WO2006043555A1 - Reductase mutant for forming biopolymer - Google Patents

Reductase mutant for forming biopolymer Download PDF

Info

Publication number
WO2006043555A1
WO2006043555A1 PCT/JP2005/019125 JP2005019125W WO2006043555A1 WO 2006043555 A1 WO2006043555 A1 WO 2006043555A1 JP 2005019125 W JP2005019125 W JP 2005019125W WO 2006043555 A1 WO2006043555 A1 WO 2006043555A1
Authority
WO
WIPO (PCT)
Prior art keywords
enzyme
amino acid
coa reductase
seq
mutant
Prior art date
Application number
PCT/JP2005/019125
Other languages
French (fr)
Japanese (ja)
Inventor
Souichi Morikawa
Yuji Okubo
Takahisa Nakai
Keiji Matsumoto
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to JP2006543006A priority Critical patent/JPWO2006043555A1/en
Publication of WO2006043555A1 publication Critical patent/WO2006043555A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids

Definitions

  • the present invention reduces poly (3-ketoalkanoic acid-coenzyme A complexes (hereinafter referred to as 3_ketosacyl-CoA) to produce poly (3-hydroxyalkanoic acid), which is a biopolymer.
  • 3_ketosacyl-CoA various 3-hydroxyalkanoic acid-coenzyme A complexes
  • 3-hydroxyacyl-CoA which are monomers constituting the 3-hydroxyalkanoic acid
  • the present invention also provides a 3-ketoasinole-CoA reductase mutant having an enzyme activity superior to that of the wild-type enzyme obtained by the modified method, a DNA encoding the enzyme mutant, and the DNA.
  • the present invention relates to a vector, a transformed cell transformed with this vector, a method for producing the enzyme variant, and a method for producing polyhydroxyalkanoic acid using the enzyme variant or the transformed cell.
  • Polyhydroxyalkanoic acid has been discovered as a polyester-type organic molecular polymer produced by microorganisms. In recent years, it has been industrially produced as a biodegradable environmentally friendly material or biocompatible material, and has a wide variety. Attempts have been made to use it in various industries.
  • the monomer unit constituting the polyhydroxyalkanoic acid is a general name 3-hydroxyalkanoic acid, specifically 3-hydroxybutyric acid, 3-hydroxyvaleric acid, 3-hydroxyhexanoic acid, 3-hydroxyoctane.
  • a polymer molecule is formed by homopolymerization or copolymerization of an acid or a longer alkyl chain, 3-hydroxyalkane acid.
  • Non- Patent Document 1 It is known that the properties of polyhydroxyalkanoic acid as a polymer, that is, the physicochemical properties such as melting point, glass transition point, crystallization rate, and elongation strength differ depending on the content of monomer species constituting the polymer.
  • a group of enzymes specifically involved in polyhydroxyalkanoic acid biosynthesis are: It consists of two groups: Pha enzymes that use various hydroxyalkanoic acid monomers as substrates, and Phb enzymes that mainly use hydroxybutyric acid monomers as substrates. Individual enzymes constituting these enzyme groups are enzyme families having similar amino acid sequences for each microorganism species, but the details of amino acid sequences are different (Non-patent Document 1).
  • Patent Document 1 JP 2002-199890
  • Non-Patent Document 1 Journal of Japan Oil Chemists' Society, 1999, 48 ⁇ , 1353-1364
  • Non-Patent Document 2 Fermentation Handbook (Kyoritsu Shuppan), 2001, 374-378
  • Non-Patent Document 3 J. Bacteriol., 1998, 180 ⁇ , 6459-6467
  • the present invention is a rational enzyme modification for improving the ability to use a coenzyme and catalytic activity of a PhbB enzyme and improving the production of 3-hydroxyacyl-CoA, which is a raw material for polyhydroxyalkanoic acid.
  • the purpose is to provide a method.
  • the present invention also provides a PhbB enzyme mutant that has improved the catalytic activity of a wild-type enzyme by the modification method, a DNA encoding the PhbB enzyme mutant, and a transformed cell into which the enzyme has been introduced.
  • a method for producing 3-hydroxyacyl-CoA and polyhydroxyalkanoic acid using transformed cells is proposed. The purpose is to provide.
  • the present invention is an enzyme modification method for converting the catalytic activity of an enzyme, wherein one or a plurality of arbitrary amino acid residues at a preselected site of a PhbB enzyme are substituted, inserted or deleted.
  • the present invention relates to an enzyme modification method characterized by controlling the magnitude of the binding energy of nicotinamide coenzyme molecules and controlling the reduction reaction activity catalyzed by the enzyme by combining them.
  • nicotinamide coenzyme molecules are ⁇ -nicotinamide adenine dinucleotide ( ⁇ DH), ⁇ nicotinamide adenine dinucleotide phosphate (NADPH), and their oxidized forms (hereinafter, unless otherwise specified) Called coenzyme).
  • the present invention also relates to a 3 keto-asinole CoA reductase comprising the amino acid sequence represented by SEQ ID NO: 1 (PhbB enzyme), an enzyme modification method for an enzyme having 30% or more sequence homology with the enzyme,
  • the present invention relates to an enzyme variant modified by a method and a method of using the enzyme variant.
  • the present invention is a PhbB enzyme having a sequence homology of 30% or more, preferably 50% or more, more preferably 70% or more with respect to the PhbB enzyme consisting of the amino acid sequence represented by SEQ ID NO: 1.
  • the coenzyme molecule binding site is Met-12, Gly_13, Ala_32, Cys-34, Gly-35, among the amino acid residue sites of PhbB enzyme consisting of amino acid sequence IJ represented by SEQ ID NO: 1.
  • Enzyme modification that performs mutation treatment on amino acid residues that occupy three-dimensional structures equivalent to Pro-36, Asn-37, Ser-38, Pro-39, Arg-40, Arg-41, and Ala-57 Regarding the method.
  • the present invention also relates to the above-described enzyme modification method, which is a wild-type PhbB enzyme derived from the above-mentioned PhbB enzyme strength S, Ralstonia eutropha.
  • the present invention provides an enzyme that is obtained from a wild-type PhbB enzyme by substitution, insertion or deletion of amino acid residues, or a combination thereof, and is superior to the enzyme activity exhibited by the wild-type enzyme. More preferably, the present invention relates to a PhbB enzyme variant, wherein the wild-type PhbB enzyme is a PhbB enzyme derived from Ralstonia eutropha.
  • the present invention relates to a PhbB enzyme mutant obtained by the enzyme modification method, a DNA encoding the enzyme mutant, a vector having the DNA, and a transformed cell transformed with the vector.
  • the present invention relates to a method for producing a PhbB enzyme mutant comprising a step of culturing and proliferating the transformed cell.
  • the present invention relates to a method for producing an optically active alcohol comprising a step of reacting the enzyme mutant with various ketones.
  • the present invention relates to a method for producing 3-hydroxyasynole CoA, which comprises a step of reacting the enzyme mutant or the transformed cell with 3-ketoacinole CoA.
  • the present invention relates to a method for producing polyhydroxyalkanoic acid, comprising the step of culturing and growing the transformed cell or the step of reacting the enzyme mutant with 3-ketosil-CoA.
  • 3-ketoacyl-CoA reductase means 3-ketoacyl-CoA as a reaction substrate and nicotinamide coenzyme as a reducing agent.
  • An enzyme that catalyzes the reaction of asymmetric reduction of CoA to the corresponding 3-hydroxylacyl-CoA commonly referred to as the PhbB enzyme.
  • 3-ketoasyl-CoA is 3_ketobutanol_CoA, 3-ketopentanoylol-CoA, 3-ketohexanoyl_CoA, or 3-ketofatty acid_CoA having a longer alkyl chain, each alone Or a mixture of these compounds.
  • 3-Hydroxylacyl CoA means 3-hydroxybutanol _CoA, 3-hydroxypentanoylol CoA, 3-hydroxyhexanol _CoA, or a longer alkyl chain length 3-hydroxy fatty acid CoA. A compound or a mixture of these compounds.
  • amino acids, peptides, and proteins are represented by the following abbreviations adopted by the IUPAC- IUB Biochemical Nomenclature Committee (CBN). Unless otherwise specified, the amino acid residue sequences of peptides and proteins are expressed from the N-terminus to the C-terminus from the left end to the right end, and in the N-terminal order. The connection of amino acid residues is represented by “one”. For example, Ala_Gly_Leu. When the same amino acid residue continues, it is expressed, for example, as (Ala) 3, which is synonymous with Ala-Ala-Ala.
  • an enzyme "mutant" has an amino acid sequence in which at least one amino acid contained in the amino acid sequence of the enzyme is substituted, inserted or deleted, and has at least the activity of the enzyme.
  • Amino acid mutations used in the design of mutants include amino acid substitutions and amino acid insertions or deletions.
  • Amino acid substitution refers to substituting the original peptide with one or more amino acids.
  • An amino acid insertion refers to the insertion of one or more amino acids into the original peptide chain.
  • Deletion of amino acids refers to the deletion of one or more amino acids from the original peptide.
  • the method for performing amino acid substitution or the like is not limited to the force including changing the codon of the DNA sequence encoding the amino acid in a technique using chemical synthesis or genetic engineering.
  • the present inventors designed an amino acid mutation that can enhance the binding ability between the enzyme and the coenzyme.
  • This design consists of identifying the binding site for the coenzyme molecule of the PhbB enzyme, determining the amino acid residue that interacts with the coenzyme molecule in the vicinity of the binding site, and the coenzyme molecule for the determined residue. It includes a step of designing a mutation to control the magnitude of the binding energy.
  • the step of specifying the coenzyme molecule binding site of the PhbB enzyme is a result of multiple alignment of the amino acid sequences of related enzymes having high homology with the enzyme and known steric structures. And the results of modeling the three-dimensional structure of the enzyme were analyzed.
  • the step of determining amino acid residues that interact with the coenzyme molecule of the PhbB enzyme was performed by modeling the three-dimensional structure of the enzyme and analyzing its three-dimensional structure.
  • the step of designing the mutation for controlling the magnitude of the binding energy of the coenzyme molecule with respect to the determined residue is a method of calculating an optimized solution of the multiple mutant protein amino acid sequence (Japanese Patent Laid-Open No. 2001-184381), etc. Was carried out by computational chemical analysis.
  • PhbB enzyme mutant obtained by the modification method.
  • the PhbB enzyme consisting of the amino acid sequence represented by SEQ ID NO: 1 is a wild-type PhbB enzyme derived from Ralstonia eutropha.
  • the catalytic activity of the enzyme can be obtained, for example, by performing an enzyme-catalyzed reaction using acetacetyl CoA as a substrate and NADPH or NADH as a coenzyme, and measuring the change in coenzyme concentration during the reaction process by absorbance analysis. By applying the measured measurement data to the Michaelis-Menten equation.
  • the amino acid residue part of the PhbB enzyme comprising the amino acid sequence represented by SEQ ID NO: 1 is selected, Met-12 is Sed, Gly-13 is Arg, and Ala-32 is Vali. Cys-34 to Asp, Gly-35 to lie or Arg, Pro-36 to Ser, Asn-37 to Lys, Ser-38 to Glu, Pro-39 to Asp, Arg-40
  • the ability to bind the enzyme to the coenzyme is improved, and the catalytic activity is increased.
  • An improved PhbB enzyme variant is performed by performing at least one amino acid substitution of Ala or Glu, Arg-41 to Ala, and Ala-57 to Tyr.
  • PhbB enzyme or a PhbB enzyme variant consisting of the amino acid sequences represented by SEQ ID NOs: 2, 3, 4, 5 and 6, respectively.
  • Table 1 shows a comparison between the amino acid sequences of the mutants designed for these mutants and the amino acid sequence of the wild-type PhbB enzyme.
  • a 3-ketocil having a sequence homology of 30% or more, preferably 50% or more, more preferably 70% or more with respect to the PhbB enzyme consisting of the amino acid sequence represented by SEQ ID NO: 1.
  • SEQ ID NO: 1 CoA reductase, Met-12, Gly-13, Ala-32, Cys-34, Gly-35, Pro-36, Asn-37, Ser-38, Pro-39, Arg-40, Arg-41
  • the catalytic activity is improved by substituting, inserting or deleting one or more amino acids for amino acid residues that occupy the same position as that of the amino acid residue of Ala 57.
  • An enzyme modification method characterized by obtaining a reductase mutant is also included.
  • PhbB enzyme variant obtained by the said enzyme modification method is also mentioned.
  • Sequence homology can be determined using the programs FASTA (Perason WR et al., Genomics, 46, 24 —36 (1997)) and BLAST (Altschul, Stephen F. et al., Nucleic Acids Res. 25, 3389— 3402. (1997)) can be determined by amino acid sequence homology analysis.
  • the amino acid mutation for improving catalytic activity according to the present invention is also effective for an enzyme having sufficient sequence homology to the PhbB enzyme consisting of the amino acid sequence represented by SEQ ID NO: 1.
  • embodiments of the present invention include DNA encoding the PhbB enzyme variant obtained by the enzyme modification method, a vector having the DNA, and a transformed cell transformed with the vector.
  • the introduction of mutations by recombinant DNA technology for example, the presence of appropriate restriction enzyme recognition sequences on both sides of the target site where mutations are desired in the wild-type PhbB enzyme gene.
