KR20240057506A - A recombinant Corynebacterium having enhanced secreted production efficiency of target protein through enhanced generation of ATP - Google Patents

A recombinant Corynebacterium having enhanced secreted production efficiency of target protein through enhanced generation of ATP Download PDF

Info

Publication number
KR20240057506A
KR20240057506A KR1020220137530A KR20220137530A KR20240057506A KR 20240057506 A KR20240057506 A KR 20240057506A KR 1020220137530 A KR1020220137530 A KR 1020220137530A KR 20220137530 A KR20220137530 A KR 20220137530A KR 20240057506 A KR20240057506 A KR 20240057506A
Authority
KR
South Korea
Prior art keywords
secretion
target protein
gene
signal peptide
corynebacterium
Prior art date
Application number
KR1020220137530A
Other languages
Korean (ko)
Inventor
정기준
전은정
이성민
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020220137530A priority Critical patent/KR20240057506A/en
Publication of KR20240057506A publication Critical patent/KR20240057506A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • C12N15/625DNA sequences coding for fusion proteins containing a sequence coding for a signal sequence
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence

Landscapes

  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 코리네박테리움 속 에너지 생산 관련 유전자인 zwf 및/또는 cydABDC가 과발현되어 있고, 목적 단백질을 코딩하는 유전자가 도입되어 있는, 분비 생산능이 향상된 코리네박테리움 속 재조합 미생물 및 이의 용도에 관한 것이다. 본 발명에 따른 코리네박테리움 속 개량된 재조합 미생물은 분비 생산에 필요한 에너지원을 과생산하도록 도움으로써, 목적 단백질의 분비 생산에 있어 향상된 분비능을 나타내므로, 산업적 적용에 유리한 목적 단백질 분비 생산용 숙주로 이용이 용이하다.The present invention relates to a recombinant microorganism of the Corynebacterium genus with improved secretion production ability, in which zwf and/or cydABDC, which are genes related to energy production in Corynebacterium, are overexpressed and a gene encoding a target protein is introduced, and the use thereof. will be. The improved recombinant microorganism of the Corynebacterium genus according to the present invention exhibits improved secretion ability in the secretion production of the target protein by helping to overproduce the energy source required for secretion production, and is therefore a host for the secretion production of the target protein, which is advantageous for industrial application. It is easy to use.

Description

ATP 생합성 강화를 통한 목적 단백질 분비 생산능이 향상된 재조합 코리네박테리움{A recombinant Corynebacterium having enhanced secreted production efficiency of target protein through enhanced generation of ATP}{A recombinant Corynebacterium having enhanced secreted production efficiency of target protein through enhanced generation of ATP}

본 발명은 목적 단백질의 분비 생산능이 향상된 재조합 코리네박테리움에 관한 것으로, 보다 상세하게는 코리네박테리움 속 미생물에 내재적으로 존재하는 에너지 생산 관련 유전자인 zwf 및/또는 cydABDC가 과발현되어 있고, 목적 단백질을 코딩하는 유전자가 도입되어 있는, 목적 단백질의 세포 외 분비 생산능이 향상된 코리네박테리움 속 재조합 미생물 및 이의 용도에 관한 것이다.The present invention relates to a recombinant Corynebacterium with improved secretion production ability of a target protein, and more specifically, zwf and/or cydABDC, which are genes related to energy production that are inherently present in Corynebacterium microorganisms, are overexpressed, and the target protein is overexpressed. The present invention relates to a recombinant microorganism of the Corynebacterium genus, into which a protein-coding gene has been introduced, with improved extracellular secretion production ability of a target protein, and its use.

코리네박테리움(Corynebacterium) 속 미생물은 아미노산 및 핵산 생산에 있어 산업적으로 사용되고 있는 미생물로서, generally recognized as safe(GRAS) 균주로 안정성이 인정되어 비타민 및 재조합 효소 등을 생산하는 숙주로써 이용되고 있다. 특히 코리네박테리움 속 미생물을 분비 생산 시스템을 보유하고 있어, 이를 이용하여 재조합 단백질에 분비 생산의 숙주로 사용이 가능하다. 분비 생산 시스템을 이용하는 것은 산업적으로 유용성이 크다. 일반적으로 재조합 단백질 생산은 세포 내 생산을 주로 하기 때문에 세포 내 생산된 재조합 단백질을 회수하기 위하여 세포 파쇄 공정이 필수적으로 필요한 반면, 분비 생산 시스템을 이용한 재조합 단백질 생산은 세포 외 재조합 단백질을 생산함으로써 세포 파쇄 공정이 필요하지 않기 때문에 산업적 재조합 단백질 생산 공정에서의 이점을 가지고 있기 때문이다. 이에 코리네박테리움 속 미생물을 이용한 분비 생산 시스템은 산업적으로 재조합 단백질의 세포 외 분비 생산을 가능하게 할 수 있기 때문에 경제적이고 효과적인 생산 시스템으로 사용할 수 있다.Microorganisms belonging to the genus Corynebacterium are industrially used in the production of amino acids and nucleic acids. They are generally recognized as safe (GRAS) strains and are used as hosts to produce vitamins and recombinant enzymes. In particular, microorganisms in the Corynebacterium genus have a secretion production system, so they can be used as hosts for secretion production of recombinant proteins. The use of secretion production systems has great industrial utility. In general, since recombinant protein production is mainly intracellular production, a cell disruption process is essential to recover the recombinant protein produced within the cell, whereas recombinant protein production using a secretion production system involves cell disruption by producing extracellular recombinant protein. This is because it has an advantage in the industrial recombinant protein production process because it does not require any processing. Accordingly, the secretion production system using Corynebacterium microorganisms can be used as an economical and effective production system because it can enable extracellular secretion production of recombinant proteins industrially.

코리네박테리움을 이용한 재조합 단백질 분비 생산에 관련된 연구들은 숙주가 가지고 있는 분비 생산 시스템을 이용하거나(Yim, S. S. et al., (2016) Biotechnology and bioengineering, 113(1), 163-172), 합성 분비신호 펩타이드 구축을 통해 분비 생산능을 증가 시키거나, 분비 생산능 향상을 위해 내재적 유전자를 제거하여 분비 생산능이 향상된 재조합 숙주를 개발하는 방법 등이 있다. 그러나, 상기 방법들은 재조합 단백질의 분비 생산 시스템 구축에 초점을 맞추거나 분비 생산 시 분비능에 영향을 주는 인자의 제거를 통하여 분비 생산능을 높이는 연구들로서, 분비 생산을 향상시키기 위해 균주를 개량하는 연구는 미흡한 실정이다.Studies related to secretory production of recombinant proteins using Corynebacterium use the host's secretory production system (Yim, S. S. et al., (2016) Biotechnology and bioengineering, 113(1), 163-172) or synthetic There are methods to increase secretion production capacity by constructing a secretion signal peptide, or to develop a recombinant host with improved secretion production capacity by removing endogenous genes to improve secretion production capacity. However, the above methods are studies that focus on building a secretion production system for recombinant proteins or increase secretion production capacity by removing factors that affect secretion production during secretion production, and research on improving strains to improve secretion production is not carried out. It is inadequate.

이러한 기술적 배경하에서, 본 발명자들은 분비 생산 시스템 구축 및 개량에 의해 분비 생산능을 향상시키는 것과 별개로, 목적 단백질의 분비 생산이 가능한 코리네박테리움 속 미생물의 개량을 통하여 분비 생산능이 향상된 코리네박테리움을 개발하고자 하였으며, 분비 생산능을 향상시킬 수 있는 에너지 대사 관련 유전자의 개량을 통해 코리네박테리움에서의 목적 단백질 분비 생산능이 향상됨을 확인하고, 본 발명을 완성하였다.Under this technical background, the present inventors, in addition to improving the secretion production ability by constructing and improving the secretion production system, have improved the secretion production ability of Corynebacterium genus microorganisms capable of secretion production of the target protein. We attempted to develop .rium, and it was confirmed that the secretion production capacity of the target protein in Corynebacterium was improved through improvement of energy metabolism-related genes that can improve secretion production capacity, and the present invention was completed.

본 배경기술 부분에 기재된 상기 정보는 오직 본 발명의 배경에 대한 이해를 향상시키기 위한 것이며, 이에 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자에게 있어 이미 알려진 선행기술을 형성하는 정보를 포함하지 않을 수 있다.The above information described in this background section is only for improving the understanding of the background of the present invention, and therefore does not include information that constitutes prior art already known to those skilled in the art to which the present invention pertains. It may not be possible.

한국 등록특허 10-0919704Korean registered patent 10-0919704 한국 특허공개 10-2014-0110134Korean Patent Publication 10-2014-0110134 한국 특허공개 10-2022-0049827Korean Patent Publication 10-2022-0049827

Yim, S. S. et al., (2016) Biotechnology and bioengineering, 113(1), 163-172 Yim, S. S. et al., (2016) Biotechnology and bioengineering, 113(1), 163-172 Yim, S. S. et al, (2013) Biotechnology and bioengineering. 110, 2959-2969 Yim, S. S. et al, (2013) Biotechnology and bioengineering. 110, 2959-2969 An, S.J. et al., (2013) Protein Expression and Purification, 89, 251-257 An, S.J. et al., (2013) Protein Expression and Purification, 89, 251-257

본 발명은 목적 단백질의 세포 외 분비 생산능이 향상된 신규한 코리네박테리움 속 재조합 미생물 및 이의 용도를 제공하는 데 있다.The present invention aims to provide a novel Corynebacterium genus recombinant microorganism with improved extracellular secretion production capacity of a target protein and its use.

상기 목적을 달성하기 위하여, 본 발명은 (a) 코리네박테리움 속 미생물에 내재적으로 존재하는 서열번호 1의 염기서열로 표시되는 zwf 유전자의 프로모터가 서열번호 2의 염기서열로 표시되는 H36 프로모터로 치환; 및/또는 코리네박테리움 속 미생물에 내재적으로 존재하는 서열번호 3의 염기서열로 표시되는 cydABDC 유전자의 프로모터가 서열번호 4의 염기서열로 표시되는 H30 프로모터로 치환되고, (b) 목적 단백질을 코딩하는 유전자가 도입되어 있는, 목적 단백질의 세포 외 분비·생산능이 개선된 코리네박테리움(Corynebacterium) 속 재조합 미생물을 제공한다.In order to achieve the above object, the present invention is (a) the promoter of the zwf gene represented by the nucleotide sequence of SEQ ID NO. 1, which is inherently present in microorganisms of the genus Corynebacterium, as the H36 promoter represented by the nucleotide sequence of SEQ ID NO. 2. substitution; And/or the promoter of the cydABDC gene represented by the nucleotide sequence of SEQ ID NO: 3, which is inherently present in microorganisms in the Corynebacterium genus, is replaced with the H30 promoter represented by the nucleotide sequence of SEQ ID NO: 4, and (b) coding for the target protein. Provides a recombinant microorganism of the Corynebacterium genus with improved extracellular secretion and production ability of a target protein, into which a gene has been introduced.

본 발명은 또한, (a) 상기 코리네박테리움(Corynebacterium) 속 재조합 미생물을 배양하여 목적 단백질을 코딩하는 유전자를 발현시켜 목적 단백질을 분비·생산하는 단계; 및 (b) 상기 분비·생산된 목적 단백질을 회수하는 단계를 포함하는 목적 단백질의 분비·생산 방법을 제공한다.The present invention also includes the steps of (a) culturing the recombinant microorganism of the Corynebacterium genus and expressing a gene encoding the target protein to secrete and produce the target protein; and (b) recovering the secreted/produced target protein.

본 발명에 따른 코리네박테리움 속 개량된 재조합 미생물은 분비 생산에 필요한 에너지원을 과생산하도록 도움으로써, 목적 단백질의 분비 생산에 있어 향상된 분비능을 나타내므로, 산업적 적용에 유리한 목적 단백질 분비 생산용 숙주로 이용이 용이하다.The improved recombinant microorganism of the Corynebacterium genus according to the present invention exhibits improved secretion ability in the secretion production of the target protein by helping to overproduce the energy source required for secretion production, and is therefore a host for the secretion production of the target protein, which is advantageous for industrial application. It is easy to use.

도 1은 에너지원인 NADPH를 증가시키기 위한 메커니즘 및 균주 개량 모식도와 NADPH 측정 결과이다. 도 1A는 zwf 유전자의 메커니즘이고, 도 1B는 chromosome의 zwf 유전자를 H36 프로모터(특허공개 10-2014-0110134)로 치환한 개량된 코리네박테리움 모식도, 도 1C는 chromosome의 zwf 유전자를 H36 프로모터로 치환 후의 NADPH 양 측정 결과이다.
도 2는 분비 생산능의 변화를 보기 위해 적용한 목적 단백질 분비 생산 시스템 및 분비 생산된 재조합 단백질의 SDS-PAGE 결과이다. 도 2A는 XynA의 분비 생산의 플라스미드 모식도이고, 도 2B는 도 2A의 플라스미드를 C. glutamicum SP002 균주(한국 특허공개 10-2022-0049827) 및 도 1B의 개량된 코리네박테리움에 도입하여 분비된 단백질을 30배 농축하여 분비 생산능을 비교한 SDS-PAGE 결과이다.
도 3은 에너지원인 ATP의 증가를 위해 도입한 cydABDC 과발현 플라스미드 시스템의 모식도와 이에 따른 ATP 양 측정 결과이다. 도 3A는 cydABDC 유전자를 H30 프로모터(Yim, S. S. et al, (2013) Biotechnology and bioengineering. 110, 2959-2969) 하에 과발현하는 시스템의 모식도이고, 도 3B는 cydABDC를 과발현하는 플라스미드를 가지거나, cydABDC 유전자가 없는 pXMJ19(empty plasmid)를 가진 C. glutamicum SP002 균주의 ATP 양 측정 비교 결과이다.
도 4는 cydABDC를 과발현하는 플라스미드를 가지거나, cydABDC 유전자가 없는 pXMJ19(empty plasmid)를 가진 C. glutamicum SP002 균주에서의 XynA의 분비 생산능을 비교한 SDS-PAGE 결과이다. 각 분비 생산량은 10배 농축한 결과이다.
도 5는 chromosome의 zwf 유전자를 H36 프로모터로 치환 및 cydABDC를 플라스미드 시스템으로 과발현하는 개량된 C. glutamicum SP003의 모식도 및 이를 이용하여 다양한 재조합 단백질의 생산능을 비교한 SDS-PAGE 결과이다. 도 5A는 C. glutamicum SP003의 모식도로써, 내재된 zwf 유전자의 프로모터가 H36 프로모터로 치환 및 cydABDC가 플라스미드 시스템으로 과발현되는 개량된 코리네박테리움 균주의 모식도이다. 도 5B는 XynA의 분비 생산능을 C. glutamicum SP002와 C. glutamicum SP003에서 비교한 SDS-PAGE 결과로, 분비 생산된 XynA를 10배 농축한 결과이다. 도 5C는 cAbHuL22의 분비 생산능을 C. glutamicum ATCC13032(WT)와 C. glutamicum SP003에서 비교한 SDS-PAGE 결과로, 분비 생산된 cAbHuL22를 30배 농축한 결과이다. 도 5D는 M18의 분비 생산능을 C. glutamicum ATCC13032(WT)와 C. glutamicum SP003에서 비교한 SDS-PAGE 결과로, 분비 생산된 M18를 50배 농축한 결과이다.
도 6은 목적 단백질 분비 생산능이 향상된 C. glutamicum SP004 균주의 모식도이다.
도 7은 C. glutamicum SP004와 C. glutamicum SP002에서의 ATP 양 비교 및 분비 생산능을 비교한 SDS-PAGE 결과이다. 도 7A는 pHCP(Empty plasmid, 한국 특허공개 10-2018-0092110)와 cAbHuL22를 분비 생산하는 시스템을 가진 C. glutamicum SP004 및 C. glutamicum SP002에서의 ATP 양 측정 결과이다. 도 7B는 C. glutamicum SP004와 C. glutamicum SP002에서의 cAbHuL22의 분비 생산능을 비교하기 위해 분비된 단백질을 30배 농축한 SDS-PAGE 결과로, lane C는 pHCP(empty plasmid)이고, lane 1은 C1 분비 신호 펩타이드(한국 특허출원 10-2021-0092055)를 이용하여 분비 생산한 cAbHuL22이다.
도 8은 C. glutamicum SP002, C. glutamicum SP003, C. glutamicum SP004에서의 XynA의 분비 생산능을 비교한 SDS-PAGE 결과이다. 분비된 XynA는 10배 농축하여 확인하였다.
도 9는 ppk 동시발현 시스템과 C. glutamicum SP004의 cAbHuL22 분비 생산능을 비교한 SDS-PAGE 결과이다.
Figure 1 is a schematic diagram of the mechanism and strain improvement for increasing NADPH, an energy source, and the NADPH measurement results. Figure 1A is the mechanism of the zwf gene, Figure 1B is a schematic diagram of an improved Corynebacterium in which the zwf gene of the chromosome is replaced with the H36 promoter (Patent Publication 10-2014-0110134), and Figure 1C is a schematic diagram of the zwf gene of the chromosome replaced with the H36 promoter. This is the result of measuring the amount of NADPH after substitution.
Figure 2 shows the SDS-PAGE results of the target protein secretion production system and the secretion-produced recombinant protein applied to view changes in secretion production ability. Figure 2A is a plasmid schematic diagram of secretion production of This is the SDS-PAGE result comparing the secretion production ability by concentrating the protein 30 times.
Figure 3 is a schematic diagram of the cydABDC overexpression plasmid system introduced to increase ATP, an energy source, and the result of measuring the amount of ATP accordingly. Figure 3A is a schematic diagram of a system that overexpresses the cydABDC gene under the H30 promoter (Yim, SS et al, (2013) Biotechnology and bioengineering. 110, 2959-2969), and Figure 3B shows a plasmid overexpressing cydABDC or the cydABDC gene. This is the comparison result of ATP amount measurement of C. glutamicum SP002 strain with pXMJ19 (empty plasmid).
Figure 4 shows SDS-PAGE results comparing the secretion production ability of XynA in C. glutamicum SP002 strains with a plasmid overexpressing cydABDC or with pXMJ19 (empty plasmid) without the cydABDC gene. Each secretion production is the result of 10-fold concentration.
Figure 5 is a schematic diagram of the improved C. glutamicum SP003, which replaces the zwf gene of the chromosome with the H36 promoter and overexpresses cydABDC using a plasmid system, and shows the SDS-PAGE results comparing the production ability of various recombinant proteins using it. Figure 5A is a schematic diagram of C. glutamicum SP003, an improved Corynebacterium strain in which the promoter of the inherent zwf gene is replaced with the H36 promoter and cydABDC is overexpressed using a plasmid system. Figure 5B is the SDS-PAGE result comparing the secretion production capacity of XynA in C. glutamicum SP002 and C. glutamicum SP003, showing the result of 10-fold concentration of secretion-produced XynA. Figure 5C is the SDS-PAGE result comparing the secretion production ability of cAbHuL22 in C. glutamicum ATCC13032 (WT) and C. glutamicum SP003, showing the result of 30-fold concentration of secretion-produced cAbHuL22. Figure 5D shows the SDS-PAGE results comparing the secretion production capacity of M18 in C. glutamicum ATCC13032 (WT) and C. glutamicum SP003, showing the result of 50-fold concentration of secretion-produced M18.
Figure 6 is a schematic diagram of the C. glutamicum SP004 strain with improved target protein secretion production ability.
Figure 7 shows SDS-PAGE results comparing the amount of ATP and secretion production capacity in C. glutamicum SP004 and C. glutamicum SP002. Figure 7A shows the results of measuring the amount of ATP in C. glutamicum SP004 and C. glutamicum SP002, which have pHCP (Empty plasmid, Korean Patent Publication No. 10-2018-0092110) and a system that secretes and produces cAbHuL22. Figure 7B is the SDS-PAGE result of 30-fold concentration of the secreted protein to compare the secretion production ability of cAbHuL22 in C. glutamicum SP004 and C. glutamicum SP002. Lane C is pHCP (empty plasmid), and lane 1 is pHCP (empty plasmid). cAbHuL22 is secreted and produced using C1 secretion signal peptide (Korean patent application 10-2021-0092055).
Figure 8 shows SDS-PAGE results comparing the secretion production capacity of XynA in C. glutamicum SP002, C. glutamicum SP003, and C. glutamicum SP004. Secreted XynA was confirmed by 10-fold concentration.
Figure 9 shows SDS-PAGE results comparing the cAbHuL22 secretion production ability of the ppk co-expression system and C. glutamicum SP004.

다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless otherwise defined, all technical and scientific terms used in this specification have the same meaning as commonly understood by a person skilled in the art to which the present invention pertains. In general, the nomenclature used herein is well known and commonly used in the art.

코리네박테리움 속 미생물은 내재적으로 단백질 분비 시스템을 가지고 있기 때문에, 산업적으로 유용한 재조합 단백질 생산에 광범위하게 활용된다. 그러나, 단백질 분비 생산시 필요한 에너지 대사 향상을 위한 시스템은 개발된 바 없다.Because microorganisms in the Corynebacterium genus have an inherent protein secretion system, they are widely used to produce industrially useful recombinant proteins. However, no system has been developed to improve energy metabolism required for protein secretion production.

본 발명의 일 실시예에서는, 코리네박테리움 속 미생물에 내재적으로 존재하는 zwf 유전자 및 cydABDC 유전자를 과발현하는 시스템을 도입함으로써 목적 단백질의 분비량을 현저히 증가시킬 수 있음을 확인하였다.In one embodiment of the present invention, it was confirmed that the secretion amount of the target protein can be significantly increased by introducing a system for overexpressing the zwf gene and cydABDC gene that are endogenously present in microorganisms of the Corynebacterium genus.

따라서, 본 발명은 일 관점에서, (a) 코리네박테리움 속 미생물에 내재적으로 존재하는 서열번호 1의 염기서열로 표시되는 zwf 유전자의 프로모터가 서열번호 2의 염기서열로 표시되는 H36 프로모터로 치환; 및/또는 코리네박테리움 속 미생물에 내재적으로 존재하는 서열번호 3의 염기서열로 표시되는 cydABDC 유전자의 프로모터가 서열번호 4의 염기서열로 표시되는 H30 프로모터로 치환되고, (b) 목적 단백질을 코딩하는 유전자가 도입되어 있는, 목적 단백질의 세포 외 분비·생산능이 개선된 코리네박테리움(Corynebacterium) 속 재조합 미생물에 관한 것이다.Therefore, the present invention, in one aspect, is (a) replacing the promoter of the zwf gene represented by the nucleotide sequence of SEQ ID NO: 1, which is inherently present in microorganisms of the genus Corynebacterium, with the H36 promoter represented by the nucleotide sequence of SEQ ID NO: 2. ; And/or the promoter of the cydABDC gene represented by the nucleotide sequence of SEQ ID NO: 3, which is inherently present in microorganisms in the Corynebacterium genus, is replaced with the H30 promoter represented by the nucleotide sequence of SEQ ID NO: 4, and (b) coding for the target protein. This relates to a recombinant microorganism of the genus Corynebacterium that has an improved extracellular secretion and production ability of a target protein, into which a gene has been introduced.

서열번호 1: zwf 유전자의 nucleotide 서열(1545 bp)SEQ ID NO: 1: nucleotide sequence of zwf gene (1545 bp)

GTGAGCACAAACACGACCCCCTCCAGCTGGACAAACCCACTGCGCGACCCGCAGGATAAACGACTCCCCCGCATCGCTGGCCCTTCCGGCATGGTGATCTTCGGTGTCACTGGCGACTTGGCTCGAAAGAAGCTGCTCCCCGCCATTTATGATCTAGCAAACCGCGGATTGCTGCCCCCAGGATTCTCGTTGGTAGGTTACGGCCGCCGCGAATGGTCCAAAGAAGACTTTGAAAAATACGTACGCGATGCCGCAAGTGCTGGTGCTCGTACGGAATTCCGTGAAAATGTTTGGGAGCGCCTCGCCGAGGGTATGGAATTTGTTCGCGGCAACTTTGATGATGATGCAGCTTTCGACAACCTCGCTGCAACACTCAAGCGCATCGACAAAACCCGCGGCACCGCCGGCAACTGGGCTTACTACCTGTCCATTCCACCAGATTCCTTCACAGCGGTCTGCCACCAGCTGGAGCGTTCCGGCATGGCTGAATCCACCGAAGAAGCATGGCGCCGCGTGATCATCGAGAAGCCTTTCGGCCACAACCTCGAATCCGCACACGAGCTCAACCAGCTGGTCAACGCAGTCTTCCCAGAATCTTCTGTGTTCCGCATCGACCACTATTTGGGCAAGGAAACAGTTCAAAACATCCTGGCTCTGCGTTTTGCTAACCAGCTGTTTGAGCCACTGTGGAACTCCAACTACGTTGACCACGTCCAGATCACCATGGCTGAAGATATTGGCTTGGGTGGACGTGCTGGTTACTACGACGGCATCGGCGCAGCCCGCGACGTCATCCAGAACCACCTGATCCAGCTCTTGGCTCTGGTTGCCATGGAAGAACCAATTTCTTTCGTGCCAGCGCAGCTGCAGGCAGAAAAGATCAAGGTGCTCTCTGCGACAAAGCCGTGCTACCCATTGGATAAAACCTCCGCTCGTGGTCAGTACGCTGCCGGTTGGCAGGGCTCTGAGTTAGTCAAGGGACTTCGCGAAGAAGATGGCTTCAACCCTGAGTCCACCACTGAGACTTTTGCGGCTTGTACCTTAGAGATCACGTCTCGTCGCTGGGCTGGTGTGCCGTTCTACCTGCGCACCGGTAAGCGTCTTGGTCGCCGTGTTACTGAGATTGCCGTGGTGTTTAAAGACGCACCACACCAGCCTTTCGACGGCGACATGACTGTATCCCTTGGCCAAAACGCCATCGTGATTCGCGTGCAGCCTGATGAAGGTGTGCTCATCCGCTTCGGTTCCAAGGTTCCAGGTTCTGCCATGGAAGTCCGTGACGTCAACATGGACTTCTCCTACTCAGAATCCTTCACTGAAGAATCACCTGAAGCATACGAGCGCCTCATTTTGGATGCGCTGTTAGATGAATCCAGCCTCTTCCCTACCAACGAGGAAGTGGAACTGAGCTGGAAGATTCTGGATCCAATTCTTGAAGCATGGGATGCCGATGGAGAACCAGAGGATTACCCAGCGGGTACGTGGGGTCCAAAGAGCGCTGATGAAATGCTTTCCCGCAACGGTCACACCTGGCGCAGGCCATAAGTGAGCACAAACACGACCCCCTCCAGCTGGACAAACCCACTGCGCGACCCGCAGGATAAACGACTCCCCCGCATCGCTGGCCCTTCCGGCATGGTGATCTTCGGTGTCACTGGCGACTTGGCTCGAAAGAAGCTGCTCCCGCCATTTATGATCTAGCAAACCGCGGATTGCTGCCCCCAGGATTCTCGTTGGTAGGTTACGGCCGCCGCGAATGGTCCAAAGAAGACTTTGAAAAATACGTACGCGATGCCGCAAGTGCTG GTGCTCGTACGGAATTCCGTGAAAATGTTTGGGAGCGCCTCGCCGAGGGTATGGAATTTGTTCGCGGCAACTTTGATGATGATGCAGCTTTCGACAACCTCGCTGCAACACTCAAGCGCATCGACAAAAC CCGCGGCACCGCCGGCAACTGGGCTTACTACCTGTCCATTCCACCAGATTCCTTCACAGCGGTCTGCCACCAGCTGGAGCGTTCCGGCATGGCTGAATCCACCGAAGAAGCATGGCGCCGCGTGATCATC GAGAAGCCTTTCGGCCACAACCTCGAATCCGCACACGAGCTCAACCAGCTGGTCAACGCAGTCTTCCCAGAATCTTCTGTGTTCCGCATCGACCACTATTTGGGCAAGGAAACAGTTCAAAACATCCTGGCTCTGCGTTTTGCTAACCAGCTGTTTGAGCCACTGTGGAACTCCAACTACGTTGACCACGTCCAGATCACCATGGCTGAAGATATTGGCTTGGGTGGACGTGCTGGTTACTACGACGGCATCGGCGCGC AGCCCGCGACGTCATCCAGAACCACCTGATCCAGCTCTTGGCTCTGGTTGCCATGGAAGAACCAATTTCTTTCGTGCCAGCGCAGCTGCAGGCAGAAAAGATCAAGGTGCTCTCTGCGACAAAGCCGTGC TACCCATTGGATAAAACCTCGTCGTGGTCAGTACGCTGCCGGTTGGCAGGGCTCTGAGTTAGTCAAGGGACTTCGCGAAGAAGATGGCTTCAACCCTGAGTCCACCACTGAGACTTTTGCGGCTTGTAC CTTAGAGATCACGTCTCGTCGCTGGGCTGGTGTGCCGTTCTACCTGCGCACCGGTAAGCGTCTTGGTCGCCGTGTTACTGAGATTGCCGTGGTGTTTAAAGACGCACCACACCAGCCTTTCGACGGCGAC ATGACTGTATCCCTTGGCCAAAACGCCATCGTGATTCGCGTGCAGCCTGATGAAGGTGTGCTCATCCGCTTCGGTTCCAAGGTTCCAGGTTCTGCCATGGAAGTCCGTGACGTCAACATGGACTTCTCTC ACTCAGAATCCTTCACTGAAGAATCACCTGAAGCATACGAGCGCCTCATTTTGGATGCGCTGTTAGATGAATCCAGCCTCTTCCCTACCAACGAGGAAGTGGAACTGAGCTGGAAGATTCTGGATCCAATTCTTGAAGCATGGGATGCCGATGGAGAACCAGAGGATTACCCAGCGGGTACGTGGGGTCCAAAGAGCGCTGATGAAATGCTTTCCCGCAACGGTCACACCTGGCGCAGGCCATAA

서열번호 2: H36 프로모터의 nucleotide 서열(75 bp)SEQ ID NO: 2: nucleotide sequence of H36 promoter (75 bp)

TCTATCTGGTGCCCTAAACGGGGGAATATTAACGGGCCCAGGGTGGTCGCACCTTGGTTGGTAGGAGTAGCATGGTCTATCTGGTGCCCTAAACGGGGGAATATTAACGGGCCCAGGGTGGTCGCACCTTGGTTGGTAGGAGTAGCATGG

서열번호 3: CydABDC 유전자의 nucleotide 서열(5646 bp)SEQ ID NO: 3: nucleotide sequence of CydABDC gene (5646 bp)

GTGGATGTCGTCGACATCGCACGGTGGCAATTCGGAATTACCACCGTCTATCACTTCATTTTTGTCCCACTGACCATTGGCTTAGCGCCGCTGGTCGCAATCATGCAAACGTTTTGGCAAGTTACCGGCAAAGAGCACTGGTATCGGGCCACAAGATTTTTTGGCACTGTGCTGCTCATCAACTTCGCGGTTGGTGTAGCAACGGGCATTGTGCAGGAGTTCCAGTTCGGTATGAACTGGTCGGAATATTCGCGTTTCGTCGGTGATGTTTTCGGCGGACCGCTGGCTTTGGAGGGTCTTATCGCGTTCTTCCTTGAGTCTGTATTCCTGGGACTGTGGATTTTCGGATGGGGGAAGATTCCTGGTTGGTTGCACACTGCATCCATTTGGATCGTTGCTATTGCGACGAATATTTCTGCCTATTTCATCATCGTGGCCAACTCGTTTATGCAGCATCCGGTGGGTGCTGAGTATAACCCTGAGACTGGTCGTGCGGAGCTTACTGATTTTTGGGCTCTTCTCACAAACTCCACCGCGCTGGCTGCGTTCCCGCATGCTGTTGCCGGTGGTTTTTTAACAGCTGGAACTTTCGTTCTCGGAATTTCGGGTTGGTGGATTATTCGTGCGCACCGTCAGGCCAAGAAGGCTGAGTCGGAAATCGAGTCGAAGCATTCGATGCACAGGCCCGCGTTGTGGGTTGGTTGGTGGACCACAGTTGTCTCTTCCGTGGCGCTGTTCATCACTGGCGATATCCAGGCGAAGCTCATGTTCGTGCAGCAGCCAATGAAGATGGCGTCGGCGGAATCCTTGTGTGAAACCGCCACAGATCCAAACTTCTCCATTCTGACAATTGGTACGCACAACAACTGCGATACGGTAACCCACCTGATCGATGTTCCGTTTGTGCTTCCATTCTTGGCTGAAGGAAAATTCACCGGTGTGACTTTGCAGGGTGTAAACCAGCTCCAAGCTGCAGCGGAGCAAGCATACGGTCCTGGCAACTACTCCCCTAACTTGTTTGTCACCTACTGGTCATTCCGCGCAATGATCGGCCTGATGCTTGGTTCTTTGGCTATCGCTGCGATTGCGTGGCTGTTGCTGCGTAAGAAGCGCACACCAACTGGAAAGATTGCTCGTCTGTTCCAGATCGGCAGCCTCATTGCTATCCCGTTCCCATTCTTGGCCAACTCTGCTGGTTGGATCTTCACCGAGATGGGCCGCCAGCCTTGGGTGGTGCACCCGAACCCTGAATCTGCCGGCGATGCCCGAACAGAGATGATCCGGATGACTGTTGATATGGGTGTATCTGATCATGCGCCATGGCAAGTCTGGCTGACTCTCATTGGCTTCACGATTCTCTATCTCATTTTGTTCGTGGTGTGGGTGTGGCTGATTCGCCGCGCAGTTCTGATCGGACCACCAGAGGAAGGCGCTCCATCCGTGGAGGCAAAGACTGGACCGGCAACCCCGATTGGTTCAGATATGCCCATGACACCGCTGCAATTTACTGCCGCTGCCCCAACCACAGGTGAAAAGGAATAACCATGGATCTCAATACCTTTTGGTTTATTCTCATCGCATTTTTGTTTGCGGGATACTTTCTCCTCGAAGGATTCGACTTCGGCGTCGGAATTTTGGCACCCATCATCGGTAAAGATTCAGCGGCTAGGAACACAGTGATCCGTACGATTGGCCCTGTCTGGGACGGAAATGAAGTGTGGCTGATCGTGGCAGGTGGCGCTTTGTTTGCTGCCTTCCCTGAGTGGTACGCAACGATGTTCTCCGGAATGTATCTGCCGCTGTTCCTCGTGCTTGTGTCGTTGATCATGCGCGTGGTGGGCCTTGAATGGCGCAAGAAAGTCGATGATCCTCGTTGGCAAAAGTGGTCTGACCGGGCCATCTTTATTGGTTCTTGGACTCCACCGCTGATGTGGGGATTCATCTTCGCCAATATTTTGCGTGGCATGCCCCTCAAGGCGGATCACACCATCGATGCTGCGGCAGCCCTTCCTGGCATGGTCAACGTCTTCGCCATTCTGGGTGCACTTGCGTTCACCGCACTGTTCGCCCTTCATGGTCTCGCATTCATCCGCCTGAAAACTGCTGGTCGGGTGCGCACCGATGCGGCGAAGGCAGCTCCAGTAGTCGCACTTCTTGCTGCGGTGACTGGTGGACCTTTCGTGTTGTGGGCTGCCATCGCATACGGCCGTTCCTGGTCCTGGATCCTCGCAGTGCTGATCATCGCAGCGGTTCTCGGTGGAGCTTTCGCACTGATCAAAGACCGCGATGGATTAAGCTTCCTGTCCACTTCCGTCGCTGTCATCGGTGTCGTTGCACTGCTGTTTAGTTCGCTTTTCCCCAACGTCATGCCAACAACGCTTGCTGATGGCGTGAGCCTGGATATCTGGAACGCCTCCGCAAGCGCCTACGCATTTACTATCCTGACTTGGACCGCCGCTGTGATCGCACCGCTGGTTGTCCTCTACCAAGGCTGGACCTACTGGGTGTTCCGCAAACGACTTCACGCCGAGCCAGTGTCTGCTTAAAGTTGGAAAAATTGAGTACTAAATCTTCAGCTCCTGCAAAAAGGCGCGCCGGCCCCGTCGATCCGCGGCTTTTGCGCCTATCCCCCGCTACCCGCCGTTGGGTGATAATCGCAGGTGTTCTCACCGCGTTGAAAACCCTCGCGACAGTCGCAATGGGCTTGCTCATCGGCCAGATGGCAGCGGGCATCATTGAGGTTTCGGGAAGTTCTTTGCCCCGAATGGAACTCATCGCGCTCGCCATCACGGTGGTTGTGCGCGGACTTCTTGCGTGGGCACAGGATCGGTTCGCGCAACGCGCATCGTCCCAGGTGACTGTGGATCTTCGGGAGAAAACCCTGCGGCACCTGGCACAAAGCGATCCCCGCACCATCGATCAAGCCTTGTGGCGCACCCGTTTGACCTCTGGCCTTGATGGTTTGGGGCCTTACCTCACCGGATTTTTGCCAGCTCTAGCCGCCACGATCATTGCCACCCCGGTCATGCTCGCGGTGGTGGGTTGGCTGGATGTTGGGTCCATGGTCATCGCGATCATCACGCTCCCCCTCATTCCGGTGTTCATGTGGCTGGTGGGAACACTCACCGCAGGTCGCACCGAACAACGCCTCAGCGACCTAGCCATTTTGGGAGGTCAGCTGCTTGATCTCATCGCAGGCTTGCCCACCTTGCGAGCATTCAGGCGCCACCAAGACATGGCAGCTCAGGTCACGCGACTATCCTCCCAACATGCAAGCTCCACGTTGAGCGTGCTGAAAATCGCGTTCCTTTCCAGCTTTGTGTTGGAATTTTTGGCCACACTATCGGTCGCATTGGTAGCGGTTGGCATCGGATTTCGCCTGCTCGCGGGCGATCTCACCCTCGCCATCGGCCTGACCGTACTGATCATCATCCCAGAGGTCTACGCGCCGATCCGCGAAGTCGGCACCCGCTTCCACGACGCCCAAGACGGCCTGGTTGCCACCGATGAGATCCTAAAATTACTCAGCGTTTCTTCGCTTGTCGACGCGCCTACCCACACACCCCGCGACGTTGCAGGCGGGCTGGAGGTGAGCGTCGAAAAGCTTCGCGCTGATGGACGCGATGGGCCGAGGCCTGCTGATTTGTCGTTCACCGCAAAGCCTGGGCAGTTGACGGTGCTGTGGGGGCCAAACGGCAGCGGCAAATCCACGGCCTTGCTAGCGGTGTTGGGCTTGGCGACGGAAGGCATCACTGGAGAGGTTTCCGTCAAGGATGCCTCGGGCCAGGAATTTAAGGACAGCGCATTGTGGGAGCACTGCGCATATTTGCCGCAGCGGCCGGTCATTGATCCGGAAAGTGTCAGTGATTATGCGGAACTGTCGCTTGGGCAGCGCCAACGGCTTGCGCTGAAACGTGAGCTTGGGGCGCAATTGCTCCTGTTGGATGAGCCGACCGCGCACCTGGATCCAGACAACGCTGCGATCATGATCCAGCAATTGCAGGCTGAAGCCCGCCGAGGCACCACAGTACTGGCGGTTTCGCATGATCCTTTGCTGCGTGCGGCTGCCGATGAAGTGGTGGAGGTCAAATGAACACCCTGGTAAAACTTCGTTTCCGCGAGCTAATTCCCGCCGTTGTTGCAGGTAGCGTCACGATGATCGCCTCCATCACCCTGACGGTGGTGTCGGCCTGGCTGATCACCAAAGCTTGGGAAATGCCGCCAGTGATGGATCTGACCGTGGCGGTCACCGCTGTGCGAGCCCTGGGCATTAGCCGTGCGATGTTCCGTTATATAGAGAGAATCGTTTCACATGACTTGGCGTTGAAGGCAGCCAGCCGAGCCCGTTCGAGTGCATATCAACGCCTGGCTTCGTCGCCAAACTCTGCGTTGACGATGCGCCGCGGCGAACTGCTTAGCCGCCTTGGTGTGGATATCGATTCGGTTGCCGATGTCATCGTCCGCGCCGTCATTCCCGCCGGAGTTGCCCTGCTCACCGGAGTTGTCGCGATCATCTTCACCGCGATTCTCAGCCCCGCAACCGCACTTGTCCTGGCGATTGGATTGATTGCTGCTGCAATTATCCCTCCCCTGCTTGCTGCTCGCGGAGTTAAAACAGCCGAAGCCCGGCGCGCTGAATCCAGCGAAGCCTACTTGAGTTCCTTGGATCAGGTGCTGTCCAACCAGGCGGCGCTTCGTGTTCGTGGTGAAATGCCGGCCGCTCTGTCCAAGGCGGATGTGGCTGCGCGTTCCTATTCTTCTTCACTGGAGGCAGGCGCGAAAGACACTGCCATTGGCGCAGCGAGTTCCCTGTGGATTCACGGTTTCACTGTCATTGGTGTGCTCATGGTTTCCGCGTCACTGTATGCAGATGGAAGCCATTCACCGCAGTGGTTTGGTGTGTTGGTGCTGCTTTCACTCGCAGCTTTCGAGGCTGTCTCTGTTCTCCCCGATGCTGCGATTGCTCGTACCCGCGCCGCAGATGCCACCAGGAGGCTTGCGGAAATCTCGGCGCTGCCAGAATCTGTCTCTCTTGAGCTTCGCACGGCCTCTGACCAGCCCGTATTACGCGCCGAGAATCTAGTTTATGGATGGGACAGCGACCTAGGCACGAGCAACCTGGATCTCACCTTTGGTTCACGACATGAAATCATCGCACCCTCTGGAACTGGCAAAACGACCCTGCTGCTCACACTTGCGGGGCTGTTGGAACCTCGTGGAGGCCAAGTGCTTATCGACGGCACCAATCCTTCCGAGTTGAAAAACGCCGTGCTGTTCAGTCCAGAAGATGCCCACATTTTTGCCACCACTGTCCGAGATAACTTAGCACTCGGAGCACCGGAAGCAACCGACGCGGAAATGACATCGATCCTGGAACATGTTGGTTTGTCAGAGTGGGTTCAAGGTTTACCCGATGGTCTTGGCACTGTCCTTGATTCAGGTGCCGATAGTCTCTCGGGAGGTCAGCGCCGCCGCCTGCTCCTTGCCCGCGTACTACTAAGTGATGCACCAATTCTGCTTTTGGATGAACCCACCGAGCACCTCGACACTGCAGGCTCCTCTGAAATCTTGTCTATGCTGGCCTCCGATGAACTCCCTGGTAAAAGAGCTAGGAGAACCGTAGTGATTGTGAGGCATGTGAGGTAAGTGGATGTCGTCGACATCGCACGGTGGCAATTCGGAATTACCACCGTCTATCACTTCATTTTTGTCCCACTGACCATTGGCTTAGCGCCGCTGGTCGCAATCATGCAAACGTTTTGGCAAGTTACCGGCAAAGAGCACTGGTATCGGGCCACAAGATTTTTTGGCACTGTGCTGCTCATCAACTTCGCGGTTGGTGTAGCAACGGGCATTGTGCAGGAGTTCCAGTTCGGTATGAACTGGTCGGAATATTCGCGTTTCGTCGGTGATGTTTTCGGCGGACCGCTGGCTTTGGAGGGTCTTATCGCGTTCTTCCTTGAGTCTGTATTCCTGGGACTGTGGATTTTCGGATGGGGGAAGATTCCTGGTTGGTTGCACACTGCATCCATTTGGATCGTTGCTATTGCGACGAATATTTCTGCCTATTTCATCATCGTGGCCAACTCGTTTATGCAGCATCCGGTGGGTGCTGAGTATAACCCTGAGACTGGTCGTGCGGAGCTTACTGATTTTTGGGCTCTTCTCACAAACTCCACCGCGCTGGCTGCGTTCCCGCATGCTGTTGCCGGTGGTTTTTTAACAGCTGGAACTTTCGTTCTCGGAATTTCGGGTTGGTGGATTATTCGTGCGCACCGTCAGGCCAAGAAGGCTGAGTCGGAAATCGAGTCGAAGCATTCGATGCACAGGCCCGCGTTGTGGGTTGGTTGGTGGACCACAGTTGTCTCTTCCGTGGCGCTGTTCATCACTGGCGATATCCAGGCGAAGCTCATGTTCGTGCAGCAGCCAATGAAGATGGCGTCGGCGGAATCCTTGTGTGAAACCGCCACAGATCCAAACTTCTCCATTCTGACAATTGGTACGCACAACAACTGCGATACGGTAACCCACCTGATCGATGTTCCGTTTGTGCTTCCATTCTTGGCTGAAGGAAAATTCACCGGTGTGACTTTGCAGGGTGTAAACCAGCTCCAAGCTGCAGCGGAGCAAGCATACGGTCCTGGCAACTACTCCCCTAACTTGTTTGTCACCTACTGGTCATTCCGCGCAATGATCGGCCTGATGCTTGGTTCTTTGGCTATCGCTGCGATTGCGTGGCTGTTGCTGCGTAAGAAGCGCACACCAACTGGAAAGATTGCTCGTCTGTTCCAGATCGGCAGCCTCATTGCTATCCCGTTCCCATTCTTGGCCAACTCTGCTGGTTGGATCTTCACCGAGATGGGCCGCCAGCCTTGGGTGGTGCACCCGAACCCTGAATCTGCCGGCGATGCCCGAACAGAGATGATCCGGATGACTGTTGATATGGGTGTATCTGATCATGCGCCATGGCAAGTCTGGCTGACTCTCATTGGCTTCACGATTCTCTATCTCATTTTGTTCGTGGTGTGGGTGTGGCTGATTCGCCGCGCAGTTCTGATCGGACCACCAGAGGAAGGCGCTCCATCCGTGGAGGCAAAGACTGGACCGGCAACCCCGATTGGTTCAGATATGCCCATGACACCGCTGCAATTTACTGCCGCTGCCCCAACCACAGGTGAAAAGGAATAACCATGGATCTCAATACCTTTTGGTTTATTCTCATCGCATTTTTGTTTGCGGGATACTTTCTCCTCGAAGGATTCGACTTCGGCGTCGGAATTTTGGCACCCATCATCGGTAAAGATTCAGCGGCTAGGAACACAGTGATCCGTACGATTGGCCCTGTCTGGGACGGAAATGAAGTGTGGCTGATCGTGGCAGGTGGCGCTTTGTTTGCTGCCTTCCCTGAGTGGTACGCAACGATGTTCTCCGGAATGTATCTGCCGCTGTTCCTCGTGCTTGTGTCGTTGATCATGCGCGTGGTGGGCCTTGAATGGCGCAAGAAAGTCGATGATCCTCGTTGGCAAAAGTGGTCTGACCGGGCCATCTTTATTGGTTCTTGGACTCCACCGCTGATGTGGGGATTCATCTTCGCCAATATTTTGCGTGGCATGCCCCTCAAGGCGGATCACACCATCGATGCTGCGGCAGCCCTTCCTGGCATGGTCAACGTCTTCGCCATTCTGGGTGCACTTGCGTTCACCGCACTGTTCGCCCTTCATGGTCTCGCATTCATCCGCCTGAAAACTGCTGGTCGGGTGCGCACCGATGCGGCGAAGGCAGCTCCAGTAGTCGCACTTCTTGCTGCGGTGACTGGTGGACCTTTCGTGTTGTGGGCTGCCATCGCATACGGCCGTTCCTGGTCCTGGATCCTCGCAGTGCTGATCATCGCAGCGGTTCTCGGTGGAGCTTTCGCACTGATCAAAGACCGCGATGGATTAAGCTTCCTGTCCACTTCCGTCGCTGTCATCGGTGTCGTTGCACTGCTGTTTAGTTCGCTTTTCCCCAACGTCATGCCAACAACGCTTGCTGATGGCGTGAGCCTGGATATCTGGAACGCCTCCGCAAGCGCCTACGCATTTACTATCCTGACTTGGACCGCCGCTGTGATCGCACCGCTGGTTGTCCTCTACCAAGGCTGGACCTACTGGGTGTTCCGCAAACGACTTCACGCCGAGCCAGTGTCTGCTTAAAGTTGGAAAAATTGAGTACTAAATCTTCAGCTCCTGCAAAAAGGCGCGCCGGCCCCGTCGATCCGCGGCTTTTGCGCCTATCCCCCGCTACCCGCCGTTGGGTGATAATCGCAGGTGTTCTCACCGCGTTGAAAACCCTCGCGACAGTCGCAATGGGCTTGCTCATCGGCCAGATGGCAGCGGGCATCATTGAGGTTTCGGGAAGTTCTTTGCCCCGAATGGAACTCATCGCGCTCGCCATCACGGTGGTTGTGCGCGGACTTCTTGCGTGGGCACAGGATCGGTTCGCGCAACGCGCATCGTCCCAGGTGACTGTGGATCTTCGGGAGAAAACCCTGCGGCACCTGGCACAAAGCGATCCCCGCACCATCGATCAAGCCTTGTGGCGCACCCGTTTGACCTCTGGCCTTGATGGTTTGGGGCCTTACCTCACCGGATTTTTGCCAGCTCTAGCCGCCACGATCATTGCCACCCCGGTCATGCTCGCGGTGGTGGGTTGGCTGGATGTTGGGTCCATGGTCATCGCGATCATCACGCTCCCCCTCATTCCGGTGTTCATGTGGCTGGTGGGAACACTCACCGCAGGTCGCACCGAACAACGCCTCAGCGACCTAGCCATTTTGGGAGGTCAGCTGCTTGATCTCATCGCAGGCTTGCCCACCTTGCGAGCATTCAGGCGCCACCAAGACATGGCAGCTCAGGTCACGCGACTATCCTCCCAACATGCAAGCTCCACGTTGAGCGTGCTGAAAATCGCGTTCCTTTCCAGCTTTGTGTTGGAATTTTTGGCCACACTATCGGTCGCATTGGTAGCGGTTGGCATCGGATTTCGCCTGCTCGCGGGCGATCTCACCCTCGCCATCGGCCTGACCGTACTGATCATCATCCCAGAGGTCTACGCGCCGATCCGCGAAGTCGGCACCCGCTTCCACGACGCCCAAGACGGCCTGGTTGCCACCGATGAGATCCTAAAATTACTCAGCGTTTCTTCGCTTGTCGACGCGCCTACCCACACACCCCGCGACGTTGCAGGCGGGCTGGAGGTGAGCGTCGAAAAGCTTCGCGCTGATGGACGCGATGGGCCGAGGCCTGCTGATTTGTCGTTCACCGCAAAGCCTGGGCAGTTGACGGTGCTGTGGGGGCCAAACGGCAGCGGCAAATCCACGGCCTTGCTAGCGGTGTTGGGCTTGGCGACGGAAGGCATCACTGGAGAGGTTTCCGTCAAGGATGCCTCGGGCCAGGAATTTAAGGACAGCGCATTGTGGGAGCACTGCGCATATTTGCCGCAGCGGCCGGTCATTGATCCGGAAAGTGTCAGTGATTATGCGGAACTGTCGCTTGGGCAGCGCCAACGGCTTGCGCTGAAACGTGAGCTTGGGGCGCAATTGCTCCTGTTGGATGAGCCGACCGCGCACCTGGATCCAGACAACGCTGCGATCATGATCCAGCAATTGCAGGCTGAAGCCCGCCGAGGCACCACAGTACTGGCGGTTTCGCATGATCCTTTGCTGCGTGCGGCTGCCGATGAAGTGGTGGAGGTCAAATGAACACCCTGGTAAAACTTCGTTTCCGCGAGCTAATTCCCGCCGTTGTTGCAGGTAGCGTCACGATGATCGCCTCCATCACCCTGACGGTGGTGTCGGCCTGGCTGATCACCAAAGCTTGGGAAATGCCGCCAGTGATGGATCTGACCGTGGCGGTCACCGCTGTGCGAGCCCTGGGCATTAGCCGTGCGATGTTCCGTTATATAGAGAGAATCGTTTCACATGACTTGGCGTTGAAGGCAGCCAGCCGAGCCCGTTCGAGTGCATATCAACGCCTGGCTTCGTCGCCAAACTCTGCGTTGACGATGCGCCGCGGCGAACTGCTTAGCCGCCTTGGTGTGGATATCGATTCGGTTGCCGATGTCATCGTCCGCGCCGTCATTCCCGCCGGAGTTGCCCTGCTCACCGGAGTTGTCGCGATCATCTTCACCGCGATTCTCAGCCCCGCAACCGCACTTGTCCTGGCGATTGGATTGATTGCTGCTGCAATTATCCCTCCCCTGCTTGCTGCTCGCGGAGTTAAAACAGCCGAAGCCCGGCGCGCTGAATCCAGCGAAGCCTACTTGAGTTCCTTGGATCAGGTGCTGTCCAACCAGGCGGCGCTTCGTGTTCGTGGTGAAATGCCGGCCGCTCTGTCCAAGGCGGATGTGGCTGCGCGTTCCTATTCTTCTTCACTGGAGGCAGGCGCGAAAGACACTGCCATTGGCGCAGCGAGTTCCCTGTGGATTCACGGTTTCACTGTCATTGGTGTGCTCATGGTTTCCGCGTCACTGTATGCAGATGGAAGCCATTCACCGCAGTGGTTTGGTGTGTTGGTGCTGCTTTCACTCGCAGCTTTCGAGGCTGTCTCTGTTCTCCCCGATGCTGCGATTGCTCGTACCCGCGCCGCAGATGCCACCAGGAGGCTTGCGGAAATCTCGGCGCTGCCAGAATCTGTCTCTCTTGAGCTTCGCACGGCCTCTGACCAGCCCGTATTACGCGCCGAGAATCTAGTTTATGGATGGGACAGCGACCTAGGCACGAGCAACCTGGATCTCACCTTTGGTTCACGACATGAAATCATCGCACCCTCTGGAACTGGCAAAACGACCCTGCTGCTCACACTTGCGGGGCTGTTGGAACCTCGTGGAGGCCAAGTGCTTATCGACGGCACCAATCCTTCCGAGTTGAAAAACGCCGTGCTGTTCAGTCCAGAAGATGCCCACATTTTTGCCACCACTGTCCGAGATAACTTAGCACTCGGAGCACCGGAAGCAACCGACGCGGAAATGACATCGATCCTGGAACATGTTGGTTTGTCAGAGTGGGTTCAAGGTTTACCCGATGGTCTTGGCACTGTCCTTGATTCAGGTGCCGATAGTCTCTCGGGAGGTCAGCGCCGCCGCCTGCTCCTTGCCCGCGTACTACTAAGTGATGCACCAATTCTGCTTTTGGATGAACCCACCGAGCACCTCGACACTGCAGGCTCCTCTGAAATCTTGTCTATGCTGGCCTCCGATGAACTCCCTGGTAAAAGAGCTAGGAGAACCGTAGTGATTGTGAGGCATGTGAGGTAA

서열번호 4: H30 프로모터의 nucleotide 서열(74 bp)SEQ ID NO: 4: nucleotide sequence of H30 promoter (74 bp)

AAAGTAACTTTTCGGTTAAGGTAGCGCATTCGTGGTGTTGCCCGTGGCCCGGTTGGTTGGGCAGGAGTATATTGAAAGTAACTTTTCGGTTAAGGTAGCGCATTCGTGTGTGTTGCCGTGGCCCGGTTGGTTGGGCAGGAGTATATTG

본 발명에 있어서, 상기 “zwf 유전자”는, 포도당-6-인산 탈수소효소(glucose-6-phosphate dehydrogenase, G6PD, G6PDH)를 코딩하는 유전자를 의미하며, 서열번호 1의 염기서열로 표시되는 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니다. 상기 포도당-6-인산 탈수소효소는 하기의 화학 반응을 촉매하는 효소이다.In the present invention, the “zwf gene” refers to a gene encoding glucose-6-phosphate dehydrogenase (G6PD, G6PDH), and is characterized by the base sequence of SEQ ID NO: 1. It can be done, but is not limited to this. The glucose-6-phosphate dehydrogenase is an enzyme that catalyzes the following chemical reaction.

D-glucose 6-phosphate + NADP+ + H2O

Figure pat00001
6-phospho-D-glucono-1,5-lactone + NADPH + H+ D-glucose 6-phosphate + NADP + + H 2 O
Figure pat00001
6-phospho-D-glucono-1,5-lactone + NADPH + H +

본 발명에 있어서, 상기 “cydABDC 유전자”는 cydABDC gene cluster와 동일한 의미로 사용되며, 서열번호 3의 염기서열로 표시되는 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니다. cydA cydB 유전자는 각각 cytochrome bd oxidase의 subunit I 및 subunit II를 코딩하며, cydCcydD 유전자는 활성 cytochrome bd oxidase 형성에 필요한 ABC transporter를 코딩한다.In the present invention, the “cydABDC gene” is cydABDC It is used in the same sense as gene cluster, and may be characterized by being represented by the base sequence of SEQ ID NO: 3, but is not limited thereto. cydA and cydB Each gene is cytochrome bd Codes subunit I and subunit II of oxidase, cydC and cydD The gene is active cytochrome bd Codes the ABC transporter required for oxidase formation.

본 발명에 있어서, 상기 “H36 프로모터” 및 “H30 프로모터”는 각각 서열번호 2 및 서열번호 4의 염기서열로 표시되는 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니다.In the present invention, the “H36 promoter” and “H30 promoter” may be characterized by being represented by the base sequences of SEQ ID NO: 2 and SEQ ID NO: 4, respectively, but are not limited thereto.

본 발명의 일 실시예에서, “H36 프로모터” 및 “H30 프로모터”는 각각 zwf 유전자 및 cydABDC 유전자의 과발현을 위해 치환되었으며, zwf 유전자 및 cydABDC 유전자를 과발현하도록 작용하는 프로모터는 작동 원리상 그 종류에 관계없이 사용될 수 있음은 당업자에게 자명할 것이다.In one embodiment of the present invention, the “H36 promoter” and “H30 promoter” are substituted for overexpression of the zwf gene and the cydABDC gene, respectively, and the promoters that act to overexpress the zwf gene and the cydABDC gene are related to their types in terms of operating principle. It will be apparent to those skilled in the art that it can be used without.

본 발명에 있어서, 상기 치환 또는 도입은 유전자가 숙주 미생물에 도입되어 게놈 자체에 통합되어 있는 경우뿐만 아니라, 상기 유전자가 플라스미드나 벡터의 형태로 숙주 미생물 게놈에 독립적으로 도입되어 있는 경우를 포함한다.In the present invention, the substitution or introduction includes not only cases where the gene is introduced into the host microorganism and integrated into the genome itself, but also cases where the gene is independently introduced into the host microorganism genome in the form of a plasmid or vector.

본 발명의 일 실시예에서는, 코리네박테리움 글루타미쿰의 chromosome 내 zwf 유전자의 발현 프로모터를 H36으로 치환하거나, cydABDC 유전자 및 H30 프로모터를 삽입한 플라스미드를 구축하여 코리네박테리움 글루타미쿰 균주에 형질전환하거나, 또는 코리네박테리움 글루타미쿰의 chromosome 내 zwf 유전자의 발현 프로모터는 H36으로 치환하고 chromosome 내 cydABDC 유전자의 발현 프로모터는 H30 프로모터로 치환하였다.In one embodiment of the present invention, the expression promoter of the zwf gene in the chromosome of Corynebacterium glutamicum is replaced with H36, or a plasmid is constructed into which the cydABDC gene and the H30 promoter are inserted into the Corynebacterium glutamicum strain. Transformed, or the expression promoter of the zwf gene in the chromosome of Corynebacterium glutamicum was replaced with H36, and the expression promoter of the cydABDC gene in the chromosome was replaced with the H30 promoter.

본 발명의 일 실시예에서, 분비 신호 펩타이드를 코딩하는 유전자와 목적 단백질을 코딩하는 유전자가 도입되어 있는 재조합 벡터를 사용할 수 있다. 이 경우, 상기 분비 신호 펩타이드를 코딩하는 유전자와 목적 단백질을 코딩하는 유전자는 하나의 재조합 벡터에 도입되는 것이 바람직하다. 상기 목적 단백질은 분비 신호 펩타이드와 작동 가능하게 연결되어 발현됨으로써 목적 단백질의 세포 외 분비가 촉진된다.In one embodiment of the present invention, a recombinant vector into which a gene encoding a secretion signal peptide and a gene encoding a target protein are introduced can be used. In this case, it is preferable that the gene encoding the secretion signal peptide and the gene encoding the target protein are introduced into one recombinant vector. The target protein is expressed in operably linked with a secretion signal peptide, thereby promoting extracellular secretion of the target protein.

본 발명에 있어서, 상기 유전자의 도입을 위해 사용할 수 있는 벡터는 pHCP, pXMJ19, pTac15K, pBBR1MCS, pEKEx1 및 pCES208로 구성된 군에서 선택된 어느 하나 이상일 수 있으나, 이에 제한되는 것은 아니다.In the present invention, the vector that can be used to introduce the gene may be one or more selected from the group consisting of pHCP, pXMJ19, pTac15K, pBBR1MCS, pEKEx1, and pCES208, but is not limited thereto.

본 발명에 있어서, 유전자가 도입 또는 증폭되어 있다는 것은, 상기 유전자에 의해 생성되는 펩타이드 또는 단백질이 숙주 미생물에 없는 경우 이를 인위적으로 숙주 미생물에서 발현하도록 하여 펩타이드 또는 단백질의 활성 또는 기능을 갖도록 하는 것뿐만 아니라, 상기 유전자에 의해 생성되는 펩타이드 또는 단백질의 활성 또는 기능이 내재적 활성 또는 기능에 비하여 강화되도록 변형된 것을 포함한다.In the present invention, the introduction or amplification of a gene means that when the peptide or protein produced by the gene is not in the host microorganism, it is artificially expressed in the host microorganism to have the activity or function of the peptide or protein. Rather, it includes modifications so that the activity or function of the peptide or protein produced by the gene is enhanced compared to the intrinsic activity or function.

본 발명에 있어서, 용어 "내재적 활성 또는 기능"이란, 본래 미생물이 변형되지 않은 상태에서 가지고 있는 효소, 펩타이드, 단백질 등이 보유하는 활성 또는 기능을 의미하고, "내재적 활성 또는 기능에 비하여 강화되도록 변형"되었다는 의미는 변형 전 상태의 펩타이드 등의 활성 또는 기능과 비교할 때 당해 활성 또는 기능이 신규로 도입되거나 더 향상된 것을 의미하며, 활성 또는 기능을 나타내는 유전자가 도입되거나 또는 당해 유전자의 카피수 증가(예를 들어, 유전자가 도입된 플라스미드를 이용한 발현), 발현조절 서열의 변형, 예를 들어 개량된 프로모터의 사용 등과 같이, 조작이 이루어지기 전의 미생물이 가지는 활성에 비하여 조작이 이루어진 이후의 미생물이 가지고 있는 활성 또는 기능이 증가된 상태를 의미한다.In the present invention, the term "intrinsic activity or function" refers to the activity or function possessed by enzymes, peptides, proteins, etc. that the original microorganism has in its unmodified state, and "modified to enhance compared to the intrinsic activity or function." "It means that the activity or function is newly introduced or further improved compared to the activity or function of the peptide in the state before modification, and a gene showing the activity or function is introduced or the copy number of the gene is increased (e.g. (e.g., expression using a plasmid into which a gene has been introduced), modification of the expression control sequence, for example, use of an improved promoter, etc., the activity of the microorganism after the manipulation is compared to the activity of the microorganism before the manipulation. It means a state of increased activity or function.

본 발명에 있어서, "펩타이드 기능의 강화"란, 펩타이드 자체의 기능이 새로 도입되거나 증대되어 본래 기능 이상의 효과를 도출하는 것을 포함할 뿐만 아니라, 내재적 유전자 기능의 증가, 내부 또는 외부 요인으로부터 내재적 유전자 증폭, 유전자 카피수 증가, 외부로부터의 유전자 도입, 발현조절 서열의 변형, 특히 프로모터 교체 또는 변형 및 유전자내 돌연변이에 의한 펩타이드 기능의 증가 등에 의해 그 기능이 증대되는 것을 포함한다.In the present invention, “enhancement of peptide function” includes not only introducing or increasing the function of the peptide itself to produce effects beyond the original function, but also increasing intrinsic gene function and amplifying intrinsic genes from internal or external factors. , the function is increased by increasing the number of gene copies, introducing genes from outside, modifying the expression control sequence, especially promoter replacement or modification, and increasing the peptide function by intragene mutation.

본 발명에 있어서, 용어 "과발현"이란 보통 상태에서 세포 내 해당 유전자가 발현되는 수준보다 높은 수준의 발현을 일컫는 것으로써, 유전체 상에 존재하는 유전자의 프로모터를 강력한 프로모터로 치환하거나, 발현벡터에 해당유전자를 클로닝하여 세포에 형질전환시키는 방법을 통해 발현량을 증가시키는 것 등을 포함하는 개념이다.In the present invention, the term "overexpression" refers to a higher level of expression than the level at which the corresponding gene is expressed in the cell under normal conditions, and refers to replacing the promoter of a gene present in the genome with a strong promoter or using an expression vector corresponding to the gene. It is a concept that includes increasing the expression level by cloning genes and transforming them into cells.

본 발명에 있어서, 용어 "벡터(vector)"는 적합한 숙주 내에서 DNA를 발현시킬 수 있는 적합한 조절 서열에 작동가능하게 연결된 DNA 서열을 함유하는 DNA 제조물을 의미한다. 벡터는 플라스미드, 파지 입자 또는 간단하게 잠재적 게놈 삽입물일 수 있다. 적당한 숙주로 형질전환되면, 벡터는 숙주 게놈과 무관하게 복제하고 기능할 수 있거나, 또는 일부 경우에 게놈 그 자체에 통합될 수 있다. 플라스미드가 현재 벡터의 가장 통상적으로 사용되는 형태이므로, 본 명세서에서 "플라스미드(plasmid)" 및 "벡터(vector)"는 때로 상호 교환적으로 사용된다. 본 발명의 목적상, 플라스미드 벡터를 이용하는 게 바람직하다. 이러한 목적에 사용될 수 있는 전형적인 플라스미드 벡터는 (a) 숙주세포당 수 개에서 수백 개의 플라스미드 벡터를 포함하도록 복제가 효율적으로 이루어지도록 하는 복제 개시점, (b) 플라스미드 벡터로 형질전환된 숙주세포가 선발될 수 있도록 하는 항생제 내성 유전자 및 (c) 외래 DNA 절편이 삽입될 수 있는 제한효소 절단부위를 포함하는 구조를 지니고 있다. 적절한 제한효소 절단 부위가 존재하지 않을지라도, 통상의 방법에 따른 합성 올리고뉴클레오타이드 어댑터(oligonucleotide adaptor) 또는 링커(linker)를 사용하면 벡터와 외래 DNA를 용이하게 라이게이션(ligation)할 수 있다. 라이게이션 후에, 벡터는 적절한 숙주세포로 형질전환되어야 한다. 형질전환은 칼슘 클로라이드 방법 또는 전기천공법(electroporation) (Neumann, et al., EMBO J., 1:841, 1982) 등을 사용해서 용이하게 달성될 수 있다.In the present invention, the term “vector” refers to a DNA preparation containing a DNA sequence operably linked to a suitable control sequence capable of expressing the DNA in a suitable host. Vectors can be plasmids, phage particles, or simply potential genomic inserts. Once transformed into a suitable host, the vector can replicate and function independently of the host genome, or in some cases can be integrated into the genome itself. Since plasmids are currently the most commonly used form of vector, “plasmid” and “vector” are sometimes used interchangeably herein. For the purposes of the present invention, it is preferred to use plasmid vectors. A typical plasmid vector that can be used for this purpose is (a) an origin of replication that allows efficient replication to contain several to hundreds of plasmid vectors per host cell, and (b) a selection site for host cells transformed with the plasmid vector. It has a structure that includes (c) an antibiotic resistance gene that allows the DNA fragment to be inserted, and (c) a restriction enzyme cut site into which a foreign DNA fragment can be inserted. Even if an appropriate restriction enzyme cleavage site does not exist, the vector and foreign DNA can be easily ligated using a synthetic oligonucleotide adapter or linker according to a conventional method. After ligation, the vector must be transformed into an appropriate host cell. Transformation can be easily achieved using the calcium chloride method or electroporation (Neumann, et al., EMBO J., 1:841, 1982).

상기 벡터의 프로모터는 구성적 또는 유도성일 수 있으며, 본 발명의 효과를 위해 추가적으로 변형될 수 있다. 또한 발현벡터는 벡터를 함유하는 숙주세포를 선택하기 위한 선택성 마커를 포함하고, 복제 가능한 발현벡터인 경우 복제 기원(Ori)을 포함한다. 벡터는 자가 복제하거나 숙주 게놈 DNA에 통합될 수 있다. 바람직하게는 벡터 내로 삽입되어 전달된 유전자가 숙주세포의 게놈 내로 비가역적으로 융합되어 세포 내에서 유전자 발현이 장기간 안정적으로 지속되도록 하는 것이 바람직하다.The promoter of the vector may be constitutive or inducible and may be further modified for the effect of the present invention. Additionally, the expression vector includes a selectable marker for selecting host cells containing the vector, and, in the case of an expression vector capable of replication, includes an origin of replication (Ori). Vectors can self-replicate or integrate into host genomic DNA. Preferably, the gene inserted into the vector and delivered is irreversibly fused into the genome of the host cell so that gene expression within the cell continues stably for a long period of time.

본 발명에 있어서, 염기서열은 다른 핵산 서열과 기능적 관계로 배치될 때 "작동가능하게 연결(operably linked)"된다. 이것은 적절한 분자(예를 들면, 전사 활성화 단백질)가 조절 서열(들)에 결합될 때 유전자 발현을 가능하게 하는 방식으로 연결된 유전자 및 조절 서열(들)일 수 있다. 예를 들면, 전서열(pre-sequence) 또는 분비 리더(leader)에 대한 DNA는 폴리펩타이드의 분비에 참여하는 전단백질로서 발현되는 경우 폴리펩타이드에 대한 DNA에 작동가능 하게 연결되고; 프로모터 또는 인핸서는 서열의 전사에 영향을 끼치는 경우 코딩서열에 작동가능하게 연결되거나; 또는 리보좀 결합 부위는 서열의 전사에 영향을 끼치는 경우 코딩 서열에 작동가능하게 연결되거나; 또는 리보좀 결합 부위는 번역을 용이하게 하도록 배치되는 경우 코딩 서열에 작동가능하게 연결된다. 일반적으로, "작동가능하게 연결된"은 연결된 DNA 서열이 접촉하고, 또한 분비 리더의 경우 접촉하고 리딩 프레임 내에 존재하는 것을 의미한다. 그러나, 인핸서(enhancer)는 접촉할 필요가 없다. 이들 서열의 연결은 편리한 제한 효소 부위에서 라이게이션(연결)에 의해 수행된다. 그러한 부위가 존재하지 않는 경우, 통상의 방법에 따른 합성 올리고뉴클레오티드 어댑터(oligonucleotide adaptor) 또는 링커(linker)를 사용한다.In the present invention, a base sequence is “operably linked” when placed in a functional relationship with another nucleic acid sequence. This may be a gene and regulatory sequence(s) linked in a way that allows gene expression when an appropriate molecule (e.g., transcriptional activation protein) is bound to the regulatory sequence(s). For example, the DNA for the pre-sequence or secretion leader is operably linked to the DNA for the polypeptide when expressed as a pre-protein that participates in secretion of the polypeptide; A promoter or enhancer is operably linked to the coding sequence if it affects transcription of the sequence; or the ribosome binding site is operably linked to the coding sequence when it affects transcription of the sequence; Or the ribosome binding site is operably linked to the coding sequence when positioned to facilitate translation. Generally, “operably linked” means that the linked DNA sequences are in contact and, in the case of a secreted leader, are in contact and are in reading frame. However, the enhancer need not be in contact. Linking of these sequences is accomplished by ligation at convenient restriction enzyme sites. If such a site does not exist, a synthetic oligonucleotide adapter or linker is used according to a conventional method.

당업계에 주지된 바와 같이, 숙주세포에서 형질전환 유전자의 발현 수준을 높이기 위해서는, 해당 유전자가 선택된 발현 숙주 내에서 기능을 발휘하는 전사 및/또는 해독 발현 조절 서열에 작동 가능하도록 연결되어야만 한다. 바람직하게는 발현 조절서열 및/또는 해당 유전자는 세균 선택 마커 및 복제 개시점(replication origin)을 같이 포함하고 있는 하나의 재조합벡터 내에 포함되게 된다. 숙주세포가 진핵세포인 경우에는, 재조합벡터는 진핵 발현숙주 내에서 유용한 발현 마커를 더 포함하여야만 한다.As is well known in the art, in order to increase the level of expression of a transgene in a host cell, the gene must be operably linked to transcriptional and/or translational expression control sequences that are functional within the selected expression host. Preferably, the expression control sequence and/or the corresponding gene are included in a single recombinant vector that also contains a bacterial selection marker and a replication origin. When the host cell is a eukaryotic cell, the recombinant vector must further contain an expression marker useful in the eukaryotic expression host.

상술한 재조합 벡터에 의해 형질전환된 숙주세포는 본 발명의 또 다른 측면을 구성한다. 본 명세서에 사용된 용어 "형질전환"은 DNA를 숙주로 도입하여 DNA가 염색체 외 인자로서 또는 염색체 통합완성에 의해 복제 가능하게 되는 것을 의미한다.Host cells transformed by the above-described recombinant vector constitute another aspect of the present invention. As used herein, the term “transformation” means introducing DNA into a host so that the DNA can be replicated as an extrachromosomal factor or through completion of chromosomal integration.

물론 모든 벡터가 본 발명의 DNA 서열을 발현하는데 모두 동등하게 기능을 발휘하지는 않는다는 것을 이해하여야만 한다. 마찬가지로 모든 숙주가 동일한 발현 시스템에 대해 동일하게 기능을 발휘하지는 않는다. 그러나, 당업자라면 과도한 실험적 부담 없이 본 발명의 범위를 벗어나지 않는 채로 여러 벡터, 발현 조절 서열 및 숙주 중에서 적절한 선택을 할 수 있다. 예를 들어, 벡터를 선택함에 있어서는 숙주를 고려하여야 하는데, 이는 벡터가 그 안에서 복제되어야만 하기 때문이다. 벡터의 복제 수, 복제 수를 조절할 수 있는 능력 및 당해 벡터에 의해 코딩되는 다른 단백질, 예를 들어 항생제 마커의 발현도 또한 고려되어야만 한다.Of course, it should be understood that not all vectors function equally well in expressing the DNA sequence of the present invention. Likewise, not all hosts perform equally well for the same expression system. However, those skilled in the art can make an appropriate selection among various vectors, expression control sequences and hosts without undue experimental burden and without departing from the scope of the present invention. For example, when choosing a vector, the host must be considered, because the vector must replicate within it. The copy number of the vector, the ability to control copy number and the expression of other proteins encoded by the vector, such as antibiotic markers, should also be considered.

아울러, 본 발명에서 도입된 유전자는 숙주세포의 게놈에 도입되어 염색체 상 인자로서 존재하는 것을 특징으로 할 수 있다. 본 발명이 속하는 기술분야의 당업자에게 있어 상기 유전자를 숙주세포의 게놈 염색체에 삽입하여서도 상기와 같이 재조합 벡터를 숙주세포에 도입한 경우와 동일한 효과를 가질 것은 자명하다 할 것이다.In addition, the gene introduced in the present invention can be characterized as being introduced into the genome of the host cell and existing as a factor on the chromosome. For those skilled in the art to which the present invention pertains, it will be obvious that inserting the above gene into the genomic chromosome of a host cell will have the same effect as when introducing a recombinant vector into the host cell as described above.

본 발명에 있어서, 상기 재조합 코리네박테리움 속 미생물들을 이용하여 분비 생산된 목적 단백질은 엔도자일라나아제(endoxylanase, XynA), cAbHuL22 또는 M18인 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니며, 이외에 다른 재조합 단백질이 적용될 수 있다.In the present invention, the target protein secreted and produced using the recombinant Corynebacterium genus microorganisms may be characterized as endoxylanase (XynA), cAbHuL22, or M18, but is not limited thereto. Other recombinant proteins may be applied.

본 발명에 있어서, 상기 목적 단백질은 코리네박테리움 속 미생물에서 목적 단백질 분비를 유도하는 분비 신호 펩타이드에 작동 가능하게 연결되어 도입되는 것을 특징으로 할 수 있다.In the present invention, the target protein may be introduced by being operably linked to a secretion signal peptide that induces secretion of the target protein in Corynebacterium genus microorganisms.

본 발명에 있어서, 상기 목적 단백질 분비를 유도하는 분비 신호 펩타이드는 Cg2052 분비 신호 펩타이드, Cg1514 분비 신호 펩타이드, CgR0949 분비 신호 펩타이드, TorA 분비 신호 펩타이드, CspA 분비 신호 펩타이드, Prorin B(PorB) 분비 신호 펩타이드, C1 분비 신호 펩타이드, CgR_2070 분비 신호 펩타이드 및 AprE 분비 신호 펩타이드로 구성된 군에서 선택되는 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니다. 즉, 코리네박테리움 속 미생물에서 목적 단백질의 분비를 유도할 수 있는 분비 신호 펩타이드는 제한 없이 사용 가능함은 당업자에게 자명할 것이다.In the present invention, the secretion signal peptide that induces secretion of the target protein is Cg2052 secretion signal peptide, Cg1514 secretion signal peptide, CgR0949 secretion signal peptide, TorA secretion signal peptide, CspA secretion signal peptide, Prorin B (PorB) secretion signal peptide, It may be characterized as being selected from the group consisting of C1 secretion signal peptide, CgR_2070 secretion signal peptide, and AprE secretion signal peptide, but is not limited thereto. In other words, it will be apparent to those skilled in the art that secretion signal peptides that can induce secretion of a target protein from microorganisms of the Corynebacterium genus can be used without limitation.

본 발명에 있어서, 상기 코리네박테리움 속 미생물은 코리네박테리움 글루타미쿰(Corynebacterium glutamicum), 코리네박테리움 아세토글구타미쿰(Corynebacterium acetoglutamicum), 코리네박테리움 아세토아시도필럼(Corynebacterium acetoacidophilum), 코리네박테리움 써모아미노제네스(Corynebacterium thermoaminogenes) 및 코리네박테리움 암모니아게네스(Corynebacterium ammoniagenes)로 구성된 군에서 선택되는 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니다.In the present invention, the microorganisms of the Corynebacterium genus are Corynebacterium glutamicum , Corynebacterium acetoglutamicum , and Corynebacterium acetoacidophilum . , Corynebacterium thermoaminogenes , and Corynebacterium ammoniagenes , but are not limited thereto.

본 발명은 또 다른 관점에서, (a) 상기 코리네박테리움(Corynebacterium) 속 재조합 미생물을 배양하여 목적 단백질을 코딩하는 유전자를 발현시켜 목적 단백질을 분비·생산하는 단계; 및 (b) 상기 분비·생산된 목적 단백질을 회수하는 단계를 포함하는 목적 단백질의 분비·생산 방법에 관한 것이다.From another aspect, the present invention includes the steps of: (a) culturing the recombinant microorganism of the Corynebacterium genus and expressing a gene encoding the target protein to secrete and produce the target protein; and (b) recovering the secreted/produced target protein.

본 발명의 방법은 상술한 “코리네박테리움(Corynebacterium) 속 재조합 미생물”을 이용하여 목적 단백질을 생산하는 방법에 관한 것이므로, 중복된 내용은 그 기재를 생략한다.Since the method of the present invention relates to a method of producing a target protein using the above-described “recombinant microorganism of the genus Corynebacterium ,” duplicate content will be omitted.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention, and it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as limited by these examples.

실시예Example 1: One: NADPHNADPH 과생산을Overproduction 위한 for 코리네박테리움 속Corynebacterium genus 미생물 개량 Microbiological improvement

세포내 에너지원 중에 하나인 NADPH를 증대시키기 위해 NADPH 생산에 관여하는 zwf 유전자(도 1A)를 코리네박테리움의 chromosome 상에서 강한 프로모터인 H36 프로모터(특허공개 10-2014-0110134) 하에 발현될 수 있도록 코리네박테리움을 개량하였다(도 1B). Chromosome 내 zwf 유전자의 발현 프로모터를 H36으로 치환하기 위해 코리네박테리움 ATCC13032을 주형으로 하여 zwf 유전자를 zwfUp_F(서열번호 5)과 zwfUp_R(서열번호 6), zwfDown_F(서열번호 7)와 zwfDown_R(서열번호 8)을 이용하여 PCR로 증폭하였고, 이 두 PCR 산물과 H36 프로모터 부분(Yim, S. S. et al, (2013) Biotechnology and bioengineering. 110, 2959-2969)을 pCES208_confirm_F(서열번호 9)와 H36_R(서열번호 10)을 이용하여 증폭한 H36 프로모터 PCR 산물을 이용하여 zwfUp_F과 zwfDown_R으로 overlap PCR하여 최종산물을 얻었다. 서열번호 5 내지 서열번호 10의 프라이머 서열은 하기 표 1에 기재된 바와 같다.In order to increase NADPH, one of the intracellular energy sources, the zwf gene (Figure 1A), which is involved in NADPH production, can be expressed under the H36 promoter (Patent Publication 10-2014-0110134), a strong promoter on the chromosome of Corynebacterium. Corynebacterium was improved (Figure 1B). In order to replace the expression promoter of the zwf gene in the chromosome with H36, Corynebacterium ATCC13032 was used as a template and the zwf gene was grown into zwfUp_F (SEQ ID NO: 5), zwfUp_R (SEQ ID NO: 6), zwfDown_F (SEQ ID NO: 7), and zwfDown_R (SEQ ID NO: 8) was amplified by PCR, and these two PCR products and the H36 promoter part (Yim, S. S. et al, (2013) Biotechnology and bioengineering. 110, 2959-2969) were cloned into pCES208_confirm_F (SEQ ID NO: 9) and H36_R (SEQ ID NO: Using the H36 promoter PCR product amplified using 10), overlap PCR was performed with zwfUp_F and zwfDown_R to obtain the final product. The primer sequences of SEQ ID NO: 5 to SEQ ID NO: 10 are as shown in Table 1 below.

프라이머 서열primer sequence 서열order
번호number
Primer namePrimer name Sequence(5’-> 3’)Sequence(5’-> 3’)
55 zwfUp_FzwfUp_F GATTAGCATGCTCCACTCTGTGGCTTCCTTCTTGATTAGCATGCTCCACTCTGTGGCTTCCTTCTT 66 zwfUp_RzwfUp_R TGAACGCCGGAGGATCAGCTACTTCAGGCGAGCTTCCATGTGAACGCCGGAGGATCAGCTACTTCAGGCGAGCTTCCATG 77 zwfDown_FzwfDown_F AACTTTAAGAAGGAGATATACATGTGAGCACAAACACGACCCCAACTTTAAGAAGGAGATATACATGTGAGCACAAACACGACCCC 88 zwfDown_RzwfDown_R GTAATCCCGGGTCTTCGGTGGATTCAGCCATGTAATCCCGGGTCTTCGGTGGATTCAGCCAT 99 pCES208_confirm_FpCES208_confirm_F ctgatcctccggcgttcactgatcctccggcgttca 1010 H36_RH36_R atgtatatctccttcttaaagttatgtatatctccttcttaaagtt

PCR 반응 조건은 98℃ 5분, 1 Cycle; 98℃ 5분, 55℃ 20초, 72℃ 1분 30초, 30 Cycle; 72℃ 5분, 1 Cycle로 시행하였다. 이를 SphI과 XmaI 제한효소 처리 후 같은 제한효소 처리를 한 pK19mobSacB 플라스미드에 삽입하여 pK19MobSacB_H36_zwf를 구축하였다. pK19MobSacB_H36_zwf를 최소 1 μg/μl 이상 되도록 준비하여 한국 특허공개 10-2022-0049827의 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) SP002 균주에 전기천공법을 사용하여 1차 재조합을 유도하였다. 이때 전기천공한 균주를 카나마이신(kanamycin)이 20 μg/μl 포함된 LB 한천플레이트에 도말하여 콜로니를 분리한 후 게놈상의 유도한 위치에 적절히 삽입되었는지 PCR 및 염기서열 분석을 통해 확인하였다. 이렇게 분리된 균주는 다시 2차 재조합을 유도하기 위해 10% 수크로오스(sucrose)를 함유한 LB 한천 액체 배지에 하룻밤 배양하여 동일 농도의 수크로오스 한천플레이트에 도말하여 콜로니를 분리하였다. 최종 분리된 콜로니 중 항생제 카나마이신(kanamycin) 내성 여부를 확인한 후 항생제 내성이 없는 균주들 중 H36 프로모터가 삽입되었는지 염기서열 분석을 통해 확인하였다.PCR reaction conditions were 98°C for 5 minutes, 1 cycle; 98℃ 5 minutes, 55℃ 20 seconds, 72℃ 1 minute 30 seconds, 30 cycles; It was performed at 72°C for 5 minutes, 1 cycle. This was treated with Sph I and Prepare pK19MobSacB_H36_zwf to be at least 1 μg/μl and inoculate it with Corynebacterium glutamicum of Korean Patent Publication No. 10-2022-0049827. glutamicum ) SP002 strain was induced to undergo primary recombination using electroporation. At this time, the electroporated strain was spread on an LB agar plate containing 20 μg/μl kanamycin to isolate colonies, and then it was confirmed through PCR and base sequence analysis whether it was properly inserted into the induced position on the genome. To induce secondary recombination, the isolated strain was cultured overnight in LB agar liquid medium containing 10% sucrose, and then spread on a sucrose agar plate at the same concentration to isolate colonies. After checking whether the finally isolated colonies were resistant to the antibiotic kanamycin, it was confirmed through base sequence analysis whether the H36 promoter was inserted among the non-antibiotic resistant strains.

이렇게 만들어진, NADPH 과생산을 위해 H36 프로모터가 삽입된 코리네박테리움 글루타미쿰 SP002 균주(C. glutamicum SP002 ::H36 zwf)는 NADPH의 양이 증가하였는지 확인을 위해 BHI(Brain heart infusion, BD) 배지에 접종하여 24시간 동안 30℃, 200 rpm에서 배양하였다. 이후, 250mL flask의 신선한 CGXII 배지에 15g/L yeast extract, 7g/L casamino acid가 포함된 배지 50 mL에 상기 배양된 균주를 1/100의 부피만큼 옮겨서 동일 조건으로 배양하였다. 10시간 배양한 후 OD600nm에서 4로 원심분리(13,000 rpm, 10 min, and 4℃)하여 회수하였다. NADPH양 측정을 위해서 NADP/NADPH quantification colorimetoric kit(BioVision, Korea)를 사용하였다. 회수한 H36 프로모터가 삽입된 코리네박테리움 글루타미쿰 SP002 균주는 NADP/NADPH extraction buffer 400 μL에 풀어 50% pulse and 20% amplitude(Sonics, Newtown, CT, USA)의 조건으로 7분 파쇄하였다. 이를 다시 원심분리(13,000 rpm, 10 min, and 4℃)하여 상층액을 회수하여 제조사의 colorimetric 방법을 이용하여 NADPH 양을 측정하였다.The Corynebacterium glutamicum SP002 strain ( C. glutamicum SP002 ::H36 zwf ) created in this way, in which the H36 promoter was inserted for NADPH overproduction, was subjected to BHI (Brain heart infusion, BD) to confirm whether the amount of NADPH increased. The medium was inoculated and cultured at 30°C and 200 rpm for 24 hours. Afterwards, 1/100 of the volume of the cultured strain was transferred to 50 mL of medium containing 15 g/L yeast extract and 7 g/L casamino acid in fresh CGXII medium in a 250 mL flask and cultured under the same conditions. After culturing for 10 hours, it was recovered by centrifugation (13,000 rpm, 10 min, and 4°C) at OD600nm. To measure the amount of NADPH, the NADP/NADPH quantification colorimetoric kit (BioVision, Korea) was used. The recovered Corynebacterium glutamicum SP002 strain with the H36 promoter inserted was dissolved in 400 μL of NADP/NADPH extraction buffer and disrupted for 7 minutes under conditions of 50% pulse and 20% amplitude (Sonics, Newtown, CT, USA). This was centrifuged again (13,000 rpm, 10 min, and 4°C) to recover the supernatant, and the amount of NADPH was measured using the manufacturer's colorimetric method.

NADPH 측정 결과, H36 프로모터로 치환하기 전에 비하여 NADPH 양이 증가함을 확인하였다(도 1C).As a result of NADPH measurement, it was confirmed that the amount of NADPH increased compared to before substitution with the H36 promoter (Figure 1C).

실시예Example 2: 2: NADPH를NADPH 과생산하는overproducing 개량된 improved 코리네박테리움 속Corynebacterium genus 미생물을 이용한 분비능 분석 Secretion function analysis using microorganisms

실시예 1에서 구축한 NADPH를 과생산하는 코리네박테리움 글루타미쿰 SP002(C. glutamicum SP002 ::H36 zwf)를 이용하였을 때 목적 단백질 분비능에 효능을 보이는지 확인하기 위해, 합성 분비 신호 펩타이드인 C1을 이용하여 XynA를 분비 생산하는 시스템(한국 특허출원 10-2021-0092055)을 도입하여 분비된 단백질을 SDS-PAGE로 분석 및 비교하였다(도 2). NADPH를 과생산하지 않는 코리네박테리움 글루타미쿰 SP002를 이용하여 분비능 향상을 비교하였다.In order to confirm whether the NADPH-overproducing Corynebacterium glutamicum SP002 ( C. glutamicum SP002 ::H36 zwf ) constructed in Example 1 is effective in secreting the target protein, C1, a synthetic secretion signal peptide, was used. By introducing a system for secreting and producing XynA (Korean patent application 10-2021-0092055), the secreted proteins were analyzed and compared by SDS-PAGE (Figure 2). The improvement in secretion capacity was compared using Corynebacterium glutamicum SP002, which does not overproduce NADPH.

BHI(Brain heart infusion, BD) 배지에서 30℃, 200 rpm, 24시간의 배양 후, 새로운 250 mL의 플라스크에 1/100의 부피만큼 옮겨 동일한 조건으로 배양하였다. 배양 후, 13000 rpm, 4℃, 10분 원심분리를 통해 배양액만을 회수하여 아세톤 침전방법을 이용하여 30배 농축하여 단백질을 수득하였다.After culturing in BHI (Brain heart infusion, BD) medium at 30°C, 200 rpm, 24 hours, 1/100 of the volume was transferred to a new 250 mL flask and cultured under the same conditions. After culturing, only the culture medium was recovered through centrifugation at 13,000 rpm, 4°C, 10 minutes, and concentrated 30 times using acetone precipitation to obtain protein.

그 결과, 실시예 1에서 개량한 코리네박테리움 글루타미쿰에서의 분비능이 향상됨을 확인하였다(도 2B).As a result, it was confirmed that the secretion ability of Corynebacterium glutamicum improved in Example 1 was improved (Figure 2B).

실시예Example 3: ATP 3: ATP 과생산을Overproduction 위한 플라스미드 시스템 구축 및 ATP 분석과 목적 단백질 Construction of a plasmid system for ATP analysis and target protein 분비능Secretory function 비교 comparison

ATP 과생산을 위하여 코리네박테리움 글루타미쿰의 cydABDC 유전자를 과발현 하는 시스템을 제작하였다. CydABDC 유전자는 코리네박테리움 글루타미쿰 ATCC13032를 주형으로 하여 G_H30_cydA_F(서열번호 11)와 G_cydC_R(서열번호 12)을 이용하여 PCR로 증폭하였다. 서열번호 11 및 서열번호 12의 프라이머 서열은 하기 표 2에 기재된 바와 같다.For ATP overproduction, a system was created to overexpress the cydABDC gene of Corynebacterium glutamicum. The CydABDC gene was amplified by PCR using G_H30_cydA_F (SEQ ID NO: 11) and G_cydC_R (SEQ ID NO: 12) using Corynebacterium glutamicum ATCC13032 as a template. The primer sequences of SEQ ID NO: 11 and SEQ ID NO: 12 are as listed in Table 2 below.

프라이머 서열primer sequence 서열order
번호number
Primer namePrimer name Sequence(5’-> 3’)Sequence(5’-> 3’)
1111 G_H30_cydA_FG_H30_cydA_F GGTTGGTTGGGCAGGAGTATATTGGGATCCGTGGATGTCGTCGACATCGCACGGTTGGTTGGGCAGGAGTATATTGGGATCCGTGGATGTCGTCGACATCGCAC 1212 G_cydC_RG_cydC_R TTGGAGCTCCACCGCGGTGGCGGCCgcttaTTACCTCACATGCCTCACAATCACTTGGAGCTCCACCGCGGTGGCGGCCgcttaTTACCTCACATGCCTCACAATCAC

PCR 반응 조건은 98℃ 5분, 1 Cycle; 98℃ 5분, 55℃ 20초, 72℃ 6분, 30 Cycle; 72℃ 15분, 1 Cycle로 시행하였다. 이를 Gibbson assembly 방법을 이용하여 H30 프로모터가 삽입되어 있는 pXMJ19 플라스미드에 삽입하여 pXMJ19_cydABDC를 구축하였다(도 3A). 구축한 pXMJ19_cydABDC는 코리네박테리움 글루타미쿰 SP002 균주에 형질전환하여 배양하였다.PCR reaction conditions were 98°C for 5 minutes, 1 cycle; 98℃ 5 minutes, 55℃ 20 seconds, 72℃ 6 minutes, 30 cycles; It was performed at 72°C for 15 minutes, 1 cycle. This was inserted into the pXMJ19 plasmid into which the H30 promoter was inserted using the Gibbson assembly method to construct pXMJ19_cydABDC (Figure 3A). The constructed pXMJ19_cydABDC was transformed into Corynebacterium glutamicum SP002 strain and cultured.

형질전환된 균주를 BHI(Brain heart infusion, BD) 배지에 접종하여 24시간 동안 30℃, 200 rpm에서 배양하였다. 이후, 250 mL flask의 신선한 CGXII 배지에 15g/L yeast extract, 7g/L casamino acid가 포함된 배지 50 mL에 상기 배양된 균주를 1/100의 부피만큼 옮겨서 동일 조건으로 배양하였다. 10시간 배양한 후 OD600nm에서 8로 원심분리(13,000 rpm, 10 min, and 4℃)하여 회수하였다.The transformed strain was inoculated into BHI (Brain heart infusion, BD) medium and cultured at 30°C and 200 rpm for 24 hours. Afterwards, the cultured strain was transferred to 1/100 of the volume in 50 mL of fresh CGXII medium containing 15 g/L yeast extract and 7 g/L casamino acid in a 250 mL flask and cultured under the same conditions. After culturing for 10 hours, it was recovered by centrifugation (13,000 rpm, 10 min, and 4°C) at OD600nm.

ATP 양 측정을 위해서 ATP assay kit(Biomax, Korea)를 사용하였다. 회수한 균주는 ATP assay buffer 200 μL에 풀어 50% pulse and 20% amplitude(Sonics, Newtown, CT, USA)의 조건으로 7분 파쇄하였다. 이를 다시 원심분리(13,000 rpm, 10 min, and 4℃)하여 상층액을 회수하여 제조사의 Fluorometic 방법을 이용하여 ATP 양을 측정하였다. ATP 측정 결과, 코리네박테리움 글루타미쿰 SP002 균주에 empty plasmid(pXMJ19)를 형질전환한 것과, pXMJ19_cydABDC를 형질전환한 균주를 비교하였을 때, cydABDC를 과발현하는 시스템을 포함한 코리네박테리움 글루타미쿰 SP002 균주에서의 ATP 양이 2배 이상 증가함을 확인하였다(도 3B).To measure the amount of ATP, an ATP assay kit (Biomax, Korea) was used. The recovered strain was dissolved in 200 μL of ATP assay buffer and disrupted for 7 minutes under conditions of 50% pulse and 20% amplitude (Sonics, Newtown, CT, USA). This was centrifuged again (13,000 rpm, 10 min, and 4°C) to recover the supernatant, and the amount of ATP was measured using the manufacturer's Fluorometic method. As a result of ATP measurement, when comparing the empty plasmid (pXMJ19) transformed into the Corynebacterium glutamicum SP002 strain and the strain transformed with pXMJ19_cydABDC, Corynebacterium glutamicum including a system overexpressing cydABDC It was confirmed that the amount of ATP in the SP002 strain increased more than 2-fold (Figure 3B).

CydABDC의 과발현으로 인해 목적 단백질 분비능에 효능을 보이는지 확인하기 위해, 실시예 2에서 사용한 XynA를 분비 생산하는 시스템을 도입하여 분비된 단백질을 SDS-PAGE로 분석 및 비교하였다(도 4). 배양 조건은 ATP 측정 시 사용한 조건과 동일하고, 24시간 배양을 진행하였다. 배양 후, 13000 rpm, 4℃, 10분 원심분리를 통해 배양액만을 회수하여 아세톤 침전방법을 이용하여 10배 농축하여 단백질을 수득하였다. 그 결과, 도 4에서와 같이 cydABDC를 과발현하는 시스템을 가지고 있는 균주에서의 목적 단백질 분비능이 증가함을 확인하였다.In order to confirm whether overexpression of CydABDC was effective in secreting the target protein, the system for secreting and producing XynA used in Example 2 was introduced, and the secreted proteins were analyzed and compared by SDS-PAGE (FIG. 4). Culture conditions were the same as those used for ATP measurement, and culture was performed for 24 hours. After culturing, only the culture medium was recovered through centrifugation at 13,000 rpm, 4°C, 10 minutes, and concentrated 10 times using acetone precipitation to obtain protein. As a result, as shown in Figure 4, it was confirmed that the secretion ability of the target protein increased in the strain having a system for overexpressing cydABDC.

실시예Example 4: 4: NADPH와NADPH and ATP를 ATP 과생산하는overproducing 코리네박테리움 속Corynebacterium genus 미생물을 이용한 목적 단백질 Target protein using microorganisms 분비능Secretory function 분석 analyze

실시예 1에서 개량한 코리네박테리움 글루타미쿰 균주(C. glutamicum SP002 ::H36 zwf)에 실시예 3에서 구축한 pXMJ19_cydABDC를 형질전환하여, NADPH와 ATP를 과생산하는 코리네박테리움 글루타미쿰(C. glutamicum) SP003을 구축하였다(도 5A). 개량한 코리네박테리움 글루타미쿰 SP003 균주에서의 목적 단백질 분비능을 비교하기 위해, 실시예 2에서 사용한 XynA를 분비 생산하는 시스템을 도입하여 분비된 단백질을 SDS-PAGE로 분석 및 비교하였다. 배양 조건은 실시예 3과 동일하고, 아세톤 침전방법을 이용하여 10배 농축하여 단백질을 수득하여 비교하였다. 그 결과, 코리네박테리움 글루타미쿰 SP002 균주에서보다 코리네박테리움 글루타미쿰 SP003 균주에서의 분비 생산능이 증가함을 확인하였다(도 5B).Corynebacterium glutamicum overproducing NADPH and ATP by transforming pXMJ19_cydABDC constructed in Example 3 into the Corynebacterium glutamicum strain ( C. glutamicum SP002::H36 zwf ) improved in Example 1 C. glutamicum SP003 was constructed (Figure 5A). In order to compare the secretion ability of the target protein in the improved Corynebacterium glutamicum SP003 strain, the system for secreting and producing XynA used in Example 2 was introduced, and the secreted protein was analyzed and compared by SDS-PAGE. The culture conditions were the same as in Example 3, and the proteins were obtained and compared by concentrating 10 times using an acetone precipitation method. As a result, it was confirmed that the secretion production ability increased in the Corynebacterium glutamicum SP003 strain compared to the Corynebacterium glutamicum SP002 strain (Figure 5B).

다른 분비 생산 시스템을 도입하였을 때에도 목적 단백질 분비 생산능이 증가하는지 확인하기 위하여 pCES_Cg1514_cAbHuL22(Yim, S. S. et al., (2016) Biotechnology and bioengineering, 113(1), 163-172)와 pCES208_H36_PorB_M18(An, S.J. et al., (2013) Protein Expression and Purification, 89, 251-257) 플라스미드를 코리네박테리움 글루타미쿰 SP003 균주에 형질전환하여, 기존 보고된 코리네박테리움 글루타미쿰 ATCC13032 균주(WT)와의 분비능을 비교하였다. cAbHuL22는 30배 농축하여 분비능을 비교하였고, M18은 50배 농축하여 분비능을 비교하였다. 그 결과, 코리네박테리움 글루타미쿰 SP003 균주에서의 분비능이 증가함을 확인하였다(도 5C, 도 5D).To confirm whether the target protein secretion production ability increases even when a different secretion production system is introduced, pCES_Cg1514_cAbHuL22 (Yim, S. S. et al., (2016) Biotechnology and bioengineering, 113(1), 163-172) and pCES208_H36_PorB_M18 (An, S.J. et al. al., (2013) Protein Expression and Purification, 89, 251-257) The plasmid was transformed into Corynebacterium glutamicum SP003 strain, and its secretion ability compared to the previously reported Corynebacterium glutamicum ATCC13032 strain (WT) was confirmed. was compared. cAbHuL22 was concentrated 30 times to compare its secretion ability, and M18 was concentrated 50 times to compare its secretion ability. As a result, it was confirmed that the secretion ability in the Corynebacterium glutamicum SP003 strain increased (Figure 5C, Figure 5D).

실시예Example 5: 5: NADPH와NADPH and ATP를 ATP 과생산하는overproducing 코리네박테리움 속Corynebacterium genus 미생물 개량 Microbiological improvement

실시예 4에서 확인한 코리네박테리움 글루타미쿰 SP003에서의 목적 단백질 분비 생산능의 향상을 확인하였으나, SP003는 cydABDC를 과발현하는 플라스미드와 재조합 단백질을 분비 생산하는 플라스미드 시스템을 모두 포함하고 있다. 이를 보다 용이하게 사용하기 위해 cydABDC 유전자의 과발현을 실시예 1에서 개량한 코리네박테리움 글루타미쿰의 chromosome에서 시행하고자 하였다. CydABDC 과발현을 위해서 chromosome 내의 cydABDC의 내재된 프로모터를 합성 H30 프로모터로 치환하고자 하였다.Although the improvement in the target protein secretion production ability was confirmed in Corynebacterium glutamicum SP003 confirmed in Example 4, SP003 contains both a plasmid overexpressing cydABDC and a plasmid system for secreting and producing a recombinant protein. In order to use this more easily, overexpression of the cydABDC gene was attempted to be performed on the chromosome of Corynebacterium glutamicum improved in Example 1. To overexpress CydABDC, we attempted to replace the inherent promoter of cydABDC in the chromosome with a synthetic H30 promoter.

코리네박테리움 ATCC13032을 주형으로 하여 cydABDC 유전자의 프로모터 부분을 HindIII_Cg1302_A_F(서열번호 13)와 Cg1302_R(서열번호 14)을 이용하여 PCR로 증폭하였고, 실시예 3에서 구축한 pXMJ19_cydABDC를 주형으로 Cg1302_H30_F(서열번호 15)와 XbaI_CydA_B_R(서열번호 16)을 이용하여 PCR로 증폭하였다. 이 두 개의 PCR 산물을 HindIII_Cg1302_A_F(서열번호 13)와 XbaI_CydA_B_R(서열번호 16)을 이용하여 overlap PCR하여 최종 산물을 수득하였다. 서열번호 13 내지 서열번호 16의 프라이머 서열은 하기 표 3에 기재된 바와 같다.Using Corynebacterium ATCC13032 as a template, the promoter part of the cydABDC gene was amplified by PCR using HindIII_Cg1302_A_F (SEQ ID NO: 13) and Cg1302_R (SEQ ID NO: 14), and pXMJ19_cydABDC constructed in Example 3 was used as a template to produce Cg1302_H30_F (SEQ ID NO: 15) and XbaI_CydA_B_R (SEQ ID NO: 16) were amplified by PCR. These two PCR products were subjected to overlap PCR using HindIII_Cg1302_A_F (SEQ ID NO: 13) and XbaI_CydA_B_R (SEQ ID NO: 16) to obtain the final product. The primer sequences of SEQ ID NO: 13 to SEQ ID NO: 16 are as shown in Table 3 below.

프라이머 서열primer sequence 서열번호sequence number Primer namePrimer name Sequence(5’-> 3’)Sequence(5’-> 3’) 1313 HindIII_Cg1302_A_FHindIII_Cg1302_A_F AATTaagcttCAGAAACAATGGATTTTGGCAAAATTaagcttCAGAAACAATGGATTTTGGCAA 1414 Cg1302_RCg1302_R GCTTGGTTGCGGTGGTTACGCTTGGTTGCGGTGGTTAC 1515 Cg1302_H30_FCg1302_H30_F GTAACCACCGCAACCAAGCgggaacaaaagctgggtaccGTAACCACCGCAACCAAGCgggaacaaaagctgggtacc 1616 XbaI_CydA_B_RXbaI_CydA_B_R TTAAtctagaAGCTCCGCACGACCAGTCTTTAAtctagaAGCTCCGCACGACCAGTCT

PCR 반응 조건은 98℃ 5분, 1 Cycle; 98℃ 5분, 55℃ 20초, 72℃ 1분 30초, 30 Cycle; 72℃ 5분 1 Cycle로 시행하였다. 이를 HindIII와 XbaI 제한효소 처리 후 같은 제한효소를 처리한 pK19mobSacB 플라스미드에 삽입하여 pK19MobSacB_H30_CydA를 구축하였다. pK19MobSacB_H30_CydA는 실시예 1과 같이 전기천공법을 이용하여 실시예 1에서 개량한 코리네박테리움 글루타미쿰(C. glutamicum SP002 ::H36 zwf)에 추가적으로 개량을 하였고, H30 프로모터가 삽입되었는지 염기서열 분석을 통해 확인하였다. 이렇게 최종적으로 개량된 균주를 코리네박테리움 글루타미쿰(C. glutamicum) SP004로 명명하였다(도 6).PCR reaction conditions were 98°C for 5 minutes, 1 cycle; 98℃ 5 minutes, 55℃ 20 seconds, 72℃ 1 minute 30 seconds, 30 cycles; It was performed at 72°C for 5 minutes, 1 cycle. This was treated with Hind III and pK19MobSacB_H30_CydA was further improved in Corynebacterium glutamicum ( C. glutamicum SP002 ::H36 zwf ) improved in Example 1 using electroporation as in Example 1, and base sequence analysis was performed to determine whether the H30 promoter was inserted. It was confirmed through . This final improved strain was named Corynebacterium glutamicum ( C. glutamicum ) SP004 (FIG. 6).

실시예Example 6: 6: 코리네박테리움Corynebacterium 글루타미쿰glutamicum SP004를 이용한 ATP 측정 및 목적 단백질 ATP measurement and target protein using SP004 분비능Secretory function 분석 analyze

ATP 양 비교를 위하여 코리네박테리움 글루타미쿰 SP002와 코리네박테리움 글루타미쿰 SP004 균주에 empty plasmid인 pHCP(한국 특허공개 10-2018-0092110)와 pHCP 시스템에 합성 분비 신호 펩타이드 C1을 이용하여 cAbHuL22를 분비하는 시스템을 도입하여 비교하였다. 분비 신호 펩타이드 C1을 이용하여 cAbHuL22를 분비 생산하기 위해, 실시예 2에서 사용된 XynA 분비 생산 시스템을 플라스미드로 이용하였고, pCES_Cg1514_cAbHuL22를 주형으로 하여 cAbHuL22 유전자를 SapI_cAbHuL22_F(서열번호 17)와 NotI_cAbHuL22_R(서열번호18)을 이용하여 PCR로 증폭하였고, 실시예 2에서 합성 C1 분비 신호 펩타이드를 NdeI_C1_F(서열번호 19)와 NotI SfiI SapI_C1_R(서열번호 20)을 이용하여 PCR로 증폭하였다. 서열번호 17 내지 서열번호 20의 프라이머 서열은 하기 표 4에 기재된 바와 같다.To compare the amount of ATP, pHCP (Korean Patent Publication 10-2018-0092110), an empty plasmid, was used in Corynebacterium glutamicum SP002 and Corynebacterium glutamicum SP004 strains, and synthetic secretion signal peptide C1 was used in the pHCP system. A system secreting cAbHuL22 was introduced and compared. In order to secrete and produce cAbHuL22 using the secretion signal peptide C1, the ), and the synthetic C1 secretion signal peptide in Example 2 was amplified by PCR using NdeI_C1_F (SEQ ID NO: 19) and NotI SfiI SapI_C1_R (SEQ ID NO: 20). The primer sequences of SEQ ID NO: 17 to SEQ ID NO: 20 are as shown in Table 4 below.

프라이머 서열primer sequence 서열번호sequence number Primer namePrimer name Sequence(5’-> 3’)Sequence(5’-> 3’) 1717 SapI_cAbHuL22_FSapI_cAbHuL22_F TAGAGCTCTTCTGCAcaggtccaactgcaagaaagcggtTAGAGCTCTTCTGCAcaggtccaactgcaagaaagcggt 1818 NotI_cAbHuL22_RNotI_cAbHuL22_R atgcatgcgcggccgctcagtgatggtgatgatgatgtgaagagacatgcatgcgcggccgctcagtgatggtgatgatgatgtgaagagac 1919 NdeI_C1_FNdeI_C1_F aacatATGAATAAGAGTAAGGACTCTTCCaacatATGAATAAGAGTAAGGACTCTTCC 2020 NotI SfiI SapI_C1_RNotI SfiI SapI_C1_R TCTTgcggccgcGGCCCCCGAGGCCAAAAGCTCTTCATGCTCTTGGTGCTGGGGTTCTTgcggccgcGGCCCCCGAGGCCAAAAGCTCTTCATGCTCTTGGTGCTGGGGT

PCR 반응 조건은 98℃ 5분, 1 Cycle; 98℃ 5분, 55℃ 20초, 72℃ 1분 30초, 30 Cycle; 72℃ 5분, 1 Cycle로 시행하였다. 2개의 PCR 산물과 실시예 2에서 사용된 pHCP 벡터에 NdeI, SapI, NotI 제한효소를 처리한 후 클로닝하여 pHCP_C1_cAbHuL22를 구축하였고, 이를 코리네박테리움 글루타미쿰 SP002와 SP004에 형질전환하여 사용하였다.PCR reaction conditions were 98°C for 5 minutes, 1 cycle; 98℃ 5 minutes, 55℃ 20 seconds, 72℃ 1 minute 30 seconds, 30 cycles; It was performed at 72°C for 5 minutes, 1 cycle. The two PCR products and the pHCP vector used in Example 2 were treated with Nde I, Sap I, and Not I restriction enzymes and then cloned to construct pHCP_C1_cAbHuL22, which was transformed into Corynebacterium glutamicum SP002 and SP004. used.

실시예 3과 같은 방법으로 ATP 양을 측정한 결과, 코리네박테리움 글루타미쿰 SP004에서의 ATP 양이 증가함을 확인하였다(도 7A).As a result of measuring the amount of ATP in the same manner as in Example 3, it was confirmed that the amount of ATP in Corynebacterium glutamicum SP004 increased (FIG. 7A).

또한 배양 조건 및 분비 생산된 단백질의 회수 방법은 실시예 3과 동일하게 하여, 코리네박테리움 글루타미쿰 SP002 균주와 SP004 균주에서 분비능을 SDS-PAGE를 이용하여 비교하였을 때(분비 생산된 cAbHuL22를 30배 농축하여 비교), 개량한 코리네박테리움 글루타미쿰 SP004 균주에서 분비능이 향상됨을 확인하였다(도 7B). 코리네박테리움 글루타미쿰 SP002, SP003, SP004에서 XynA를 분비 생산하여 10배를 농축하여 비교한 결과에서도 SP002에서보다 SP003, SP004에서의 분비능이 증가한 것을 확인할 수 있었다(도 8).In addition, the culture conditions and recovery method of secretion-produced protein were the same as in Example 3, and when the secretion ability of Corynebacterium glutamicum SP002 and SP004 strains was compared using SDS-PAGE (secretion-produced cAbHuL22 (30-fold concentration and comparison), it was confirmed that the secretion ability was improved in the improved Corynebacterium glutamicum SP004 strain (Figure 7B). As a result of comparing the secretion and production of

실시예Example 7: 7: 코리네박테리움Corynebacterium 글루타미쿰glutamicum SP004를 이용한 목적 단백질 Target protein using SP004 분비능Secretory function 비교 comparison

목적 단백질 분비 생산에 적용된 것은 아니나, 세포 내 대사증진을 위해 ATP 생합성을 증진시키는 전략으로 기존 사용된 polyphosphate kinase(PPK) 동시 발현 방법(Motomura K, et al., Appl Environ Microbiol. 2014 Apr;80(8):2602-8, Chen H, Zhang YPJ. Crit Rev Biotechnol. 2021 Feb;41(1):16-33)과 코리네박테리움 글루타미쿰 SP004의 목적 단백질 분비능을 비교하고자 하였다. 배양 조건 및 분비 생산된 단백질의 회수 방법은 실시예 3에 기재된 바와 같다.Although not applied to secretion production of the target protein, the polyphosphate kinase (PPK) co-expression method previously used as a strategy to enhance ATP biosynthesis to enhance intracellular metabolism (Motomura K, et al., Appl Environ Microbiol. 2014 Apr;80( 8):2602-8, Chen H, Zhang YPJ. Crit Rev Biotechnol 2021 Feb;41(1):16-33) and Corynebacterium glutamicum SP004. Culture conditions and recovery methods of secreted produced proteins were as described in Example 3.

PPK 동시 발현 코리네박테리움 글루타미쿰 균주와 SP004 균주에서 분비능을 SDS-PAGE를 이용하여 비교한 결과, SP004 균주에서의 목적 단백질 분비가 현저히 증가한 것을 확인하였다(도 9).As a result of comparing the secretion ability of the PPK co-expressing Corynebacterium glutamicum strain and the SP004 strain using SDS-PAGE, it was confirmed that secretion of the target protein in the SP004 strain was significantly increased (FIG. 9).

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As the specific parts of the present invention have been described in detail above, it is clear to those skilled in the art that these specific techniques are merely preferred embodiments and do not limit the scope of the present invention. will be. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (4)

(a) 코리네박테리움 속 미생물에 내재적으로 존재하는 서열번호 1의 염기서열로 표시되는 zwf 유전자의 프로모터가 서열번호 2의 염기서열로 표시되는 H36 프로모터로 치환; 및/또는 코리네박테리움 속 미생물에 내재적으로 존재하는 서열번호 3의 염기서열로 표시되는 cydABDC 유전자의 프로모터가 서열번호 4의 염기서열로 표시되는 H30 프로모터로 치환되고, (b) 목적 단백질을 코딩하는 유전자가 도입되어 있는, 목적 단백질의 세포 외 분비·생산능이 개선된 코리네박테리움(Corynebacterium) 속 재조합 미생물.
(a) Replacement of the promoter of the zwf gene, represented by the nucleotide sequence of SEQ ID NO: 1, which is endogenously present in Corynebacterium genus microorganisms, with the H36 promoter represented by the nucleotide sequence of SEQ ID NO: 2; And/or the promoter of the cydABDC gene represented by the nucleotide sequence of SEQ ID NO: 3, which is inherently present in microorganisms in the Corynebacterium genus, is replaced with the H30 promoter represented by the nucleotide sequence of SEQ ID NO: 4, and (b) coding for the target protein. A recombinant microorganism of the Corynebacterium genus with improved extracellular secretion and production capabilities of the target protein, into which a gene has been introduced.
제1항에 있어서, 상기 목적 단백질은 코리네박테리움 속 미생물에서 목적 단백질 분비를 유도하는 분비 신호 펩타이드에 작동 가능하게 연결되어 도입되는 것을 특징으로 하는 코리네박테리움 속 재조합 미생물.
The recombinant microorganism of the Corynebacterium genus according to claim 1, wherein the target protein is introduced by being operably linked to a secretion signal peptide that induces secretion of the target protein in the Corynebacterium genus microorganism.
제2항에 있어서, 상기 목적 단백질 분비를 유도하는 분비 신호 펩타이드는 Cg2052 분비 신호 펩타이드, Cg1514 분비 신호 펩타이드, CgR0949 분비 신호 펩타이드, TorA 분비 신호 펩타이드, CspA 분비 신호 펩타이드, Prorin B(PorB) 분비 신호 펩타이드, C1 분비 신호 펩타이드, CgR_2070 분비 신호 펩타이드 및 AprE 분비 신호 펩타이드로 구성된 군에서 선택되는 것을 특징으로 하는 코리네박테리움 속 재조합 미생물.
The method of claim 2, wherein the secretion signal peptide that induces secretion of the target protein is Cg2052 secretion signal peptide, Cg1514 secretion signal peptide, CgR0949 secretion signal peptide, TorA secretion signal peptide, CspA secretion signal peptide, and Prorin B (PorB) secretion signal peptide. , a recombinant microorganism of the Corynebacterium genus, characterized in that it is selected from the group consisting of C1 secretion signal peptide, CgR_2070 secretion signal peptide, and AprE secretion signal peptide.
다음 단계를 포함하는 목적 단백질의 분비·생산 방법:
(a) 제1항 내지 제3항 중 어느 한 항의 코리네박테리움(Corynebacterium) 속 재조합 미생물을 배양하여 목적 단백질을 코딩하는 유전자를 발현시켜 목적 단백질을 분비·생산하는 단계; 및
(b) 상기 분비·생산된 목적 단백질을 회수하는 단계.
Secretion/production method of target protein comprising the following steps:
(a) culturing a recombinant microorganism of the Corynebacterium genus according to any one of claims 1 to 3 and expressing a gene encoding the target protein to secrete and produce the target protein; and
(b) Recovering the secreted/produced target protein.
KR1020220137530A 2022-10-24 2022-10-24 A recombinant Corynebacterium having enhanced secreted production efficiency of target protein through enhanced generation of ATP KR20240057506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220137530A KR20240057506A (en) 2022-10-24 2022-10-24 A recombinant Corynebacterium having enhanced secreted production efficiency of target protein through enhanced generation of ATP

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220137530A KR20240057506A (en) 2022-10-24 2022-10-24 A recombinant Corynebacterium having enhanced secreted production efficiency of target protein through enhanced generation of ATP

Publications (1)

Publication Number Publication Date
KR20240057506A true KR20240057506A (en) 2024-05-03

Family

ID=91077789

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220137530A KR20240057506A (en) 2022-10-24 2022-10-24 A recombinant Corynebacterium having enhanced secreted production efficiency of target protein through enhanced generation of ATP

Country Status (1)

Country Link
KR (1) KR20240057506A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100919704B1 (en) 2007-09-12 2009-10-06 한국생명공학연구원 An Effective Method for Expressing and Secreting Recombinant Proteins in Yeast
KR20140110134A (en) 2013-03-04 2014-09-17 한국과학기술원 Synthetic Promoter for Expressing Corynebacteria
KR20220049827A (en) 2020-10-15 2022-04-22 한국과학기술원 A recombinant Corynebacterium having enhanced secreted production efficiency of target protein

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100919704B1 (en) 2007-09-12 2009-10-06 한국생명공학연구원 An Effective Method for Expressing and Secreting Recombinant Proteins in Yeast
KR20140110134A (en) 2013-03-04 2014-09-17 한국과학기술원 Synthetic Promoter for Expressing Corynebacteria
KR20220049827A (en) 2020-10-15 2022-04-22 한국과학기술원 A recombinant Corynebacterium having enhanced secreted production efficiency of target protein

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
An, S.J. et al., (2013) Protein Expression and Purification, 89, 251-257
Yim, S. S. et al, (2013) Biotechnology and bioengineering. 110, 2959-2969
Yim, S. S. et al., (2016) Biotechnology and bioengineering, 113(1), 163-172

Similar Documents

Publication Publication Date Title
US10584338B2 (en) Promoter and use thereof
US11155849B2 (en) IMP-producing microorganism and method of producing IMP using the same
JP6136930B2 (en) Protein secretory production
EP3294762A1 (en) Expression constructs and methods of genetically engineering methylotrophic yeast
KR102147776B1 (en) A microorganism of Corynebacterium genus having enhanced L-lysine productivity and a method for producing L-lysine using the same
CN110494567B (en) Method for producing RNA
WO2018116266A1 (en) D-psicose 3-epimerase mutant and uses thereof
KR20150124398A (en) Microorganisms for producing putrescine and process for producing putrescine using them
KR102501259B1 (en) A recombinant Corynebacterium having enhanced secreted production efficiency of target protein
KR102617168B1 (en) Shewanella oneidensis-Drived Protein Expressing Microorganism and Method of L-Amino Acid Production Using the Same
CN112646766B (en) Recombinant strain for producing L-glutamic acid by modifying gene BBD29_04920 as well as construction method and application thereof
JP2024505808A (en) Bacterial strain with enhanced L-glutamic acid production ability and its construction method and application
KR20240057506A (en) A recombinant Corynebacterium having enhanced secreted production efficiency of target protein through enhanced generation of ATP
US20240076701A1 (en) Recombinant strain with modified gene bbd29_14900, and method for constructing the same and use thereof
US20210403889A1 (en) Crispr-cas system for clostridium genome engineering and recombinant strains produced thereof
CN112522175B (en) Recombinant strain for producing L-glutamic acid by modifying gene BBD29_09525 as well as construction method and application thereof
KR101677368B1 (en) A novel promoter and use thereof
KR20230142709A (en) Recombinant strain for producing L-glutamic acid by modifying gene BBD29_11265 and its construction method and application
WO2017163946A1 (en) Induction-type promoter
KR102616694B1 (en) Shewanella atlantica-Drived Protein Expressing Microorganism and Method of L-Amino Acid Production Using the Same
WO2024004983A1 (en) Erythritol utilization-deficient mutant trichoderma spp. and method for producing target substance using same
KR102634303B1 (en) Microorganisms that produce purine nucleotides and methods of producing purine nucleotides using the same
WO2008026698A1 (en) Method for production of l-glutamic acid
KR102016709B1 (en) Expression system for amylosucrase and production for turanose using the same
KR100629773B1 (en) Vectors containing guaA gene expressible in Escherichia coli Escherichia cells harboring the same and processes for accumulating 5'-guanylic acid synthetase in a medium using them