JPH0273951A - Hot-working tool steel excellent in thermal fatigue-resisting characteristic and die for high-temperature and heavy-load working - Google Patents

Hot-working tool steel excellent in thermal fatigue-resisting characteristic and die for high-temperature and heavy-load working

Info

Publication number
JPH0273951A
JPH0273951A JP22509188A JP22509188A JPH0273951A JP H0273951 A JPH0273951 A JP H0273951A JP 22509188 A JP22509188 A JP 22509188A JP 22509188 A JP22509188 A JP 22509188A JP H0273951 A JPH0273951 A JP H0273951A
Authority
JP
Japan
Prior art keywords
temperature
oxide
steel
resistance
tool steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22509188A
Other languages
Japanese (ja)
Inventor
Toshinori Yokomaku
俊典 横幕
Yoshio Yamazaki
山崎 善夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KOSHUHA KOGYO KK
Nippon Koshuha Steel Co Ltd
Kobe Steel Ltd
Original Assignee
NIPPON KOSHUHA KOGYO KK
Nippon Koshuha Steel Co Ltd
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KOSHUHA KOGYO KK, Nippon Koshuha Steel Co Ltd, Kobe Steel Ltd filed Critical NIPPON KOSHUHA KOGYO KK
Priority to JP22509188A priority Critical patent/JPH0273951A/en
Publication of JPH0273951A publication Critical patent/JPH0273951A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To provide a hot-working tool steel most suitably used for metal mold for casting and forging die by incorporating specific weight percentages of C, Si, Mn, Cr, Mo, V, Nb, Zr and/or Ce, and N to Fe. CONSTITUTION:The title steel has a composition in which 0.25%-0.4%, by weight, C, 0.10-1.2% Si, 0.10-1.2% Mn, 4.0-6.0% Cr, 1.0-3.0% Mo, 0.3-1.0% V, 0.01-0.3% Nb, 0.01-0.2% Zr and/or 0.001-0.02% Ce, and <=0.01% N are incorporated to Fe. Moreover, an Fe oxide layer containing Cr oxide and Si oxide is formed on the surface of the above steel, and further, an Fe oxide layer containing Zr oxide is formed on the above layer. By this method, the hot- working tool steel most suitably used for metal mold for casting and forging die can be provided.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ダイカスト型や鍛造プレス型などの高温高負
荷加工用金型等に使用される熱間工具鋼並びに該熱間工
具鋼を母材とする高温高負荷加工用金型に関するもので
ある。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to hot work tool steel used for high temperature, high load processing molds such as die casting molds and forging press molds, as well as to the hot work tool steel as a base material. This article relates to molds for high-temperature, high-load machining.

[従来の技術] A1ダイカストや熱間鍛造は、長時間、多数回に亘って
連続して加工を繰返す加工方法であり、これに使用され
る金型の表面は、高温の溶湯や被成形物が繰り返し接触
することによって急熱され、且つ製品取り出しの度に冷
却剤の吹付は等によって急冷されるので、酸化による肌
荒れ及び熱応力の繰返しによる熱疲労クラックを生し易
い。
[Prior art] A1 die casting and hot forging are processing methods in which processing is repeated many times over a long period of time. The product is rapidly heated by repeated contact with the product, and is rapidly cooled by spraying a coolant each time the product is taken out, which tends to cause rough skin due to oxidation and thermal fatigue cracks due to repeated thermal stress.

しかも1シヨツト当たりの急熱・急冷サイクル時間は、
最近ますます短縮される傾向にあり、金型の使用条件は
一層過酷なものになっている。その結果、金型は過大な
熱応力によって更にクラックを生じ易い条件に曝される
こととなり、寿命低下が問題となっている。一方ダイカ
スト等の分野における他の要請として被成形物の高品質
化が挙げられ、金型表面の肌荒れに対する許容基準が高
くなりている。
Moreover, the rapid heating/cooling cycle time per shot is
Recently, there has been a tendency for the length of time to be shortened more and more, and the usage conditions for molds have become even more severe. As a result, the mold is exposed to conditions where it is more likely to crack due to excessive thermal stress, resulting in a shortened lifespan. On the other hand, another requirement in the field of die casting and the like is to improve the quality of the molded product, and the tolerance standards for roughness on the surface of the mold are becoming higher.

従来、上記金型を製作する為の工具鋼としては、5KD
61が汎用されてきたが、上述の様に金型使用条件が過
酷化する一方で肌荒れ許容基準も強化されており、5K
D61ではこれらの要求に答えることができないことか
ら耐久性に優れた高温高負荷加工用金型並びに該金型に
使用される工具鋼の提供が要請されている。
Conventionally, the tool steel used to manufacture the above molds was 5KD.
61 has been widely used, but as mentioned above, mold usage conditions have become harsher and roughness tolerance standards have also been strengthened, and 5K
Since D61 cannot meet these demands, there is a demand for a mold for high-temperature, high-load machining with excellent durability and a tool steel for use in the mold.

[発明が解決しようとする課題] しかるにこれまでに提案されている5KD61の改良鋼
を見ると、母材の強度や耐摩耗性といった機械的特性に
ついては改善されていても、ヒートクラックの直接的起
因になる表面の酸化皮膜の特性については侮辱改善が施
されていないため、実際の金型において十分な寿命改善
効果が得られないことが多く、また肌荒れに対してほと
んど効果がないという問題点がある。そこで、表面に保
護性酸化皮膜の形成を図った改良鋼が二、三提案されて
いるが、これらは皮膜中の組成分布が最適でないために
耐クラツク性が必ずしも十分でなかったり、皮膜下の母
材クランク進展抵抗や靭性が十分でないために、低応力
・高サイクルの熱疲労条件下での耐久性には優れていて
も、使用早期にヒートクラックの発生するような高温高
負荷用途(すなわち低サイクル疲労条件)においては、
はとんど寿命の改善がなく、場合によっては大割れを生
じるという問題点がある。
[Problems to be Solved by the Invention] However, looking at the improved steels of 5KD61 that have been proposed so far, although the mechanical properties such as the strength and wear resistance of the base material have been improved, the direct heat cracking Since no improvements have been made to the characteristics of the oxidized film on the surface that causes this problem, it is often not possible to achieve a sufficient lifespan improvement effect in actual molds, and the problem is that it has almost no effect on rough skin. There is. Therefore, a few improved steels have been proposed in which a protective oxide film is formed on the surface, but these do not necessarily have sufficient crack resistance because the composition distribution in the film is not optimal, or Because the base material does not have sufficient crank progression resistance or toughness, even though it has excellent durability under low-stress, high-cycle thermal fatigue conditions, it cannot be used in high-temperature, high-load applications where heat cracks occur early in use (i.e. (low cycle fatigue conditions),
The problem is that there is almost no improvement in service life, and in some cases large cracks occur.

例えば特開昭50−102517号の熱間加工用工具鋼
はYおよびCeを単独または共同添加した点に主たる特
長を有する工具鋼で、使用時には母材表面に緻密で剥離
し難い断熱性の酸化保護被膜が形成されるので高温にお
ける耐焼付摩耗性、耐ヒートチエツク性、耐食性等を改
善することができるというものである。又特開昭58−
207359号の熱間加工用工具鋼はYやSc等の希土
類元素を加えて酸化保護被膜を形成し、且つNb、Ti
、Zrの1種以上を添加して結晶粒を微細化し高温強度
を高めると共に、これらの元素の添加によって鋼中の窒
素や酸素を捕捉して希土類元素の酸化物や窒化物の生成
を抑制し、希土類元素添加効果を発現させたものである
。しかるに本発明者等の研究によれば、前者にはCOや
Niが添加されており、また後者においてはc。
For example, the hot working tool steel of JP-A No. 50-102517 is a tool steel whose main feature is that Y and Ce are added alone or together. Since a protective film is formed, it is possible to improve seizure resistance, heat check resistance, corrosion resistance, etc. at high temperatures. Also, Unexamined Patent Publication 1983-
The hot working tool steel of No. 207359 has rare earth elements such as Y and Sc added to form an oxidation protective film, and Nb and Ti.
, Zr is added to refine the crystal grains and increase high-temperature strength, and the addition of these elements traps nitrogen and oxygen in the steel to suppress the formation of rare earth element oxides and nitrides. , which exhibits the effect of rare earth element addition. However, according to the research of the present inventors, CO and Ni are added to the former, and c.

が多量に添加されている上、C%MO1Vなど炭化物生
成元素が多く添加されているので、それぞれクラック進
展抵抗や靭性の低下を招くという欠点がある。そのため
、高温高負荷の低サイクル疲労用途の金型では寿命が必
ずしも高くないし、大割れの問題もあった。しかも上記
の公知技術ではいずれも窒素が0.01%を超える量で
あって通常の大気溶製レベルを示し、後者では窒素固定
用としてZr等を使用しているもののZr等だけでなく
希土類元素が窒素と反応して窒化物を形成してしまう為
に、せっかく添加された希土類元素が前記酸化保護被膜
の特性向上や組成の改良に寄与していないという問題が
ある。
Since a large amount of . For this reason, molds for low-cycle fatigue applications at high temperatures and high loads do not necessarily have a long life and have the problem of large cracks. Moreover, in all of the above-mentioned known techniques, the amount of nitrogen exceeds 0.01%, which is the normal atmospheric melting level, and although the latter uses Zr etc. for nitrogen fixation, not only Zr etc. but also rare earth elements are used. Since the rare earth elements react with nitrogen to form nitrides, there is a problem in that the added rare earth elements do not contribute to improving the properties or composition of the oxidation protective film.

即ち本発明分野においては、金型使用時にその表面に必
然的に生成する酸化皮膜の耐クラツク性と母材のクラン
ク進展抵抗および靭性が重要であり、両者の性質が同時
に優れたものでないと、耐肌荒れ性、耐ヒートチエツク
性、耐割れ性が劣るものとなり、金型としての使用に耐
えられない場合が生じる。
That is, in the field of the present invention, the crack resistance of the oxide film that inevitably forms on the surface of the mold when it is used, and the crank progression resistance and toughness of the base material are important, and both properties must be excellent at the same time. The roughening resistance, heat check resistance, and cracking resistance will be poor, and there will be cases where the mold cannot withstand use as a mold.

本発明はこうした事情に着目してなされたものであって
、5KD61を基本組成にして合金組成を工夫すること
により、高温高負荷加工における耐久性に優れた熱間工
具鋼並びに該熱間工具鋼の表面に緻密で耐クラツク性に
優れた酸化皮膜を有してなる高温高負荷加工用金型を提
供することを目的とするものである。
The present invention has been made with attention to these circumstances, and by devising the alloy composition using 5KD61 as the basic composition, the present invention provides a hot work tool steel with excellent durability in high temperature and high load machining, and the hot work tool steel. The object of the present invention is to provide a mold for high-temperature, high-load processing, which has a dense oxide film with excellent crack resistance on its surface.

[課題を解決するための手段] しかして上記目的を達成した本発明の熱間工具鋼は、 C+0.25〜0.4 % Si:0.10〜12 % M n  :  0.10〜1.2  %Cr  : 
4.0 〜6.0  % Mo+1.0 〜3.0 % V   : 0.3 〜1.0  % N b  :  0.01〜0.3 %Z r : 0
.01〜0.2%及び/又はCe:0.001 〜0.
02% N  :0.01%以下 Fe及び不可避不句物:残部 からなる点に要旨があり、また本発明の高温高負荷加工
用金型は、上記組成の工具鋼からなる母材鋼の表面に、
Cr酸化物及びSi酸化物を含むFe酸化物層を有し、
さらにその上層に、Zr酸化物を含むFe酸化物層を有
する点に要旨が存在する。
[Means for Solving the Problems] The hot work tool steel of the present invention that achieves the above objects has the following characteristics: C+0.25-0.4% Si: 0.10-12% Mn: 0.10-1. 2% Cr:
4.0 to 6.0% Mo+1.0 to 3.0% V: 0.3 to 1.0% Nb: 0.01 to 0.3% Zr: 0
.. 01-0.2% and/or Ce: 0.001-0.
02% N: 0.01% or less Fe and unavoidable impurities: The main point is that the mold for high-temperature, high-load machining of the present invention To,
having an Fe oxide layer containing Cr oxide and Si oxide,
Furthermore, the gist lies in that an Fe oxide layer containing Zr oxide is provided above the Fe oxide layer.

[作用] 高温高負荷加工に適した金型を得るには、母材鋼成分の
見直しと共に、母材鋼成分に深く関係する酸化皮膜の組
成自体の研究が必要であるとの方針を立て、5KD61
を基本組成にして高MO化並びに低■化を達成し、更に
Nbを添加することにより靭性と疲労亀裂進展抵抗を高
め、且つN量を制限した上でZr及び/又はCeを添加
して高温使用中に金型表面に形成される酸化皮膜の耐ク
ラツク性を向上させ、耐熱疲労特性と耐肌荒れ性の著し
い改善に成功したものである。
[Function] In order to obtain a mold suitable for high-temperature, high-load machining, we established the policy that it is necessary to review the base steel composition as well as study the composition of the oxide film itself, which is deeply related to the base steel composition. 5KD61
The basic composition is used to achieve high MO and low This improved the crack resistance of the oxide film that forms on the mold surface during use, and succeeded in significantly improving heat fatigue resistance and skin roughness resistance.

以下に本発明鋼成分の限定理由について順を追って説明
する。
The reasons for limiting the composition of the steel according to the present invention will be explained in order below.

C:Cr、Mo、■、Nb、Zr等の炭化物形成元素と
結合して硬質の微細炭化物を析出し、高温強度、軟化抵
抗、耐摩耗性等の基本特性を改善する。上限を0.4%
としたのは、Cr、Vとの粗大炭化物の生成および偏析
による靭性の低下を防ぐと共に、耐酸化性の悪化を抑制
するためである。しかし、低すぎると完全マルテンサイ
ト組織が得られないため所要の硬度が得られず、焼入れ
性低下のため材料中心部の焼きが入らないうえ、旧オー
ステナイト粒が粗大となり靭性も低下するので、025
%以上とした。
C: Combines with carbide-forming elements such as Cr, Mo, ■, Nb, and Zr to precipitate hard fine carbides and improve basic properties such as high-temperature strength, softening resistance, and wear resistance. Upper limit 0.4%
This is to prevent deterioration in toughness due to the formation and segregation of coarse carbides with Cr and V, and to suppress deterioration in oxidation resistance. However, if the temperature is too low, the required hardness cannot be obtained because a complete martensitic structure cannot be obtained, and the hardenability of the center of the material decreases, and the prior austenite grains become coarse and the toughness decreases.
% or more.

Si:適度な耐酸化性を付与して金型表面の肌荒れを防
ぐとともに、高温焼もどし時の炭化物の析出(二次硬化
)を促進し高温強度を高める。また脱酸剤として機能す
るが、過度に添加すると靭性の低下を招くので1%以下
とする。一方0.1%未満になると生成する酸化皮膜厚
さの増加と、皮膜の割れや剥離が激しくなって、肌荒れ
が犬ぎくなると同時に、脱酸効果が小さくなるので0.
1%以上とする。
Si: Provides appropriate oxidation resistance to prevent surface roughness of the mold, and also promotes carbide precipitation (secondary hardening) during high temperature tempering to increase high temperature strength. It also functions as a deoxidizing agent, but adding too much leads to a decrease in toughness, so the content should be 1% or less. On the other hand, if it is less than 0.1%, the thickness of the oxide film will increase, and the cracking and peeling of the film will become more severe, making the skin rougher and at the same time, the deoxidizing effect will be reduced.
1% or more.

Mn:脱酸剤として添加すると同時に、焼入れ性の確保
のために0.1%以上添加する。過度に添加すると靭性
と被剛性を害するので、1.2%以下とする。
Mn: Added as a deoxidizing agent and at the same time added at least 0.1% to ensure hardenability. Excessive addition impairs toughness and stiffness, so the content should be 1.2% or less.

Cr:焼入れ性の向上、基地の強靭化、軟化抵抗の向上
、炭化物析出による耐摩耗性の向上環の作用を有し、且
つSiと同様に適度な耐酸化性を付与する作用がある。
Cr: has the function of improving hardenability, strengthening the matrix, improving softening resistance, and improving wear resistance due to carbide precipitation, and also has the function of imparting appropriate oxidation resistance similarly to Si.

これらの作用を有効に発揮させるべくCrは4%以上添
加する。但し多過ぎると粗大炭化物の生成により靭性を
害するので6%以下とする。
In order to effectively exhibit these effects, 4% or more of Cr is added. However, if it is too large, the toughness will be impaired due to the formation of coarse carbides, so it should be kept at 6% or less.

MO=耐熱疲労性と靭性を高めるのに重要な元素のひと
つである。MOは前記のCr炭化物よりも微細な炭化物
Mo2Cを形成し、かつ基地に固溶してこれを強化する
ので、耐摩耗性、硬さ、高温強度を高める効果があり、
同時に靭性の向上に効果がある。高温強度の向上は熱サ
イクル時に発生する塑性歪を低減し、一方靭性の向上は
酸化皮膜に生じたクラックの基地への進展抵抗を増大す
るので、耐熱疲労性を著しく改善することができる。し
かし、過度に添加すると、逆に靭性の低下を招くので3
%以下とする。しかし少な過ぎると微細炭化物の析出と
固溶強化の相剰効果が十分得られないので1%以上とす
る。
MO=One of the important elements for increasing thermal fatigue resistance and toughness. MO forms a carbide Mo2C which is finer than the above-mentioned Cr carbide, and solidly dissolves in the matrix to strengthen it, so it has the effect of increasing wear resistance, hardness, and high temperature strength.
At the same time, it is effective in improving toughness. Improving high-temperature strength reduces plastic strain that occurs during thermal cycling, while improving toughness increases the resistance to propagation of cracks in the oxide film to the base, so thermal fatigue resistance can be significantly improved. However, if excessively added, it will cause a decrease in toughness, so 3
% or less. However, if it is too small, the mutual effect of precipitation of fine carbides and solid solution strengthening cannot be obtained sufficiently, so it is set to 1% or more.

■ニオーステナイト処理中に固溶した■が、焼もどし時
に硬質の微細炭化物(VC)となって析出するため、高
温の耐摩耗性、焼もどし軟化抵抗及び高温強度を高める
。また同処理中、一部未固溶の微細VCの存在によって
結晶粒が微細化し、靭性も向上する。未固溶炭化物の形
成のためには、前記C量の添加に加えて、0.3%以上
のVの添加が必要である。しかし1%を超えると、粗大
炭化物を生成しやすくなり、靭性の低下を招くので1%
以下とする。
(2) Solid solution during the niostenite treatment precipitates as hard fine carbides (VC) during tempering, thereby increasing high-temperature wear resistance, tempering softening resistance, and high-temperature strength. Further, during the same treatment, grains become finer due to the presence of fine VC which is partially undissolved, and toughness is also improved. In order to form undissolved carbides, it is necessary to add 0.3% or more of V in addition to the above-mentioned amount of C. However, if it exceeds 1%, coarse carbides are likely to be formed, leading to a decrease in toughness, so 1%
The following shall apply.

Nb+オーステナイト処理中に前記VCよりもさらに固
溶しに<<、またより微細なNbCを形成するので結晶
粒の微細化に寄与する。また焼もどし時に析出するNb
Cについてもその寸法が極めて小さいので、靭性及び強
度を改善し、MOと同様の機構によって、木調の耐熱疲
労性を改善する。結晶粒微細化のためには001%以上
の添加が必要であるが、過度に添加すると耐酸化性を害
するので0.3%以下とする。
During the Nb + austenite treatment, NbC forms a more solid solution than the VC and is finer than the VC, which contributes to the refinement of crystal grains. Also, Nb precipitates during tempering.
Since C also has extremely small dimensions, it improves toughness and strength, and improves the heat fatigue resistance of wood-like wood by a mechanism similar to that of MO. For grain refinement, it is necessary to add 0.01% or more, but excessive addition impairs oxidation resistance, so it is limited to 0.3% or less.

Zr:Ceと共に本発明鋼の耐熱疲労性を向上させる上
できわめて重要な元素である。ZrはNと結合して、靭
性保持に好ましくない影響を与えるZrNを形成しやす
いが、Nを特定量以下に制限した場合には、ZrNの析
出を抑えてZ「を基地中に固溶させることができる。固
溶したZrは加熱によって鋼中のSiの外方拡散を加速
し、基地表面にSiリッチな保護皮膜を形成する。また
皮膜中に一部Zr酸化物を生じるが、この存在によって
始めて皮膜の耐クラツク性を高めることができ、かつ熱
膨張率もFeおよびSiの酸化物の中間であるため皮膜
の熱応力を低減する効果が生じる。以上の効果により、
過大な酸化膜の生成を抑制し、耐肌荒れ性と皮膜の耐ク
ラツク性を向上する。しかし、1%を超えて添加すると
過剰なZrがZrNとなって析出し、靭性を害するので
1%以下とする。また少な過ぎるとSiリッチな皮膜を
生成しないので、0.01%以上とする。
Zr: Along with Ce, Zr is an extremely important element in improving the thermal fatigue resistance of the steel of the present invention. Zr easily combines with N to form ZrN, which has an unfavorable effect on maintaining toughness, but when N is limited to a certain amount or less, precipitation of ZrN is suppressed and Z is dissolved in the matrix. Zr dissolved in solid solution accelerates the outward diffusion of Si in the steel by heating, forming a Si-rich protective film on the base surface.Also, some Zr oxide is produced in the film, but its presence The crack resistance of the film can only be improved by using this method, and since the coefficient of thermal expansion is between that of Fe and Si oxides, it has the effect of reducing the thermal stress of the film. Due to the above effects,
Suppresses the formation of excessive oxide film and improves skin roughness resistance and film crack resistance. However, if added in excess of 1%, excessive Zr will precipitate as ZrN, impairing toughness, so it should be limited to 1% or less. Also, if it is too small, a Si-rich film will not be formed, so the content should be 0.01% or more.

Ce・Zrと同様に過大な酸化膜の生成を抑制して基地
表面のCr及びSiリッチな保護皮膜の厚さを増加する
。十分な効果を発揮するためには0001%以上の添加
が必要である。しかし0.02%を超えて添加すると、
窒化物の生成や偏析等により靭性が低下するとともに、
Cr及びSiリッチ皮膜が過度に厚くなり基地との熱膨
張差および弾性係数差による熱応力が大きくなって逆に
剥離し易くなるので、0.02%以下とする。
Similar to Ce/Zr, it suppresses the formation of an excessive oxide film and increases the thickness of the Cr- and Si-rich protective film on the base surface. In order to exhibit a sufficient effect, it is necessary to add 0001% or more. However, when added in excess of 0.02%,
Toughness decreases due to nitride formation and segregation, and
If the Cr- and Si-rich film becomes too thick, the thermal stress due to the difference in thermal expansion and elastic modulus with the base will increase, making it more likely to peel off, so the content should be set to 0.02% or less.

N:ZrおよびCeによる耐熱疲労性改善効果を発揮さ
せる上で、N量の抑制は極めて重要である。N量が多い
と、ZrやCeと結合し窒化物を作るので固溶するZr
、Ce量が減少し、良好な保護皮膜が得られなくなると
同時に、これらの窒化物の析出の結果、靭性の低下をき
たすことになる。従って0.01%以下に制限する。
N: Suppression of the amount of N is extremely important to exhibit the effect of improving thermal fatigue resistance by Zr and Ce. If the amount of N is large, it will combine with Zr and Ce to form nitrides, so Zr will form a solid solution.
, the amount of Ce decreases, making it impossible to obtain a good protective film, and at the same time, the precipitation of these nitrides results in a decrease in toughness. Therefore, it is limited to 0.01% or less.

[実施例] 第1表に本発明鋼と従来鋼(SKD61)の化学成分を
比較して示す。これらの鋼を1000〜1025℃で焼
入れし、590〜610℃で焼もどしを行ない硬度をH
RC48前後に調整して、引張・圧縮の高温低サイクル
疲労試験および流動層熱疲労試験に供した。高温低サイ
クル疲労試験は、圧縮歪保持を伴なう歪波形の下で実施
し試験温度は600℃とした。また流動層熱疲労試験で
は、700℃と150℃の流動層に交互に試験片を浸漬
し、進展するクラックの長さを計測した。
[Example] Table 1 shows a comparison of the chemical components of the steel of the present invention and the conventional steel (SKD61). These steels are quenched at 1000-1025℃ and tempered at 590-610℃ to increase the hardness to H.
It was adjusted to around RC48 and subjected to a high temperature low cycle tension/compression fatigue test and a fluidized bed thermal fatigue test. The high-temperature, low-cycle fatigue test was conducted under a strain waveform with compressive strain retention, and the test temperature was 600°C. In the fluidized bed thermal fatigue test, test pieces were alternately immersed in a fluidized bed at 700°C and 150°C, and the length of developing cracks was measured.

これらの温度及び歪のパターンは、ある製品のアルミ鋳
造金型の表面環境を模擬した例である。
These temperature and strain patterns are examples of simulating the surface environment of an aluminum casting mold for a certain product.

1゜ 第  1 表 (%) 第1図に高温低サイクル疲労寿命線図を示す。1゜ Part 1 table (%) Figure 1 shows a high-temperature, low-cycle fatigue life diagram.

本発明鋼はいずれの歪範囲においても、5KD61より
も長寿命となっている。
The steel of the present invention has a longer life than 5KD61 in any strain range.

そして代表的な歪範囲として0.5%をとりあげて疲労
寿命を比較したのが第2表である。本発明鋼は5KD6
1に比べて30〜60%疲労寿命が長いことが分かる。
Table 2 shows a comparison of fatigue life using 0.5% as a typical strain range. The steel of the present invention is 5KD6
It can be seen that the fatigue life is 30 to 60% longer than that of No. 1.

第2表には、シャルピー衝撃値も合わせて示した。本発
明鋼は5KD61と同等以上の靭性を有しており、クラ
ックの進展抵抗が高いことを示している。
Charpy impact values are also shown in Table 2. The steel of the present invention has a toughness equal to or higher than that of 5KD61, indicating that it has high crack propagation resistance.

冴も 表 第2図に高温低サイクル疲労試験後の表面の酸化膜の生
成、クラックの発生状況を示す。尚第2図(A>は従来
鋼F、第2図(B)は本発明vi4B、第2図(C)は
本発明wiDの表面状態を示し、第2図(D)は第2図
(八)のII −II線断面状態を示している、従来鋼
Fでは、厚い酸化膜に多数の長いクランクが発生してお
り、これらのクラックのいくつかは基地内に大きく進展
している。また皮膜の大きな剥離も認められる。一方本
発明鋼B、Dでは、酸化膜の生成が軽微であり基地内へ
進展しているクラックも少ない。
Table 2 shows the formation of an oxide film on the surface and the occurrence of cracks after the high-temperature, low-cycle fatigue test. In addition, FIG. 2 (A> shows the surface state of the conventional steel F, FIG. 2 (B) shows the surface state of the present invention vi4B, FIG. 2 (C) shows the surface state of the present invention wiD, and FIG. 2 (D) shows the surface state of the present invention wiD. In conventional steel F, which shows the cross-sectional state taken along the line II-II in 8), many long cracks have occurred in the thick oxide film, and some of these cracks have significantly progressed into the base. Large peeling of the film is also observed.On the other hand, in the steels B and D of the present invention, the formation of an oxide film is slight and there are few cracks extending into the matrix.

第3図に上記高温低サイクル疲労試験片のEPMA分析
による表面付近の元素分布を示す。
FIG. 3 shows the elemental distribution near the surface of the high-temperature, low-cycle fatigue test piece obtained by EPMA analysis.

従来@F(SKD61)では、保護皮膜となるSi酸化
物やCr酸化物の皮膜厚さが薄く、その結果耐クラツク
性の悪い膜厚の大きなFe酸化膜が生成している。一方
Zrを添加した本発明鋼Bでは、基地に隣接する部分で
Si量が多く、良好な保護皮膜が生成しており、Fe酸
化膜厚さも小さい。また外面のFe酸化物と上記保護皮
膜の間に、靭性に富み且つ熱膨張率が両者の中間のZr
酸化物が認められる。Ceを添加した本発明鋼りでは、
基地に隣接するCr及びSiリッチ層の厚さが従来鋼に
比べて大きく、このため耐クラツク性の悪い酸化膜の厚
さが小さくなっている。
In the conventional @F (SKD61), the thickness of the Si oxide or Cr oxide that serves as the protective film is thin, resulting in the formation of a thick Fe oxide film with poor crack resistance. On the other hand, in the steel B of the present invention to which Zr is added, the amount of Si is large in the portion adjacent to the matrix, a good protective film is formed, and the thickness of the Fe oxide film is small. In addition, between the Fe oxide on the outer surface and the above protective film, there is Zr, which is rich in toughness and whose coefficient of thermal expansion is between the two.
Oxides are observed. In the steel of the present invention to which Ce is added,
The thickness of the Cr- and Si-rich layer adjacent to the matrix is larger than that of conventional steel, and therefore the thickness of the oxide film, which has poor crack resistance, is reduced.

第4図に流動層熱疲労試験結果を示す。これは繰返し加
熱・冷却に伴うクラックの進展長さを示したものである
。クラックの発生寿命及び進展速度のいずれにおいても
本発明鋼が極めて優れていることが分かる。
Figure 4 shows the results of the fluidized bed thermal fatigue test. This shows the length of crack growth due to repeated heating and cooling. It can be seen that the steel of the present invention is extremely superior in terms of both crack initiation life and crack propagation speed.

[発明の効果] 本発明は以上の様に構成されており、N量を制限した上
でZr及び/又はCeを添加することによって表面酸化
皮膜の耐クラツク性を改善し、更にMo、V、Nb等の
靭性強化元素の添加量を最適化することによって表面酸
化皮膜中に生じたクラックの基地への進展抵抗を向上さ
せることができた。
[Effects of the Invention] The present invention is configured as described above, and improves the crack resistance of the surface oxide film by limiting the amount of N and adding Zr and/or Ce, and further improves the crack resistance of the surface oxide film. By optimizing the amount of toughness-enhancing elements such as Nb added, it was possible to improve the resistance to propagation of cracks generated in the surface oxide film to the base.

かくして加熱・冷却を繰返す鋳造金型や鍛造金型等の素
材として最適な熱間工具鋼を提供し得ると共に、該熱間
工具鋼で形成した金型は、耐用性に優れるだけでなく肌
荒れも少なく、高温高負荷加工用金型の分野に多大な工
業的利益を与えることができた。
In this way, it is possible to provide a hot work tool steel that is optimal as a material for casting molds, forging molds, etc. that are repeatedly heated and cooled, and molds formed with the hot work tool steel not only have excellent durability but also have a low surface roughness. However, it was possible to bring great industrial benefits to the field of molds for high-temperature, high-load processing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明鋼及び従来鋼の疲労寿命を比較したグ
ラフ、第2図(A)〜(C)は本発明鋼及び従来鋼の表
面金属組織を示す図面代用写真、第2B、Dの高温低サ
イクル試験後の表面元素分布を示すグラフ、第4図は流
動層熱疲労試験におけるクランクの進展状況を示すグラ
フである。
Fig. 1 is a graph comparing the fatigue life of the inventive steel and conventional steel, Fig. 2 (A) to (C) are photographs substituted for drawings showing the surface metallographic structure of the inventive steel and conventional steel, and Fig. 2B, D FIG. 4 is a graph showing the surface element distribution after the high temperature low cycle test, and FIG. 4 is a graph showing the progress of the crank in the fluidized bed thermal fatigue test.

Claims (2)

【特許請求の範囲】[Claims] (1)C:0.25〜0.4%(重量%の意味、以下同
じ) Si:0.10〜1.2% Mn:0.10〜1.2% Cr:4.0〜6.0% Mo:1.0〜3.0% V:0.3〜1.0% Nb:0.01〜0.3% Zr:0.01〜0.2%及び/又はCe:0.001
〜0.02% N:0.01%以下 Fe及び不可避不純物:残部 からなることを特徴とする耐熱疲労特性に優れた熱間工
具鋼
(1) C: 0.25-0.4% (meaning of weight %, same below) Si: 0.10-1.2% Mn: 0.10-1.2% Cr: 4.0-6. 0% Mo: 1.0-3.0% V: 0.3-1.0% Nb: 0.01-0.3% Zr: 0.01-0.2% and/or Ce: 0.001
~0.02% N: 0.01% or less Fe and unavoidable impurities: A hot work tool steel with excellent thermal fatigue resistance.
(2)請求項(1)の成分を有する母材鋼の表面に、C
r酸化物及びSi酸化物を含むFe酸化物層を有し、さ
らにその上層に、Zr酸化物を含むFe酸化物層を有す
ることを特徴とする高温高負荷加工用金型。
(2) C on the surface of the base steel having the components of claim (1)
A mold for high-temperature, high-load processing, characterized in that it has an Fe oxide layer containing an r oxide and a Si oxide, and further has an Fe oxide layer containing a Zr oxide on top of the Fe oxide layer.
JP22509188A 1988-09-07 1988-09-07 Hot-working tool steel excellent in thermal fatigue-resisting characteristic and die for high-temperature and heavy-load working Pending JPH0273951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22509188A JPH0273951A (en) 1988-09-07 1988-09-07 Hot-working tool steel excellent in thermal fatigue-resisting characteristic and die for high-temperature and heavy-load working

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22509188A JPH0273951A (en) 1988-09-07 1988-09-07 Hot-working tool steel excellent in thermal fatigue-resisting characteristic and die for high-temperature and heavy-load working

Publications (1)

Publication Number Publication Date
JPH0273951A true JPH0273951A (en) 1990-03-13

Family

ID=16823857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22509188A Pending JPH0273951A (en) 1988-09-07 1988-09-07 Hot-working tool steel excellent in thermal fatigue-resisting characteristic and die for high-temperature and heavy-load working

Country Status (1)

Country Link
JP (1) JPH0273951A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146263A (en) * 2005-11-30 2007-06-14 Daido Steel Co Ltd Hot working tool steel for die casting restrained in crack from water-cooling hole

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146263A (en) * 2005-11-30 2007-06-14 Daido Steel Co Ltd Hot working tool steel for die casting restrained in crack from water-cooling hole

Similar Documents

Publication Publication Date Title
JP5143531B2 (en) Cold mold steel and molds
JPS59179762A (en) Cold tool steel
US6841122B2 (en) Hot working die steel excelling in molten corrosion resistance and strength at elevated temperature and member for high temperature use formed of the hot working die steel
JP2636816B2 (en) Alloy tool steel
JPS61213349A (en) Alloy tool steel
JP2020026567A (en) Hot stamp die steel, hot stamp die and method for producing the same
JPH0555585B2 (en)
JPH04231438A (en) Deposition-hardened tool steel
JP3352889B2 (en) Hot tool steel with excellent nitriding properties
JP4738912B2 (en) Matrix high-speed steel suitable for nitriding
JP3581028B2 (en) Hot work tool steel and high temperature members made of the hot work tool steel
JP2959319B2 (en) Hot forging die steel
JP3468126B2 (en) Martensitic heat-resistant steel with excellent cold workability
JPH0273951A (en) Hot-working tool steel excellent in thermal fatigue-resisting characteristic and die for high-temperature and heavy-load working
JP2755301B2 (en) Tool steel for hot working
JP2001073087A (en) Nitrided die for warm and hot working, excellent in wear resistance
JP2795605B2 (en) Roll material for continuous casting
JP3191008B2 (en) Hot tool steel
US2677610A (en) High temperature alloy steel and articles made therefrom
JPH02125840A (en) Tool steel for hot working
SU1724723A1 (en) Die steel
JP3196901B2 (en) Steel for aluminum extrusion dies
JP2003001307A (en) Roll
JP2000297351A (en) Steel for diecasting die and diecasting die
US20220316038A1 (en) Steel for hot stamp die, hot stamp die and manufacturing method thereof