KR20190136881A - METHOD FOR MANUFACTURING InP/ZnS CORE-SHELL QUANTUM DOTS AND InP/ZnS CORE-SHELL QUANTUM DOTS USING THEREOF - Google Patents

METHOD FOR MANUFACTURING InP/ZnS CORE-SHELL QUANTUM DOTS AND InP/ZnS CORE-SHELL QUANTUM DOTS USING THEREOF Download PDF

Info

Publication number
KR20190136881A
KR20190136881A KR1020180097151A KR20180097151A KR20190136881A KR 20190136881 A KR20190136881 A KR 20190136881A KR 1020180097151 A KR1020180097151 A KR 1020180097151A KR 20180097151 A KR20180097151 A KR 20180097151A KR 20190136881 A KR20190136881 A KR 20190136881A
Authority
KR
South Korea
Prior art keywords
inp
precursor
precursor solution
indium
shell
Prior art date
Application number
KR1020180097151A
Other languages
Korean (ko)
Other versions
KR102151096B1 (en
Inventor
김범성
정다운
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Publication of KR20190136881A publication Critical patent/KR20190136881A/en
Application granted granted Critical
Publication of KR102151096B1 publication Critical patent/KR102151096B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

The present invention relates to a method for producing InP/ZnS core-shell quantum dots and the InP/ZnS core-shell quantum dots produced thereby and, more specifically, to a method for producing InP/ZnS core-shell quantum dots through a single precursor injection. The InP/ZnS core-shell quantum dot producing method by an embodiment of the present invention includes: a first precursor solution producing step of, to a preset temperature, heating first precursor solution produced by dissolving first and second precursors forming the core of quantum dots and a third precursor forming the shell of quantum dots in a first solvent; a second precursor solution producing step of producing second precursor solution by dissolving a fourth precursor forming shells with the third precursor in a second solvent; a mixed solution producing step of producing mixed solution by mixing the heated first precursor solution with the second precursor solution; and a mixed solution heating step of producing quantum dots formed with an InP core and a ZnS shell by heating the mixed solution at a preset temperature. The present invention is able to produce the InP/ZnS core-shell quantum dots by a simple process.

Description

InP/ZnS 코어-쉘 양자점 제조 방법 및 이에 의하여 제조되는 InP/ZnS 코어-쉘 양자점{METHOD FOR MANUFACTURING InP/ZnS CORE-SHELL QUANTUM DOTS AND InP/ZnS CORE-SHELL QUANTUM DOTS USING THEREOF}METHOD FOR MANUFACTURING INP / ZnS CORE-SHELL QUANTUM DOTS AND InP / ZnS CORE-SHELL QUANTUM DOTS USING THEREOF}

본 발명은 양자점 제조 방법에 관한 것으로서, 보다 상세하게는 단 한번의 전구체 주입을 통해 InP/ZnS 코어-쉘 양자점을 제조하는 방법에 관한 것이다. The present invention relates to a method for manufacturing quantum dots, and more particularly, to a method for manufacturing InP / ZnS core-shell quantum dots through a single injection of a precursor.

양자점(Quantum dots)은 자체적으로 빛을 내는 수 나노 크기의 반도체 물질로, 양자점 내부의 전자들은 에너지를 흡수하면 더 높은 에너지 준위로 양자도약(Quantum jump)하고, 에너지를 방출하면 낮은 에너지 준위로 떨어지는 것을 반복함으로써, 다양한 색상을 에너지 형태의 파장으로 방출한다. 이러한 양자점은 크기, 모양 및 화학적 조성을 제어하여 에너지 밴드갭의 조절이 가능하고, 이러한 요인을 제어하여 다양한 발광 파장의 양자점을 얻을 수 있다. 따라서, 양자점은 초미세 반도체, 질병진단 시약 및 디스플레이 등 발광 소자가 필요한 다양한 산업 분야에 적용되고 있다. Quantum dots are self-illuminating nano-sized semiconductor materials, in which electrons within the quantum dots quantum jump to higher energy levels when they absorb energy and fall to lower energy levels when they emit energy. By repeating this, various colors are emitted at wavelengths in the form of energy. The quantum dots can control the energy band gap by controlling the size, shape, and chemical composition, and can control the factors to obtain quantum dots of various emission wavelengths. Accordingly, quantum dots have been applied to various industrial fields requiring light emitting devices such as ultra-fine semiconductors, disease diagnosis reagents, and displays.

한편, 종래에는, 양자점 코어(core)의 외주면에 쉘(shell)을 형성하기 위하여, 코어를 형성하는 전구체 물질을 혼합 후 가열하여 코어를 합성한 용액에, 쉘을 형성하는 전구체 물질을 첨가하여 가열한 후 코어-쉘 구조의 양자점을 제조하였다. 그러나, 종래 기술의 경우, 코어를 합성한 후 반응 부산물을 제거하는 정제(cleaning) 공정이 필요하기 때문에, 공정이 복잡해지는 단점이 있다. Meanwhile, in order to form a shell on an outer circumferential surface of a quantum dot core, a precursor material for forming a shell is added to a solution obtained by mixing and heating a precursor material for forming a core to synthesize a core. After the quantum dot of the core-shell structure was prepared. However, in the prior art, since a cleaning process for removing reaction by-products after synthesis of a core is required, the process is complicated.

대한민국 등록특허공보 제10-1788786호(명칭: III-V/아연 칼코겐 화합물로 합금된 반도체 양자점)Republic of Korea Patent Publication No. 10-1788786 (Name: Semiconductor quantum dots alloyed with III-V / zinc chalcogen compound) 대한민국 등록특허공보 제10-1088108호(명칭: 용매열 방법을 이용한 InP/ZnS 코어/쉘 양자점 합성 방법)Republic of Korea Patent Publication No. 10-1088108 (Name: InP / ZnS core / shell quantum dot synthesis method using a solvent heat method)

본 발명은 상술한 바와 같은 종래 기술의 문제점을 해결하기 위한 것으로, 본 발명의 목적은, InP/ZnS 코어-쉘 양자점 표면의 표면 결함(defect)을 방지할 수 있도록 구성되는 InP/ZnS 코어-쉘 양자점 제조 방법 및 이에 의하여 제조된 InP/ZnS 코어-쉘 양자점을 제공하는 것이다. The present invention is to solve the problems of the prior art as described above, the object of the present invention, InP / ZnS core-shell InP / ZnS core-shell is configured to prevent surface defects (defect) on the surface of the quantum dot It is to provide a quantum dot manufacturing method and the InP / ZnS core-shell quantum dot produced thereby.

본 발명의 다른 목적은, 보다 간단한 공정으로 InP/ZnS 코어-쉘 양자점을 제조할 수 있도록 구성되는 InP/ZnS 코어-쉘 양자점 제조 방법 및 이에 의하여 제조된 InP/ZnS 코어-쉘 양자점을 제공하는 것이다. It is another object of the present invention to provide an InP / ZnS core-shell quantum dot manufacturing method and InP / ZnS core-shell quantum dot manufactured thereby, which are configured to produce InP / ZnS core-shell quantum dots in a simpler process. .

본 발명의 다른 목적은, 양자점의 응고 없이 장기간 보존이 가능한 InP/ZnS 코어-쉘 양자점을 제조할 수 있도록 구성되는 InP/ZnS 코어-쉘 양자점 제조 방법 및 이에 의하여 제조된 InP/ZnS 코어-쉘 양자점을 제공하는 것이다. Another object of the present invention is to prepare an InP / ZnS core-shell quantum dot that can be prepared for long-term preservation without the solidification of the quantum dot InP / ZnS core-shell quantum dot and InP / ZnS core-shell quantum dot produced thereby To provide.

상술한 목적을 달성하기 위한 InP/ZnS 코어-쉘 양자점 제조 방법 및 이에 의하여 제조된 InP/ZnS 코어-쉘 양자점의 일 양태는, 양자점의 코어를 형성하는 제1 및 제2 전구체와 양자점의 쉘을 형성하는 제3 전구체가, 제1 용매에 용해되어 제조된 제1 전구체 용액이 기설정된 온도로 가열되는 제1 전구체 용액 제조 단계; 상기 제3 전구체와 함께 쉘을 형성하는 제4 전구체가, 제2 용매에 용해되어 제2 전구체 용액이 제조되는 제2 전구체 용액 제조 단계; 상기 가열된 제1 전구체 용액과 상기 제2 전구체 용액이 혼합되어 혼합 용액이 제조되는 혼합 용액 제조 단계; 상기 혼합 용액이 기설정된 온도로 가열되어 InP 코어 및 ZnS 쉘로 구성되는 양자점이 제조되는 혼합 용액 가열 단계; 를 포함한다. A method of manufacturing an InP / ZnS core-shell quantum dot and an InP / ZnS core-shell quantum dot produced thereby to achieve the above object, the first and second precursor and a shell of the quantum dot forming the core of the quantum dot Preparing a first precursor solution in which the third precursor to be formed is dissolved in a first solvent and heated to a predetermined temperature; Preparing a second precursor solution in which a fourth precursor forming a shell together with the third precursor is dissolved in a second solvent to prepare a second precursor solution; A mixed solution preparation step of mixing the heated first precursor solution and the second precursor solution to prepare a mixed solution; A mixed solution heating step in which the mixed solution is heated to a predetermined temperature to produce a quantum dot composed of an InP core and a ZnS shell; It includes.

그리고, 상기 제1 전구체 용액 제조 단계에서, 상기 제1 전구체는, Indium(II) chloride, Indium(III) iodide, Indium(I) bromide, Indium(I) iodide, Indium(III) oxide, Indium(III) nitride, Indium(III) acetate, Indium(III) acetylacetonate, Indium(III) chloride tetrahydrate, Indium(III) nitrate hydrate, Indium(III) chloride hydrate, Indium(III) sulfate, Indium(III) acetate hydrate으로 이루어진 군(群)에서 선택된 어느 하나일 수 있다. In the preparing of the first precursor solution, the first precursor may include Indium (II) chloride, Indium (III) iodide, Indium (I) bromide, Indium (I) iodide, Indium (III) oxide, Indium (III) ) Nitride, Indium (III) acetate, Indium (III) acetylacetonate, Indium (III) chloride tetrahydrate, Indium (III) nitrate hydrate, Indium (III) chloride hydrate, Indium (III) sulfate, Indium (III) acetate hydrate It may be any one selected from the group.

또한, 상기 제1 전구체 용액 제조 단계에서, 상기 제2 전구체는, trioctylphosphine oxide, hexylphosphonic acid, trioctylphosphine, Tris(trimethylsilyl)phosphine, diphenylpropylphosphine, tributylphosphine, triphenylphosphite, tetradecylphosphonic acid로 이루어진 군(群)에서 선택된 어느 하나일 수 있다. In addition, in the preparing of the first precursor solution, the second precursor is any one selected from the group consisting of trioctylphosphine oxide, hexylphosphonic acid, trioctylphosphine, tris (trimethylsilyl) phosphine, diphenylpropylphosphine, tributylphosphine, triphenylphosphite, and tetradecylphosphonic acid. Can be.

그리고, 상기 제1 전구체 용액 제조 단계에서, 상기 제3 전구체는, 분말 형태의 황(Sulfur)일 수 있다. In the preparing of the first precursor solution, the third precursor may be sulfur in a powder form.

또한, 상기 제1 전구체 용액 제조 단계에서, 상기 제1 용매는, Oleylamine, octadecylamine, hexadecylamine, dodecylamine, oleic acid, 1-octadecene, 1-hexadecene, 1-eicosene, eicosane, octadecane, hexadecane, tetradecane, squalene, dodecanethiol로 이루어진 군(群)에서 선택된 어느 하나일 수 있다. In addition, in the first precursor solution manufacturing step, the first solvent is Oleylamine, octadecylamine, hexadecylamine, dodecylamine, oleic acid, 1-octadecene, 1-hexadecene, 1-eicosene, eicosane, octadecane, hexadecane, tetradecane, squalene, It may be any one selected from the group consisting of dodecanethiol.

그리고, 상기 제1 전구체 용액 제조 단계에서, 상기 제1 전구체 용액은, 140℃ 내지 220℃ 범위의 온도로 가열될 수 있다. In the preparing of the first precursor solution, the first precursor solution may be heated to a temperature ranging from 140 ° C. to 220 ° C.

또한, 상기 제2 전구체 용액 제조 단계에서, 상기 제4 전구체는, Zinc undecylenate일 수 있다. Also, in the preparing of the second precursor solution, the fourth precursor may be zinc undecylenate.

그리고, 상기 제2 전구체 용액 제조 단계에서, 상기 제2 용매는, Oleylamine, octadecylamine, hexadecylamine, dodecylamine, oleic acid, 1-octadecene, 1-hexadecene, 1-eicosene, eicosane, octadecane, hexadecane, tetradecane, squalene, dodecanethiol로 이루어진 군(群)에서 선택된 어느 하나일 수 있다. In the preparing of the second precursor solution, the second solvent is Oleylamine, octadecylamine, hexadecylamine, dodecylamine, oleic acid, 1-octadecene, 1-hexadecene, 1-eicosene, eicosane, octadecane, hexadecane, tetradecane, squalene, It may be any one selected from the group consisting of dodecanethiol.

또한, 상기 혼합 용액 가열 단계에서, 상기 혼합된 제1 및 제2 전구체 용액은, 280℃의 온도로 가열될 수 있다. In addition, in the mixed solution heating step, the mixed first and second precursor solutions may be heated to a temperature of 280 ℃.

본 발명의 실시예에 의한 InP/ZnS 코어-쉘 양자점 제조 방법 및 이에 의하여 제조되는 InP/ZnS 코어-쉘 양자점에 의하면, 다음과 같은 효과를 기대할 수 있다. According to the InP / ZnS core-shell quantum dot manufacturing method and InP / ZnS core-shell quantum dot produced by the embodiment of the present invention, the following effects can be expected.

먼저 본 발명의 실시예에서는, 양자점의 코어를 형성하는 제1 및 제2 전구체와 쉘을 형성하는 제3 전구체가 혼합된 제1 전구체 용액이 가열되어 양자점의 코어가 형성된다. 따라서 본 발명의 실시예에 의하면, 코어의 외주면에 제3 전구체로 구성된 쉘이 형성됨으로써, 표면 결함(defect)을 방지할 수 있는 InP/ZnS 코어-쉘 양자점을 제조할 수 있다. First, in the embodiment of the present invention, the first precursor solution is a mixture of the first and second precursors forming the core of the quantum dots and the third precursor forming the shell is heated to form the core of the quantum dots. Therefore, according to the embodiment of the present invention, by forming a shell composed of the third precursor on the outer peripheral surface of the core, it is possible to manufacture an InP / ZnS core-shell quantum dot that can prevent the surface defect (defect).

또한 본 발명의 실시예에서는, 양자점의 코어를 형성하는 In 및 P 전구체와 쉘을 형성하는 S 전구체가 혼합된 제1 전구체 용액이 가열된 후 InP 코어에 Sulfur ligand가 결합된 상태의 양자점이 제조되고, 상기 양자점에 상기 S 전구체와 함께 쉘을 형성하는 Zn 전구체 용액이 혼합 후 재가열되어 InP/ZnS 코어-쉘 양자점이 제조된다. 따라서 본 발명의 실시예에 의하면, InP 코어를 합성한 후의 용액에서, 쉘을 합성하기 위하여 추가되는 S 및 Zn 전구체 용액과 반응할 우려가 있는 반응 부산물을 제거하는 별도의 정제(cleaning) 공정 없이 InP/ZnS 코어-쉘 양자점을 제조할 수 있다. In an embodiment of the present invention, after the first precursor solution in which In and P precursors forming the core of the quantum dots and the S precursor forming the shell are heated, a quantum dot having a Sulfur ligand bonded to the InP core is prepared. In addition, a Zn precursor solution forming a shell together with the S precursor in the quantum dot is mixed and reheated to prepare an InP / ZnS core-shell quantum dot. Therefore, according to the embodiment of the present invention, InP core without a separate cleaning process to remove the reaction by-products that may react with the S and Zn precursor solution added to synthesize the shell in the solution after the synthesis of InP core / ZnS core-shell quantum dots can be prepared.

그리고 본 발명의 실시예에서는, 양자점의 쉘을 구성하는 제4 전구체로, 점도가 낮은 Zinc Undecylenate가 사용된다. 따라서, 본 발명의 실시예에 의하면, 응고 없이 장기간 보존이 가능한 InP/ZnS 코어-쉘 양자점을 제조할 수 있다. In the embodiment of the present invention, as a fourth precursor constituting the shell of the quantum dots, Zinc Undecylenate having a low viscosity is used. Therefore, according to the embodiment of the present invention, InP / ZnS core-shell quantum dots capable of long term storage without solidification can be prepared.

도 1은 본 발명의 실시예에 의한 InP/ZnS 코어-쉘 양자점 제조 방법을 보인 플로우 차트.
도 2는 본 발명의 제조예에 의한 온도에 따른 △G°값을 분석한 그래프.
도 3 내지 5는 본 발명의 제조예 및 비교예 1, 2에 의하여 제조된 InP/ZnS 코어-쉘 양자점의 발광 강도를 분석한 PL(Photo Luminescence) 그래프.
도 6은 본 발명의 제조예 및 비교예 3에 의하여 제조된 InP/ZnS 코어-쉘 양자점의 90일 보관 후의 응고 정도를 보인 사진.
1 is a flow chart showing a method of manufacturing an InP / ZnS core-shell quantum dot according to an embodiment of the present invention.
Figure 2 is a graph analyzing the ΔG ° value according to the temperature according to the preparation example of the present invention.
3 to 5 are PL (Photo Luminescence) graphs of the emission intensity of InP / ZnS core-shell quantum dots prepared by Preparation Examples and Comparative Examples 1 and 2 of the present invention.
Figure 6 is a photograph showing the degree of solidification after 90 days storage of the InP / ZnS core-shell quantum dots prepared by Preparation Example and Comparative Example 3 of the present invention.

이하에서는 본 발명의 실시예에 의한 InP/ZnS 코어-쉘 양자점 제조 방법을 첨부된 도면을 참조하여 보다 상세하게 설명한다. Hereinafter, an InP / ZnS core-shell quantum dot manufacturing method according to an embodiment of the present invention will be described in more detail with reference to the accompanying drawings.

도 1을 참조하면, 본 실시예에 의한 InP/ZnS 코어-쉘 양자점 제조 방법은, 제1 전구체 용액 제조 단계(S100), 제2 전구체 용액 제조 단계(S200), 혼합 용액 제조 단계(S300) 및 혼합 용액 가열 단계(S400)을 포함한다. Referring to Figure 1, InP / ZnS core-shell quantum dot manufacturing method according to the present embodiment, the first precursor solution manufacturing step (S100), the second precursor solution manufacturing step (S200), the mixed solution manufacturing step (S300) and Mixed solution heating step (S400) is included.

보다 상세하게는, 상기 제1 전구체 용액 제조 단계(S100)에서는, 양자점의 코어를 형성하는 제1 및 제2 전구체와 양자점의 쉘을 형성하는 제3 전구체가, 제1 용매에 용해되어 제조된 제1 전구체 용액이 기설정된 온도로 가열된다. 이 때, 상기 제1 전구체는, Indium(II) chloride, Indium(III) iodide, Indium(I) bromide, Indium(I) iodide, Indium(III) oxide, Indium(III) nitride, Indium(III) acetate, Indium(III) acetylacetonate, Indium(III) chloride tetrahydrate, Indium(III) nitrate hydrate, Indium(III) chloride hydrate, Indium(III) sulfate, Indium(III) acetate hydrate으로 이루어진 군(群)에서 선택된 어느 하나 일 수 있고, 상기 제2 전구체는, trioctylphosphine oxide, hexylphosphonic acid, trioctylphosphine, Tris(trimethylsilyl)phosphine, diphenylpropylphosphine, tributylphosphine, triphenylphosphite, tetradecylphosphonic acid로 이루어진 군(群)에서 선택된 어느 하나일 수 있다. 또한, 상기 제3 전구체는, 분말 형태의 황(Sulfur)일 수 있고, 상기 제1 용매는, Oleylamine, octadecylamine, hexadecylamine, dodecylamine, oleic acid, 1-octadecene, 1-hexadecene, 1-eicosene, eicosane, octadecane, hexadecane, tetradecane, squalene, dodecanethiol로 이루어진 군(群)에서 선택된 어느 하나일 수 있다. 그리고, 상기 제1 전구체 용액은, 140℃ 내지 220℃ 범위의 온도로 가열될 수 있다. 예를 들면, 상기 제1 전구체 용액 제조 단계(S100)에서는, 양자점의 코어를 형성하는 Indium(II) chloride 및 trioctylphosphine oxide, 양자점의 쉘을 형성하는 황(Sulfur)이, Oleylamine에 용해되어 제조된 제1 전구체 용액이 160℃로 가열되어 제1 전구체 용액이 제조될 수 있다. More specifically, in the first precursor solution manufacturing step (S100), the first and second precursors forming the core of the quantum dots and the third precursor forming the shell of the quantum dots is prepared by dissolving in the first solvent One precursor solution is heated to a predetermined temperature. In this case, the first precursor is Indium (II) chloride, Indium (III) iodide, Indium (I) bromide, Indium (I) iodide, Indium (III) oxide, Indium (III) nitride, Indium (III) acetate Any one selected from the group consisting of Indium (III) acetylacetonate, Indium (III) chloride tetrahydrate, Indium (III) nitrate hydrate, Indium (III) chloride hydrate, Indium (III) sulfate, and Indium (III) acetate hydrate The second precursor may be any one selected from the group consisting of trioctylphosphine oxide, hexylphosphonic acid, trioctylphosphine, tris (trimethylsilyl) phosphine, diphenylpropylphosphine, tributylphosphine, triphenylphosphite, and tetradecylphosphonic acid. In addition, the third precursor may be sulfur in powder form, and the first solvent may be Oleylamine, octadecylamine, hexadecylamine, dodecylamine, oleic acid, 1-octadecene, 1-hexadecene, 1-eicosene, eicosane, It may be any one selected from the group consisting of octadecane, hexadecane, tetradecane, squalene, dodecanethiol. In addition, the first precursor solution may be heated to a temperature in the range of 140 ° C to 220 ° C. For example, the first precursor solution manufacturing step (S100), Indium (II) chloride and trioctylphosphine oxide to form a core of the quantum dots, Sulfur (Sulfur) to form a shell of the quantum dots is prepared by dissolving in Oleylamine One precursor solution may be heated to 160 ° C. to prepare a first precursor solution.

또한, 상기 제2 전구체 용액 제조 단계(S200)에서는, 상기 제3 전구체와 함께 쉘을 형성하는 제4 전구체가, 제2 용매에 용해되어 제2 전구체 용액이 제조된다. 이 때, 상기 제4 전구체는, Zinc undecylenate일 수 있고, 상기 제2 용매는, Oleylamine, octadecylamine, hexadecylamine, dodecylamine, oleic acid, 1-octadecene, 1-hexadecene, 1-eicosene, eicosane, octadecane, hexadecane, tetradecane, squalene, dodecanethiol로 이루어진 군(群)에서 선택된 어느 하나일 수 있다. 예를 들면, 상기 제2 전구체 용액 제조 단계(S200)에서는, Zinc undecylenate가 Oleylamine에 용해되어 제2 전구체 용액이 제조될 수 있다.In addition, in the second precursor solution manufacturing step (S200), the fourth precursor forming the shell together with the third precursor is dissolved in a second solvent to prepare a second precursor solution. In this case, the fourth precursor may be Zinc undecylenate, and the second solvent may be Oleylamine, octadecylamine, hexadecylamine, dodecylamine, oleic acid, 1-octadecene, 1-hexadecene, 1-eicosene, eicosane, octadecane, hexadecane, It may be any one selected from the group consisting of tetradecane, squalene, dodecanethiol. For example, in the second precursor solution manufacturing step (S200), zinc undecylenate may be dissolved in Oleylamine to prepare a second precursor solution.

그리고, 혼합 용액 제조 단계(S300)에서는, 상기 가열된 제1 전구체 용액과 상기 제2 전구체 용액이 혼합되어 혼합 용액이 제조된다. In the mixed solution preparing step (S300), the heated first precursor solution and the second precursor solution are mixed to prepare a mixed solution.

마지막으로, 상기 혼합 용액 가열 단계(S400)에서는, 상기 혼합 용액이 기설정된 온도로 가열되어 InP 코어 및 ZnS 쉘로 구성되는 양자점이 제조된다. 이 때, 상기 혼합된 제1 및 제2 전구체 용액은, 280℃의 온도로 가열될 수 있다. Finally, in the mixed solution heating step (S400), the mixed solution is heated to a predetermined temperature to produce a quantum dot composed of an InP core and a ZnS shell. In this case, the mixed first and second precursor solutions may be heated to a temperature of 280 ℃.

이하에서는 본 발명을 제조예에 의하여 더욱 상세하게 설명한다. 이들 제조예는 단지 본 발명을 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 제조예에 국한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to production examples. These preparations are merely for illustrating the present invention in detail, and it will be apparent to those skilled in the art that the scope of the present invention is not limited to these preparations.

제조예Production Example

<제조예><Production example>

제조예 1에서는, 제1 전구체 용액 제조 단계(S100)에서, Indium(II) chloride, trioctylphosphine oxide 및 황(Sulfur) 분말이 Oleylamine에 용해되어 제조된 제1 전구체 용액이 160℃에서 가열되었다.In Preparation Example 1, the first precursor solution prepared by dissolving Indium (II) chloride, trioctylphosphine oxide and sulfur powder in Oleylamine was heated at 160 ° C. in the first precursor solution preparation step (S100).

다음으로, 제2 전구체 용액 제조 단계(S200)에서, Zinc undecylenate이 Oleylamine에 용해되어 제2 전구체 용액이 제조되었다. Next, in the second precursor solution preparation step (S200), Zinc undecylenate was dissolved in Oleylamine to prepare a second precursor solution.

그리고, 혼합 용액 제조 단계(S300)에서, 제1 전구체 용액과 상기 제2 전구체 용액이 혼합되어 혼합 용액이 제조되었다In the mixed solution preparation step (S300), the first precursor solution and the second precursor solution are mixed to prepare a mixed solution.

마지막으로, 혼합 용액 가열 단계(S400)에서, 상기 혼합 용액이 280℃의 온도로 가열되어 InP 코어 및 ZnS 쉘로 구성되는 양자점이 제조되었다.Finally, in the mixed solution heating step (S400), the mixed solution was heated to a temperature of 280 ℃ to produce a quantum dot consisting of the InP core and ZnS shell.

<비교예 1>Comparative Example 1

비교예 1에서는, 제조예 1과 동일하게 InP/ZnS 코어-쉘 양자점을 제조하되, 제1 전구체 용액 제조 단계(S100)에서, 제1 전구체 용액이 120℃에서 가열되었다. In Comparative Example 1, InP / ZnS core-shell quantum dots were prepared in the same manner as in Preparation Example 1, but in the first precursor solution preparing step (S100), the first precursor solution was heated at 120 ° C.

<비교예 2>Comparative Example 2

비교예 2에서는, 제조예 1과 동일하게 InS/ZnS 양자점을 제조하되, 제1 전구체 용액 제조 단계(S100)에서, 제1 전구체 용액이 240℃에서 가열되었다. In Comparative Example 2, InS / ZnS quantum dots were prepared in the same manner as in Preparation Example 1, but in the first precursor solution preparation step (S100), the first precursor solution was heated at 240 ° C.

<비교예 3>Comparative Example 3

비교예 3에서는, 제조예 1과 동일하게 InS/ZnS 양자점을 제조하되, 제2 전구체 용액 제조 단계(S200), 제4 전구체로 Zinc stearate가 Oleylamine에 용해되어 제2 전구체 용액이 제조되었다. In Comparative Example 3, InS / ZnS quantum dots were prepared in the same manner as in Preparation Example 1, but a second precursor solution was prepared by dissolving zinc stearate in Oleylamine as a second precursor solution preparing step (S200) and a fourth precursor.

실험예Experimental Example

<실험예 1>Experimental Example 1

상기 제조예에서 제1 내지 제4 전구체로 혼합되는 Indium. Phosphorus, Sulfur 및 Zinc의 화학 반응에 대하여 △G°(Gibbs 자유에너지 변화량) 분석을 수행하였고, 결과를 도 2에 첨부하였다. Indium mixed with the first to fourth precursors in the preparation example. ΔG ° (Gibbs free energy change) analysis was performed on the chemical reactions of Phosphorus, Sulfur and Zinc, and the results are attached to FIG. 2.

도 2를 참조하면, 제1 전구체 용액이 가열 온도 및 혼합 용액 가열 온도의 범위인 140℃ 내지 280℃에서, Indium 및 Phosphorus가 반응하여 InP가 생성되는 반응의 △G°값이 가장 큰 음수값을 갖는다. 즉, 제1 전구체 용액 제조 단계(S100)에서, 제1 및 제2 전구체로 첨가된 Indium 및 Phosphorus가 반응하여 InP 양자점 코어가 합성되었고, 제3 전구체로 첨가된 Sulfur ligand는 InP 코어 표면에 결합된 상태인 것을 확인할 수 있다. Referring to FIG. 2, when the first precursor solution is in the range of the heating temperature and the mixed solution heating temperature, 140 ° C. to 280 ° C., the ΔG ° value of the reaction in which InP and Phosphorus react to generate InP produces the highest negative value. Have That is, in the step of preparing the first precursor solution (S100), Indium and Phosphorus added as the first and second precursors were reacted to synthesize an InP quantum dot core, and the Sulfur ligand added as the third precursor was bound to the InP core surface. You can check the status.

<실험예 2>Experimental Example 2

상기 제조예 및 비교예 1, 2에 의하여 제조된 InP/ZnS 코어-쉘 양자점에 대하여 PL(Photo Luminescence) 분석을 수행하였고, 결과를 도 3 내지 도 5에 첨부하였다. Photo Luminescence (PL) analysis was performed on the InP / ZnS core-shell quantum dots prepared by Preparation Examples and Comparative Examples 1 and 2, and the results are attached to FIGS. 3 to 5.

도 3 내지 도 5를 참조하면, 제조예의 경우 강한 발광 강도를 InP/ZnS 코어-쉘 양자점이 제조되었지만, 비교예 1 및 2의 경우 제조예에 비하여 강도가 낮은 InP/ZnS 코어-쉘 양자점이 제조되었다. 따라서, 제조예의 경우 비교예 1 및 2에 비하여 발광 강도가 강한 InP/ZnS 코어-쉘 양자점이 제조된 것을 확인할 수 있다. Referring to FIGS. 3 to 5, InP / ZnS core-shell quantum dots having a strong luminescence intensity were manufactured in the case of the preparation example, but InP / ZnS core-shell quantum dots having lower strength than the preparation example were prepared in Comparative Examples 1 and 2. It became. Therefore, in the case of the preparation example, it can be seen that the InP / ZnS core-shell quantum dot is stronger than the Comparative Examples 1 and 2.

<실험예 3>Experimental Example 3

상기 제조예 및 비교예 3에 의하여 제조된 InP/ZnS 코어-쉘 양자점을 3개월 간 보관한 후의 점도를 비교하였고, 결과를 도 6에 첨부하였다.The viscosity after storing the InP / ZnS core-shell quantum dots prepared by Preparation Example and Comparative Example 3 for three months was compared, and the results are attached to FIG. 6.

도 6을 참조하면, 제조예의 경우 양자점의 응고가 거의 이루어지지 않았지만, 비교예 3의 경우 응고가 진행되어 양자점의 점도가 증가되었다. 따라서, 제조예의 경우 비교예 3에 비하여 제조된 양자점의 응고가 진행되지 않음으로써, 장기간 보존이 가능한 InP/ZnS 코어-쉘 양자점이 제조된 것을 확인할 수 있다. Referring to FIG. 6, in the preparation example, coagulation of the quantum dots was hardly achieved, but in the case of Comparative Example 3, coagulation proceeded to increase the viscosity of the quantum dots. Therefore, in the case of the preparation example, solidification of the prepared quantum dots does not proceed as compared with Comparative Example 3, it can be confirmed that the InP / ZnS core-shell quantum dots can be stored for a long time.

Claims (10)

양자점의 코어를 형성하는 제1 및 제2 전구체와 양자점의 쉘을 형성하는 제3 전구체가, 제1 용매에 용해되어 기설정된 온도로 가열되어 제1 전구체 용액이 제조되는 단계(S100);
상기 제3 전구체와 함께 쉘을 형성하는 제4 전구체가, 제2 용매에 용해되어 제2 전구체 용액이 제조되는 단계(S200);
상기 가열된 제1 전구체 용액과 상기 제2 전구체 용액이 혼합되어 혼합 용액이 제조되는 단계(S300); 및
상기 혼합 용액이, InP 코어 및 ZnS 쉘로 구성되는 양자점의 제조를 위하여 기설정된 온도로 가열되는 단계(S400); 를 포함하는 InP/ZnS 코어-쉘 양자점 제조 방법.
A first precursor solution forming a core of the quantum dots and a third precursor forming a shell of the quantum dots are dissolved in a first solvent and heated to a predetermined temperature to prepare a first precursor solution (S100);
A fourth precursor forming a shell together with the third precursor is dissolved in a second solvent to prepare a second precursor solution (S200);
Mixing the heated first precursor solution with the second precursor solution to produce a mixed solution (S300); And
The mixed solution is heated to a predetermined temperature for the production of quantum dots consisting of InP core and ZnS shell (S400); InP / ZnS core-shell quantum dot manufacturing method comprising a.
제 1 항에 있어서,
상기 제1 전구체 용액 제조 단계(S100)에서,
상기 제1 전구체는, Indium(II) chloride, Indium(III) iodide, Indium(I) bromide, Indium(I) iodide, Indium(III) oxide, Indium(III) nitride, Indium(III) acetate, Indium(III) acetylacetonate, Indium(III) chloride tetrahydrate, Indium(III) nitrate hydrate, Indium(III) chloride hydrate, Indium(III) sulfate, Indium(III) acetate hydrate으로 이루어진 군(群)에서 선택된 어느 하나인 InP/ZnS 코어-쉘 양자점 제조 방법.
The method of claim 1,
In the first precursor solution manufacturing step (S100),
The first precursor is Indium (II) chloride, Indium (III) iodide, Indium (I) bromide, Indium (I) iodide, Indium (III) oxide, Indium (III) nitride, Indium (III) acetate, Indium ( III) InP / which is selected from the group consisting of acetylacetonate, Indium (III) chloride tetrahydrate, Indium (III) nitrate hydrate, Indium (III) chloride hydrate, Indium (III) sulfate, Indium (III) acetate hydrate ZnS core-shell quantum dot manufacturing method.
제 2 항에 있어서,
상기 제1 전구체 용액 제조 단계(S100)에서,
상기 제2 전구체는, trioctylphosphine oxide, hexylphosphonic acid, trioctylphosphine, Tris(trimethylsilyl)phosphine, diphenylpropylphosphine, tributylphosphine, triphenylphosphite, tetradecylphosphonic acid로 이루어진 군(群)에서 선택된 어느 하나인 InP/ZnS 코어-쉘 양자점 제조 방법.
The method of claim 2,
In the first precursor solution manufacturing step (S100),
The second precursor, InP / ZnS core-shell quantum dot is any one selected from the group consisting of trioctylphosphine oxide, hexylphosphonic acid, trioctylphosphine, Tris (trimethylsilyl) phosphine, diphenylpropylphosphine, tributylphosphine, triphenylphosphite, tetradecylphosphonic acid.
제 3 항에 있어서,
상기 제1 전구체 용액 제조 단계(S100)에서,
상기 제3 전구체는, 분말 형태의 황(Sulfur)인 InP/ZnS 코어-쉘 양자점 제조 방법.
The method of claim 3, wherein
In the first precursor solution manufacturing step (S100),
The third precursor is sulfur in the form of powder (Sulfur) InP / ZnS core-shell quantum dot manufacturing method.
제 4 항에 있어서,
상기 제1 전구체 용액 제조 단계(S100)에서,
상기 제1 용매는, Oleylamine, octadecylamine, hexadecylamine, dodecylamine, oleic acid, 1-octadecene, 1-hexadecene, 1-eicosene, eicosane, octadecane, hexadecane, tetradecane, squalene, dodecanethiol로 이루어진 군(群)에서 선택된 어느 하나인 InP/ZnS 코어-쉘 양자점 제조 방법.
The method of claim 4, wherein
In the first precursor solution manufacturing step (S100),
The first solvent is any one selected from the group consisting of Oleylamine, octadecylamine, hexadecylamine, dodecylamine, oleic acid, 1-octadecene, 1-hexadecene, 1-eicosene, eicosane, octadecane, hexadecane, tetradecane, squalene, dodecanethiol InP / ZnS core-shell quantum dot manufacturing method.
제 1 항에 있어서,
상기 제1 전구체 용액 제조 단계(S100)에서,
상기 제1 전구체 용액은, 140℃ 내지 220℃ 범위의 온도로 가열되는 InP/ZnS 코어-쉘 양자점 제조 방법.
The method of claim 1,
In the first precursor solution manufacturing step (S100),
The first precursor solution is heated to a temperature in the range of 140 ° C to 220 ° C InP / ZnS core-shell quantum dot manufacturing method.
제 1 항에 있어서,
상기 제2 전구체 용액 제조 단계(S200)에서,
상기 제4 전구체는, Zinc undecylenate인 InP/ZnS 코어-쉘 양자점 제조 방법.
The method of claim 1,
In the second precursor solution manufacturing step (S200),
The fourth precursor is a zinc undecylenate InP / ZnS core-shell quantum dot manufacturing method.
제 7 항에 있어서,
상기 제2 전구체 용액 제조 단계(S200)에서,
상기 제2 용매는, Oleylamine, octadecylamine, hexadecylamine, dodecylamine, oleic acid, 1-octadecene, 1-hexadecene, 1-eicosene, eicosane, octadecane, hexadecane, tetradecane, squalene, dodecanethiol로 이루어진 군(群)에서 선택된 어느 하나인 InP/ZnS 코어-쉘 양자점 제조 방법.
The method of claim 7, wherein
In the second precursor solution manufacturing step (S200),
The second solvent is any one selected from the group consisting of Oleylamine, octadecylamine, hexadecylamine, dodecylamine, oleic acid, 1-octadecene, 1-hexadecene, 1-eicosene, eicosane, octadecane, hexadecane, tetradecane, squalene, dodecanethiol InP / ZnS core-shell quantum dot manufacturing method.
제 1 항에 있어서,
상기 혼합 용액 가열 단계(S400)에서,
상기 혼합된 제1 및 제2 전구체 용액은, 280℃의 온도로 가열되는 InP/ZnS 코어-쉘 양자점 제조 방법.
The method of claim 1,
In the mixed solution heating step (S400),
The mixed first and second precursor solution is heated to a temperature of 280 ° C InP / ZnS core-shell quantum dot manufacturing method.
제 1 항 내지 제 9 항 중 어느 한 항의 InP/ZnS 코어-쉘 양자점 제조 방법에 의하여 제조되는 InP/ZnS 코어-쉘 양자점.An InP / ZnS core-shell quantum dot prepared by the method of manufacturing an InP / ZnS core-shell quantum dot according to any one of claims 1 to 9.
KR1020180097151A 2018-05-31 2018-08-21 METHOD FOR MANUFACTURING InP/ZnS CORE-SHELL QUANTUM DOTS AND InP/ZnS CORE-SHELL QUANTUM DOTS USING THEREOF KR102151096B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180062224 2018-05-31
KR20180062224 2018-05-31

Publications (2)

Publication Number Publication Date
KR20190136881A true KR20190136881A (en) 2019-12-10
KR102151096B1 KR102151096B1 (en) 2020-09-02

Family

ID=69003061

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180097151A KR102151096B1 (en) 2018-05-31 2018-08-21 METHOD FOR MANUFACTURING InP/ZnS CORE-SHELL QUANTUM DOTS AND InP/ZnS CORE-SHELL QUANTUM DOTS USING THEREOF

Country Status (1)

Country Link
KR (1) KR102151096B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196064A1 (en) * 2019-03-22 2020-10-01 Nsマテリアルズ株式会社 Quantum dot and method for manufacturing same, and wavelength conversion member, illumination member, backlight device and display device using quantum dot
CN114397281A (en) * 2021-12-15 2022-04-26 北京市农林科学院信息技术研究中心 Visual fluorescent sensor and application thereof
CN114591740A (en) * 2022-04-07 2022-06-07 岭南师范学院 Preparation method of narrow-linewidth indium phosphide quantum dots
US11827825B2 (en) 2020-04-13 2023-11-28 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Quantum-dot based on multi-shell structure including luminescent dopant
US11932794B2 (en) 2020-04-24 2024-03-19 Industry-University Cooperation Foundation Hanyang University Quantum-dot based on graded-shell structure and manufacturing method of the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102640222B1 (en) * 2020-11-26 2024-02-23 성균관대학교산학협력단 Quantum dot and preparing method of the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101088108B1 (en) 2010-06-24 2011-12-02 홍익대학교 산학협력단 Method of forming inp/zns core/shell quantum dots by solvothermal method
KR101788786B1 (en) 2013-03-15 2017-10-19 나노코 테크놀로지스 리미티드 Group III-V/Zinc Chalcogenide Alloyed Semiconductor Quantum Dots
KR20180040911A (en) * 2016-10-13 2018-04-23 울산과학기술원 METHOD OF PREPARING InP QUANTUM DOT AND METHOD OF PREPARING CORE/SHELL QUANTUM DOT COMPRISING THE SAME

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101088108B1 (en) 2010-06-24 2011-12-02 홍익대학교 산학협력단 Method of forming inp/zns core/shell quantum dots by solvothermal method
KR101788786B1 (en) 2013-03-15 2017-10-19 나노코 테크놀로지스 리미티드 Group III-V/Zinc Chalcogenide Alloyed Semiconductor Quantum Dots
KR20180040911A (en) * 2016-10-13 2018-04-23 울산과학기술원 METHOD OF PREPARING InP QUANTUM DOT AND METHOD OF PREPARING CORE/SHELL QUANTUM DOT COMPRISING THE SAME

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196064A1 (en) * 2019-03-22 2020-10-01 Nsマテリアルズ株式会社 Quantum dot and method for manufacturing same, and wavelength conversion member, illumination member, backlight device and display device using quantum dot
US11827825B2 (en) 2020-04-13 2023-11-28 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Quantum-dot based on multi-shell structure including luminescent dopant
US11932794B2 (en) 2020-04-24 2024-03-19 Industry-University Cooperation Foundation Hanyang University Quantum-dot based on graded-shell structure and manufacturing method of the same
CN114397281A (en) * 2021-12-15 2022-04-26 北京市农林科学院信息技术研究中心 Visual fluorescent sensor and application thereof
CN114397281B (en) * 2021-12-15 2023-09-12 北京市农林科学院信息技术研究中心 Visual fluorescent sensor and application thereof
CN114591740A (en) * 2022-04-07 2022-06-07 岭南师范学院 Preparation method of narrow-linewidth indium phosphide quantum dots
CN114591740B (en) * 2022-04-07 2023-11-21 岭南师范学院 Preparation method of narrow-linewidth indium phosphide quantum dot

Also Published As

Publication number Publication date
KR102151096B1 (en) 2020-09-02

Similar Documents

Publication Publication Date Title
KR102151096B1 (en) METHOD FOR MANUFACTURING InP/ZnS CORE-SHELL QUANTUM DOTS AND InP/ZnS CORE-SHELL QUANTUM DOTS USING THEREOF
KR101739751B1 (en) Manufacturing method of alloy-shell quantum dot, alloy-shell quantum dot and backlight unit including same
JP5536972B2 (en) Multilayer shell nanocrystal and method for producing the same
EP3607025B1 (en) Group iii-v quantum dot and manufacturing method thereof
KR101486529B1 (en) Quantum Dot and Method of Manufacturing The Same
JP4800006B2 (en) Multi-layered nanocrystal and method for producing the same
KR101774775B1 (en) Alloy-shell quantum dot, manufacturing method of the same, and backlight unit including same
WO2021039290A1 (en) Quantum dot and method for producing same
KR101563878B1 (en) Fabricating method of quantum dot
CN107022354A (en) Quantum dot, its manufacture method, quanta polymer compound and the electronic installation including it
JP5602104B2 (en) Multi-layered nanocrystal and method for producing the same
KR101722638B1 (en) Preparation method of indium phosphide quantum dot and indium phosphide/zinc sulfide-selenium core/shell quantum dot using white phosphorus complexes
Brichkin Synthesis and properties of colloidal indium phosphide quantum dots
KR20160120359A (en) Quantum dot having concentration gradient type core and manufacturing method of the same
JP7456591B2 (en) Semiconductor nanoparticles and their manufacturing method, and light emitting devices
CN113597461B (en) III-V group quantum dot and method for producing same
KR20180075724A (en) Synthesizing method for core-shell quantum dot with improved quantum efficiency
KR101880509B1 (en) Cadmium free quantum dots, preparing method of the same and quantum dots film comprising the same
KR101912296B1 (en) METHOD OF PREPARING InP QUANTUM DOT AND METHOD OF PREPARING CORE/SHELL QUANTUM DOT COMPRISING THE SAME
KR20200120531A (en) Ⅲ­Ⅴ quantum dot and method for preparing the same
KR20200120529A (en) Activation nanocluster for making Ⅲ­Ⅴ quantum dot including transition metal, quantum dot using the same, and method for preparing thereof
US20220154071A1 (en) Iii-v-based quantum dot and method of manufacturing same
KR101640429B1 (en) Manufacturing method of alloy-shell quantum dot, alloy-shell quantum dot and backlight unit including same
WO2022134044A1 (en) Preparation method of znse quantum dot, znse quantum dot, znse structure, and display device
KR20160059546A (en) Manufacturing method of alloy-shell quantum dot, alloy-shell quantum dot and backlight unit including same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant