa agcttctggt 1380 gtggaactcg gaacaaacta tgcgaaaccc attgtagaca tcgacacagc tcgtgagcta 1440 ctagctaaag ctatttcaag aacccgtgaa gcacagatca tgatcggagc agcacctgat 1500 gagattgtag cagatagctt cgaggcctta ggggctaata ccattaaaga acctggtctt 1560 tgcccatctg tgtcttctaa tgaccaacaa gtaccttcgg ctgttcgtta caacgggtca 1620 aagagagtga aacctgagga agaagaagag agagacatga agaaatctag gggattcgat 1680 gaaagggagt tgttttcgac tgctgaatct tcttcttctt cgagtgtgtt tttcgtttcg 1740 cagtcttgct cgttggcatc agaagggaag aatctggaag gtattcaaga ttcatctgat 1800 cagattacta caagtttggg aaaaaatggt tgcaaatga 1839 <210> 7 <211> 1815 <212> DNA <213> Artificial Sequence <220> <223> dHygro-Linker2- mRuby <400> 7 atgtcttaga aatacaccaa atcttggggt aaaaagcctg aactcaccgc gacgtctgtc 60 gagaagtttc tgatcgaaaa gttcgacagc gtgtccgacc tgatgcagct ctcggagggc 120 gaagaatctc gtgctttcag cttcgatgta ggagggcgtg gatatgtcct gcgggtaaat 180 agctgcgccg atggtttcta caaagatcgt tatgtttatc ggcactttgc atcggccgcg 240 ctcccgattc cggaagtgct tgacattggg gaatttagcg agagcctgac ctattgcatc 300 tcccgccgtg cacagggtgt cacgttgcaa gacctgcctg aaaccgaact gcccgctgtt 360 ctgcaaccgg tcgcggaggc catggatgcg atcgctgcgg ccgatcttag ccagacgagc 420 gggttcggcc cattcggacc gcaaggaatc ggtcaataca ctacatggcg tgatttcata 480 tgcgcgattg ctgatcccca tgtgtatcac tggcaaactg tgatggacga caccgtcagt 540 gcgtccgtcg cgcaggctct cgatgagctg atgctttggg ccgaggactg ccccgaagtc 600 cggcacctcg tgcacgcgga tttcggctcc aacaatgtcc tgacggacaa tggccgcata 660 acagcggtca ttgactggag cgaggcgatg ttcggggatt cccaatacga ggtcgccaac 720 atcttcttct ggaggccgtg gttggcttgt atggagcagc agacgcgcta cttcgagcgg 780 aggcatccgg agcttgcagg atcgccgcgg ctccgggcgt atatgctccg cattggtctt 840 gaccaactct atcagagctt ggttgacggc aatttcgatg atgcagcttg ggcgcagggt 900 cgatgcgacg caatcgtccg atccggagcc gggactgtcg ggcgtacaca aatcgcccgc 960 agaagcgcgg ccgtctggac cgatggctgt gtagaagtac tcgccgatag tggaaaccga 1020 cgccccagca ctcgtccgag ggcaaaggaa ttctcaggag gatctgaaga agaagaagga 1080 tcaggatcgg caggaggatc atccgtgtcc aaaggagagg agttaatcaa ggaaaacatg 1140 agaatgaaag ttgtcatgga gggctccgtt aatggtcacc aattcaagtg tacaggggaa 1200 ggtgaaggta atccttacat gggtacacaa actatgagaa ttaaagtaat tgaaggcgga 1260 ccactaccat ttgcatttga cattctggca acgtcattca tgtacggatc acgaactttc 1320 atcaagtacc ctaaaggtat accagacttt ttcaagcaat cttttccaga gggttttaca 1380 tgggaaaggg ttacaagata cgaagatggg ggtgtcgtca cagttatgca agatacttca 1440 ttagaagatg gctgccttgt ctatcatgtg caagtaagag gggtgaattt tccttctaac 1500 ggacctgtga tgcagaaaaa gaccaaaggt tgggaaccaa atactgaaat gatgtaccca 1560 gctgatggag gtttgagagg ctacacacac atggcgctta aagttgatgg tggaggtcat 1620 ttgtcttgta gttttgttac cacttatcgt tctaaaaaga ctgttggcaa tatcaaaatg 1680 ccaggaatac atgctgtaga ccacagacta gaaagactcg aagagagcga taacgaaatg 1740 ttcgttgtac agagagagca tgccgtagcc aaatttgctg gcttaggcgg tggtatggat 1800 gaattgtata agtaa 1815 <210> 8 <211> 1815 <212> DNA <213> Artificial Sequence <220> <223> Hygro-Linker2- mRuby <400> 8 atgtcttata aatacaccaa atcttggggt aaaaagcctg aactcaccgc gacgtctgtc 60 gagaagtttc tgatcgaaaa gttcgacagc gtgtccgacc tgatgcagct ctcggagggc 120 gaagaatctc gtgctttcag cttcgatgta ggagggcgtg gatatgtcct gcgggtaaat 180 agctgcgccg atggtttcta caaagatcgt tatgtttatc ggcactttgc atcggccgcg 240 ctcccgattc cggaagtgct tgacattggg gaatttagcg agagcctgac ctattgcatc 300 tcccgccgtg cacagggtgt