  • the restriction enzyme is used to cleave it, remove the region containing the site where mutation is desired, and then insert the DNA fragment mutated into the target site by chemical synthesis or the like. Can do.
  • the introduction of site-specific mutation by PCR involves the use of a mutation primer in which a mutation of interest is introduced into a desired site to be introduced into the wild-type PhbB enzyme gene, and the sequence of one end of the gene.
  • Amplification primer containing no mutation at the terminal site of the other amplify the other side, anneal the two obtained amplification fragments, and then PCR with the two amplification primers It can be carried out.
  • the vector of the present invention can be obtained by ligating (inserting) the DNA encoding the aforementioned PhbB enzyme mutant into an appropriate vector.
  • the transformed cell of the present invention can be obtained by introducing the recombinant vector of the present invention into a host so that the gene of the present invention can be expressed.
  • the vector for inserting the gene is not particularly limited as long as it can autonomously replicate in the host, and plasmid DNA or phage DNA can be used as the vector.
  • plasmid DNA such as pBR322, pUC18, and pBluescript II
  • phage DNA such as EMBL3, ⁇ 13, and ⁇ gtl l
  • YEpl3 when using yeast as the host the YCp50 like
  • pcDNAI the case of using a plant cell as the host cell, pB 1121, the ⁇ like
  • the case of using animal cells as the host can be used pcDNAI, the pcDNAl / a m p such as a vector.
  • the host is not particularly limited, and examples thereof include bacteria such as Escherichia coli, yeast, plant cells, and animal cells.
  • the transformed cell of the present invention can be obtained by introducing the vector into a host cell.
  • the method for introducing a recombinant vector into bacteria include a method using calcium ions and an electopore position method.
  • the method for introducing the recombinant vector into yeast include the electopore position method, the free mouth plast method, and the lithium acetate method.
  • Examples of the method for introducing a recombinant vector into a plant cell for example, Examples include the Globataterum infection method, the particle gun method, and the polyethylene glycol method.
  • the method for introducing a recombinant vector into animal cells include the electoporation method and the calcium phosphate method.
  • transformed cells that produce polyhydroxyalkanoic acid are obtained by a method described in a method for transforming E. coli (JP 2002-199890) or a method for transforming yeast (WO03Z033707). Obtainable.
  • the method for producing a PhbB enzyme variant of the present invention includes the step of culturing and growing the transformed cell, that is, using the transformed cell.
  • the transformed cells are cultured in a medium, and the enzyme variant of the present invention is produced and accumulated in the culture (cultured cells or culture supernatant), and the enzyme variant is collected from the culture.
  • the PhbB enzyme mutant of the present invention can be produced.
  • the method of culturing the transformed cell of the present invention in a medium is performed according to a usual method used for culturing a host.
  • Examples of the medium for culturing transformed cells obtained by using bacteria such as E. coli as a host include complete medium or synthetic medium such as LB medium, M9 medium and the like.
  • the enzyme variant of the present invention can be accumulated in the microbial cells.
  • the enzyme mutant can be recovered by, for example, centrifuging the culture obtained by the above-described culture method (cells are crushed with a sonicator or the like).
  • the recovered enzyme mutant is used alone or appropriately combined with affinity mouth chromatography, cation or anion exchange chromatography, gel filtration and the like. Can be done by.
  • Confirmation that the obtained purified substance is the target enzyme can be carried out by an ordinary method such as SDS polyacrylamide gel electrophoresis, Western blotting or the like.
  • the method for producing an optically active alcohol of the present invention uses the above enzyme mutant. Specifically, the enzyme mutant and various asymmetric ketones are reacted under appropriate conditions. It is a method including the process to make.
  • Appropriate reaction conditions include, for example, reaction conditions described in enzyme modification methods and oxidoreductase mutants (Japanese Patent Laid-Open No. 2003-804653).
  • the method for producing 3-hydroxyasinole CoA uses the above-mentioned enzyme mutant or transformed cell. Specifically, the enzyme mutant or transformed cell and 3-keto-asinole CoA are combined with each other. It is a method including a step of reacting under appropriate conditions. In this method, 3-hydroxyasinole-CoA can be produced as an enzyme reaction product.
  • Appropriate reaction conditions include, for example, the reaction conditions described in the literature on acetacetyl CoA reductase (FEMS Microbiology Letters vol. 52 (1988) pp. 259-264).
  • the method for producing a polyhydroxyalkanoic acid of the present invention includes the step of using the transformed cell, that is, the step of culturing and growing the transformed cell.
  • the transformed cells obtained by the above-described method are mixed with an appropriate medium, that is, a sufficient amount of sugar such as gnolecose, saturated fatty acid glyceride and the like.
  • an appropriate medium that is, a sufficient amount of sugar such as gnolecose, saturated fatty acid glyceride and the like.
  • Polyhydroxyalkanoic acid which is a polyester, can be produced by culturing in a medium containing the same.
  • polyhydroxyalkanoic acid S the following general formula (1):
  • R represents an alkyl group having 1 to 20 carbon atoms
  • n represents the number of monomer units of the polymer.
  • the carbon number of the alkyl group may be the same or different in the polymer. However, it is preferably a compound represented by
  • Examples of the alkyl group having 1 to 20 carbon atoms of R include a methyl group, an ethyl group, an n-propyl group, an iso group.
  • a propyl group, a butyl group, a pentyl group, a hexyl group, an octyl group, a decyl group, a tetradecyl group, an octadecyl group, etc. are mentioned, and a methyl group or an n-propyl group is preferable.
  • the intracellular content of the polyester accumulated in the cells and the composition of the polyester were determined by the method of Kato et al. (Appl. Microbiol. Biotechnol., 45 ⁇ , 363 (1996); Bull. Chem. Soc., 69 After extraction from cultured cells using an organic solvent such as chlorohonorem, the extract can be measured and analyzed by subjecting it to gas chromatography, NMR, or the like.
  • the query BLAS T (Altschul, Stephen F. et al., Nucleic Acids Res. 25, using the amino acid sequence of the wild-type PhbB enzyme derived from Ralstonia eu tropha consisting of the amino acid sequence shown in SEQ ID NO: 1 as a query, 3389-3402 (1 997)) was used to search and extract highly homologous amino acid sequences from protein primary structure data listed in the Protein Data Bank (PDB).
  • gnorecose dehydrogenase (PDB code: 1G CO) was selected as the sequence having the highest homology with the wild-type PhbB enzyme, and the atomic coordinate data of the enzyme (1GCO) listed in the PDB
  • the amino acids using Swiss-PDUV iewer (Swiss Institute of Biomormatics (SI B), ExPASy Molecular Biology Server (http://www.expasy.ch)) Residue substitution, insertion, and deletion operations were performed to obtain a three-dimensional structural model of wild-type PhbB enzyme (synonymous with atomic coordinate data).
  • the amino acid residue positions that can be expected to improve NADH binding ability from the identified amino acid residue positions Residue species and amino acid residue positions and residue species that are expected to improve NA DPH binding ability were selected and used as the amino acid sequence of the Ph bB enzyme mutant.
  • the PhbB enzyme mutated amino acid sequence is as shown in SEQ ID NOs: 2 to 6, and the comparison between the mutated amino acid sequence group and the wild-type amino acid sequence is as shown in Table 1 above.
  • the wild type phbB gene consisting of the base sequence shown in SEQ ID NO: 7 was fully synthesized and amplified with primers consisting of the base sequences shown in SEQ ID NOs: 8 and 9.
  • the wild-type phbB gene was cloned into the Ndel / Pstl site of plasmid pUCNT-2 in which the Hindlll site in the multi-cooling site of plasmid pUCNT (described in W094 / 03613) was destroyed by the blunt end method.
  • Overlapping PCR reaction was performed by mixing 150 pmoles of the synthetic gene consisting of the nucleotide sequences set forth in SEQ ID NOs: 10 and 11.
  • the polymerase pyrobest manufactured by Takara was used, and the attached buffer and dNTP were used.
  • the reaction volume was 0.03 ml.
  • the reaction conditions were 96 ° C for 5 minutes once, 96 0 2 minutes '60 0 times 30 less' 72 0 times 30 times less cyclone 12 times.
  • About 15 Obp of DNA was excised by agarose electrophoresis and digested with Ndel and Hindlll. This gene fragment was cloned into pUCNT-2 containing the wild-type gene cleaved with the same enzyme to create a mutant M-3 gene.
  • mutant M— Mutant M-4 gene was prepared in the same way as when 3 genes were created.
  • mutant M_8 gene was prepared in the same manner as when the mutant M-3 gene was prepared.
  • mutant M_2 gene was prepared in the same manner as when the mutant M-3 gene was prepared.
  • a mutant M_2 gene was prepared in the same manner as when the mutant M-3 gene was prepared.
  • the pUCNT-2 containing this mutant M-2 gene using a primer consisting of the base sequence described in SEQ ID NOs: 15 and 16, the amino acid of the mutant M_2 of 57 A mutant M-9 gene in which alanine was converted to tyrosine was created.
  • the quick change method followed the Stratagene protocol.
  • the alanine of the amino acid sequence 57 of the mutant M-4 was converted by the quick change method using a primer consisting of the nucleotide sequence of SEQ ID NOs: 15 and 16.
  • a mutant M-11 gene converted to tyrosine was created.
  • Each of the plasmids prepared above was used to transform E. coli JM-109 cells (Takara).
  • the resulting JM-109 cells containing either the wild-type phbB gene or the phbB mutant gene were cultured overnight in LB medium containing ampicillin. 1 ml of the main culture was inoculated into 2YT medium (10 ml, containing ampicillin) containing isopropinole 1_thio 1 ⁇ _D_galactoside (IPTG) (0.2 mM) and cultured at 30 ° C. for 8 hours.
  • the cells were collected by centrifugation, and diluted to 0.5 ml of potassium phosphate buffer (10 mM, pH 7.0) containing ethylenediamine tetraacetic acid (EDTA) (0.5 mM) and dithiothreitol (DTT) (ImM). Resuspended. Cells are disrupted by ultrasonic disruption and centrifuged to remove the supernatant fraction. Fractionated into soluble fractions. When each fraction was analyzed by SDS electrophoresis, it was found that all of the supernatant fractions of the cells into which the mutants M-3, 4, 8, 9, 11 were introduced were almost identical to the wild-type PhbB enzyme. Protein expression, which was thought to be induced by IPTG, was observed at a molecular weight of 25,000. The expression level was almost the same as the wild type. Accumulation in the insoluble fraction was not observed in all mutants.
  • potassium phosphate buffer 10 mM, pH 7.0
  • EDTA ethylenediamine
  • the composition of the reaction solution was a Tris-HCl buffer solution containing NADH or NADPH (from Le oriental Oriental Yeast Co.) at a concentration of 0.02 to 0.5 mM as a coenzyme and acetocetyl CoA (0.05 mM) as a substrate ( 50 mM, pH 8.0) 0.5 ml, and 0.01 ml of appropriately diluted bacterial cell disruption solution was added to start the reaction.
  • the dilution amount of the cell disruption solution was determined as a sufficient amount to obtain the initial reaction rate by preliminary experiments.
  • the dilution was about 20 to 250 times.
  • the reaction was monitored for 3 minutes using a spectrophotometer and the decrease in absorbance at a wavelength of 340 nm was followed for 3 minutes to measure the initial rate of the reaction.
  • a spectrophotometer cell with an optical path length of about 0.4 cm was used.
  • the initial reaction rate when the coenzyme concentration was changed by 4 to 5 points was plotted and fitted to the Michaelis-Menten equation by the least square method to obtain various parameters. The results are shown in Table 2.
  • Vmax and Km are enzyme catalytic constants according to Michaelis Menten's formula.
  • NADPH or NADH is used as a coenzyme and acetoacetyl CoA is used as a substrate
  • wild-type PhbB enzyme SEQ ID NO: 1
  • PhbB enzyme is used as a substrate
  • the maximum reaction rate and coenzyme binding constant of the mutant SEQ ID NO: 2 to 6) are shown respectively.
  • the activity value (VmaxZKm) is Based on the change in absorbance ( ⁇ D) 340 nm per minute per ml of enzyme solution under the reaction conditions, it was calculated by the above method using the Michaelis-Menten equation.
  • N.S. indicates that saturation was not reached in the measured concentration range.
  • mutants M_4, M_8 and M_11 had improved activity when NADPH was used as a coenzyme compared to the wild type.
  • Mutants M_3, M_4, M-9 and M_11 showed improved activity when NADH was used as a coenzyme compared to the wild type.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

A method of improving the ability to utilize a coenzyme and the catalytic activity of an enzyme, which is a wild type PhbB enzyme originating in Ralstonia eutropha or an enzyme having a sequential homology of at least 30% therewith, by mutating amino acid residues located at positions steric structurally equivalent to Met-12, Gly-13, Ala-32, Cys-34, Gly-35, Pro-36, Asn-37, Ser-38, Pro-39, Arg-40, Arg-41 and Ala-57 of the wild type PhbB enzyme. A method of producing a 3-hydroxyacyl-CoA and an optically active alcohol by using the PhbB enzyme mutant obtained by the above method as a catalyst. A method of producing a polyhydroxyalkanonic acid which involves the step of culturing and proliferating transformed cells containing a vector having a DNA encoding the above enzyme mutant or the step of reacting the enzyme mutant with a 3-ketoacyl-CoA.

Description

明 細 書  Specification
生体高分子生成のための還元酵素変異体  Reductase variants for biopolymer production
技術分野  Technical field
[0001] 本発明は、種々の 3—ケトアルカン酸—補酵素 A複合体(以下、 3 _ケトァシル— Co Aと称する)を還元することにより、生体高分子であるポリ一 3—ヒドロキシアルカン酸( 以下、ポリヒドロキシアルカン酸と称する)を構成するモノマーである種々の 3—ヒドロ キシアルカン酸—補酵素 A複合体 (以下、 3—ヒドロキシァシル— CoAと称する)を与 えることのできる 3—ケトアシノレ一 CoA還元酵素の補酵素利用能力を改変して、該還 元酵素の触媒活性を制御するための酵素改変方法に関する。また、本発明は、該改 変方法により得られる、野生型酵素に比して優れた酵素活性を有する 3—ケトアシノレ 一 CoA還元酵素変異体、該酵素変異体をコードする DNA、この DNAを有するベタ ター、このベクターで形質転換された形質転換細胞、該酵素変異体の製造方法、な らびに、該酵素変異体または該形質転換細胞を用いるポリヒドロキシアルカン酸の製 造方法に関する。  [0001] The present invention reduces poly (3-ketoalkanoic acid-coenzyme A complexes (hereinafter referred to as 3_ketosacyl-CoA) to produce poly (3-hydroxyalkanoic acid), which is a biopolymer. Hereinafter, various 3-hydroxyalkanoic acid-coenzyme A complexes (hereinafter referred to as 3-hydroxyacyl-CoA), which are monomers constituting the 3-hydroxyalkanoic acid), can be provided. (1) It relates to an enzyme modification method for controlling the catalytic activity of a reductase by modifying the coenzyme utilization ability of CoA reductase. The present invention also provides a 3-ketoasinole-CoA reductase mutant having an enzyme activity superior to that of the wild-type enzyme obtained by the modified method, a DNA encoding the enzyme mutant, and the DNA. The present invention relates to a vector, a transformed cell transformed with this vector, a method for producing the enzyme variant, and a method for producing polyhydroxyalkanoic acid using the enzyme variant or the transformed cell.
背景技術  Background art
[0002] ポリヒドロキシアルカン酸は、微生物が生成するポリエステル型有機分子ポリマーとし て発見され、近年では生分解性を有する環境調和型素材または生体適合型素材と して工業的に生産され、かつ多様な産業へ利用する試みが行われている。そのポリヒ ドロキシアルカン酸を構成するモノマー単位は、一般名 3—ヒドロキシアルカン酸であ つて、具体的には 3—ヒドロキシ酪酸、 3—ヒドロキシ吉草酸、 3—ヒドロキシへキサン 酸、 3—ヒドロキシオクタン酸、あるいはよりアルキル鎖の長レ、 3—ヒドロキシアルカン 酸が、単重合もしくは共重合することにより、ポリマー分子が形成されている。ポリヒド ロキシアルカン酸のポリマーとしての特性、すなわち融点、ガラス転移点、結晶化率、 伸び強度といった物理化学的特性は、ポリマーを構成するモノマー種含有率の違い により異なることが知られている(非特許文献 1)。  [0002] Polyhydroxyalkanoic acid has been discovered as a polyester-type organic molecular polymer produced by microorganisms. In recent years, it has been industrially produced as a biodegradable environmentally friendly material or biocompatible material, and has a wide variety. Attempts have been made to use it in various industries. The monomer unit constituting the polyhydroxyalkanoic acid is a general name 3-hydroxyalkanoic acid, specifically 3-hydroxybutyric acid, 3-hydroxyvaleric acid, 3-hydroxyhexanoic acid, 3-hydroxyoctane. A polymer molecule is formed by homopolymerization or copolymerization of an acid or a longer alkyl chain, 3-hydroxyalkane acid. It is known that the properties of polyhydroxyalkanoic acid as a polymer, that is, the physicochemical properties such as melting point, glass transition point, crystallization rate, and elongation strength differ depending on the content of monomer species constituting the polymer (non- Patent Document 1).
[0003] 微生物中においてポリヒドロキシアルカン酸が生合成される反応経路の一部はすで に解明されている。ポリヒドロキシアルカン酸生合成に特に関与する酵素の一群は、 多様なヒドロキシアルカン酸モノマーを基質とする Pha酵素群、および主としてヒドロ キシ酪酸モノマーを基質とする Phb酵素群、の 2群からなる。これら酵素群を構成す る個々の酵素は、微生物種ごとに似通ったアミノ酸配列を持つ酵素ファミリーである が、細部のアミノ酸配列は異なっている(非特許文献 1)。 [0003] Some of the reaction pathways for biosynthesis of polyhydroxyalkanoic acids in microorganisms have already been elucidated. A group of enzymes specifically involved in polyhydroxyalkanoic acid biosynthesis are: It consists of two groups: Pha enzymes that use various hydroxyalkanoic acid monomers as substrates, and Phb enzymes that mainly use hydroxybutyric acid monomers as substrates. Individual enzymes constituting these enzyme groups are enzyme families having similar amino acid sequences for each microorganism species, but the details of amino acid sequences are different (Non-patent Document 1).
[0004] ポリヒドロキシアルカン酸を工業的に生産し活用するためには、微生物による生産量 を増加させることについて、技術開発を行う必要がある。この要件においては、先述 したポリエステル生合成経路を構成する酵素群を、他種微生物の対応する酵素と置 換したり、あるいは野生型酵素に突然変異を加えることにより、ポリエステルの産生量 を増加させる試みが行われ、一定の成果が得られている(特許文献 1、非特許文献 2 、 3)。 [0004] In order to industrially produce and utilize polyhydroxyalkanoic acid, it is necessary to develop technology for increasing production by microorganisms. In this requirement, the amount of polyester produced can be increased by replacing the enzymes that make up the polyester biosynthetic pathway described above with corresponding enzymes from other microorganisms or by mutating wild-type enzymes. Attempts have been made and certain results have been obtained (Patent Document 1, Non-Patent Documents 2 and 3).
し力 ながら、ポリヒドロキシアルカン酸の実用的な工業的生産を行うには、それら酵 素群のさらなる改良による、微生物による生産量の向上と効率化が必要である。特に ポリヒドロキシアルカン酸を構成するモノマー原料である 3—ヒドロキシァシルー CoA を触媒的に生産する 3—ケトアシノレ— CoA還元酵素(以下、 PhbB酵素と称する)の 改良により、生体内でのモノマー原料の生産量を向上させ、もってポリマー生産量を 向上させることが必要である。  However, in order to carry out practical industrial production of polyhydroxyalkanoic acid, it is necessary to improve the production amount and efficiency of microorganisms by further improving these enzyme groups. In particular, by improving 3-ketoacinole-CoA reductase (hereinafter referred to as PhbB enzyme) that produces 3-hydroxyacyl-CoA, which is a monomer raw material that constitutes polyhydroxyalkanoic acid, as a monomer raw material, It is necessary to improve the production volume and thus the polymer production volume.
特許文献 1 :特開 2002— 199890号公報  Patent Document 1: JP 2002-199890
非特許文献 1 :日本油化学会誌、 1999年、 48卷、 1353— 1364頁  Non-Patent Document 1: Journal of Japan Oil Chemists' Society, 1999, 48 卷, 1353-1364
非特許文献 2 :発酵ハンドブック(共立出版)、 2001年、 374— 378頁  Non-Patent Document 2: Fermentation Handbook (Kyoritsu Shuppan), 2001, 374-378
非特許文献 3 :J. Bacteriol. 、 1998年、 180卷、 6459— 6467頁  Non-Patent Document 3: J. Bacteriol., 1998, 180 卷, 6459-6467
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 本発明は、 PhbB酵素の補酵素利用能力と触媒活性を改良し、ポリヒドロキシアル力 ン酸の原料である 3—ヒドロキシァシルー CoAの生産量を向上させるための合理的な 酵素改変方法の提供を目的とする。また、本発明は、該改変方法により野生型酵素 の触媒活性を改良した PhbB酵素変異体、該 PhbB酵素変異体をコードする DNAお よびそれを導入した形質転換細胞を提供し、それら酵素変異体または形質転換細胞 を用いた 3—ヒドロキシァシル— CoAおよびポリヒドロキシアルカン酸の製造方法を提 供することを目的とする。 [0005] The present invention is a rational enzyme modification for improving the ability to use a coenzyme and catalytic activity of a PhbB enzyme and improving the production of 3-hydroxyacyl-CoA, which is a raw material for polyhydroxyalkanoic acid. The purpose is to provide a method. The present invention also provides a PhbB enzyme mutant that has improved the catalytic activity of a wild-type enzyme by the modification method, a DNA encoding the PhbB enzyme mutant, and a transformed cell into which the enzyme has been introduced. Alternatively, a method for producing 3-hydroxyacyl-CoA and polyhydroxyalkanoic acid using transformed cells is proposed. The purpose is to provide.
課題を解決するための手段  Means for solving the problem
[0006] 本発明者らは、上記課題を解決するために鋭意検討を行った結果、 PhbB酵素の触 媒活性を向上させうる酵素改変方法を新たに開発し、該改変方法によってポリヒドロ キシアルカン酸の生体内原料である 3—ヒドロキシァシル _CoAの生産を効率的に 行レ、うる PhbB酵素変異体の作製に成功し、本発明を完成するに至った。  [0006] As a result of intensive studies to solve the above-mentioned problems, the present inventors have newly developed an enzyme modification method that can improve the catalytic activity of the PhbB enzyme. The production of 3-hydroxylacyl_CoA, an in-vivo raw material, was efficiently carried out, and a PhbB enzyme mutant was successfully produced, thereby completing the present invention.
[0007] すなわち、本発明は、酵素の触媒活性を変換させるための酵素改変方法であって、 PhbB酵素のあらかじめ選択された部位の単数または複数の任意のアミノ酸残基を 置換、挿入もしくは欠失またはそれらを組み合わせることにより、ニコチンアミド補酵 素分子の結合エネルギーの大きさを制御し、かつ該酵素が触媒する還元反応活性 を制御することを特徴とする酵素改変方法に関する。  [0007] That is, the present invention is an enzyme modification method for converting the catalytic activity of an enzyme, wherein one or a plurality of arbitrary amino acid residues at a preselected site of a PhbB enzyme are substituted, inserted or deleted. Alternatively, the present invention relates to an enzyme modification method characterized by controlling the magnitude of the binding energy of nicotinamide coenzyme molecules and controlling the reduction reaction activity catalyzed by the enzyme by combining them.
ここでニコチンアミド補酵素分子とは、 β—ニコチンアミドアデニンジヌクレオチド(ΝΑ DH)、 β ニコチンアミドアデニンジヌクレオチドリン酸(NADPH)、およびそれらの 酸化体である(以下、特記の無い場合は、補酵素と称する)。  Here, nicotinamide coenzyme molecules are β-nicotinamide adenine dinucleotide (ΝΑ DH), β nicotinamide adenine dinucleotide phosphate (NADPH), and their oxidized forms (hereinafter, unless otherwise specified) Called coenzyme).
[0008] また、本発明は、配列番号 1で示されるアミノ酸配列からなる 3 ケトアシノレー CoA還 元酵素(PhbB酵素)および該酵素と 30%以上の配列相同性を持つ酵素の酵素改 変方法、該方法により改変された酵素変異体、該酵素変異体の利用法に関する。  [0008] The present invention also relates to a 3 keto-asinole CoA reductase comprising the amino acid sequence represented by SEQ ID NO: 1 (PhbB enzyme), an enzyme modification method for an enzyme having 30% or more sequence homology with the enzyme, The present invention relates to an enzyme variant modified by a method and a method of using the enzyme variant.
[0009] さらに本発明は、配列番号 1で示されるアミノ酸配列からなる PhbB酵素に対して 30 %以上、好ましくは 50%以上、より好ましくは 70%以上の配列相同性を有する PhbB 酵素であって、かつ前記補酵素分子結合部位が、配列番号 1で示されるアミノ酸配 歹 IJからなる PhbB酵素のアミノ酸残基部位のうち、 Met— 12、 Gly_ 13、 Ala_ 32、 Cys— 34、 Gly— 35、 Pro— 36、 Asn— 37、 Ser— 38、 Pro— 39、 Arg— 40、 Arg — 41、 Ala— 57と立体構造上同等な位置を占めるアミノ酸残基に対して変異処理を 行う、上記酵素改変方法に関する。  [0009] Further, the present invention is a PhbB enzyme having a sequence homology of 30% or more, preferably 50% or more, more preferably 70% or more with respect to the PhbB enzyme consisting of the amino acid sequence represented by SEQ ID NO: 1. And the coenzyme molecule binding site is Met-12, Gly_13, Ala_32, Cys-34, Gly-35, among the amino acid residue sites of PhbB enzyme consisting of amino acid sequence IJ represented by SEQ ID NO: 1. Enzyme modification that performs mutation treatment on amino acid residues that occupy three-dimensional structures equivalent to Pro-36, Asn-37, Ser-38, Pro-39, Arg-40, Arg-41, and Ala-57 Regarding the method.
[0010] また本発明は、上記 PhbB酵素力 S、ラルストニア ·ユートロファ(Ralstonia eutropha )由来の野生型 PhbB酵素である上記酵素改変方法に関する。  [0010] The present invention also relates to the above-described enzyme modification method, which is a wild-type PhbB enzyme derived from the above-mentioned PhbB enzyme strength S, Ralstonia eutropha.
さらに本発明は、野生型 PhbB酵素から、アミノ酸残基の置換、挿入もしくは欠失また はそれらの組合せによって得られ、該野生型酵素が示す酵素活性よりも優れた酵素 活性を持つ PhbB酵素変異体に関し、さらに好ましくは、上記野生型 PhbB酵素が、 ラルストニア.ユートロファ(Ralstonia eutropha)由来の PhbB酵素である PhbB酵 素変異体に関する。 Furthermore, the present invention provides an enzyme that is obtained from a wild-type PhbB enzyme by substitution, insertion or deletion of amino acid residues, or a combination thereof, and is superior to the enzyme activity exhibited by the wild-type enzyme. More preferably, the present invention relates to a PhbB enzyme variant, wherein the wild-type PhbB enzyme is a PhbB enzyme derived from Ralstonia eutropha.
[0011] さらに本発明は、上記酵素改変方法により得られた PhbB酵素変異体、その酵素変 異体をコードする DNA、その DNAを有するベクター、そのベクターにより形質転換さ れた形質転換細胞に関する。  [0011] Furthermore, the present invention relates to a PhbB enzyme mutant obtained by the enzyme modification method, a DNA encoding the enzyme mutant, a vector having the DNA, and a transformed cell transformed with the vector.
[0012] さらに本発明は、上記形質転換細胞を培養'増殖させる工程を含む PhbB酵素変異 体の製造方法に関する。  [0012] Furthermore, the present invention relates to a method for producing a PhbB enzyme mutant comprising a step of culturing and proliferating the transformed cell.
さらに本発明は、上記酵素変異体と種々のケトンとを反応させる工程を含む光学活 性アルコールの製造方法に関する。  Furthermore, the present invention relates to a method for producing an optically active alcohol comprising a step of reacting the enzyme mutant with various ketones.
さらに本発明は、上記酵素変異体または上記形質転換細胞と 3—ケトアシノレー CoA とを反応させる工程を含む 3—ヒドロキシアシノレ一 CoAの製造方法に関する。  Furthermore, the present invention relates to a method for producing 3-hydroxyasynole CoA, which comprises a step of reacting the enzyme mutant or the transformed cell with 3-ketoacinole CoA.
さらに本発明は、上記形質転換細胞を培養 '増殖させる工程もしくは上記酵素変異 体と 3—ケトァシルー CoAとを反応させる工程を含む、ポリヒドロキシアルカン酸の製 造方法に関する。  Furthermore, the present invention relates to a method for producing polyhydroxyalkanoic acid, comprising the step of culturing and growing the transformed cell or the step of reacting the enzyme mutant with 3-ketosil-CoA.
[0013] 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
まず、本明細書において、「3—ケトァシルー CoA還元酵素(3— Ketoacyl— CoA Reductase)」とは、 3—ケトァシル— CoAを反応基質とし、かつニコチンアミド補酵 素を還元剤として、 3—ケトァシルー CoAを対応する 3—ヒドロキシァシルー CoAへと 不斉還元する反応を触媒する酵素であって、一般に PhbB酵素と略称される酵素で ある。  First of all, in this specification, “3-ketoacyl-CoA reductase” means 3-ketoacyl-CoA as a reaction substrate and nicotinamide coenzyme as a reducing agent. An enzyme that catalyzes the reaction of asymmetric reduction of CoA to the corresponding 3-hydroxylacyl-CoA, commonly referred to as the PhbB enzyme.
[0014] また、 3—ケトァシル一CoAとは、 3 _ケトブタノィル _CoA、 3—ケトペンタノィノレ一 C oA、 3—ケトへキサノィル _CoA、あるいはよりアルキル鎖の長い 3—ケト脂肪酸 _C oA、おのおの単独の化合物もしくはそれら化合物の混合物である。  [0014] In addition, 3-ketoasyl-CoA is 3_ketobutanol_CoA, 3-ketopentanoylol-CoA, 3-ketohexanoyl_CoA, or 3-ketofatty acid_CoA having a longer alkyl chain, each alone Or a mixture of these compounds.
3—ヒドロキシァシル一CoAとは、 3—ヒドロキシブタノィル _CoA、 3—ヒドロキシペン タノィノレ一 CoA、 3—ヒドロキシへキサノィル _CoA、あるいはよりアルキル鎖の長レヽ 3—ヒドロキシ脂肪酸— CoA、おのおの単独の化合物もしくはそれら化合物の混合 物である。 [0015] 本明細書において、アミノ酸、ペプチド、タンパク質は下記に示す IUPAC— IUB生 化学命名委員会(CBN)で採用された略号を用いて表される。また、特に明示しない 限り、ペプチドおよびタンパク質のアミノ酸残基の配列は、左端から右端にかけて N 末端から C末端となるように、また N末端力 番になるように表される。アミノ酸残基の つながりは "一"により表される。例えば、 Ala_Gly_Leuのように示される。同じアミ ノ酸残基が連続する場合には、例えば (Ala) 3と表され、これは Ala—Ala—Alaと同 義である。 3-Hydroxylacyl CoA means 3-hydroxybutanol _CoA, 3-hydroxypentanoylol CoA, 3-hydroxyhexanol _CoA, or a longer alkyl chain length 3-hydroxy fatty acid CoA. A compound or a mixture of these compounds. [0015] In the present specification, amino acids, peptides, and proteins are represented by the following abbreviations adopted by the IUPAC- IUB Biochemical Nomenclature Committee (CBN). Unless otherwise specified, the amino acid residue sequences of peptides and proteins are expressed from the N-terminus to the C-terminus from the left end to the right end, and in the N-terminal order. The connection of amino acid residues is represented by “one”. For example, Ala_Gly_Leu. When the same amino acid residue continues, it is expressed, for example, as (Ala) 3, which is synonymous with Ala-Ala-Ala.
A= =Ala = 'マラニン、 C = Cys =システィン、  A == Ala = 'maranine, C = Cys = cystine,
D = =Asp = =ァスパラギン酸、 E = Glu =グルタミン酸、  D = = Asp = = aspartic acid, E = Glu = glutamic acid,
F = :Phe = :フエニノレアラニン、 G = Gly=グリシン、 F = : Phe =: Phenenolealanine, G = Gly = glycine,
H = = His =七スチジン、 I = Ile =イソロイシン、  H = = His = seven stidines, I = Ile = isoleucine,
K = :Lys = :リシン、 L = Leu =ロイシン、 K = : Lys =: Lysine, L = Leu = Leucine,
M = = Met = =メチォニン、 N=Asn =ァスパラギン、  M = = Met = = methionine, N = Asn = asparagine,
P = Pro =プロリン、 Q = Gin =グルタミン、  P = Pro = proline, Q = Gin = glutamine,
R= Arg = :ァノレギニン、 3 = 36で=セリン、  R = Arg =: Anoleginine, 3 = 36 = Serine,
T= Thr= :スレオニン、 V=Val=バリン、  T = Thr =: Threonine, V = Val = Valine,
W= =Trp = =トリブトファン、丫=丁 =チ口シン、  W == Trp == Tributophane, 丫 = Ding = Chiguchi Shin,
B = :Asx= =Aspまたは Asn、 2 = 01 =0111または0111、 B = : Asx = = Asp or Asn, 2 = 01 = 0111 or 0111,
X = :Xaa = :任意のアミノ酸。  X =: Xaa =: Any amino acid.
[0017] 本明細書において、 PhbB酵素変異体を記述するに際して、参照を容易にするため 、(もとのアミノ酸;位置;置換したアミノ酸)の命名法を適用する。従って、例えば、位 置 64におけるチロシンのァスパラギン酸への置換は、 Tyr64Aspまたは Y64Dと示さ れる。多重変異については、スラッシュ記号("Z")により分けることで表記する。例え ば、 S41AZY64Dとは、位置 41のセリンをァラニンへ、かつ、位置 64のチロシンを ァスパラギン酸へ置換することを示す。  [0017] In describing the PhbB enzyme mutant in this specification, the nomenclature (original amino acid; position; substituted amino acid) is applied for easy reference. Thus, for example, the substitution of tyrosine for aspartic acid at position 64 is indicated as Tyr64Asp or Y64D. Multiple mutations are expressed by separating them with a slash mark ("Z"). For example, S41AZY64D indicates substitution of serine at position 41 with alanine and tyrosine at position 64 with aspartic acid.
[0018] 本明細書において、酵素の「変異体」とは、酵素のアミノ酸配列に含まれるアミノ酸が 少なくとも 1つ以上置換、揷入もしくは欠失されたアミノ酸配列を有し、酵素の活性の 少なくとも一部を保持する改変された酵素をいう。 [0019] 変異体の設計に利用されるアミノ酸変異としては、アミノ酸の置換の他に、アミノ酸の 挿入または欠失もまた挙げられる。アミノ酸の置換とは、もとのペプチドを 1つ以上の アミノ酸で置換することをいう。アミノ酸の挿入とは、もとのペプチド鎖に 1つ以上のァ ミノ酸を揷入することをいう。アミノ酸の欠失とは、もとのペプチドから 1つ以上のァミノ 酸を欠失させることをいう。 [0018] In the present specification, an enzyme "mutant" has an amino acid sequence in which at least one amino acid contained in the amino acid sequence of the enzyme is substituted, inserted or deleted, and has at least the activity of the enzyme. A modified enzyme that retains a portion. [0019] Amino acid mutations used in the design of mutants include amino acid substitutions and amino acid insertions or deletions. Amino acid substitution refers to substituting the original peptide with one or more amino acids. An amino acid insertion refers to the insertion of one or more amino acids into the original peptide chain. Deletion of amino acids refers to the deletion of one or more amino acids from the original peptide.
[0020] 以下、所望の変異体を取得するための、タンパク質のアミノ酸の変異について説明 する。  [0020] Hereinafter, protein amino acid mutations for obtaining a desired mutant will be described.
なお、アミノ酸の置換等を実施する方法は、化学合成、または遺伝子工学を利用す る技術においてアミノ酸をコードする DNA配列のコドンを変化させることを含む力 こ れらに限定されない。  The method for performing amino acid substitution or the like is not limited to the force including changing the codon of the DNA sequence encoding the amino acid in a technique using chemical synthesis or genetic engineering.
[0021] 本発明者らは、 PhbB酵素の触媒活性向上を図るために、該酵素と補酵素との結合 能を増強しうるアミノ酸変異の設計を行った。この設計は、 PhbB酵素の補酵素分子 結合部位を特定する工程と、該結合部位近傍において補酵素分子と相互作用する アミノ酸残基を決定する工程と、該決定残基に対して補酵素分子の結合エネルギー の大きさを制御するための変異設計を行う工程を含む。  [0021] In order to improve the catalytic activity of the PhbB enzyme, the present inventors designed an amino acid mutation that can enhance the binding ability between the enzyme and the coenzyme. This design consists of identifying the binding site for the coenzyme molecule of the PhbB enzyme, determining the amino acid residue that interacts with the coenzyme molecule in the vicinity of the binding site, and the coenzyme molecule for the determined residue. It includes a step of designing a mutation to control the magnitude of the binding energy.
[0022] PhbB酵素の補酵素分子結合部位を特定する工程は、該酵素のアミノ酸配列と相同 性が高ぐかつ立体構造が既知である類縁酵素群のアミノ酸配列とをマルチプル'ァ ラインメントした結果を分析することにより、また、該酵素の三次元構造をモデリングし た結果を分析することにより、実施した。  [0022] The step of specifying the coenzyme molecule binding site of the PhbB enzyme is a result of multiple alignment of the amino acid sequences of related enzymes having high homology with the enzyme and known steric structures. And the results of modeling the three-dimensional structure of the enzyme were analyzed.
PhbB酵素の補酵素分子と相互作用するアミノ酸残基を決定する工程は、該酵素の 三次元構造をモデリングし、その立体構造を分析することにより実施した。  The step of determining amino acid residues that interact with the coenzyme molecule of the PhbB enzyme was performed by modeling the three-dimensional structure of the enzyme and analyzing its three-dimensional structure.
該決定残基に対して補酵素分子の結合エネルギーの大きさを制御するための変異 設計を行う工程は、多重変異蛋白質アミノ酸配列の最適化解を算出する方法 (特開 2001 _ 184381号公報)等の計算化学的分析により実施した。  The step of designing the mutation for controlling the magnitude of the binding energy of the coenzyme molecule with respect to the determined residue is a method of calculating an optimized solution of the multiple mutant protein amino acid sequence (Japanese Patent Laid-Open No. 2001-184381), etc. Was carried out by computational chemical analysis.
[0023] これらの設計作業の結果として、野生型 PhbB酵素の補酵素結合能を向上させ、もつ て酵素触媒活性が向上しうる、種々の PhbB酵素変異体のアミノ酸配列を決定した。 当該アミノ酸配列を持つ種々の PhbB酵素変異体を遺伝子工学的手法により取得し 、それら変異体の酵素活性を検証したところ、 3—ヒドロキシァシル _CoAの生産を 効率的に行いうる PhbB酵素変異体を得ることに成功した。 [0023] As a result of these design work, amino acid sequences of various PhbB enzyme mutants that improve the coenzyme binding ability of the wild-type PhbB enzyme and can improve the enzyme catalytic activity were determined. Various PhbB enzyme mutants having the amino acid sequence were obtained by genetic engineering techniques, and the enzyme activity of these mutants was verified. As a result, 3-hydroxylacyl_CoA production was confirmed. We succeeded in obtaining an efficient mutant of PhbB enzyme.
[0024] 本発明の実施態様を具体的に以下に示す。 [0024] Embodiments of the present invention are specifically shown below.
すなわち、配列番号 1で示されるアミノ酸配列からなる PhbB酵素のアミノ酸残基部位 のうち、 Met— 12、 Gly— 13、 Ala— 32、 Cys— 34、 Gly— 35、 Pro— 36、 Asn— 3 7、 Ser_ 38、 Pro_ 39、 Arg_40、 Arg_41、 Ala_ 57こおレヽて、単数また fま複数 のアミノ酸を置換、揷入もしくは欠失またはそれらを組み合わせることにより、該酵素 と補酵素との結合能を向上させ、触媒活性が向上した PhbB酵素変異体を得ることを 特徴とする酵素改変方法である。  That is, among the amino acid residue sites of the PhbB enzyme consisting of the amino acid sequence shown in SEQ ID NO: 1, Met-12, Gly-13, Ala-32, Cys-34, Gly-35, Pro-36, Asn-3 7 Ser_38, Pro_39, Arg_40, Arg_41, Ala_57, by substituting, inserting or deleting one or more amino acids, inserting or deleting them, or combining them, the ability of the enzyme to bind to the coenzyme This enzyme modification method is characterized by obtaining a PhbB enzyme mutant with improved catalytic activity.
また、当該改変方法により得られてなる PhbB酵素変異体である。  Moreover, it is a PhbB enzyme mutant obtained by the modification method.
[0025] なお、配列番号 1で示されるアミノ酸配列からなる PhbB酵素は、ラルストニア'ユート ロファ(Ralstonia eutropha)由来の野生型 PhbB酵素である。 [0025] The PhbB enzyme consisting of the amino acid sequence represented by SEQ ID NO: 1 is a wild-type PhbB enzyme derived from Ralstonia eutropha.
また、酵素の触媒活性は、例えば、ァセトァセチル CoAを基質、 NADPHまたは NA DHを補酵素としてそれぞれ用いて酵素触媒反応を行い、反応過程での補酵素濃 度変化を吸光度分析法により測定し、得られた測定実験データをミカエリス'メンテン 式に当てはめることにより、求めることができる。  In addition, the catalytic activity of the enzyme can be obtained, for example, by performing an enzyme-catalyzed reaction using acetacetyl CoA as a substrate and NADPH or NADH as a coenzyme, and measuring the change in coenzyme concentration during the reaction process by absorbance analysis. By applying the measured measurement data to the Michaelis-Menten equation.
[0026] 好ましくは、配列番号 1で示されるアミノ酸配列からなる PhbB酵素のアミノ酸残基部 位 ίこおレヽて、 Met— 12を Sedこ、 Gly— 13を Arg【こ、 Ala— 32を Valiこ、 Cys— 34を Aspに、 Gly— 35を lieまたは Argに、 Pro— 36を Serに、 Asn— 37を Lysに、 Ser— 38を Gluに、 Pro— 39を Aspに、 Arg— 40を Alaまたは Gluに、 Arg— 41を Alaに、 および Ala— 57を Tyrに、力 選ばれるアミノ酸の置換を少なくとも 1つ行うことにより 、該酵素と補酵素との結合能を向上させ、触媒活性が向上した PhbB酵素変異体で ある。 [0026] Preferably, the amino acid residue part of the PhbB enzyme comprising the amino acid sequence represented by SEQ ID NO: 1 is selected, Met-12 is Sed, Gly-13 is Arg, and Ala-32 is Vali. Cys-34 to Asp, Gly-35 to lie or Arg, Pro-36 to Ser, Asn-37 to Lys, Ser-38 to Glu, Pro-39 to Asp, Arg-40 By performing at least one amino acid substitution of Ala or Glu, Arg-41 to Ala, and Ala-57 to Tyr, the ability to bind the enzyme to the coenzyme is improved, and the catalytic activity is increased. An improved PhbB enzyme variant.
[0027] より好ましくは、配列番号 2、 3、 4、 5および 6それぞれで示されるアミノ酸配列からな る PhbB酵素または PhbB酵素変異体が挙げられる。  [0027] More preferred is a PhbB enzyme or a PhbB enzyme variant consisting of the amino acid sequences represented by SEQ ID NOs: 2, 3, 4, 5 and 6, respectively.
なお、これら変異体において変異設計を行った部分のアミノ酸配列と、野生型 PhbB 酵素のアミノ酸配列の比較を表 1に示す。  Table 1 shows a comparison between the amino acid sequences of the mutants designed for these mutants and the amino acid sequence of the wild-type PhbB enzyme.
[0028] [表 1] アミノ酸 基 [0028] [Table 1] Amino acid group
酵素 jsn ¾■ =■ 位 E  Enzyme jsn ¾ ■ = ■ position E
BCタリ Φ  BC Tari Φ
1 2 1 3 32 34 35 36 37 38 39 40 41 57 野生型 1 Met Gly Ala Cys Gly Pro Asn Ser Pro Arg Arg Ala 変異体 M-3 2 Met Gly Ala Cys Arg Ser し ys Glu Asp Glu Arg Ala 変異体 M-4 3 Met Gly Ala Cys Gly Pro Asn Ser Asp Ala Ala Ala 変異体 M-8 4 Arg Ala Cys Gly Pro Asn Ser Asp Ala Ala Ala 変異体 M-9 5 Met Gly Va l Asp lie Pro Asn Ser Pro Ala Ala Tyr 変異体 M-1 1 6 Met Gly Ala Cys Gly Pro Asn Ser Asp Ala Ala Tyr  1 2 1 3 32 34 35 36 37 38 39 40 41 57 Wild type 1 Met Gly Ala Cys Gly Pro Asn Ser Pro Arg Arg Ala mutant M-3 2 Met Gly Ala Cys Arg Ser ys Glu Asp Glu Arg Ala mutant M-4 3 Met Gly Ala Cys Gly Pro Asn Ser Asp Ala Ala Ala variant M-8 4 Arg Ala Cys Gly Pro Asn Ser Asp Ala Ala Ala variant M-9 5 Met Gly Val Asp lie Pro Asn Ser Pro Ala Ala Tyr mutant M-1 1 6 Met Gly Ala Cys Gly Pro Asn Ser Asp Ala Ala Tyr
[0029] また、本発明においては、配列番号 1で示されるアミノ酸配列からなる PhbB酵素に 対して 30%以上、好ましくは 50%以上、より好ましくは 70%以上の配列相同性を有 する 3 ケトァシル— CoA還元酵素の、 Met— 12、 Gly— 13、 Ala— 32、 Cys— 34 、 Gly— 35、 Pro— 36、 Asn— 37、 Ser— 38、 Pro— 39、 Arg— 40、 Arg— 41、 Ala 57のアミノ酸残基部位と立体構造上同等な位置を占めるアミノ酸残基において、 単数または複数のアミノ酸を置換、挿入もしくは欠失またはそれらを組み合わせること により、触媒活性が向上した 3 _ケトァシル— CoA還元酵素変異体を得ることを特徴 とする酵素改変方法も挙げられる。 [0029] Further, in the present invention, a 3-ketocil having a sequence homology of 30% or more, preferably 50% or more, more preferably 70% or more with respect to the PhbB enzyme consisting of the amino acid sequence represented by SEQ ID NO: 1. — CoA reductase, Met-12, Gly-13, Ala-32, Cys-34, Gly-35, Pro-36, Asn-37, Ser-38, Pro-39, Arg-40, Arg-41, The catalytic activity is improved by substituting, inserting or deleting one or more amino acids for amino acid residues that occupy the same position as that of the amino acid residue of Ala 57. An enzyme modification method characterized by obtaining a reductase mutant is also included.
また、当該酵素改変方法により得られてなる PhbB酵素変異体も挙げられる。  Moreover, the PhbB enzyme variant obtained by the said enzyme modification method is also mentioned.
[0030] 配列相同性は、プログラム FASTA(Perason W. R. et al. 、 Genomics, 46、 24 —36 (1997) )や BLAST (Altschul、 Stephen F. et al. 、 Nucleic Acids R es. 25、 3389— 3402 (1997) )を用いたアミノ酸配列相同性解析により、決定する こと力 Sできる。配列番号 1で示されるアミノ酸配列からなる PhbB酵素に対して十分な 配列相同性を有する酵素に対しても、本発明による触媒活性向上のためのアミノ酸 変異は有効である。 [0030] Sequence homology can be determined using the programs FASTA (Perason WR et al., Genomics, 46, 24 —36 (1997)) and BLAST (Altschul, Stephen F. et al., Nucleic Acids Res. 25, 3389— 3402. (1997)) can be determined by amino acid sequence homology analysis. The amino acid mutation for improving catalytic activity according to the present invention is also effective for an enzyme having sufficient sequence homology to the PhbB enzyme consisting of the amino acid sequence represented by SEQ ID NO: 1.
[0031] さらに本発明の実施態様としては、前記酵素改変方法により得られた PhbB酵素変 異体をコードする DNA、その DNAを有するベクター、そのベクターにより形質転換さ れた形質転換細胞が挙げられる。  [0031] Furthermore, embodiments of the present invention include DNA encoding the PhbB enzyme variant obtained by the enzyme modification method, a vector having the DNA, and a transformed cell transformed with the vector.
[0032] 本発明の PhbB酵素変異体をコードする DNAを取得するための、野生型 PhbB酵素 をコードする DNAへの部位特異的な変異の導入は、以下のように、組換え DNA技 術、 PCR法等を用いて行うことができる。 [0032] In order to obtain DNA encoding the PhbB enzyme variant of the present invention, site-specific mutation introduction into the DNA encoding the wild-type PhbB enzyme is carried out as follows. PCR can be used.
すなわち、組換え DNA技術による変異の導入は、例えば、野生型 PhbB酵素遺伝 子中の変異導入を希望する目的の部位の両側に適当な制限酵素認識配列が存在 する場合に、そこを前記制限酵素で切断し、変異導入を希望する部位を含む領域を 除去した後、化学合成等によって目的の部位のみに変異導入した DNA断片を挿入 するカセット変異法によって行うことができる。 In other words, the introduction of mutations by recombinant DNA technology, for example, the presence of appropriate restriction enzyme recognition sequences on both sides of the target site where mutations are desired in the wild-type PhbB enzyme gene. In this case, the restriction enzyme is used to cleave it, remove the region containing the site where mutation is desired, and then insert the DNA fragment mutated into the target site by chemical synthesis or the like. Can do.
また、 PCRによる部位特異的変異の導入は、野生型 PhbB酵素遺伝子中の変異導 入を希望する目的の部位に目的の変異を導入した変異用プライマーと、前記遺伝子 の一方の末端部位の配列を含む変異を有しなレ、増幅用プライマーとで、前記遺伝子 の片側を増幅し、前記変異用プライマーに対して相補的な配歹' Jを有する変異用ブラ イマ一と、前記遺伝子のもう一方の末端部位の配列を含む変異を有しない増幅用プ ライマーで、もう片側を増幅し、得られた 2つの増幅断片をアニーリング操作後、さら に前記 2種類の増幅用プライマーで PCR操作することにより行うことができる。  In addition, the introduction of site-specific mutation by PCR involves the use of a mutation primer in which a mutation of interest is introduced into a desired site to be introduced into the wild-type PhbB enzyme gene, and the sequence of one end of the gene. A mutation primer that amplifies one side of the gene with an amplification primer and a primer complementary to the mutation primer and the other of the gene. Amplification primer containing no mutation at the terminal site of the other, amplify the other side, anneal the two obtained amplification fragments, and then PCR with the two amplification primers It can be carried out.
[0033] 本発明のベクターは、前述した PhbB酵素変異体をコードする DNAを適当なベクタ 一に連結 (揷入)することにより得ることができる。 [0033] The vector of the present invention can be obtained by ligating (inserting) the DNA encoding the aforementioned PhbB enzyme mutant into an appropriate vector.
また、本発明の形質転換細胞は、本発明の組換えベクターを本発明の遺伝子が発 現し得るように宿主中に導入することにより得ること力 Sできる。  The transformed cell of the present invention can be obtained by introducing the recombinant vector of the present invention into a host so that the gene of the present invention can be expressed.
遺伝子を挿入するためのベクターは、宿主中で自律複製可能なものであれば特に限 定されず、プラスミド DNAやファージ DNAをベクターとして用いることができる。例え ば、大腸菌を宿主として用レ、る場合には、 pBR322、 pUC18、 pBluescript II等の プラスミド DNA、 EMBL3、 Μ13、 λ gtl l等のファージ DNA等を;酵母を宿主とし て用いる場合は、 YEpl3、 YCp50等を;植物細胞を宿主として用いる場合には、 pB 1121、 ρΒΙΙΟΙ等を;動物細胞を宿主として用いる場合は、 pcDNAI、 pcDNAl/A mp等をベクターとして用いることができる。 The vector for inserting the gene is not particularly limited as long as it can autonomously replicate in the host, and plasmid DNA or phage DNA can be used as the vector. For example, when using Escherichia coli as a host, plasmid DNA such as pBR322, pUC18, and pBluescript II, phage DNA such as EMBL3, Μ13, and λ gtl l; and YEpl3 when using yeast as the host the YCp50 like; in the case of using a plant cell as the host cell, pB 1121, the ρΒΙΙΟΙ like; the case of using animal cells as the host, can be used pcDNAI, the pcDNAl / a m p such as a vector.
[0034] 宿主としては、特に限定されないが、例えば、大腸菌等の細菌、酵母、植物細胞、動 物細胞等が挙げられる。  [0034] The host is not particularly limited, and examples thereof include bacteria such as Escherichia coli, yeast, plant cells, and animal cells.
[0035] 本発明の形質転換細胞は、宿主となる細胞へ前記ベクターを導入することにより得る こと力 Sできる。細菌への組換えベクターの導入方法としては、例えばカルシウムイオン を用いる方法やエレクト口ポレーシヨン法等が挙げられる。酵母への組換えベクター の導入方法としては、例えばエレクト口ポレーシヨン法、スフヱ口プラスト法、酢酸リチウ ム法等が挙げられる。植物細胞への組換えベクターの導入方法としては、例えばァ グロバタテリゥム感染法、パーティクルガン法、ポリエチレングリコール法等が挙げら れる。動物細胞への組換えベクターの導入方法としては、例えばエレクト口ポレーショ ン法、リン酸カルシウム法等が挙げられる。 [0035] The transformed cell of the present invention can be obtained by introducing the vector into a host cell. Examples of the method for introducing a recombinant vector into bacteria include a method using calcium ions and an electopore position method. Examples of the method for introducing the recombinant vector into yeast include the electopore position method, the free mouth plast method, and the lithium acetate method. As a method for introducing a recombinant vector into a plant cell, for example, Examples include the Globataterum infection method, the particle gun method, and the polyethylene glycol method. Examples of the method for introducing a recombinant vector into animal cells include the electoporation method and the calcium phosphate method.
より具体的には、大腸菌を形質転換する方法 (特開 2002— 199890号公報)、酵母 を形質転換する方法 (WO03Z033707)に記載された方法により、ポリヒドロキシァ ルカン酸を生産する形質転換細胞を得ることができる。  More specifically, transformed cells that produce polyhydroxyalkanoic acid are obtained by a method described in a method for transforming E. coli (JP 2002-199890) or a method for transforming yeast (WO03Z033707). Obtainable.
[0036] 次に、本発明の PhbB酵素変異体の製造方法は、上記形質転換細胞を用いる、つま り、上記形質転換細胞を培養 ·増殖させる工程を含むものである。  [0036] Next, the method for producing a PhbB enzyme variant of the present invention includes the step of culturing and growing the transformed cell, that is, using the transformed cell.
具体的には、上記形質転換細胞を培地で培養し、培養物 (培養菌体または培養上 清)中に本発明の酵素変異体を生成蓄積させ、該培養物から前記酵素変異体を採 取することにより、本発明の PhbB酵素変異体を製造することができる。  Specifically, the transformed cells are cultured in a medium, and the enzyme variant of the present invention is produced and accumulated in the culture (cultured cells or culture supernatant), and the enzyme variant is collected from the culture. By doing so, the PhbB enzyme mutant of the present invention can be produced.
[0037] 本発明の形質転換細胞を培地で培養する方法は、宿主の培養に用いられる通常の 方法に従って行われる。大腸菌等の細菌を宿主として得られた形質転換細胞を培養 する培地としては、完全培地または合成培地、例えば LB培地、 M9培地等が挙げら れる。また、培養温度 20〜40°Cで、好気的に 6〜24時間培養することにより、本発 明の酵素変異体を菌体内に蓄積させることができる。  [0037] The method of culturing the transformed cell of the present invention in a medium is performed according to a usual method used for culturing a host. Examples of the medium for culturing transformed cells obtained by using bacteria such as E. coli as a host include complete medium or synthetic medium such as LB medium, M9 medium and the like. In addition, by culturing aerobically for 6 to 24 hours at a culture temperature of 20 to 40 ° C., the enzyme variant of the present invention can be accumulated in the microbial cells.
次いで、前述した培養法により得られた培養物を遠心する(細胞についてはソニケ一 ター等にて破砕する)等により、酵素変異体を回収することができる。  Subsequently, the enzyme mutant can be recovered by, for example, centrifuging the culture obtained by the above-described culture method (cells are crushed with a sonicator or the like).
[0038] 本発明の酵素変異体の精製は、上記回収した酵素変異体を、ァフィ二ティーク口マト グラフィー、陽イオンまたは陰イオン交換クロマトグラフィー、ゲル濾過等を、単独でま たは適宜組み合わせることによって行うことができる。  [0038] For purification of the enzyme mutant of the present invention, the recovered enzyme mutant is used alone or appropriately combined with affinity mouth chromatography, cation or anion exchange chromatography, gel filtration and the like. Can be done by.
得られた精製物質が目的の酵素であることの確認は、通常の方法、例えば SDSポリ アクリルアミドゲル電気泳動、ウェスタンブロッテイング等により行うことができる。  Confirmation that the obtained purified substance is the target enzyme can be carried out by an ordinary method such as SDS polyacrylamide gel electrophoresis, Western blotting or the like.
[0039] 次に、本発明の光学活性アルコールの製造方法は、上記酵素変異体を用いるもの であり、具体的には、上記酵素変異体と種々の非対称ケトンを適切な条件下にて反 応させる工程を含む方法である。 [0039] Next, the method for producing an optically active alcohol of the present invention uses the above enzyme mutant. Specifically, the enzyme mutant and various asymmetric ketones are reacted under appropriate conditions. It is a method including the process to make.
なお、適切な反応条件としては、例えば、酵素改変方法および酸化還元酵素変異体 (特開 2003— 804653号公報)に記載された反応条件等が挙げられる。 [0040] また、 3 ヒドロキシアシノレー CoAの製造方法は、上記酵素変異体または形質転換 細胞を用いるものであり、具体的には、上記酵素変異体または形質転換細胞と、 3— ケトアシノレー CoAとを適切な条件下にて反応させる工程を含む方法である。当該方 法においては、酵素反応生成物として 3—ヒドロキシアシノレ一 CoAを製造しうる。 なお、適切な反応条件としては、例えば、ァセトァセチル CoA還元酵素に関する文 献(FEMS Microbiology Letters vol. 52 (1988) pp. 259— 264)に記載 された反応条件等が挙げられる。 Appropriate reaction conditions include, for example, reaction conditions described in enzyme modification methods and oxidoreductase mutants (Japanese Patent Laid-Open No. 2003-804653). [0040] Further, the method for producing 3-hydroxyasinole CoA uses the above-mentioned enzyme mutant or transformed cell. Specifically, the enzyme mutant or transformed cell and 3-keto-asinole CoA are combined with each other. It is a method including a step of reacting under appropriate conditions. In this method, 3-hydroxyasinole-CoA can be produced as an enzyme reaction product. Appropriate reaction conditions include, for example, the reaction conditions described in the literature on acetacetyl CoA reductase (FEMS Microbiology Letters vol. 52 (1988) pp. 259-264).
[0041] さらに、本発明のポリヒドロキシアルカン酸の製造方法は、上記形質転換細胞を用い る、つまり、上記形質転換細胞を培養 ·増殖させる工程を含むものである。  [0041] Further, the method for producing a polyhydroxyalkanoic acid of the present invention includes the step of using the transformed cell, that is, the step of culturing and growing the transformed cell.
具体的には、当該ポリヒドロキシアルカン酸の製造方法においては、前述した方法に よって得られた形質転換細胞を、適切な培地、すなわちグノレコース等の糖や飽和脂 肪酸グリセリド等を十分な量だけ含む培地にて、培養することによって、ポリエステノレ であるポリヒドロキシアルカン酸を製造することができる。  Specifically, in the method for producing the polyhydroxyalkanoic acid, the transformed cells obtained by the above-described method are mixed with an appropriate medium, that is, a sufficient amount of sugar such as gnolecose, saturated fatty acid glyceride and the like. Polyhydroxyalkanoic acid, which is a polyester, can be produced by culturing in a medium containing the same.
より具体的には、例えば、形質転換した大腸菌を用いる方法(特開平 11 243956 号公報)、形質転換した酵母を用いる方法 (特開 2003— 833707号公報)に記載さ れた方法等により、ポリヒドロキシアルカン酸を製造することができる。  More specifically, for example, by the method described in the method using transformed E. coli (JP-A-11 243956), the method using transformed yeast (JP-A 2003-833707), etc. Hydroxyalkanoic acids can be produced.
[0042] なお、当該ポリヒドロキシアルカン酸力 S、下記一般式(1):  [0042] Incidentally, the polyhydroxyalkanoic acid S, the following general formula (1):
[0043] [化 1]  [0043] [Chemical 1]
Figure imgf000013_0001
Figure imgf000013_0001
[0044] (式中、 Rは炭素数 1〜20のアルキル基を表し、 nは該ポリマーのモノマー単位数を 表す。なお、アルキル基の炭素数は該ポリマー中で同一であっても異なっていてもよ レ、。)で表される化合物であることが好ましい。 (In the formula, R represents an alkyl group having 1 to 20 carbon atoms, and n represents the number of monomer units of the polymer. The carbon number of the alkyl group may be the same or different in the polymer. However, it is preferably a compound represented by
[0045] Rの炭素数 1〜20のアルキル基としては、メチル基、ェチル基、 n—プロピル基、イソ プロピル基、ブチル基、ペンチル基、へキシル基、ォクチル基、デシル基、テトラデシ ル基、ォクタデシル基等が挙げられ、好ましくはメチル基または n—プロピル基である [0045] Examples of the alkyl group having 1 to 20 carbon atoms of R include a methyl group, an ethyl group, an n-propyl group, an iso group. A propyl group, a butyl group, a pentyl group, a hexyl group, an octyl group, a decyl group, a tetradecyl group, an octadecyl group, etc. are mentioned, and a methyl group or an n-propyl group is preferable.
[0046] 細胞内に蓄積されたポリエステルの細胞内含量およびポリエステルの組成は、加藤 らの方法(Appl. Microbiol. Biotechnol. , 45卷、 363ページ(1996) ; Bull. Ch em. Soc., 69卷、 515ページ(1996) )に従レヽ、培養細胞からクロロホノレム等の有 機溶媒を用いて抽出後、抽出物をガスクロマトグラフィー、 NMR等に供試することに より測定分析することができる。 [0046] The intracellular content of the polyester accumulated in the cells and the composition of the polyester were determined by the method of Kato et al. (Appl. Microbiol. Biotechnol., 45 卷, 363 (1996); Bull. Chem. Soc., 69 After extraction from cultured cells using an organic solvent such as chlorohonorem, the extract can be measured and analyzed by subjecting it to gas chromatography, NMR, or the like.
発明の効果  The invention's effect
[0047] 本発明の酵素変異体を触媒として用いることにより、 3—ヒドロキシァシルー CoAおよ び光学活性アルコールを高い効率で製造することが可能となる。また、本発明の酵 素変異体または形質転換細胞を用いることにより、ポリヒドロキシアルカン酸を高い効 率で製造することが可能となる。  [0047] By using the enzyme variant of the present invention as a catalyst, 3-hydroxycyl-CoA and optically active alcohol can be produced with high efficiency. Further, by using the enzyme mutant or transformed cell of the present invention, it becomes possible to produce polyhydroxyalkanoic acid with high efficiency.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0048] 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれら実施例 によって限定されるものではない。  [0048] Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
[0049] (実施例 l) PhbB酵素立体構造のモデリングと、補酵素結合部位の解析  [Example l] PhbB enzyme three-dimensional structure modeling and coenzyme binding site analysis
配列番号 1で示されるアミノ酸配列からなるラルストニア'ユートロファ(Ralstonia eu tropha)由来の野生型 PhbB酵素のアミノ酸配列をクエリーとして、プログラム BLAS T (Altschul, Stephen F. et al.、 Nucleic Acids Res. 25、 3389— 3402 (1 997) )を用いて、プロテイン ·データ'バンク(PDB)に収載の蛋白質一次構造データ から、相同性の高いアミノ酸配列を検索抽出した。得られたアミノ酸配列のうち、野生 型 PhbB酵素と最も相同性の高い配列としてグノレコース脱水素酵素(PDBコード: 1G CO)を選択し、 PDBに収載されている該酵素(1GCO)の原子座標データを雛型と し飞、フ-口クフム Swiss— PDUV iewer (Swiss Institute of Biomf ormatics (SI B)、 ExPASy Molecular Biology Server (http : //www. expasy. ch より 入手可能))を用いて、アミノ酸残基の置換、挿入、および欠失の各操作を行い、野 生型 PhbB酵素の立体構造モデル (原子座標データと同義)を得た。次に、補酵素で ある NADHまたは NADPHを前記の立体構造モデルに坦め込む操作を行い、野生 型 PhbB酵素と補酵素(NADHまたは NADPH)との複合体の立体構造モデルを得 た。得られた PhbB酵素 補酵素複合体立体構造モデル (原子座標データ)を用い て、 NADHのリボース 2' _〇Hまたは NADPHのリボース 2'—リン酸エステルの近 傍に存在するアミノ酸残基が、残基番号 11〜: 17、残基番号 32〜44、および残基番 号 57であることを特定した。多重変異蛋白質アミノ酸配列の最適化解を算出する方 法(特開 2001— 184381号公報)を用いて、それら特定されたアミノ酸残基位置の 中から、 NADH結合能が向上すると見込めるアミノ酸残基位置と残基種、および NA DPH結合能が向上すると見込めるアミノ酸残基位置と残基種をそれぞれ選出し、 Ph bB酵素変異体のアミノ酸配列とした。当該 PhbB酵素変異アミノ酸配列は、配列番号 2〜6に示したとおりであり、該変異アミノ酸配列群と野生型アミノ酸配列の比較は、 前述の表 1に示したとおりである。 The query BLAS T (Altschul, Stephen F. et al., Nucleic Acids Res. 25, using the amino acid sequence of the wild-type PhbB enzyme derived from Ralstonia eu tropha consisting of the amino acid sequence shown in SEQ ID NO: 1 as a query, 3389-3402 (1 997)) was used to search and extract highly homologous amino acid sequences from protein primary structure data listed in the Protein Data Bank (PDB). Among the obtained amino acid sequences, gnorecose dehydrogenase (PDB code: 1G CO) was selected as the sequence having the highest homology with the wild-type PhbB enzyme, and the atomic coordinate data of the enzyme (1GCO) listed in the PDB As a template, the amino acids using Swiss-PDUV iewer (Swiss Institute of Biomormatics (SI B), ExPASy Molecular Biology Server (http://www.expasy.ch)) Residue substitution, insertion, and deletion operations were performed to obtain a three-dimensional structural model of wild-type PhbB enzyme (synonymous with atomic coordinate data). Next, with coenzyme An operation of loading certain NADH or NADPH into the above three-dimensional structure model was performed to obtain a three-dimensional structure model of a complex of a wild-type PhbB enzyme and a coenzyme (NADH or NADPH). Using the three-dimensional structure model (atomic coordinate data) of the obtained PhbB enzyme coenzyme complex, the amino acid residues present in the vicinity of ribose 2 '_H of NADH or ribose 2'-phosphate of NADPH are Residue numbers 11-: 17, residue numbers 32-44, and residue number 57 were identified. By using the method for calculating the optimized solution of the multiple mutant protein amino acid sequence (Japanese Patent Laid-Open No. 2001-184381), the amino acid residue positions that can be expected to improve NADH binding ability from the identified amino acid residue positions Residue species and amino acid residue positions and residue species that are expected to improve NA DPH binding ability were selected and used as the amino acid sequence of the Ph bB enzyme mutant. The PhbB enzyme mutated amino acid sequence is as shown in SEQ ID NOs: 2 to 6, and the comparison between the mutated amino acid sequence group and the wild-type amino acid sequence is as shown in Table 1 above.
[0050] (実施例 2)野生型 PhbB酵素(配列番号 1)をコードする遺伝子 [Example 2] Gene encoding wild-type PhbB enzyme (SEQ ID NO: 1)
配列番号 7に記載の塩基配列からなる野生型 phbB遺伝子を全合成し、配列番号 8 および 9に記載の塩基配列からなるプライマーで増幅した。プラスミド pUCNT (W〇9 4/03613に記載)のマルチクーニングサイト中の Hindlllサイトをブラントエンド法で 破壊したプラスミド pUCNT— 2の Ndel/Pstlサイトに、野生型 phbB遺伝子をクロー ユングした。  The wild type phbB gene consisting of the base sequence shown in SEQ ID NO: 7 was fully synthesized and amplified with primers consisting of the base sequences shown in SEQ ID NOs: 8 and 9. The wild-type phbB gene was cloned into the Ndel / Pstl site of plasmid pUCNT-2 in which the Hindlll site in the multi-cooling site of plasmid pUCNT (described in W094 / 03613) was destroyed by the blunt end method.
[0051] (実施例 3)変異体 M— 3 (配列番号 2)をコードする遺伝子  [0051] (Example 3) Gene encoding mutant M-3 (SEQ ID NO: 2)
配列番号 10および 11に記載の塩基配列からなる合成遺伝子 150ピコモルを混合し 、オーバーラップ PCR反応を行った。ポリメラーゼには Takara社製 pyrobestを用い 、添付のバッファーと dNTPを用いた。反応液量は 0. 03mlとした。反応条件は 96°C 5分1回、 960じ 2分' 600じ 30禾少' 720じ 30禾少のサィクノレを12回とした。約 15 Obpの DNAをァガロース電気泳動より切り出し、 Ndelと Hindlllにより切断した。この 遺伝子断片を、同酵素で切断処理した野生型遺伝子を含む pUCNT— 2にクロー二 ングして変異体 M— 3遺伝子を作成した。 Overlapping PCR reaction was performed by mixing 150 pmoles of the synthetic gene consisting of the nucleotide sequences set forth in SEQ ID NOs: 10 and 11. As the polymerase, pyrobest manufactured by Takara was used, and the attached buffer and dNTP were used. The reaction volume was 0.03 ml. The reaction conditions were 96 ° C for 5 minutes once, 96 0 2 minutes '60 0 times 30 less' 72 0 times 30 times less cyclone 12 times. About 15 Obp of DNA was excised by agarose electrophoresis and digested with Ndel and Hindlll. This gene fragment was cloned into pUCNT-2 containing the wild-type gene cleaved with the same enzyme to create a mutant M-3 gene.
[0052] (実施例 4)変異体 M— 4 (配列番号 3)をコードする遺伝子  [0052] (Example 4) Gene encoding mutant M-4 (SEQ ID NO: 3)
配列番号 10および 12に記載の塩基配列からなる合成遺伝子を用いて、変異体 M— 3遺伝子を作成したときと同一の方法にて、変異体 M— 4遺伝子を作成した。 Using a synthetic gene consisting of the nucleotide sequences set forth in SEQ ID NOs: 10 and 12, mutant M— Mutant M-4 gene was prepared in the same way as when 3 genes were created.
[0053] (実施例 5)変異体 M— 8 (配列番号 4)をコードする遺伝子  [Example 5] Gene encoding mutant M-8 (SEQ ID NO: 4)
配列番号 13および 12に記載の塩基配列からなる合成遺伝子を用いて、変異体 M— 3遺伝子を作成したときと同一の方法にて、変異体 M_ 8遺伝子を作成した。  Using a synthetic gene consisting of the nucleotide sequences set forth in SEQ ID NOs: 13 and 12, a mutant M_8 gene was prepared in the same manner as when the mutant M-3 gene was prepared.
[0054] (実施例 6)変異体 M— 9 (配列番号 5)をコードする遺伝子  [Example 6] Gene encoding mutant M-9 (SEQ ID NO: 5)
配列番号 10および 14に記載の塩基配列からなる合成遺伝子を用いて、変異体 M— 3遺伝子を作成したときと同一の方法にて、変異体 M_ 2遺伝子を作成した。この変 異体 M— 2遺伝子を含む pUCNT—2に対して、配列番号 15および 16に記載の塩 基配列からなるプライマーを用い、クイックチェンジ法で前記変異体 M_ 2のアミノ酸 酉己列 57番のァラニンをチロシンに変換した変異体 M— 9遺伝子を作成した。クイック チェンジ法は Stratagene社のプロトコールに従った。  Using the synthetic gene consisting of the nucleotide sequences set forth in SEQ ID NOs: 10 and 14, a mutant M_2 gene was prepared in the same manner as when the mutant M-3 gene was prepared. For the pUCNT-2 containing this mutant M-2 gene, using a primer consisting of the base sequence described in SEQ ID NOs: 15 and 16, the amino acid of the mutant M_2 of 57 A mutant M-9 gene in which alanine was converted to tyrosine was created. The quick change method followed the Stratagene protocol.
[0055] (実施例 7)変異体 M— 11 (配列番号 6)をコードする遺伝子  [Example 7] Gene encoding mutant M-11 (SEQ ID NO: 6)
変異体 M— 4遺伝子を含む pUCNT— 2に対して、配列番号 15および 16に記載の 塩基配列からなるプライマーを用い、クイックチェンジ法で前記変異体 M— 4のァミノ 酸配列 57番のァラニンがチロシンに変換された変異体 M— 11遺伝子を作成した。  For pUCNT-2 containing the mutant M-4 gene, the alanine of the amino acid sequence 57 of the mutant M-4 was converted by the quick change method using a primer consisting of the nucleotide sequence of SEQ ID NOs: 15 and 16. A mutant M-11 gene converted to tyrosine was created.
[0056] (実施例 8)遺伝子の配列確認  [Example 8] Confirmation of gene sequence
前記の変異体遺伝子は、全て配列確認を PERIKIN ELMER APPLIED BIO SYSTEMS社製の DNAシークェンサ一 310 Genetic Analyzerを用いて行った  All of the above mutant genes were sequence-checked using DNA Sequencer 310 Genetic Analyzer manufactured by PERIKIN ELMER APPLIED BIO SYSTEMS.
[0057] (実施例 9)遺伝子の発現と酵素の精製 [Example 9] Gene expression and enzyme purification
上記で作成したプラスミドをそれぞれ用いて、大腸菌 JM— 109細胞 (Takara社製) の形質転換を行った。得られた上記野生型 phbB遺伝子または phbB変異体遺伝子 のいずれかを含む JM— 109細胞をそれぞれ、アンピシリンを含む LB培地にて終夜 培養した。本培養液 lmlを、イソプロピノレ 1 _チォ一 β _D_ガラクトシド(IPTG) ( 0. 2mM)を含む 2YT培地(10ml、アンピシリン含有)に接種し、 30°Cにて 8時間培 養した。培養終了後、遠心にて集菌し、エチレンジァミン四酢酸 (EDTA) (0. 5mM )とジチオトレイトール(DTT) (ImM)を含むリン酸カリウム緩衝液(10mM、 pH7. 0 ) 0. 5mlに再懸濁した。超音波破砕にて細胞を破砕し、遠心分離して上清画分と不 溶性画分に分画した。それぞれの画分を SDS電気泳動にて分析したところ、変異体 M— 3, 4, 8, 9, 11それぞれの遺伝子を導入した細胞の上清画分すべてに、野生 型 PhbB酵素とほぼ同一の分子量 2万 5千の位置に IPTGにより誘導されたと考えら れる蛋白質発現を認めた。発現量は野生型とほぼ同程度であった。不溶性画分への 蓄積は、全ての変異体で認められな力 た。 Each of the plasmids prepared above was used to transform E. coli JM-109 cells (Takara). The resulting JM-109 cells containing either the wild-type phbB gene or the phbB mutant gene were cultured overnight in LB medium containing ampicillin. 1 ml of the main culture was inoculated into 2YT medium (10 ml, containing ampicillin) containing isopropinole 1_thio 1β_D_galactoside (IPTG) (0.2 mM) and cultured at 30 ° C. for 8 hours. After completion of the culture, the cells were collected by centrifugation, and diluted to 0.5 ml of potassium phosphate buffer (10 mM, pH 7.0) containing ethylenediamine tetraacetic acid (EDTA) (0.5 mM) and dithiothreitol (DTT) (ImM). Resuspended. Cells are disrupted by ultrasonic disruption and centrifuged to remove the supernatant fraction. Fractionated into soluble fractions. When each fraction was analyzed by SDS electrophoresis, it was found that all of the supernatant fractions of the cells into which the mutants M-3, 4, 8, 9, 11 were introduced were almost identical to the wild-type PhbB enzyme. Protein expression, which was thought to be induced by IPTG, was observed at a molecular weight of 25,000. The expression level was almost the same as the wild type. Accumulation in the insoluble fraction was not observed in all mutants.
[0058] (実施例 10)変異体の活性測定  Example 10 Measurement of Mutant Activity
これら変異体の活性について、ァセトァセチル CoA (シグマ社製)の還元反応におけ る活性および補酵素特性を測定した。反応液の組成は、補酵素として 0. 02mMから 0. 5mM濃度の NADHあるいは NADPH (レ、ずれもオリエンタル酵母社製)と、基質 としてァセトァセチル CoA(0. 05mM)とを含むトリス塩酸緩衝液(50mM、 pH8. 0) 0. 5mlとし、適当に希釈された菌体破砕液を 0. 01ml添カ卩し、反応を開始した。菌 体破砕液の希釈量は、予備実験により十分に反応の初速度を求められる量として決 定した。おおむね 20倍から 250倍希釈であった。反応は分光光度計を用いて波長 3 40nmにおける吸光度の減少を 3分間追跡し、反応の初速度を測定した。分光光度 計のセルは光路長約 0. 4cmのものを用いた。補酵素濃度を 4ないし 5点変化させた ときの反応初速度をプロットし、ミカエリス'メンテン式に最小二乗法によりフィットさせ て、各種パラメーターを求めた。結果を表 2に示した。  Regarding the activity of these mutants, the activity and coenzyme characteristics in the reduction reaction of Acetoacetyl CoA (manufactured by Sigma) were measured. The composition of the reaction solution was a Tris-HCl buffer solution containing NADH or NADPH (from Le oriental Oriental Yeast Co.) at a concentration of 0.02 to 0.5 mM as a coenzyme and acetocetyl CoA (0.05 mM) as a substrate ( 50 mM, pH 8.0) 0.5 ml, and 0.01 ml of appropriately diluted bacterial cell disruption solution was added to start the reaction. The dilution amount of the cell disruption solution was determined as a sufficient amount to obtain the initial reaction rate by preliminary experiments. The dilution was about 20 to 250 times. The reaction was monitored for 3 minutes using a spectrophotometer and the decrease in absorbance at a wavelength of 340 nm was followed for 3 minutes to measure the initial rate of the reaction. A spectrophotometer cell with an optical path length of about 0.4 cm was used. The initial reaction rate when the coenzyme concentration was changed by 4 to 5 points was plotted and fitted to the Michaelis-Menten equation by the least square method to obtain various parameters. The results are shown in Table 2.
[0059] [表 2]  [0059] [Table 2]
Figure imgf000017_0001
表 2において、 Vmaxおよび Kmは、ミカエリス'メンテン式による酵素触媒定数であり 、補酵素として NADPHまたは NADHを、基質としてァセトァセチル CoAを用いたと きの、野生型 PhbB酵素(配列番号 1)および PhbB酵素変異体(配列番号 2〜6)の 最大反応速度と補酵素結合定数をそれぞれ表す。活性の値 (VmaxZKm)は、本 反応条件における、酵素液 lml当たりの 1分間における吸光度(〇D) 340nmの変化 量から、ミカエリス'メンテン式を用いた上記方法により算出した。
Figure imgf000017_0001
In Table 2, Vmax and Km are enzyme catalytic constants according to Michaelis Menten's formula. When NADPH or NADH is used as a coenzyme and acetoacetyl CoA is used as a substrate, wild-type PhbB enzyme (SEQ ID NO: 1) and PhbB enzyme are used. The maximum reaction rate and coenzyme binding constant of the mutant (SEQ ID NO: 2 to 6) are shown respectively. The activity value (VmaxZKm) is Based on the change in absorbance (◯ D) 340 nm per minute per ml of enzyme solution under the reaction conditions, it was calculated by the above method using the Michaelis-Menten equation.
また、 N. S.は、測定濃度域において飽和に達しなかったことを示す。  N.S. indicates that saturation was not reached in the measured concentration range.
[0061] 野生型酵素と酵素変異体との活性比較: [0061] Activity comparison between wild-type enzyme and enzyme mutant:
表 2の結果に示されるように、変異体 M_4、 M_ 8ぉょびM_ 11は、 NADPHを補 酵素としたときの活性が野生型に比べて向上した。また、変異体 M_ 3、 M_4、 M- 9および M_ 11は、 NADHを補酵素としたときの活性が野生型に比べて向上した。 産業上の利用可能性  As shown in the results in Table 2, the mutants M_4, M_8 and M_11 had improved activity when NADPH was used as a coenzyme compared to the wild type. Mutants M_3, M_4, M-9 and M_11 showed improved activity when NADH was used as a coenzyme compared to the wild type. Industrial applicability
[0062] 本発明の酵素変異体を触媒として用いることにより、 3—ヒドロキシァシルー CoAおよ び光学活性アルコールを高い効率で製造することが可能となる。また、本発明の酵 素変異体または形質転換細胞を用いることにより、ポリヒドロキシアルカン酸を高い効 率で製造することが可能となる。 [0062] By using the enzyme variant of the present invention as a catalyst, 3-hydroxycyl-CoA and optically active alcohol can be produced with high efficiency. Further, by using the enzyme mutant or transformed cell of the present invention, it becomes possible to produce polyhydroxyalkanoic acid with high efficiency.

Claims

請求の範囲 The scope of the claims
[1] 配列番号 1で示されるアミノ酸配列からなる 3 _ケトァシル _CoA還元酵素のアミノ酸 残基部位のうち、 Met— 12、 Gly— 13、 Ala— 32、 Cys— 34、 Gly— 35、 Pro— 36、 Asn- 37, Ser_ 38、 Pro_ 39、 Arg_40、 Arg_41、 Ala— 57ίこおレヽて、単数ま たは複数のアミノ酸を置換、揷入もしくは欠失またはそれらを組み合わせることにより 、触媒活性が向上した 3—ケトアシノレー CoA還元酵素変異体を得ることを特徴とする 酵素改変方法。  [1] Among the amino acid residue sites of the 3_ketosyl_CoA reductase consisting of the amino acid sequence shown in SEQ ID NO: 1, Met-12, Gly-13, Ala-32, Cys-34, Gly-35, Pro-36 , Asn-37, Ser_38, Pro_39, Arg_40, Arg_41, Ala-57ί, improved catalytic activity by substituting, inserting or deleting one or more amino acids, or combining them. A method for modifying an enzyme, which comprises obtaining a 3-ketoacinole CoA reductase mutant.
[2] 配列番号 1で示されるアミノ酸配列からなる 3—ケトァシルー CoA還元酵素に対して 3 0%以上の配列相同性を有する 3—ケトアシノレー CoA還元酵素の、請求項 1に記載 のアミノ酸残基部位と立体構造上同等な位置を占めるアミノ酸残基において、単数ま たは複数のアミノ酸を置換、挿入もしくは欠失またはそれらを組み合わせることにより 、触媒活性が向上した 3—ケトアシノレー CoA還元酵素変異体を得ることを特徴とする 酵素改変方法。  [2] The amino acid residue site according to claim 1, wherein the 3-ketoacinole CoA reductase having a sequence homology of 30% or more with respect to the 3-ketocil CoA reductase consisting of the amino acid sequence represented by SEQ ID NO: 1 A 3-ketoacinole CoA reductase variant with improved catalytic activity is obtained by substituting, inserting or deleting one or more amino acids at amino acid residues that occupy the same position as the three-dimensional structure. A method for modifying an enzyme.
[3] 請求項 1に記載の改変方法により得られてなる 3—ケトアシノレー CoA還元酵素変異 体。  [3] A 3-ketoasinoleo CoA reductase mutant obtained by the modification method according to claim 1.
[4] 請求項 2に記載の改変方法により得られてなる 3—ケトアシノレ— CoA還元酵素変異 体。  [4] A 3-ketoacinole-CoA reductase mutant obtained by the modification method according to claim 2.
[5] 配列番号 1で示されるアミノ酸配列からなる 3—ケトァシル一CoA還元酵素のアミノ酸 残基 位 ίこおレヽて、 Met— 12を Sedこ、 Gly— 13を Arg (こ、 Ala— 32を Valこ、 Cys —34を Aspこ、 Gly— 35を lieまた fま Arg (こ、 Pro_ 36を Ser (こ、 Asn_ 37を Lys (こ、 Ser_ 38を Gluに、 Pro— 39を Aspに、 Arg_40を Alaまたは Gluに、 Arg_41を A1 aに、および Ala— 57を Tyrに、力 選ばれるアミノ酸の置換を少なくとも 1つ行うこと により得られてなる 3—ケトアシノレ一 CoA還元酵素変異体。  [5] The amino acid residue of the 3-ketosyl-CoA reductase consisting of the amino acid sequence shown in SEQ ID NO: 1 is selected, Met-12 is Sed, Gly-13 is Arg (this, Ala32 is Val, Cys —34 as Asp, Gly—35 lie, and f Arg (This, Pro_ 36, Ser (This, Asn_ 37, Lys (This, Ser_ 38, Glu, Pro—39, Asp, Arg_40 A 3-ketoacinole CoA reductase mutant obtained by substituting at least one selected amino acid with Ala or Glu, Arg_41 with A1a, and Ala-57 with Tyr.
[6] 配列番号 2で示されるアミノ酸配列からなる 3 _ケトァシル— CoA還元酵素。 [6] 3_ketocil-CoA reductase consisting of the amino acid sequence represented by SEQ ID NO: 2.
[7] 配列番号 3で示されるアミノ酸配列からなる 3—ケトァシルー CoA還元酵素。 [7] A 3-ketosyl-CoA reductase consisting of the amino acid sequence represented by SEQ ID NO: 3.
[8] 配列番号 4で示されるアミノ酸配列からなる 3—ケトァシルー CoA還元酵素。 [8] A 3-ketosyl-CoA reductase consisting of the amino acid sequence represented by SEQ ID NO: 4.
[9] 配列番号 5で示されるアミノ酸配列からなる 3—ケトァシルー CoA還元酵素。 [9] A 3-ketosyl-CoA reductase consisting of the amino acid sequence represented by SEQ ID NO: 5.
[10] 配列番号 6で示されるアミノ酸配列からなる 3—ケトァシルー CoA還元酵素。 請求項 3〜5のいずれかに記載の酵素変異体または請求項 6〜: 10のいずれかに記 載の酵素をコードする DNA。 [10] A 3-ketosyl-CoA reductase consisting of the amino acid sequence represented by SEQ ID NO: 6. DNA encoding the enzyme variant according to any one of claims 3 to 5 or the enzyme according to any one of claims 6 to 10:
請求項 11に記載の DNAを有してなるベクター。 A vector comprising the DNA according to claim 11.
請求項 12に記載のベクターにより形質転換されてなる形質転換細胞。 A transformed cell obtained by transformation with the vector according to claim 12.
請求項 13に記載の形質転換細胞を用いた、請求項 3〜5のいずれかに記載の 3 _ ケトァシル— CoA還元酵素変異体または請求項 6〜: 10のいずれかに記載の酵素の 製造方法。 A method for producing the 3_ketocil-CoA reductase mutant according to any one of claims 3 to 5 or the enzyme according to any one of claims 6 to 10 using the transformed cell according to claim 13. .
請求項 3〜5のいずれかに記載の酵素変異体または請求項 6〜: 10のいずれかに記 載の酵素を用いた、光学活性アルコールの製造方法。 A method for producing an optically active alcohol using the enzyme variant according to any one of claims 3 to 5 or the enzyme according to any one of claims 6 to 10:
請求項 3〜5のいずれかに記載の酵素変異体または請求項 6〜: 10のいずれかに記 載の酵素を用いた、 3—ヒドロキシァシル— CoAの製造方法。 A method for producing 3-hydroxylacyl-CoA using the enzyme variant according to any one of claims 3 to 5 or the enzyme according to any one of claims 6 to 10:
請求項 13に記載の形質転換細胞を用いた、 3—ヒドロキシアシノレ— CoAの製造方法 請求項 13に記載の形質転換細胞を用いた、ポリヒドロキシアルカン酸の製造方法。 前記ポリヒドロキシアルカン酸力 下記一般式(1): A method for producing 3-hydroxyasinole-CoA using the transformed cell according to claim 13. A method for producing polyhydroxyalkanoic acid using the transformed cell according to claim 13. The polyhydroxyalkanoic acid power is represented by the following general formula (1):
Figure imgf000020_0001
Figure imgf000020_0001
(式中、 Rは炭素数 1〜20のアルキル基を表し、 nは該ポリマーのモノマー単位数を 表す。なお、アルキル基の炭素数は該ポリマー中で同一であっても異なっていてもよ レ、。)で表される化合物である請求項 18に記載のポリヒドロキシアルカン酸の製造方 法。 (In the formula, R represents an alkyl group having 1 to 20 carbon atoms, and n represents the number of monomer units of the polymer. The carbon number of the alkyl group may be the same or different in the polymer. 19. The method for producing a polyhydroxyalkanoic acid according to claim 18, which is a compound represented by
前記ポリヒドロキシアルカン酸力 前記式(1)において Rがメチル基または n—プロピ ル基である化合物である請求項 19に記載のポリヒドロキシアルカン酸の製造方法。 20. The method for producing a polyhydroxyalkanoic acid according to claim 19, which is a compound in which R in the formula (1) is a methyl group or an n-propyl group.
PCT/JP2005/019125 2004-10-19 2005-10-18 Reductase mutant for forming biopolymer WO2006043555A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006543006A JPWO2006043555A1 (en) 2004-10-19 2005-10-18 Reductase variants for biopolymer production

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004304793 2004-10-19
JP2004-304793 2004-10-19

Publications (1)

Publication Number Publication Date
WO2006043555A1 true WO2006043555A1 (en) 2006-04-27

Family

ID=36202970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019125 WO2006043555A1 (en) 2004-10-19 2005-10-18 Reductase mutant for forming biopolymer

Country Status (2)

Country Link
JP (1) JPWO2006043555A1 (en)
WO (1) WO2006043555A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018183640A1 (en) * 2017-03-31 2018-10-04 Genomatica, Inc. 3-hydroxybutyryl-coa dehydrogenase variants and methods of use
EP4279586A4 (en) * 2022-04-06 2024-02-28 Shenzhen Bluepha Biosciences Co Ltd Engineered microorganism expressing acetoacetyl coenzyme a reductase variant and method for increasing pha yield

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002199890A (en) * 2000-10-23 2002-07-16 Inst Of Physical & Chemical Res Method for modifying biodegradable polyester synthetase
WO2003004653A1 (en) * 2001-07-02 2003-01-16 Kaneka Corporation Method of modifying enzyme and oxidoreductase variant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002199890A (en) * 2000-10-23 2002-07-16 Inst Of Physical & Chemical Res Method for modifying biodegradable polyester synthetase
WO2003004653A1 (en) * 2001-07-02 2003-01-16 Kaneka Corporation Method of modifying enzyme and oxidoreductase variant

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHOI J I, LEE SY, HAN K.: "Cloning of the Alcaligenes latus polyhydroxyalkanoate biosynthesis genes and use of these genes for enhanced production of Poly(3-hydroxybutyrate) in Escherichiacoli.", APPL ANVIRON MICROBIOL., vol. 64, no. 12, December 1998 (1998-12-01), pages 4897 - 4903, XP001033932 *
LIEBERGESELL M AND STEINBUCHEL A.: "Cloning and nucleotide sequences of genes relevant for biosynthesis of poly(3-hydroxybutyric acid) in Chromatium vinosum strain D.", EUR J BIOCHEM., vol. 209, no. 1, 1992, pages 135 - 150, XP002995056 *
MATSUSAKI H ET AL: "Cloning and molecular analysis of the Poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate-co-3-hydroxyalkanoate) biosynthesis genes in Pseudomonas sp. strain 61-3.", J BACTERIOL., vol. 180, no. 24, December 1998 (1998-12-01), pages 6459 - 6467, XP002167124 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018183640A1 (en) * 2017-03-31 2018-10-04 Genomatica, Inc. 3-hydroxybutyryl-coa dehydrogenase variants and methods of use
CN110691847A (en) * 2017-03-31 2020-01-14 基因组股份公司 3-hydroxybutyryl-CoA dehydrogenase variants and methods of use
US20230139515A1 (en) * 2017-03-31 2023-05-04 Genomatica, Inc. 3-hydroxybutyryl-coa dehydrogenase variants and methods of use
US11898172B2 (en) 2017-03-31 2024-02-13 Genomatica, Inc. 3-hydroxybutyryl-CoA dehydrogenase variants and methods of use
EP4279586A4 (en) * 2022-04-06 2024-02-28 Shenzhen Bluepha Biosciences Co Ltd Engineered microorganism expressing acetoacetyl coenzyme a reductase variant and method for increasing pha yield

Also Published As

Publication number Publication date
JPWO2006043555A1 (en) 2008-05-22

Similar Documents

Publication Publication Date Title
AU2008215422B2 (en) Transglutaminase having disulfide bond introduced therein
JP7317255B1 (en) Genetically modified bacterium with high PHA production and method for constructing the same
JP4486009B2 (en) DNA ligase mutant
Vincenzetti et al. Cloning, expression, and purification of cytidine deaminase fromArabidopsis thaliana
AU2002327268B8 (en) Novel glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthase and the gene encoding the same
CN114317507A (en) Nitrile hydratase mutant and application thereof
JPH0286779A (en) Improved type recombinant dna, transformant containing the same and production of heat-resistant glucose dehydrogenase therewith
Neveling et al. Purification of the pyruvate dehydrogenase multienzyme complex of Zymomonas mobilis and identification and sequence analysis of the corresponding genes
CN111057686B (en) Alcohol dehydrogenase mutant and application thereof
WO2006043555A1 (en) Reductase mutant for forming biopolymer
JP4146095B2 (en) Thermostable glucokinase gene, recombinant vector containing the same, transformant containing the recombinant vector, and method for producing thermostable glucokinase using the transformant
JP2007068424A (en) Gene encoding bifunctional formaldehyde-immobilizing enzyme
JP2011103792A (en) Glucose dehydrogenase, and method for producing the same
KR102358538B1 (en) Method for gene editing in microalgae using particle bombardment
JP2010004763A (en) beta-KETOTHIOLASE MUTANT
KR102152142B1 (en) The preparation method of cyclic oligoadenylate using Cas10/Csm4
CN110157691B (en) 5-amino-acetopropionic acid synthetase mutant and host cell and application thereof
KR101505172B1 (en) 3-hydroxypropionic acid-producing recombinant microorganism and method of producing 3-hydroxypropionic acid using the same
WO2019216248A1 (en) Peptide macrocyclase
CN116790573B (en) Nitrile hydratase mutant and application thereof
CN112011524B (en) 5-amino-acetopropionic acid synthetase mutant and host cell and application thereof
JP4193986B2 (en) Production method of gamma-glutamylcysteine
KR102200330B1 (en) A method for preparing cyclic nucleotide using Cas10/Csm4 subcomplex
EP4257689A1 (en) Novel promoter variant for constitutive expression and use thereof
US5514587A (en) DNA fragment encoding a hydrogen peroxide-generating NADH oxidase

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006543006

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05795831

Country of ref document: EP

Kind code of ref document: A1