KR20190125798A - Manufacturing method of mold for high temperature casting and manufactured mold using the same - Google Patents

Manufacturing method of mold for high temperature casting and manufactured mold using the same Download PDF

Info

Publication number
KR20190125798A
KR20190125798A KR1020180050074A KR20180050074A KR20190125798A KR 20190125798 A KR20190125798 A KR 20190125798A KR 1020180050074 A KR1020180050074 A KR 1020180050074A KR 20180050074 A KR20180050074 A KR 20180050074A KR 20190125798 A KR20190125798 A KR 20190125798A
Authority
KR
South Korea
Prior art keywords
mold
alloy
high temperature
treatment
manufacturing
Prior art date
Application number
KR1020180050074A
Other languages
Korean (ko)
Inventor
현승균
김강형
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020180050074A priority Critical patent/KR20190125798A/en
Publication of KR20190125798A publication Critical patent/KR20190125798A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/067Borides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0682Silicides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

The present invention relates to a manufacturing method of a high-temperature molding mold and a mold manufactured using the same. The manufacturing method of the high-temperature molding mold comprises: a step of molding a mold by processing a heat resistant alloy; a step of heat-treating the manufactured mold; and a step of forming a complex compound on a surface of the mold after the heat-treatment step. Disclosed is a method for manufacturing the mold for the high-temperature molding, which is useful for manufacturing a mold for high-temperature molding which is highly resistant to heat balance even at high temperatures and has a high strength, and can maintain moldability and durability in a process of repeating high-temperature heating and quenching operation.

Description

고온성형용 금형의 제조방법 및 이를 이용하여 제조된 금형{MANUFACTURING METHOD OF MOLD FOR HIGH TEMPERATURE CASTING AND MANUFACTURED MOLD USING THE SAME}Method for manufacturing mold for high temperature molding and mold manufactured using the same {MANUFACTURING METHOD OF MOLD FOR HIGH TEMPERATURE CASTING AND MANUFACTURED MOLD USING THE SAME}

본 발명은 고온성형용 금형의 제조방법 및 이를 이용하여 제조된 금형에 관한 것으로, 더욱 상세하게는 고온에서 우수한 물성을 유지할 수 있는 고온성형용 금형의 제조방법 및 이를 이용하여 제조된 금형에 관한 것이다.The present invention relates to a method for manufacturing a mold for high temperature molding and a mold manufactured using the same, and more particularly, to a method for manufacturing a mold for high temperature molding capable of maintaining excellent physical properties at a high temperature and a mold manufactured using the same. .

고온성형용 금형의 대표적인 예는 다이캐스팅 금형, 압출금형, 유리성형용 금형 그리고 식소몰딩(Thixo-moulding)금형, 인젝션몰딩(Injection-moulding)금형, 스퀴즈캐스팅(Squeeze casting)금형이다. 다이캐스팅 금형과 압출금형을 살펴보면 기존에 많이 사용하는 SKD8(AISI H19), SKD61(AISI H13)과 같은 공구강이나 13Cr 마르텐사이트계 스텐레스강(420J2)과 같이 고온경도가 높은 재료가 주로 사용되며, 약 600℃ 정도까지 내열성과 고온강도를 만족하는 수준이었다. 이보다 더 높은 600℃ 이상 온도에서 내구성을 요구하는 경우에는 이들 금형에 TiN, TiCN, CrN 등과 같은 세라믹층을 수 미크론 두께로 PVD코팅하여 사용하였다. 그래도 만족하지 못하는 경우에는 금형에 질화처리한 뒤 다시 세라믹층을 PVD코팅하여 사용하였다. Representative examples of high temperature molds include die casting molds, extrusion molds, glass molds, thixo-moulding molds, injection-moulding molds, and squeeze casting molds. When looking at die casting molds and extrusion molds, tools such as SKD8 (AISI H19) and SKD61 (AISI H13), which are commonly used, or materials with high temperature hardness, such as 13Cr martensitic stainless steel (420J2), are mainly used. It was a level that satisfies heat resistance and high temperature strength up to about ℃. In the case where durability is required at temperatures higher than 600 ° C., ceramic layers such as TiN, TiCN, CrN, etc. were used in these molds by PVD coating several microns thick. If it is still not satisfied, after nitriding the mold, the ceramic layer was used by PVD coating again.

하지만 최근에는 자동차 부품과 휴대용 전자제품의 내구성을 위해 융점이 900℃ 이상인 구리합금의 다이캐스팅이나 고온압출도 빈번하게 이루어지고 있어 기존의 방식으로는 현장에서 요구하는 금형의 내구성을 만족하기 어려울 정도로 높은 수준을 요구하고 있다. 이는 분말이나 칩 형태의 재료를 고상과 액상 공존구역 온도에서 가압 성형하는 방식의 식소몰딩, 인젝션몰딩 금형과 유리를 블로잉하거나 압출성형하는 유리성형용 금형도 유리재료가 다양해지면서 더 높은 온도범위에서 작업할 수 있는 내열성과 고온강도가 향상된 금형을 필요로 하고 있다. 그러나, 금형측면에서는 주입재료의 온도가 650℃를 넘어 700℃ 이상으로 높아지면서 내열성 부족으로 인해 열균열(heat check)이 발생하고 표면 세라믹층의 박리가 일어난다. 이는 용탕이나 액상인 고온의 재료가 주입되고 금형의 열전달이나 냉매를 순환하여 급속냉각되므로 주입재료와 접촉하는 표면이 반복적인 열피로를 받게 되면서 미세한 헤어 균열이 발생하기 때문이다. Recently, however, die casting and high-temperature extrusion of copper alloys with melting points above 900 ° C are frequently performed for the durability of automotive parts and portable electronic products. Therefore, it is difficult to satisfy the durability of mold required in the field by conventional methods. Is asking. It is also used for food molding, injection molding, and injection molding, in which powder or chip-shaped materials are pressure-molded at a solid and liquid coexistence zone temperature, and glass molding molds that blow or extrude glass. There is a need for a mold with improved heat resistance and high temperature strength. However, in the mold side, the temperature of the injection material is increased to more than 700 ℃ over 650 ℃ due to the lack of heat resistance heat crack (heat check) occurs and peeling of the surface ceramic layer occurs. This is because molten metal or liquid high temperature material is injected and rapid cooling by circulating the heat transfer of the mold or the refrigerant, and the surface contacting the injected material undergoes repeated thermal fatigue, which causes fine hair cracks.

이를 해결하기 위해 종래에는 상기의 금형소재 대신에 티타늄합금인 UNS R56700, 고온용 니켈합금인 인코넬 718, X-750, 600, 625, 800 등이나 내열용 스테인레스강인 18-18-2, 20Cb-3, Nitrinic 50과 같은 소재를 사용하려는 시도가 있었다. 그러나 이들은 내산화성은 우수하였지만 금형이 요구하는 대량생산에서의 내마모성과 내구성은 만족하지 못하였다. 또한 일본특원 소62-328816은 C 0.23~0.3%(이하 특별한 언급이 없으면 무게%임)의 저합금강에서 P 0.010% 이하로 인화합물 형성을 억제하여 표면층에 미세균열과 입계균열이 적게 하는 방식을 제안하였다. 그러나 이는 내열성이 비교적 낮은 탄화물들을 형성하여 650℃ 이상 고온에서의 반복적인 열피로에 대한 저항성이 부족하고 내마모성을 충분히 얻는데 효과적이지 못하였다. 또한 유사한 방식으로 일본특원 평6-307685는 C 0.1~0.3%인 저합금강을 담금질한 뒤 550~650℃로 템퍼링하여 HRC 26~35정도로 경도를 낮추고 인성을 높여 내히트체크성을 향상시킨 강종을 제안하였다. 그러나 이 경우에는 오히려 종래 SIKD61보다 최대균열깊이가 더 깊고 내구성면에서도 떨어져 고온성형용 금형으로 부적합하였다. 일본특원 평5-304154는 내히트체크성과 내소성유동성을 향상하기 위해 질화처리한 금형을 소개하였다. 질화층은 심부경도 보다 10% 이상 경도가 높은 층을 0.7mm 이상 두께로 하며, 0.2mm 깊이에서 HV750 이상 고경도를 얻고, 최표면의 취성이 있는 질화물층은 5미크론 이하 형성한 금형을 제안하였다. 그러나 이 경우에도 700℃ 이상 고온에서의 열피로에 대한 저항성은 큰 효과가 없다. 이외에 탄화물 영향을 줄이고 니켈화합물 석출을 이용하여 강화하는 방식으로 히트체크를 줄인 저탄소 마르에이징강이 제안되었다. 일본특원 평6-32097과 평6-54923은 저탄소 Ni-Co-Mo합금을 용체화처리와 시효처리하여 HRC 50~54의 고경도이면서 내히트체크성이 우수한 마르에이징강을 제안하였다. 그러나 이 경우에도 고온 내산화성은 우수하나 고온 내균열성은 오히려 종래의 SKD61보다 부족하여 500℃ 이하 사용에 적정한 수준이었다. In order to solve this problem, conventionally, instead of the mold material, titanium alloy UNS R56700, high temperature nickel alloy Inconel 718, X-750, 600, 625, 800, etc., or 18-18-2, 20Cb-3 Attempts have been made to use materials such as Nitrinic 50. However, they were excellent in oxidation resistance but were not satisfied with wear resistance and durability in mass production required by molds. In addition, Japanese Patent Application No. 62-328816 suppresses the formation of phosphorus compounds below P 0.010% in low alloy steels of 0.23 ~ 0.3% C (hereinafter, by weight%). Suggested. However, this was due to the formation of carbides having relatively low heat resistance, insufficient resistance to repeated thermal fatigue at high temperatures of 650 ° C. or higher, and was not effective in obtaining sufficient wear resistance. In a similar manner, Japanese Patent Application No. 6-307685 quenched a low alloy steel with 0.1 ~ 0.3% C and tempered it at 550 ~ 650 ℃ to reduce the hardness to HRC 26 ~ 35 and to increase toughness. Suggested. In this case, however, the maximum crack depth was deeper and durability was lower than that of the conventional SIKD61. Japanese Patent No. Hei 5-304154 introduced a nitriding die to improve heat resistance and plastic flow resistance. The nitride layer has a thickness of more than 0.7mm for a layer that is at least 10% harder than the core hardness, and has a hardness of HV750 or more at a depth of 0.2 mm, and a mold having a brittle nitride layer of the outermost surface formed at 5 microns or less is proposed. . However, even in this case, the resistance to thermal fatigue at a high temperature of 700 ° C. or higher has no significant effect. In addition, low-carbon maraging steels with reduced heat checks have been proposed to reduce the impact of carbides and to strengthen them by depositing nickel compounds. Japanese Patent Nos. Hei 6-32097 and Hei 6-54923 proposed maraging steel having high hardness and high heat resistance of HRC 50-54 by solution treatment and aging treatment of low carbon Ni-Co-Mo alloy. However, even in this case, the high temperature oxidation resistance was excellent, but the high temperature crack resistance was rather insufficient than that of the conventional SKD61, which was suitable for use below 500 ° C.

이외에도 유럽특허출원 99310240A(우선권 US11356698P)는 1000℃ 온도의 용탕을 다이캐스팅하기 위해 금형의 고온열변형이 심한 주입구 부근의 형상을 조절하는 방안을 채택하고 있다. 그러나 이런 조치도 고온 가열-냉각을 반복하는 열피로에 의해 발생하는 금형 표면의 열균열은 해소하지 못한다. 또 일본특원 P2015-110097은 리튬염을 첨가한 질화염욕에서 금형표면에 질소화합물층과 리튬-철복합산화물층을 형성한 다이캐스팅금형을 제안하였다. 하지만 이런 복합산화물층은 금형모재와의 열팽창율이 크게 차이가 나서 반복된 열피로에 약한 단점이 있으며, 성형물의 표면조도를 떨어뜨릴 우려가 있어 정밀하고 미려한 표면을 요구하는 경우에는 적합하지 않다. In addition, European patent application 99310240A (Priority US11356698P) adopts a method of adjusting the shape near the injection hole where the high temperature heat deformation of the mold is severe to diecast the melt at 1000 ° C. However, this measure does not solve the thermal cracking of the mold surface caused by the thermal fatigue of repeated high temperature heating and cooling. In addition, Japanese Patent Application No. P2015-110097 proposed a die casting mold in which a nitrogen compound layer and a lithium-iron composite oxide layer were formed on the surface of a mold in a nitride salt bath containing lithium salt. However, such a composite oxide layer has a weak disadvantage in repeated thermal fatigue due to a large difference in thermal expansion rate with the mold base material, and is not suitable in the case of requiring a precise and beautiful surface because it may lower the surface roughness of the molding.

국제공개특허 WO2013-035351에서는 Co-Cr-Mo합금으로 만든 다이캐스팅 금형을 제안하고 있는데 대기 중에서 고온가열함으로써 표면에 300~400미크론 두께의 치밀한 크롬산화물층을 형성하여 용탕에 의한 표면손상을 억제하는 기술이다. 그러나 이는 알루미늄, 티타늄이나 지르코늄과 같이 산소와의 반응성이 강한 원소가 함유된 재료는 금형과 반응을 일으키기 쉬워 사용재료에 제한이 많다. International Publication No. WO2013-035351 proposes a die casting mold made of Co-Cr-Mo alloy, which forms a dense chromium oxide layer with a thickness of 300 to 400 microns on the surface by heating it at high temperature in the air to suppress surface damage caused by molten metal. to be. However, this is because materials containing elements that are highly reactive with oxygen, such as aluminum, titanium or zirconium, are prone to react with the mold, and there are many restrictions on the materials used.

본 발명의 목적은 고온 열균열에 저항성이 크고 고온강도가 높은 고온성형용 금형을 제공하는데 있다.It is an object of the present invention to provide a mold for high temperature molding, which is resistant to high temperature thermal cracking and has high temperature strength.

본 발명의 다른 목적은 고온가열과 급냉을 반복하는 작업에서 성형성과 내구성을 유지할 수 있는 고온성형용 금형을 제공하는데 있다.Another object of the present invention is to provide a mold for high temperature molding which can maintain moldability and durability in a high temperature heating and quenching operation.

상기 목적을 달성하기 위하여, 본 발명은 내열성합금을 가공하여 금형을 성형하는 단계; 및 상기 금형의 표면에 복합화합물을 형성하는 단계;를 포함하는, 고온성형용 금형의 제조방법을 제공한다. In order to achieve the above object, the present invention comprises the steps of forming a mold by processing a heat-resistant alloy; And forming a complex compound on a surface of the mold.

본 발명의 바람직한 일예에 의한 방법에 있어서, 상기 내열성합금은 AlCoCr(0.5~2)FeMo0.5Ni합금; AlCoCrFeNbNi합금; AlCoCrFeNiSi(0.2~1.0)합금; Al(0.2~2.0)CoCrFeNiTi합금; Al0.2Co1.5CrFeNi1.5Ti합금; AlCoCrFeNiTi(0.5~1.5)합금; AlCoCrCuFeMo(0.2~1.0)Ni합금; Al(0.3~0.5)CrFe1.5MnNi0.5합금; CoCeFeMnNiV합금; Cr2CuFe2MnNi합금; Ti 20~40%, W 10~40%, 및 나머지는 Nb과 불가피한 불순물로 이루어진 조성의 합금; C 0.17~0.23%, Si 0.15~0.35%, Mn 0.4~0.6%, Cr 9.0~10.0%, Co 9.50~10.5%, Mo 1.8~2.2%, W 5.0~6.0%, 산용해 Al 0.01~0.015% 및 나머지는 Fe와 불가피한 불순물로 조성된 합금; C 0.1% 이하, Si 0.3~1.0%, Mn 0.3~1.0%, Cr 14~16%, Ni 6.5~8.5%, Mo 2~3%, Nb 0.45% 이하, 산용해 Al 0.75~1.5%, N 0.01~0.1%, 및 나머지는 Fe와 불가피한 불순물로 조성된 합금; 및 C 0.08~0.12%, Si 0.3~1.0%, Mn 0.3~1.0%, Cr 16~18%, Ni 6.0~7.5%, Ti 0.8~1.1%, 산용해 Al 0.9~1.2%, N 0.1~0.2%, 및 나머지는 Fe와 불가피한 불순물로 조성된 합금 중 선택된 어느 하나의 것일 수 있다. In the method according to a preferred embodiment of the present invention, the heat-resistant alloy is AlCoCr (0.5 ~ 2) FeMo 0.5 Ni alloy; AlCoCrFeNbNi alloys; AlCoCrFeNiSi (0.2-1.0) alloy; Al (0.2-2.0) CoCrFeNiTi alloy; Al 0.2 Co 1.5 CrFeNi 1.5 Ti alloy; AlCoCrFeNiTi (0.5 ~ 1.5) alloy; AlCoCrCuFeMo (0.2-1.0) Ni alloy; Al (0.3-0.5) CrFe 1.5 MnNi 0.5 alloy; CoCeFeMnNiV alloy; Cr 2 CuFe 2 MnNi alloys; 20-40% Ti, 10-40% W, and the balance of Nb and inevitable impurities; C 0.17 ~ 0.23%, Si 0.15 ~ 0.35%, Mn 0.4 ~ 0.6%, Cr 9.0 ~ 10.0%, Co 9.50 ~ 10.5%, Mo 1.8 ~ 2.2%, W 5.0 ~ 6.0%, Dissolved Al 0.01 ~ 0.015% and The rest are alloys composed of Fe and inevitable impurities; C 0.1% or less, Si 0.3 ~ 1.0%, Mn 0.3 ~ 1.0%, Cr 14-16%, Ni 6.5 ~ 8.5%, Mo 2-3%, Nb 0.45% or less, Acid dissolving Al 0.75 ~ 1.5%, N 0.01 -0.1%, and the remainder are alloys composed of Fe and inevitable impurities; And C 0.08 ~ 0.12%, Si 0.3 ~ 1.0%, Mn 0.3 ~ 1.0%, Cr 16 ~ 18%, Ni 6.0 ~ 7.5%, Ti 0.8 ~ 1.1%, Dissolved Al 0.9 ~ 1.2%, N 0.1 ~ 0.2% , And the rest may be any one selected from the alloy consisting of Fe and inevitable impurities.

본 발명의 바람직한 일예에 의한 제조방법에서, 상기 복합화합물을 형성하는 단계는, 상기 금형에 질화처리, 규화처리 및 붕화처리 중 선택된 적어도 하나의 처리를 실시하여 수행될 수 있다. In the manufacturing method according to a preferred embodiment of the present invention, the forming of the complex compound may be performed by subjecting the mold to at least one treatment selected from nitriding treatment, silicification treatment and boration treatment.

본 발명의 바람직한 일예에 의한 제조방법에서, 상기 복합화합물을 형성하는 단계 이전에, 상기 금형을 열처리하는 단계를 더 포함할 수 있다. In the manufacturing method according to a preferred embodiment of the present invention, before the step of forming the composite compound, may further comprise the step of heat-treating the mold.

바람직한 일 예에서, 상기 열처리는 1020 내지 1250 ℃로 용체화처리하는 방법으로 수행될 수 있다. In a preferred embodiment, the heat treatment may be performed by a solution treatment at 1020 to 1250 ℃.

이와 같이 용체화처리한 이후로 바람직한 일예에서, 상기 복합화합물을 형성하는 단계는 붕화처리 또는 규화처리를 실시하는 방법으로 수행될 수 있다. In this preferred embodiment after the solvation, the forming of the complex compound may be performed by a method of performing a boration treatment or a silicification treatment.

본 발명의 바람직한 일 예에서, 상기 질화처리는 1000~1900℃에서 수행될 수 있다. In a preferred embodiment of the present invention, the nitriding treatment may be performed at 1000 ~ 1900 ℃.

본 발명의 바람직한 일예에서, 상기 붕화처리 또는 규화처리는 800~1200℃에서 수행될 수 있다. In a preferred embodiment of the present invention, the boration treatment or silicification treatment may be performed at 800 ~ 1200 ℃.

본 발명의 다른 일예에서는 상술한 일예들에 의한 방법으로 제조된 고온성형용 금형을 제공한다. In another embodiment of the present invention provides a mold for high temperature molding manufactured by the method according to the above examples.

본 발명의 바람직한 일예에서 금형은 그 표면경도가 1200HV 이상일 수 있다. In a preferred embodiment of the present invention, the mold may have a surface hardness of 1200 HV or more.

본 발명에 따른 고온에서도 열균형에 저항성이 크고 강도가 높은 고온성형용 금형의 제조에 유용하다.It is useful for the production of high temperature molds having high strength and high resistance to thermal balance even at high temperatures according to the present invention.

또한, 고온가열과 급냉을 반복하는 작업에서 성형성과 내구성을 유지할 수 있는 고온성형용 금형을 제조할 수 있다.In addition, it is possible to manufacture a mold for high temperature molding that can maintain moldability and durability in the operation of repeating high temperature heating and rapid cooling.

도 1은 본 발명의 일실시예에 따른 고온성형용 금형의 제조방법을 순서에 따라 나타낸 순서도이다.
도 2는 1000℃에서 3시간 동안 붕화처리한 고엔트로피합금의 조직의 SEM 이미지.
도 3은 1150℃, 0.84bar, 1.5시간 동안 질화처리한 고엔트로피합금의 조직에 대한 SEM 이미지.
1 is a flowchart illustrating a method of manufacturing a mold for high temperature molding according to an embodiment of the present invention in order.
Figure 2 is an SEM image of the tissue of the high entropy alloy borated for 3 hours at 1000 ℃.
Figure 3 is an SEM image of the tissue of the high entropy alloy nitrided for 1150 ℃, 0.84 bar, 1.5 hours.

본 발명에서는 고온에서도 열균열에 대한 저항성이 크고 다양한 재료에 적용 가능한 고온 성형용 금형의 제조 방법을 확인하고자 하였다. In the present invention, it was intended to identify a method for manufacturing a high temperature molding die having high resistance to thermal cracking even at high temperatures and applicable to various materials.

본 발명자들은 700℃ 이상 고온인 재료를 성형하는 금형은 종래의 금형소재보다 열균열저항성과 고온강도가 높은 재료로 만들고 그의 표면내구성을 개선하는 것이 해결방안이라는 사실에 착안하고 이를 만족하는 재료와 표면처리법을 찾는데 노력을 기울여 본 발명에 이르렀다. The present inventors pay attention to the fact that a mold for molding a material having a temperature higher than 700 ° C. is made of a material having higher thermal crack resistance and high temperature strength than a conventional mold material, and improving the surface durability thereof. Efforts have been made to find a treatment has led to the present invention.

본 발명에서는, 이를 위하여 내열성합금으로 금형을 제조한 후 금형의 표면에 복합화합물을 형성하는 과정을 수행한다. 그 결과 2000℃ 이상의 고온에서 분해되는 복합화합물의 형성으로 인해 표면경도가 우수하고 열균열에 대한 저항성이 있음을 확인하였다. In the present invention, for this purpose, after the mold is manufactured from a heat resistant alloy, a process of forming a complex compound on the surface of the mold is performed. As a result, it was confirmed that due to the formation of a composite compound decomposed at a high temperature of more than 2000 ℃ excellent surface hardness and resistance to thermal cracking.

즉, 본 발명의 일 실시예에서는 고온에서도 열균열에 대한 저항성이 우수한 것을 확인할 수 있었다.That is, in one embodiment of the present invention it was confirmed that excellent resistance to thermal cracking even at high temperatures.

본 발명에서는 먼저 내열성합금을 가공하여 금형을 성형한다(S10). 이때 사용되는 내열성합금은 고엔트로피합금이 가능하며, 고엔트로피합금은 각각의 원소들이 원자비로 동율이거나 일부 비율만 조정한 조성으로서, 고온에서 HV300이상 경도를 나타내는 AlCoCr(0.5~2)FeMo0.5Ni합금, AlCoCrFeNbNi합금, AlCoCrFeNiSi(0.2~1.0)합금, Al(0.2~2.0)CoCrFeNiTi합금, Al0.2Co1.5CrFeNi1.5Ti합금, AlCoCrFeNiTi(0.5~1.5)합금, AlCoCrCuFeMo(0.2~1.0)Ni합금, Al(0.3~0.5)CrFe1.5MnNi0.5합금, CoCeFeMnNiV합금 또는 Cr2CuFe2MnNi합금 중의 하나일 수 있다. In the present invention, first, the mold is formed by processing the heat resistant alloy (S10). The heat-resistant alloy that is used is possible the high entropy alloys, high entropy alloys each element are source as adjusted composition dongyul or only some proportion to the ratio, (~ 0.5 2) AlCoCr indicating HV300 or higher hardness at a high temperature FeMo 0.5 Ni Alloy, AlCoCrFeNbNi Alloy, AlCoCrFeNiSi (0.2 ~ 1.0) Alloy, Al (0.2 ~ 2.0) CoCrFeNiTi Alloy, Al 0.2 Co 1.5 CrFeNi 1.5 Ti Alloy, AlCoCrFeNiTi (0.5 ~ 1.5) Alloy, AlCoCrCuFeMo (0.2 ~ 1.0) Ni Alloy, Al ( 0.3-0.5) CrFe 1.5 MnNi 0.5 alloy, CoCeFeMnNiV alloy or Cr 2 CuFe 2 MnNi alloy may be one.

본 발명의 내열성합금은 구체적으로, C 0.17~0.23%, Si 0.15~0.35%, Mn 0.4~0.6%, Cr 9.0~10.0%, Co 9.50~10.5%, Mo 1.8~2.2%, W 5.0~6.0%, 산용해 Al 0.01~0.015% 함유하고 나머지는 Fe와 불가피한 불순물로 조성된 합금일 수 있다. Specifically, the heat resistant alloy of the present invention includes C 0.17 to 0.23%, Si 0.15 to 0.35%, Mn 0.4 to 0.6%, Cr 9.0 to 10.0%, Co 9.50 to 10.5%, Mo 1.8 to 2.2%, and W 5.0 to 6.0% In addition, the acid dissolving Al may be an alloy containing 0.01 ~ 0.015% and the remainder is composed of Fe and inevitable impurities.

또한, 금형은 C 0.1% 이하, Si 0.3~1.0%, Mn 0.3~1.0%, Cr 14~16%, Ni 6.5~8.5%, Mo 2~3%, Nb 0.45% 이하, 산용해 Al 0.75~1.5%, N 0.01~0.1% 함유하고 나머지는 Fe와 불가피한 불순물로 조성된 합금일 수 있다.In addition, mold is 0.1% or less of C, 0.3 to 1.0% of Si, 0.3 to 1.0% of Mn, 14 to 16% of Cr, Ni 6.5 to 8.5%, Mo 2 to 3%, Nb 0.45% or less, acid soluble Al 0.75 to 1.5 %, N 0.01 ~ 0.1% and the rest may be an alloy composed of Fe and inevitable impurities.

또한, C 0.08~0.12%, Si 0.3~1.0%, Mn 0.3~1.0%, Cr 16~18%, Ni 6.0~7.5%, Ti 0.8~1.1%, 산용해 Al 0.9~1.2%, N 0.1~0.2% 함유하고 나머지는 Fe와 불가피한 불순물로 조성된 합금일 수 있다. In addition, C 0.08 to 0.12%, Si 0.3 to 1.0%, Mn 0.3 to 1.0%, Cr 16 to 18%, Ni 6.0 to 7.5%, Ti 0.8 to 1.1%, acid soluble Al 0.9 to 1.2%, N 0.1 to 0.2 And the remainder may be an alloy composed of Fe and inevitable impurities.

또한, Ti 20~40%, W 10~40% 나머지는 Nb과 불가피한 불순물로 이루어진 조성의 합금일 수 있다.  In addition, Ti 20-40%, W 10-40% remainder may be an alloy of the composition consisting of Nb and unavoidable impurities.

금형의 표면에 복합화합물을 형성한다(S30). 구체적으로 복합화합물은 질화물층, 붕화물층 또는 규화물층 중의 하나 이상이다. 따라서, 열처리된 금형의 표면에 질화처리, 붕화처리, 규화처리 중 하나 이상을 선택적으로 수행할 수 있다.A complex compound is formed on the surface of the mold (S30). Specifically, the composite compound is at least one of a nitride layer, a boride layer or a silicide layer. Therefore, one or more of nitriding treatment, boration treatment, and silicide treatment may be selectively performed on the surface of the heat-treated mold.

본 발명에서 고온성형용 금형은 고엔트로피합금으로서, 오스테나이트 단상조직 또는 오스테나이트 기지조직에 미세석출물이 존재하는 것을 특징으로 하며, 상기 금형은 표면에 질화층, 붕화물층 및 규화물층 중의 하나 또는 이의 복합화합물층을 형성하여 표면의 경도를 향상시키는 것이다.The mold for high temperature molding in the present invention is a high entropy alloy, characterized in that the fine precipitate is present in the austenitic single-phase structure or austenitic matrix, the mold is one of a nitride layer, a boride layer and a silicide layer on the surface or It is to form a composite compound layer thereof to improve the hardness of the surface.

상술한 바와 같이, 고온에서 HV300이상 경도를 나타내는 AlCoCr(0.5~2)FeMo0.5Ni합금, AlCoCrFeNbNi합금, AlCoCrFeNiSi(0.2~1.0)합금, Al(0.2~2.0)CoCrFeNiTi합금, Al0.2Co1.5CrFeNi1.5Ti합금, AlCoCrFeNiTi(0.5~1.5)합금, AlCoCrCuFeMo(0.2~1.0)Ni합금, Al(0.3~0.5)CrFe1.5MnNi0.5합금, CoCeFeMnNiV합금 또는 Cr2CuFe2MnNi합금 및 Ti 20~40%, W 10~40% 나머지는 Nb과 불가피한 불순물로 이루어진 조성의 합금 중 어느 하나로 제조된 금형에 질화처리, 붕화처리 또는 규화처리를 하면 이 합금 중에 가장 융점이 높고 고용도가 큰 원소(예를 들어, Mo, Ti 등)를 중심으로 화합물층이 형성되고 그 속에 다른 원소들이 혼합된 복합화합물층을 형성하여 내마모성과 내열성이 우수한 금형을 제조할 수 있게 된다. 이들 화합물층의 분해온도는 대부분 2000℃이상으로 내마모성과 내열성이 우수한 금형을 제공할 수 있다.As described above, AlCoCr (0.5-2) FeMo 0.5 Ni alloy, AlCoCrFeNbNi alloy, AlCoCrFeNiSi (0.2-1.0) alloy, Al (0.2-2.0) CoCrFeNiTi alloy, Al 0.2 Co 1.5 CrFeNi 1.5 Ti exhibiting hardness above HV300 at high temperature Alloy, AlCoCrFeNiTi (0.5 ~ 1.5) Alloy, AlCoCrCuFeMo (0.2 ~ 1.0) Ni Alloy, Al (0.3 ~ 0.5) CrFe 1.5 MnNi 0.5 Alloy, CoCeFeMnNiV Alloy or Cr 2 CuFe 2 MnNi Alloy and Ti 20-40%, W 10 ~ The 40% remainder is nitridated, borated or silicified in a die made of an alloy of Nb and an unavoidable impurity, which has the highest melting point and highest solid solubility (e.g. Mo, Ti Etc.), a compound layer is formed, and a compound compound layer in which other elements are mixed is formed to form a mold having excellent wear resistance and heat resistance. The decomposition temperature of these compound layers is mostly 2000 ° C. or more, so that a mold having excellent wear resistance and heat resistance can be provided.

본 발명에서 질화처리는 1000~1900℃에서 수행되는 것이 바람직할 수 있다.In the present invention, nitriding treatment may be preferably performed at 1000 ~ 1900 ℃.

또한, 본 발명에서 붕화처리 및 규화처리는 800~1200℃에서 수행되는 것이 좋다. 바람직하게는 900~1050℃ 인 것이 좋다. 이때 900℃ 미만에서 수행하면 내열성합금 내의 원소와 결합하여 붕화물 또는 규화물을 생성하는 양이 적어 표면경도 향상에 큰 도움이 되지 않을 수 있으며 1050℃를 초과하는 경우에는 붕화물 또는 규화물 생성에 의한 표면경도 향상의 비율 대비 소모되는 에너지의 양이 많아 효율성이 떨어질 수 있다.In addition, the boration treatment and silicification treatment in the present invention is preferably carried out at 800 ~ 1200 ℃. Preferably it is 900-1050 degreeC. At this time, if it is performed below 900 ℃, the amount of boride or silicide combined with the elements in the heat-resistant alloy is small, which may not help to improve the surface hardness. If the temperature exceeds 1050 ℃, the surface by the formation of boride or silicide The amount of energy consumed compared to the ratio of hardness improvement can be inefficient.

한편, 강종에 따라서는 복합화합물을 형성하는 단계 이전에 열처리를 수행할 수 있다(S20). 이때 금형의 열처리는 1020 내지 1250℃로 용체화처리하는 방법으로 수행될 수 있다. 본 발명의 일 실시예에서 상기 용체화 처리 이후로 담금질을 더 실시할 수 있다. 이때 용체화처리 온도는 1000℃ 이상으로 실시하면 합금 내 잔류오스테나이트 상의 증가로 연성이 증가하는 효과를 얻을 수 있다. 또한, 용체화처리 이후 -80℃ 이하로 서브제로 처리를 실시하여 잔류 오스테나이트를 감소시키면서 변형과 균열을 예방할 수 있도록 하는 것이 좋다.On the other hand, depending on the steel species may be heat treatment before the step of forming a composite compound (S20). At this time, the heat treatment of the mold may be performed by a solution treatment at 1020 to 1250 ℃. In one embodiment of the present invention, quenching may be further performed after the solution treatment. In this case, if the solution treatment temperature is performed at 1000 ° C. or higher, an increase in ductility may be obtained due to an increase in residual austenite phase in the alloy. In addition, after the solution treatment, sub-zero treatment at -80 ° C. or less may be performed to prevent deformation and cracking while reducing residual austenite.

본 발명의 일 실시예에서는 용체화 및 담금질을 실시한 합금에, 상기 복합화합물을 형성하는 단계로 질화처리 및 TiN 코팅단계를 포함할 수 있다. In an embodiment of the present invention, in the alloy subjected to the solution and quenching, forming the composite compound may include nitriding and TiN coating.

이때 TiN코팅은 PVD(Physical Vapor Deposition)법에 의하여 수행되는 것이 좋다. At this time, TiN coating is preferably performed by PVD (Physical Vapor Deposition) method.

다른 한편으로는, 상기와 같이 용체화를 실시한 합금에, 붕화처리 또는 규화처리를 실시하여 복합화합물층을 형성할 수 있다.On the other hand, the composite compound layer can be formed by performing boration treatment or silicidation treatment to the alloy which carried out the solution solution as mentioned above.

본 발명에서 이같은 과정을 통하여 제조된 고온성형용 금형은 그 표면경도가 1200HV 이상의 고경도이다. 또한, 복합화합물층의 표면은 분해온도가 1800℃ 이상으로 고온 내마모성과 내식성을 보유하게 된다.In the present invention, the high-temperature molding die manufactured through such a process has a high hardness of 1200 HV or more. In addition, the surface of the composite compound layer has a high temperature wear resistance and corrosion resistance at a decomposition temperature of more than 1800 ℃.

[실시예]EXAMPLE

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, and it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples.

<실시예 1-1과 1-2의 제조>Preparation of Examples 1-1 and 1-2

실시예 1-1은 AlCoCr2FeMo0.5Ni합금이며, 실시예 1-2는 Al0.2Co1.5CrFeNi1.5Ti합금이다. 실시예 1-1 및 실시예 1-2의 합금 조성은 다음 표1과 같고 불가피한 불순물을 미량 함유할 수 있다. 이들 합금의 각 원소의 조성에서 약 ㅁ10% 범위 내에서는 동등수준의 물성을 얻을 수 있는 허용오차 범위로 한다.Example 1-1 is an AlCoCr 2 FeMo 0.5 Ni alloy, and Example 1-2 is an Al 0.2 Co 1.5 CrFeNi 1.5 Ti alloy. The alloy compositions of Examples 1-1 and 1-2 are shown in Table 1 below and may contain trace amounts of unavoidable impurities. Within the range of approximately 10% in the composition of each element of these alloys, an allowable range in which equivalent physical properties can be obtained.

AlAl CoCo CrCr FeFe Mo Mo NiNi TiTi 실시예 1-1 (wt%) Example 1-1 (wt%) 7.77.7 16.716.7 29.529.5 15.815.8 13.613.6 16.716.7 -- 실시예 1-2 (wt%) Example 1-2 (wt%) 1.61.6 26.126.1 15.415.4 16.516.5 -- 26.226.2 14.214.2

상기 표 1의 조성을 가지는 합금에 질화처리, 규화처리 또는 붕화처리를 하면 이 합금 중에 가장 융점이 높고 고용도가 큰 원소(예를 들어 Mo, Ti, Cr 등)를 중심으로 화합물층이 형성되고 그 속에 다른 원소들이 혼합된 복합붕화물층을 형성하게 된다. 이들 화합물층의 분해온도는 대부분 1800℃이상으로 내마모성과 내열성이 우수한 금형을 얻을 수 있다. When the alloy having the composition shown in Table 1 is subjected to nitriding treatment, silicification treatment or boration treatment, a compound layer is formed around the element having the highest melting point and the highest solid solubility (for example, Mo, Ti, Cr, etc.). It will form a composite boride layer mixed with other elements. The decomposition temperature of these compound layers is 1800 degreeC or more mostly, and the metal mold | die excellent in abrasion resistance and heat resistance can be obtained.

본 발명에서 복합화합물 형성 이전 금형의 경도는 HV700~900 정도이지만 이를 900~1100℃에서 질화처리, 규화처리하거나 붕화처리하여 표면경도가 HV1200 이상 이상으로 향상된다. 이같이 질화처리 또는 붕화처리한 화합물층 최표면에서는 HV1200 이상 고경도를 얻게 될 뿐 아니라 화합물층 표면은 분해온도가 1800℃ 이상으로 고온 내마모성과 내식성을 보유하여, 고온성형 작업에서 우수한 수명을 나타낸다. In the present invention, the hardness of the mold before forming the composite compound is about HV700 ~ 900, but the surface hardness is improved to HV1200 or more by nitriding, silicifying or boring treatment at 900 ~ 1100 ℃. Thus, at the outermost surface of the nitrided or borated compound layer, not only the hardness of HV1200 or more is obtained, but the surface of the compound layer has high temperature abrasion resistance and corrosion resistance at a decomposition temperature of 1800 ° C or more, and thus shows excellent life in high temperature forming operations.

일 실시예로서, 1000℃에서 3시간 동안 붕화처리한 고엔트로피합금의 조직의 SEM 이미지는 도 1과 같다. As an example, the SEM image of the tissue of the high entropy alloy borated for 3 hours at 1000 ℃ is shown in FIG.

다른 일 실시예로서, 1150℃, 0.84bar, 1.5시간 동안 질화처리한 고엔트로피합금의 조직에 대한 SEM 이미지는 도 2와 같다. In another embodiment, the SEM image of the tissue of the high entropy alloy nitrided at 1150 ° C., 0.84 bar and 1.5 hours is shown in FIG. 2.

<실시예 2><Example 2>

Ti 30%, W 20% 나머지는 Nb과 불가피한 불순물로 이루어진 합금을 1875℃에서 4h 질화처리하였다. 이와 같이 질화처리를 실시한 후 표면으로부터 약 1.6mm 깊이까지 복합질화물층을 얻었으며 최표면층에는 약0.25mm의 티타늄질화물층이 형성되었다. 금형소재의 심부경도는 HV220~500 정도이지만 질화처리 후에는 HV2000 이상이었다. 또한, 붕화처리한 경우, 표면에서는 HV2000 이상, 75㎛ 깊이에서 HV1700~1800 얻으며, 이들 질화물의 분해온도는 약 2000℃ 이상이었다. 따라서, 이 금형은 약 1000℃ 이상의 고온인 재료의 성형에 사용할 수 있을 정도의 내구성을 가지게 되었다.Ti 30%, W 20% The remainder of the alloy consisting of Nb and inevitable impurities was subjected to nitriding 4h at 1875 ℃. After the nitriding treatment, a composite nitride layer was obtained from the surface to about 1.6 mm in depth, and a titanium nitride layer of about 0.25 mm was formed on the outermost layer. The core hardness of mold material was about HV220 ~ 500, but after nitriding, it was over HV2000. In the case of boration, HV1700-1800 was obtained at the surface of HV2000 or more and 75 micrometers depth, and the decomposition temperature of these nitrides was about 2000 degreeC or more. Therefore, this mold had the durability enough to be used for shaping | molding a material which is about 1000 degreeC or more high temperature.

<실시예 3><Example 3>

C 0.17~0.23%, Si 0.15~0.35%, Mn 0.4~0.6%, Cr 9.0~10.0%, Co 9.50~10.5%, Mo 1.8~2.2%, W 5.0~6.0%, 산용해 Al 0.01~0.015% 함유하고 나머지는 Fe와 불가피한 불순물로 조성된 열간공구강으로서 열간단조된 소재를 1100~1150℃ 가열 유지 후 공냉 또는 유냉으로 담금질하였다. 이후 980℃에서 3시간 붕화처리한 후 표면경도를 측정하였더니 HV1200 이상의 표면경도를 나타냈다.C 0.17 ~ 0.23%, Si 0.15 ~ 0.35%, Mn 0.4 ~ 0.6%, Cr 9.0 ~ 10.0%, Co 9.50 ~ 10.5%, Mo 1.8 ~ 2.2%, W 5.0 ~ 6.0%, Acid Dissolve Al 0.01 ~ 0.015% The rest was quenched by air cooling or oil cooling after maintaining the hot forged material as a hot pore made of Fe and unavoidable impurities. Then, after boring for 3 hours at 980 ℃ surface hardness was measured and showed a surface hardness of HV1200 or more.

<실시예 4><Example 4>

C 0.1% 이하, Si 0.3~1.0%, Mn 0.3~1.0%, Cr 14~16%, Ni 6.5~8.5%, Mo 2~3%, Nb 0.45% 이하, 산용해 Al 0.75~1.5%, N 0.01~0.1% 함유하고 나머지는 Fe와 불가피한 불순물로 조성된 합금으로서 열간단조재를 1020~1060℃ 15min 이상 유지하여 냉각하는 용체화처리한다. 용체화처리 온도는 1038℃보다 높을수록 잔류 오스테나이트 증가로 연성이 증가한다. 용체화처리 후 -80℃ 이하로 서브제로 처리를 실시하면 잔류 오스테나이트를 감소하고 변형과 균열을 예방한다.C 0.1% or less, Si 0.3 ~ 1.0%, Mn 0.3 ~ 1.0%, Cr 14-16%, Ni 6.5 ~ 8.5%, Mo 2-3%, Nb 0.45% or less, Acid dissolving Al 0.75 ~ 1.5%, N 0.01 It contains ~ 0.1%, and the remainder is an alloy composed of Fe and unavoidable impurities. The solution treatment temperature is higher than 1038 ℃ increases the ductility due to the increase of residual austenite. Subzero treatment below -80 ° C after solution treatment reduces residual austenite and prevents deformation and cracking.

용체화처리 후 금형의 조직은 마르텐사이트 기지조직이며 붕화처리한 뒤에는 마르텐사이트에 Ni-(Cr, Mo)석출물로 강화된 조직이다. 용체화처리 후 1050℃에서 3시간 붕화처리하여 표면경도를 측정한 결과 HV1200 이상 이상의 경도값을 얻었다.After the solution treatment, the structure of the mold is martensitic matrix structure and after boride treatment, it is a structure reinforced with Ni- (Cr, Mo) precipitate on martensite. After the solution treatment, the surface hardness was measured by boring at 1050 ° C. for 3 hours to obtain a hardness value of HV1200 or more.

<실시예 5>Example 5

C 0.08~0.12%, Si 0.3~1.0%, Mn 0.3~1.0%, Cr 16~18%, Ni 6.0~7.5%, Ti 0.8~1.1%, 산용해 Al 0.9~1.2%, N 0.1~0.2% 함유하고 나머지는 Fe와 불가피한 불순물로 조성된 합금으로서 단조재를 1025~1050℃로 가열하여 15min 유지한다. 이때 가열상태에서는 오스테나이트 내에 Cr 탄화물이 고용되고 10% 델타-페라이트와 Ti 탄화물이 분포된 조직이다. 이 조직이 용체화처리 후에는 마르텐사이트와 잔류 오스테나이트 조직 상태로 되며 이때 경도는 HRC 25이다. 탄소량이 높을수록 용체화 온도는 높아지고 마르텐사이트변태 시작(Ms)온도는 낮아진다. 따라서, -80℃ 이하로 서브제로 처리를 실시하면 잔류 오스테나이트를 감소하고 변형과 균열을 예방할 수 있다.C 0.08 ~ 0.12%, Si 0.3 ~ 1.0%, Mn 0.3 ~ 1.0%, Cr 16 ~ 18%, Ni 6.0 ~ 7.5%, Ti 0.8 ~ 1.1%, acid soluble Al 0.9 ~ 1.2%, N 0.1 ~ 0.2% The remainder is an alloy composed of Fe and unavoidable impurities, and the forging is heated at 1025 to 1050 ° C. for 15 minutes. At this time, Cr carbide is dissolved in austenite and 10% delta-ferrite and Ti carbide are distributed. After solution treatment the martensite and retained austenite tissues have a hardness of HRC 25. The higher the carbon content, the higher the solution temperature and the lower the start of martensite transformation (Ms). Therefore, subzero treatment below -80 ° C reduces residual austenite and prevents deformation and cracking.

980℃ 이하에서 용체화처리하는 경우에는 Ti 탄화물 고용도가 낮아지므로 잔류 오스테나이트 증가로 경도가 저하한다. 용체화처리 후 1000℃에서 3시간 붕화처리한 후 표면경도를 측정하였더니 HV1200 이상의 표면경도를 나타냈다.In the case of solution treatment at 980 ° C. or lower, the Ti carbide solid solubility becomes low, so that the hardness decreases due to the increase of residual austenite. After solution treatment and boride treatment at 1000 ° C. for 3 hours, the surface hardness was measured, and the surface hardness of HV1200 was higher.

상술한 실시예들에서 확인한 바와 같이 본 발명의 방법에 의하여 제조된 고온성형용 금형은 제조 후 표면경도 1200HV 이상의 경도값을 나타내어 고온에서 열균열 저항성이 높은 금형으로 제조되었음을 확인할 수 있었다. 따라서, 본 발명에 의해 제조된 고온성형용 금형은 종래의 금형보다 높은 내열성과 고온 내마모성을 가져 고온에서 성형하는 용도에 적합하며 긴 수명과 내구성으로 고온 다이캐스팅이나 압출금형, 식소몰딩, 인젝션 몰딩, 스퀴즈 캐스팅 또는 유리성형 등 우수한 고온물성, 특히 고온가열과 급냉을 반복하는 열피로에 높은 저항성을 요하는 용도의 금형으로서 사용이 가능하다.As confirmed in the above embodiments, the mold for high temperature molding manufactured by the method of the present invention exhibited a hardness value of 1200 HV or more after manufacturing, and thus, it was confirmed that the mold was manufactured with high thermal cracking resistance at high temperature. Therefore, the high temperature molding mold manufactured by the present invention has higher heat resistance and higher wear resistance than the conventional mold, and is suitable for use at high temperature, and is suitable for high temperature die casting or extrusion mold, food molding, injection molding, and squeeze with long life and durability. It can be used as a mold for high temperature property such as casting or glass molding, especially for applications requiring high resistance to thermal fatigue which repeats high temperature heating and rapid cooling.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above in detail specific parts of the present invention, it will be apparent to those skilled in the art that these specific descriptions are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. will be. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (10)

내열성합금을 가공하여 금형을 성형하는 단계; 및
상기 금형의 표면에 복합화합물을 형성하는 단계;를 포함하는,
고온성형용 금형의 제조방법.
Molding a mold by processing the heat resistant alloy; And
Forming a complex compound on the surface of the mold; comprising,
Manufacturing method of high temperature molding die.
청구항 1에 있어서,
상기 내열성합금은 AlCoCr(0.5~2)FeMo0.5Ni합금; AlCoCrFeNbNi합금; AlCoCrFeNiSi(0.2~1.0)합금; Al(0.2~2.0)CoCrFeNiTi합금; Al0.2Co1.5CrFeNi1.5Ti합금; AlCoCrFeNiTi(0.5~1.5)합금; AlCoCrCuFeMo(0.2~1.0)Ni합금; Al(0.3~0.5)CrFe1.5MnNi0.5합금; CoCeFeMnNiV합금; Cr2CuFe2MnNi합금; Ti 20~40%, W 10~40%, 및 나머지는 Nb과 불가피한 불순물로 이루어진 조성의 합금; C 0.17~0.23%, Si 0.15~0.35%, Mn 0.4~0.6%, Cr 9.0~10.0%, Co 9.50~10.5%, Mo 1.8~2.2%, W 5.0~6.0%, 산용해 Al 0.01~0.015% 및 나머지는 Fe와 불가피한 불순물로 조성된 합금; C 0.1% 이하, Si 0.3~1.0%, Mn 0.3~1.0%, Cr 14~16%, Ni 6.5~8.5%, Mo 2~3%, Nb 0.45% 이하, 산용해 Al 0.75~1.5%, N 0.01~0.1%, 및 나머지는 Fe와 불가피한 불순물로 조성된 합금; 및 C 0.08~0.12%, Si 0.3~1.0%, Mn 0.3~1.0%, Cr 16~18%, Ni 6.0~7.5%, Ti 0.8~1.1%, 산용해 Al 0.9~1.2%, N 0.1~0.2%, 및 나머지는 Fe와 불가피한 불순물로 조성된 합금 중 선택된 어느 하나인 것을 특징으로 하는,
고온성형용 금형의 제조방법.
The method according to claim 1,
The heat resistant alloy is AlCoCr (0.5 ~ 2) FeMo 0.5 Ni alloy; AlCoCrFeNbNi alloys; AlCoCrFeNiSi (0.2-1.0) alloy; Al (0.2-2.0) CoCrFeNiTi alloy; Al 0.2 Co 1.5 CrFeNi 1.5 Ti alloy; AlCoCrFeNiTi (0.5-1.5) alloy; AlCoCrCuFeMo (0.2 ~ 1.0) Ni alloy; Al (0.3-0.5) CrFe 1.5 MnNi 0.5 alloy; CoCeFeMnNiV alloy; Cr 2 CuFe 2 MnNi alloys; 20-40% Ti, 10-40% W, and the balance of Nb and inevitable impurities; C 0.17 ~ 0.23%, Si 0.15 ~ 0.35%, Mn 0.4 ~ 0.6%, Cr 9.0 ~ 10.0%, Co 9.50 ~ 10.5%, Mo 1.8 ~ 2.2%, W 5.0 ~ 6.0%, Dissolved Al 0.01 ~ 0.015% and The rest are alloys composed of Fe and inevitable impurities; C 0.1% or less, Si 0.3 ~ 1.0%, Mn 0.3 ~ 1.0%, Cr 14-16%, Ni 6.5 ~ 8.5%, Mo 2-3%, Nb 0.45% or less, Acid dissolving Al 0.75 ~ 1.5%, N 0.01 -0.1%, and the remainder are alloys composed of Fe and inevitable impurities; And C 0.08 ~ 0.12%, Si 0.3 ~ 1.0%, Mn 0.3 ~ 1.0%, Cr 16 ~ 18%, Ni 6.0 ~ 7.5%, Ti 0.8 ~ 1.1%, Dissolved Al 0.9 ~ 1.2%, N 0.1 ~ 0.2% And, the rest is characterized in that any one selected from the alloy consisting of Fe and inevitable impurities,
Manufacturing method of high temperature mold.
청구항 1에 있어서,
상기 복합화합물을 형성하는 단계는, 상기 금형에 질화처리, 규화처리 및 붕화처리 중 선택된 적어도 하나의 처리를 실시하여 수행되는 것을 특징으로 하는,
고온성형용 금형의 제조방법.
The method according to claim 1,
Forming the complex compound, characterized in that the mold is carried out by performing at least one treatment selected from nitriding treatment, silicification treatment and boration treatment
Manufacturing method of high temperature mold.
청구항 1 또는 청구항 3에 있어서,
상기 복합화합물을 형성하는 단계 이전에, 상기 금형을 열처리하는 단계를 포함하는 것을 특징으로 하는,
고온성형용 금형의 제조방법.
The method according to claim 1 or 3,
Before the forming of the composite compound, characterized in that it comprises the step of heat-treating the mold,
Manufacturing method of high temperature mold.
청구항 4에 있어서,
상기 열처리는 1020 내지 1250℃로 용체화처리하는 방법으로 수행되는 것을 특징으로 하는 특징으로 하는,
고온성형용 금형의 제조방법.
The method according to claim 4,
The heat treatment is characterized in that it is carried out by a solution treatment method at 1020 to 1250 ℃,
Manufacturing method of high temperature mold.
청구항 5에 있어서,
상기 복합화합물을 형성하는 단계는 붕화처리 또는 규화처리를 실시하는 방법으로 수행되는 것을 특징으로 하는,
고온성형용 금형의 제조방법.
The method according to claim 5,
Forming the complex compound is characterized in that it is carried out by a method of performing a boration treatment or silicidation treatment,
Manufacturing method of high temperature mold.
청구항 3에 있어서,
상기 질화처리는 1000~1900℃에서 수행되는 것을 특징으로 하는,
고온성형용 금형의 제조방법.
The method according to claim 3,
The nitriding treatment is characterized in that performed at 1000 ~ 1900 ℃,
Manufacturing method of high temperature mold.
청구항 3 또는 청구항 6에 있어서,
상기 붕화처리 또는 규화처리는 800~1200℃에서 수행되는 것을 특징으로 하는,
고온성형용 금형의 제조방법.
The method according to claim 3 or 6,
The boration treatment or silicification treatment is characterized in that carried out at 800 ~ 1200 ℃,
Manufacturing method of high temperature mold.
청구항 1의 방법으로 제조된, 고온성형용 금형.A mold for high temperature molding, prepared by the method of claim 1. 청구항 9에 있어서,
상기 금형은 표면경도가 1200HV 이상인 것을 특징으로 하는,
고온성형용 금형.
The method according to claim 9,
The mold is characterized in that the surface hardness of 1200HV or more,
High temperature molding mold.
KR1020180050074A 2018-04-30 2018-04-30 Manufacturing method of mold for high temperature casting and manufactured mold using the same KR20190125798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180050074A KR20190125798A (en) 2018-04-30 2018-04-30 Manufacturing method of mold for high temperature casting and manufactured mold using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180050074A KR20190125798A (en) 2018-04-30 2018-04-30 Manufacturing method of mold for high temperature casting and manufactured mold using the same

Publications (1)

Publication Number Publication Date
KR20190125798A true KR20190125798A (en) 2019-11-07

Family

ID=68579061

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180050074A KR20190125798A (en) 2018-04-30 2018-04-30 Manufacturing method of mold for high temperature casting and manufactured mold using the same

Country Status (1)

Country Link
KR (1) KR20190125798A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113667929A (en) * 2021-07-02 2021-11-19 株洲钻石切削刀具股份有限公司 Periodic multilayer coating cutter and preparation method thereof
CN114351054A (en) * 2022-01-13 2022-04-15 河南科技大学 Material pot for aluminum alloy die-casting hot chamber pressure machine and preparation method thereof
KR102646547B1 (en) 2023-11-01 2024-03-12 에프원테크시스템즈 주식회사 Methods of providing injection-related structured and unstructured data-based molds and injection condition analysis solutions using artificial intelligence models
EP4242335A4 (en) * 2020-11-04 2024-04-24 Proterial, Ltd. Alloy member manufacturing method, alloy member, and product using alloy member

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4242335A4 (en) * 2020-11-04 2024-04-24 Proterial, Ltd. Alloy member manufacturing method, alloy member, and product using alloy member
CN113667929A (en) * 2021-07-02 2021-11-19 株洲钻石切削刀具股份有限公司 Periodic multilayer coating cutter and preparation method thereof
CN113667929B (en) * 2021-07-02 2023-04-07 株洲钻石切削刀具股份有限公司 Periodic multilayer coating cutter and preparation method thereof
CN114351054A (en) * 2022-01-13 2022-04-15 河南科技大学 Material pot for aluminum alloy die-casting hot chamber pressure machine and preparation method thereof
CN114351054B (en) * 2022-01-13 2022-08-26 河南科技大学 Material pot for aluminum alloy die-casting hot chamber pressure machine and preparation method thereof
KR102646547B1 (en) 2023-11-01 2024-03-12 에프원테크시스템즈 주식회사 Methods of providing injection-related structured and unstructured data-based molds and injection condition analysis solutions using artificial intelligence models

Similar Documents

Publication Publication Date Title
KR102017553B1 (en) Mold steel for long life cycle die casting having high hardenability and superior nitriding property
KR20190125798A (en) Manufacturing method of mold for high temperature casting and manufactured mold using the same
JP5143531B2 (en) Cold mold steel and molds
EP2679697B1 (en) Manufacturing method for cold-working die
CN104928586A (en) Hot stamping die steel and production method thereof
TW201718880A (en) Steel for molds and molding tool
EP3550051B1 (en) Steel for mold, mold, use of a steel for manufacturing a mold, and a process of manufacturing a mold
CN114318168B (en) High-strength high-toughness carbonitriding steel and preparation method thereof
EP1696045A1 (en) Hot work tool steel and mold member excellent in resistance to melting
US6841122B2 (en) Hot working die steel excelling in molten corrosion resistance and strength at elevated temperature and member for high temperature use formed of the hot working die steel
CN102703835A (en) Hot-work die steel for aluminum die-casting mould
JPH0474848A (en) Steel for hot tube making tool and hot tube making tool
JP4411594B2 (en) Cold working mold
CN104532167A (en) Preparation method of high temperature-resistant alloy die steel
US7828910B2 (en) Method and process for thermochemical treatment of high-strength, high-toughness alloys
JP3191008B2 (en) Hot tool steel
US11535917B2 (en) Steel for mold, and mold
CN111826592B (en) High-temperature ablation-resistant low-carbon medium-low alloy steel and preparation method thereof
TWI766454B (en) Steel for mold, and mold
JP2017166066A (en) Steel for mold and mold
JP3983502B2 (en) Mold with excellent resistance to aluminum erosion and its processing method
CN104611645A (en) High-temperature-resistant alloy die steel
KR100519084B1 (en) Alloy for making guide roll
JP2000234149A (en) Metal mold for casting, excellent in erosion resistance
JPH0273951A (en) Hot-working tool steel excellent in thermal fatigue-resisting characteristic and die for high-temperature and heavy-load working

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application