cacgttgcaa gacctgcctg aaaccgaact gcccgctgtt 360 ctgcaaccgg tcgcggaggc catggatgcg atcgctgcgg ccgatcttag ccagacgagc 420 gggttcggcc cattcggacc gcaaggaatc ggtcaataca ctacatggcg tgatttcata 480 tgcgcgattg ctgatcccca tgtgtatcac tggcaaactg tgatggacga caccgtcagt 540 gcgtccgtcg cgcaggctct cgatgagctg atgctttggg ccgaggactg ccccgaagtc 600 cggcacctcg tgcacgcgga tttcggctcc aacaatgtcc tgacggacaa tggccgcata 660 acagcggtca ttgactggag cgaggcgatg ttcggggatt cccaatacga ggtcgccaac 720 atcttcttct ggaggccgtg gttggcttgt atggagcagc agacgcgcta cttcgagcgg 780 aggcatccgg agcttgcagg atcgccgcgg ctccgggcgt atatgctccg cattggtctt 840 gaccaactct atcagagctt ggttgacggc aatttcgatg atgcagcttg ggcgcagggt 900 cgatgcgacg caatcgtccg atccggagcc gggactgtcg ggcgtacaca aatcgcccgc 960 agaagcgcgg ccgtctggac cgatggctgt gtagaagtac tcgccgatag tggaaaccga 1020 cgccccagca ctcgtccgag ggcaaaggaa ttctcaggag gatctgaaga agaagaagga 1080 tcaggatcgg caggaggatc atccgtgtcc aaaggagagg agttaatcaa ggaaaacatg 1140 agaatgaaag ttgtcatgga gggctccgtt aatggtcacc aattcaagtg tacaggggaa 1200 ggtgaaggta atccttacat gggtacacaa actatgagaa ttaaagtaat tgaaggcgga 1260 ccactaccat ttgcatttga cattctggca acgtcattca tgtacggatc acgaactttc 1320 atcaagtacc ctaaaggtat accagacttt ttcaagcaat cttttccaga gggttttaca 1380 tgggaaaggg ttacaagata cgaagatggg ggtgtcgtca cagttatgca agatacttca 1440 ttagaagatg gctgccttgt ctatcatgtg caagtaagag gggtgaattt tccttctaac 1500 ggacctgtga tgcagaaaaa gaccaaaggt tgggaaccaa atactgaaat gatgtaccca 1560 gctgatggag gtttgagagg ctacacacac atggcgctta aagttgatgg tggaggtcat 1620 ttgtcttgta gttttgttac cacttatcgt tctaaaaaga ctgttggcaa tatcaaaatg 1680 ccaggaatac atgctgtaga ccacagacta gaaagactcg aagagagcga taacgaaatg 1740 ttcgttgtac agagagagca tgccgtagcc aaatttgctg gcttaggcgg tggtatggat 1800 gaattgtata agtaa 1815 <210> 9 <211> 1812 <212> DNA <213> Artificial Sequence <220> <223> dHygro-Linker3- mTurquiose2 <400> 9 atgtcttaga aatacaccaa atcttggggt aaaaagcctg aactcaccgc gacgtctgtc 60 gagaagtttc tgatcgaaaa gttcgacagc gtgtccgacc tgatgcagct ctcggagggc 120 gaagaatctc gtgctttcag cttcgatgta ggagggcgtg gatatgtcct gcgggtaaat 180 agctgcgccg atggtttcta caaagatcgt tatgtttatc ggcactttgc atcggccgcg 240 ctcccgattc cggaagtgct tgacattggg gaatttagcg agagcctgac ctattgcatc 300 tcccgccgtg cacagggtgt cacgttgcaa gacctgcctg aaaccgaact gcccgctgtt 360 ctgcaaccgg tcgcggaggc catggatgcg atcgctgcgg ccgatcttag ccagacgagc 420 gggttcggcc cattcggacc gcaaggaatc ggtcaataca ctacatggcg tgatttcata 480 tgcgcgattg ctgatcccca tgtgtatcac tggcaaactg tgatggacga caccgtcagt 540 gcgtccgtcg cgcaggctct cgatgagctg atgctttggg ccgaggactg ccccgaagtc 600 cggcacctcg tgcacgcgga tttcggctcc aacaatgtcc tgacggacaa tggccgcata 660 acagcggtca ttgactggag cgaggcgatg ttcggggatt cccaatacga ggtcgccaac 720 atcttcttct ggaggccgtg gttggcttgt atggagcagc agacgcgcta cttcgagcgg 780 aggcatccgg agcttgcagg atcgccgcgg ctccgggcgt atatgctccg cattggtctt 840 gaccaactct atcagagctt ggttgacggc aatttcgatg atgcagcttg ggcgcagggt 900 cgatgcgacg caatcgtccg atccggagcc gggactgtcg ggcgtacaca aatcgcccgc 960 agaagcgcgg ccgtctggac cgatggctgt gtagaagtac tcgccgatag tggaaaccga 1020 cgccccagca ctcgtccgag ggcaaaggaa ttctcaggtg gaggcgggtc tggaggcggg 1080 ggtagtggat catccgtttc taaaggtgaa gaattattca ctggtgttgt cccaattttg 1140 gttgaattag atggtgatgt taatggtcac aaattttctg tctccggtga aggtgaaggt 1200 gatgctactt acggtaaatt gaccttaaaa tttatttgta ctactggtaa attgccagtt 1260 ccatggccaa ccttagtcac tactttatct tggggtgttc aatgttttgc aagataccca 1320 gatcatatga aacaacatga ctttttcaag tctgccatgc cagaaggtta tgttcaagaa 1380 agaactattt ttttcaaaga tgacggtaac tacaagacca gagctgaagt caagtttgaa 1440 ggtgatacct tagttaatag aatcgaatta aaaggtattg attttaaaga agatggtaac 1500 attttaggtc acaaattgga atacaattat ttctctgaca atgtttacat cactgctgac 1560 aaacaaaaga atggtatcaa agctaacttc aaaattagac acaacattga agatggtggt 1620 gttcaattag ctgaccatta tcaacaaaat actccaattg gtgatggtcc agtcttgtta 1680 ccagacaacc attacttatc cactcaatct aagttatcca aagatccaaa cgaaaagagg 1740 gaccacatgg tcttgttaga atttgttact gctgctggta ttaccttggg tatggatgaa 1800 ttgtacaaat aa 1812 <210> 10 <211> 1812 <212> DNA <213> Artificial Sequence <220> <223> Hygro-Linker3- mTurquiose2 <400> 10 atgtcttata aatacaccaa atcttggggt aaaaagcctg aactcaccgc gacgtctgtc 60 gagaagtttc tgatcgaaaa gttcgacagc gtgtccgacc tgatgcagct ctcggagggc 120 gaagaatctc gtgctttcag cttcgatgta ggagggcgtg gatatgtcct gcgggtaaat 180 agctgcgccg atggtttcta caaagatcgt tatgtttatc ggcactttgc atcggccgcg 240 ctcccgattc cggaagtgct tgacattggg gaatttagcg agagcctgac ctattgcatc 300 tcccgccgtg cacagggtgt cacgttgcaa gacctgcctg aaaccgaact gcccgctgtt 360 ctgcaaccgg tcgcggaggc catggatgcg atcgctgcgg ccgatcttag ccagacgagc 420 gggttcggcc cattcggacc gcaaggaatc ggtcaataca ctacatggcg tgatttcata 480 tgcgcgattg ctgatcccca tgtgtatcac tggcaaactg tgatggacga caccgtcagt 540 gcgtccgtcg cgcaggctct cgatgagctg atgctttggg ccgaggactg ccccgaagtc 600 cggcacctcg tgcacgcgga tttcggctcc aacaatgtcc tgacggacaa tggccgcata 660 acagcggtca ttgactggag cgaggcgatg ttcggggatt cccaatacga ggtcgccaac 720 atcttcttct ggaggccgtg gttggcttgt atggagcagc agacgcgcta cttcgagcgg 780 aggcatccgg agcttgcagg atcgccgcgg ctccgggcgt atatgctccg cattggtctt 840 gaccaactct atcagagctt ggttgacggc aatttcgatg atgcagcttg ggcgcagggt 900 cgatgcgacg caatcgtccg atccggagcc gggactgtcg ggcgtacaca aatcgcccgc 960 agaagcgcgg ccgtctggac cgatggctgt gtagaagtac tcgccgatag tggaaaccga 1020 cgccccagca ctcgtccgag ggcaaaggaa ttctcaggtg gaggcgggtc tggaggcggg 1080 ggtagtggat catccgtttc taaaggtgaa gaattattca ctggtgttgt cccaattttg 1140 gttgaattag atggtgatgt taatggtcac aaattttctg tctccggtga aggtgaaggt 1200 gatgctactt acggtaaatt gaccttaaaa tttatttgta ctactggtaa attgccagtt 1260 ccatggccaa ccttagtcac tactttatct tggggtgttc aatgttttgc aagataccca 1320 gatcatatga aacaacatga ctttttcaag tctgccatgc cagaaggtta tgttcaagaa 1380 agaactattt ttttcaaaga tgacggtaac tacaagacca gagctgaagt caagtttgaa 1440 ggtgatacct tagttaatag aatcgaatta aaaggtattg attttaaaga agatggtaac 1500 attttaggtc acaaattgga atacaattat ttctctgaca atgtttacat cactgctgac 1560 aaacaaaaga atggtatcaa agctaacttc aaaattagac acaacattga agatggtggt 1620 gttcaattag ctgaccatta tcaacaaaat actccaattg gtgatggtcc agtcttgtta 1680 ccagacaacc attacttatc cactcaatct aagttatcca aagatccaaa cgaaaagagg 1740 gaccacatgg tcttgttaga atttgttact gctgctggta ttaccttggg tatggatgaa 1800 ttgtacaaat aa 1812 <210> 11 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> AtGOX3-N1-Fwd <400> 11 gcatcgtctc atcggtctca tatggagata acaaacgtga tgga 44 <210> 12 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> AtGOX3-N1-Rev <400> 12 atgccgtctc attgtagcat cttcctaact cccgcttc 38 <210> 13 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> AtGOX3-C1-Fwd <400> 13 gactcgtctc aacaaatgct aagagatgag tttgagct 38 <210> 14 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> AtGOX3-C1-Rev <400> 14 atgccgtctc aggtctcagg atagtcttga tgtgggttcg gctgat 46 <210> 15 <211> 96 <212> DNA <213> Artificial Sequence <220> <223> NLS-2x-4a <400> 15 gcatcgtctc atcggtctca atcccgccaa aaaagaagag aaaggtagat ccaaaaaaga 60 agagaaaggt ataatgcctg agacctgaga cggcat 96 <210> 16 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> NLS-4a-Fwd1 <400> 16 agtgcatcgt ctcatcggtc tcaatcccg 29 <210> 17 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> NLS-4a-Rev1 <400> 17 gacatgccgt ctcaggtctc aggcatta 28 <210> 18 <211> 56 <212> DNA <213> Artificial Sequence <220> <223> ydCas9-N1-Fwd <400> 18 cagtccgtct catcggtctc atatggacaa gaagtattct atcggactgg cgatcg 56 <210> 19 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> ydCas9-N1-Rev <400> 19 cagtccgtct cacgtagtct gagagcctgt tgatatcaag ctcttggtcc 50 <210> 20 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> ydCas9-C1-Fwd <400> 20 cagtccgtct cttacgacgt ggacgcgatc gtccctcaga gcttcctc 48 <210> 21 <211> 66 <212> DNA <213> Artificial Sequence <220> <223> ydCas9-C1-Rev <400> 21 cagtccgtct caggtctcag gatgtgatga tgatgatgat gaccatcccc tccgagctgt 60 gagagg 66 <210> 22 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> NLS-4a-Fwd2 <400> 22 agtgcatcgt ctcatcggtc tcaatcccgc ca 32 <210> 23 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> NLS-4a-Rev2 <400> 23 gacatgccgt ctcaggtctc agccatta 28 <210> 24 <211> 75 <212> DNA <213> Artificial Sequence <220> <223> ydHygro-Fwd1 <400> 24 cagtccgtct catcggtctc atatgtctta gaaatacacc aaatcttggg gtaaaaagcc 60 tgaactcacc gcgac 75 <210> 25 <211> 75 <212> DNA <213> Artificial Sequence <220> <223> yHygro-Fwd1 <400> 25 cagtccgtct catcggtctc atatgtctta taaatacacc aaatcttggg gtaaaaagcc 60 tgaactcacc gcgac 75 <210> 26 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> ydHygro-Rev1 <400> 26 cagtccgtct caggtctcaa gaattccttt gccctcggac gagtgctgg 49 <210> 27 <211> 93 <212> DNA <213> Artificial Sequence <220> <223> Linker2 <400> 27 cagtccgtct catcggtctc attctcagga ggatctgaag aagaagaagg atcaggatcg 60 gcaggaggat catcctgaga cctgagacgg cat 93 <210> 28 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Linker2-Fwd1 <400> 28 agtgcatcgt ctcatcggtc tcattctc 28 <210> 29 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Linker2-Rev1 <400> 29 gacatgccgt ctcaggtctc aggatgatc 29 <210> 30 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> Hygro-gRNA -Fwd1 <400> 30 gcatgaagac ttgatcctta gaaatacacc aaatctgttt atgtcttcac t 51 <210> 31 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> Hygro-gRNA-Rev1 <400> 31 agtgaagaca taaacagatt tggtgtattt ctaaggatca agtcttcatg c 51 <210> 32 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> mRuby2-gRNA -Fwd1 <400> 32 gcatgaagac ttgatcagaa gaagaaggat caggatgttt atgtcttcac t 51 <210> 33 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> mRUby2-gRNA -Fwd1 <400> 33 agtgaagaca taaacatcct gatccttctt cttctgatca agtcttcatg c 51 <210> 34 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> AtGOX3-Rev1 <400> 34 atgccgtctc aggtctcacg gaagtcttga tgtgggttcg gctgat 46 <210> 35 <211> 99 <212> DNA <213> Artificial Sequence <220> <223> Linker1 <400> 35 tccggcgggt catcaggggg gagtagcgga tctgagactc cggggaccag cgaatccgct 60 accccagagt caagcggtgg tagttctggg ggaagttct 99 <210> 36 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> Linker1 Fwd <400> 36 agtgcatcgt ctcatcggtc tcatccggcg ggtcatcagg ggggagt 47 <210> 37 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> Linker1 Rev <400> 37 gacatgccgt ctcaggtctc aagaacttcc cccagaacta ccaccgct 48 <210> 38 <211> 56 <212> DNA <213> Artificial Sequence <220> <223> ydCas9-Fwd1 <400> 38 cagtccgtct catcggtctc attctgacaa gaagtattct atcggactgg cgatcg 56 <210> 39 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> ScTDH3 Pro-Fwd <400> 39 cagtccgtct catcggtctc atgatgacac aaggcaattg acccacgcat g 51 <210> 40 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> ScENO1 Ter-Rev <400> 40 cagtccgtct caggtctcaa tacatgggtg accaaaagag cgg 43 <210> 41 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> mRuby-Fwd1 <400> 41 gtgtccaaag gagaggagtt aatc 24 <210> 42 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> mRuby-Rev1 <400> 42 ttacttatac aattcatcca taccaccgcc 30 <210> 43 <211> 84 <212> DNA <213> Artificial Sequence <220> <223> Linker3 <400> 43 cagtccgtct catcggtctc attctcaggt ggaggcgggt ctggaggcgg gggtagtgga 60 tcatcctgag acctgagacg gcat 84 <210> 44 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> CRY1-Fwd1 <400> 44 gcatcgtctc atcggtctca tatgtctggt tctgtatctg gttgtggttc tggtggt 57 <210> 45 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> CRY1-Rev1 <400> 45 atgccgtctc accagaagtg cattgcttcc tttctcagag tc 42 <210> 46 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> CRY1-Fwd2 <400> 46 gactcgtctc actggctcgt gcttggtcac ctggatggag taatggtgat aaag 54 <210> 47 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> CRY1-Rev2 <400> 47 atgccgtctc acaggaaaag attcacgctt tcttccccgg cct 43 <210> 48 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> CRY1-Fwd3 <400> 48 gactcgtctc acctgaaatc tattggcctc agggagt 37 <210> 49 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> CRY1-Rev3 <400> 49 atgccgtctc aggtctgatc aaagaagaag taatgcttgg aacca 45 <210> 50 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> CRY1-Fwd4 <400> 50 gactcgtctc agacctgaag aagacgaaga gtcgtcactt aatttg 46 <210> 51 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> CRY1-Rev4 <400> 51 atgccgtctc aatgcctccg cttctttctc tccttccgct 40 <210> 52 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> CRY1-Fwd5 <400> 52 gactcgtctc agcatagtcc ccgagtggtc accagggtac tcagagca 48 <210> 53 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> CRY1-Rev5 <400> 53 atgccgtctc aggtctcagg atttacccgg tttgtgaaag ccgcctcca 49 <210> 54 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> CRY2-Fwd1 <400> 54 gcatcgtctc atcggtctca tatgaagatg gacaaaaaga ctatagtttg gtttagaagg 60 gacctaagga 70 <210> 55 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> CRY2-Rev1 <400> 55 atgccgtctc acaacgcatt gctcggtttc tcggcctcat tc 42 <210> 56 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> CRY2-Fwd2 <400> 56 gactcgtctc agttgttaac tagagcttgg tcaccaggat ggagcaat 48 <210> 57 <211> 66 <212> DNA <213> Artificial Sequence <220> <223> CRY2-Rev2 <400> 57 atgccgtctc aggtctcagg attcatttgc aaccattttt tcccaaactt gtagtaatct 60 gatcag 66

Claims (6)

활성산소종(reactive oxygen species)을 생산하는 효소를 코딩하는 폴리뉴클레오티드; 비활성화된 Cas9(CRISPR associated protein 9) 단백질 또는 이의 기능적 유사체를 코딩하는 폴리뉴클레오티드; 및 가이드 RNA 코딩 서열을 포함하는 재조합 벡터.Polynucleotides encoding enzymes that produce reactive oxygen species; Polynucleotides encoding an inactivated Cas9 (CRISPR associated protein 9) protein or a functional analog thereof; And a recombinant vector comprising a guide RNA coding sequence. 제1항에 있어서, 상기 활성산소종을 생산하는 효소는 글리콜산산화효소(glycolate oxidase) 또는 크립토크롬(cryptochrome)인 것을 특징으로 하는 재조합 벡터.The recombinant vector according to claim 1, wherein the enzyme producing the reactive oxygen species is glycolic oxidase or cryptochrome. 제1항 또는 제2항의 재조합 벡터로 형질전환된 숙주세포.A host cell transformed with the recombinant vector of claim 1. 제1항 또는 제2항의 재조합 벡터로 숙주세포를 형질전환시키는 단계를 포함하는 표적 유전자의 염기(base)의 돌연변이 유도 방법.A method of inducing mutation of a base of a target gene comprising transforming a host cell with the recombinant vector of claim 1. 제4항에 있어서, 상기 염기의 돌연변이 유도 방법은 활성산소종 매개 표적 유전자의 무작위 염기 돌연변이를 특징으로 하는 방법.5. The method of claim 4, wherein said method of inducing mutations of the bases is characterized by random base mutations of reactive oxygen species mediated target genes. 제1항 또는 제2항의 재조합 벡터를 유효성분으로 포함하는 염기 돌연변이 유도용 조성물.Base mutation inducing composition comprising the recombinant vector of claim 1 or 2 as an active ingredient.
KR1020180096931A 2018-08-20 2018-08-20 Method for inducing reactive oxygen species-mediated base mutation of target gene KR102208031B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180096931A KR102208031B1 (en) 2018-08-20 2018-08-20 Method for inducing reactive oxygen species-mediated base mutation of target gene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180096931A KR102208031B1 (en) 2018-08-20 2018-08-20 Method for inducing reactive oxygen species-mediated base mutation of target gene

Publications (2)

Publication Number Publication Date
KR20200021320A true KR20200021320A (en) 2020-02-28
KR102208031B1 KR102208031B1 (en) 2021-01-27

Family

ID=69638332

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180096931A KR102208031B1 (en) 2018-08-20 2018-08-20 Method for inducing reactive oxygen species-mediated base mutation of target gene

Country Status (1)

Country Link
KR (1) KR102208031B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014194190A1 (en) * 2013-05-30 2014-12-04 The Penn State Research Foundation Gene targeting and genetic modification of plants via rna-guided genome editing
KR20160147844A (en) * 2014-04-17 2016-12-23 그린 바이올로직스 리미티드 Targeted mutations
KR20170128137A (en) * 2016-05-13 2017-11-22 연세대학교 산학협력단 Generation and tracking of substitution mutations in the genome using a CRISPR/Retron system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014194190A1 (en) * 2013-05-30 2014-12-04 The Penn State Research Foundation Gene targeting and genetic modification of plants via rna-guided genome editing
KR20160147844A (en) * 2014-04-17 2016-12-23 그린 바이올로직스 리미티드 Targeted mutations
KR20170128137A (en) * 2016-05-13 2017-11-22 연세대학교 산학협력단 Generation and tracking of substitution mutations in the genome using a CRISPR/Retron system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ribeiro, LF et al., International Journal of Genomics, Vol.2018, Article ID 1652567, 12 pages (2018. 8. 2. 온라인 공개) *

Also Published As

Publication number Publication date
KR102208031B1 (en) 2021-01-27

Similar Documents

Publication Publication Date Title
KR102229968B1 (en) Expression constructs and methods for genetically engineering methyltrophic yeast
DK2588616T3 (en) PROCEDURE FOR MAKING A RELATIONSHIP OF INTEREST
BRPI0618937A2 (en) yeast cells producing lactic acid having non-functional l-or d-lactate: ferricitochrome c oxidoreductase gene
WO2015086798A2 (en) New method of selection of algal-transformed cells using nuclease
CN110791468B (en) Construction method and application of mycobacterium genetic engineering bacteria
CN112481309B (en) Application of Ago protein, composition and gene editing method
CN112126657A (en) Plasmid for transformation support, method for producing transformed product using same, and transformation method
CN116917485A (en) Recombinant microorganism expressing fucosyltransferase and method for producing 2&#39; -fucosyllactose using the same
KR101262999B1 (en) Recombinant yeast by overexpression of pyruvate decarboxylase and alcohol dehydrogenase for improving productivity of bioethanol and Method for producing ethanol using the same
CN109337904A (en) Genome editing system and method based on C2c1 nuclease
KR20190047914A (en) Recombinant vector for microalgae transformation comprising sequence derived from nitrate reductase and uses thereof
CN114008070A (en) Whole genome rationally designed mutations leading to increased lysine production in E.coli
KR102208031B1 (en) Method for inducing reactive oxygen species-mediated base mutation of target gene
CN114806913B (en) High-yield succinic acid yeast engineering strain with mitochondria positioning reduction TCA pathway, construction method and application thereof
KR102151064B1 (en) Gene editing composition comprising sgRNAs with matched 5&#39; nucleotide and gene editing method using the same
CN116589541A (en) FNR mutant and application thereof in gene expression regulation and control
CN113249240B (en) Saccharomyces cerevisiae for high yield of hydroxytyrosol and construction method thereof
US20210403889A1 (en) Crispr-cas system for clostridium genome engineering and recombinant strains produced thereof
CN116761890A (en) Recombinant bacillus microorganism and method for producing human milk oligosaccharide using the same
KR102014851B1 (en) Recombinant yeast strains expressing the mutated squalene monoxygenase with reduced feedback regulation and method for overproducing sterol precursors using the same
CN113174375B (en) ARO3 protein mutant and application thereof
KR102302827B1 (en) Compositon for inhibiting gene expression using CRISPRi
WO2006043555A1 (en) Reductase mutant for forming biopolymer
KR20240057506A (en) A recombinant Corynebacterium having enhanced secreted production efficiency of target protein through enhanced generation of ATP
KR20220034218A (en) E. coli-based recombinant strain and its construction method and application

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant