KR20190120373A - 무선 통신 시스템에서 빔 복구를 수행하는 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 빔 복구를 수행하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
KR20190120373A
KR20190120373A KR1020197029170A KR20197029170A KR20190120373A KR 20190120373 A KR20190120373 A KR 20190120373A KR 1020197029170 A KR1020197029170 A KR 1020197029170A KR 20197029170 A KR20197029170 A KR 20197029170A KR 20190120373 A KR20190120373 A KR 20190120373A
Authority
KR
South Korea
Prior art keywords
resource
setting
information
base station
reporting
Prior art date
Application number
KR1020197029170A
Other languages
English (en)
Inventor
강지원
안민기
이길봄
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of KR20190120373A publication Critical patent/KR20190120373A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 명세서는 무선 통신 시스템에서 빔 복구(beam recovery) 방법을 제공한다.
본 명세서에서 단말에 의해 수행되는 빔 복구 방법은, 빔 관리(beam management)에 사용되는 빔 기준 신호(beam reference signal: BRS)를 기지국으로부터 수신하는 단계; 상기 수신된 빔 기준 신호에 기초하여 빔 실패 이벤트(beam failure event)가 검출된 경우, 빔 복구 요청(beam recovery request)를 위한 제어 신호를 상기 기지국으로 전송하는 단계; 및 빔 보고(beam reporting)가 트리거된(triggered) 경우, 특정 자원에서 빔 측정 결과를 상기 기지국으로 보고(report)하는 단계를 포함할 수 있다.

Description

무선 통신 시스템에서 빔 복구를 수행하는 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게 빔 복구(beam recovery)를 수행하는 방법 및 이를 지원하는 장치에 관한 것이다.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스를 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
본 명세서는 단말의 이동 등으로 인해 빔 실패 이벤트 발생 시, 빔 복구 요청 메시지 전송을 통해 빔 복구를 수행하는 방법을 제공함에 목적이 있다.
또한, 본 명세서는 대체 빔의 존재 여부를 기지국으로 알리고, 그에 따라 기지국이 비주기적 beam RS 및/또는 비주기적 beam reporting의 triggering을 수행하는 방법을 제공함에 목적이 있다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서는 무선 통신 시스템에서 빔 복구(beam recovery)를 수행하는 방법에 있어서, 단말에 의해 수행되는 방법은, 빔 관리(beam management)에 사용되는 빔 기준 신호(beam reference signal: BRS)를 기지국으로부터 수신하는 단계; 상기 수신된 빔 기준 신호에 기초하여 빔 실패 이벤트(beam failure event)가 검출된 경우, 빔 실패 복구 요청(beam failure recovery request)를 위한 제어 신호를 상기 기지국으로 전송하는 단계; 및 빔 보고(beam reporting)가 트리거된(triggered) 경우, 특정 자원에서 빔 측정 결과를 상기 기지국으로 보고(report)하는 단계를 포함하되, 상기 제어 신호는 대체 빔이 존재하는지 여부를 나타내는 지시 정보를 포함하며, 상기 대체 빔은 상기 빔 관리를 위해 설정된 기준 신호들 중에서 특정 채널 품질보다 큰 채널 품질을 가지는 기준 신호인 것을 특징으로 한다.
또한, 본 명세서에서 상기 지시 정보는 미리 설정된 비주기적 빔 보고 세팅(beam reporting setting)에 연관된(associated) 선호되는 링크에 대한 정보, 미리 설정된 비주기적 빔 보고 세팅에 연관된 선호되는 자원 세팅(resource setting)에 대한 정보 또는 미리 설정된 비주기적 빔 보고 세팅에 연관된 선호되는 자원 세트(resource set)에 대한 정보인 것을 특징으로 한다.
또한, 본 명세서에서 상기 제어 신호는 PRACH(Physical Random Access Channel)와 동일한 시간 자원을 사용하며, 상기 제어 신호는 상기 PRACH와 상기 시간 자원에서 CDM(Code Division Multiplexing) 또는 FDM(Frequency Division Multiplexing)되는 것을 특징으로 한다.
또한, 본 명세서에서 상기 제어 신호는 PUCCH(Physical Uplink Control Channel)을 통해 전송되며, 상기 제어 신호는 상기 대체 빔의 존재 유무에 따라 서로 다른 시간 및/또는 주파수 자원, 서로 다른 시퀀스 세트(sequence set), 및/또는 서로 다른 UCI(Uplink Control Information)을 사용하는 것을 특징으로 한다.
또한, 본 명세서에서 상기 서로 다른 시퀀스 세트는 루트 시퀀스 인덱스(root sequence index) 또는 사이클릭 쉬프트 값(cyclic shift value)에 의해 구별되는 것을 특징으로 한다.
또한, 본 명세서에서 상기 방법은 상기 빔 보고의 트리거링(triggering)을 지시하는 지시 메시지를 상기 기지국으로부터 수신하는 단계를 더 포함하며, 상기 빔 보고는 상기 지시 메시지에 기초하여 트리거되는 것을 특징으로 한다.
또한, 본 명세서에서 상기 지시 메시지는 측정 세팅(measurement setting)으로 미리 연관된(pre-associated) 세팅들 내에서 유효(valid) 또는 유효하지 않은(invalid) 링크와 관련된 정보, 상기 측정 세팅(measurement setting)으로 미리 연관된(pre-associated) 세팅들 내에서 유효 또는 유효하지 않은 자원 세팅(resource setting)과 관련된 정보, 상기 측정 세팅(measurement setting)으로 미리 연관된(pre-associated) 세팅들 내에서 유효 또는 유효하지 않은 자원 세트(resource set)와 관련된 정보 또는 빔 보고 모드 설정 정보 중 적어도 하나를 포함하는 것을 특징으로 한다.
또한, 본 명세서에서 상기 측정 세팅은 하나의 보고 세팅과 두 개의 자원 세팅들이 각각 링크(link)로 연결되거나 또는 하나의 보고 세팅과 하나의 자원 세팅이 링크로 연결되는 것을 특징으로 한다.
또한, 본 명세서에서 상기 빔 보고 모드 설정 정보는 비주기적 빔 기준 신호의 전송과 비주기적 빔 보고가 함께 트리거되는 제 1 모드 또는 비주기적 빔 보고만 트리거되는 제 2 모드를 지시하는 정보인 것을 특징으로 한다.
또한, 본 명세서에서 상기 빔 보고 모드 설정 정보가 상기 제 1 모드로 설정된 경우, 상기 특정 자원은 RRC(Radio Resource Control)로 설정된 자원 세팅(resource setting) 또는 자원 세트(resource set) 중 비주기적 자원 세팅 또는 비주기적 자원 세트인 것을 특징으로 한다.
또한, 본 명세서에서 상기 특정 자원은 상기 지시 메시지를 수신한 슬롯과 동일한 슬롯 또는 상기 지시 메시지를 수신한 슬롯 이후의 활성화된 자원인 것을 특징으로 한다.
또한, 본 명세서에서 상기 빔 보고 모드 설정 정보가 상기 제 2 모드로 설정된 경우, 상기 특정 자원은 RRC로 설정된 자원 세팅 또는 자원 세트 중 주기적 또는 반-고정적 자원 세팅 또는 자원 세트인 것을 특징으로 한다.
또한, 본 명세서에서 상기 특정 자원은 상기 지시 메시지를 수신한 슬롯 이전의 활성화된 자원인 것을 특징으로 한다.
또한, 본 명세서에서 무선 통신 시스템에서 빔 복구(beam recovery)를 수행하기 위한 단말에 있어서, 무선 신호를 송수신하기 위한 RF 모듈(radio frequency module); 및 상기 RF 모듈과 기능적으로 연결되어 있는 프로세서를 포함하고, 상기 프로세서는, 빔 관리(beam management)에 사용되는 빔 기준 신호(beam reference signal: BRS)를 기지국으로부터 수신하며; 상기 수신된 빔 기준 신호에 기초하여 빔 실패 이벤트(beam failure event)가 검출된 경우, 빔 실패 복구 요청(beam failure recovery request)를 위한 제어 신호를 상기 기지국으로 전송하며; 및 빔 보고(beam reporting)가 트리거된(triggered) 경우, 특정 자원에서 빔 측정 결과를 상기 기지국으로 보고(report)하도록 제어하되, 상기 제어 신호는 대체 빔이 존재하는지 여부를 나타내는 지시 정보를 포함하며, 상기 대체 빔은 상기 빔 관리를 위해 설정된 기준 신호들 중에서 특정 채널 품질보다 큰 채널 품질을 가지는 기준 신호인 것을 특징으로 한다.
본 명세서는 빔 실패 이벤트 발생 시, 빔 복구 절차를 새롭게 정의함으로써 단말의 이동 등에 따라 빔 블록 문제가 발생하는 것을 해결할 수 있다.
또한, 본 명세서는 단말의 대체 빔 존재 여부를 기지국으로 알리고, 이에 따라 기지국이 다른 동작을 수행함으로 인해 빔 복구를 효율적으로 수행할 수 있는 효과가 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시 예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 명세서에서 제안하는 방법이 적용될 수 있는 NR(New RAT)의 전체적인 시스템 구조의 일례를 나타낸 도이다.
도 2는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 상향링크 프레임(uplink frame)과 하향링크 프레임(downlink frame) 간의 관계를 나타낸다.
도 3은 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 지원하는 자원 그리드(resource grid)의 일 예를 나타낸다.
도 4는 본 명세서에서 제안하는 방법이 적용될 수 있는 안테나 포트(antenna port) 및 뉴머롤로지(numerology) 별 자원 그리드의 예들을 나타낸다.
도 5는 아날로그 빔포머(analog beamformer) 및 RF 체인(RF chain)으로 구성되는 송신단(transmitter)의 블록도(block diagram)의 일례를 나타낸다.
도 6은 디지털 빔포머(digital beamformer) 및 RF 체인으로 구성되는 송신단의 블록도의 일례를 나타낸다.
도 7은 본 발명의 다양한 실시 예들에 따른 아날로그 빔 스캐닝 방식의 일례를 나타낸다.
도 8은 PUSCH CSI 보고 모드의 일례를 나타낸 도이다.
도 9는 PUCCH CSI 보고 모드의 일례를 나타낸 도이다.
도 10은 본 명세서에서 제안하는 대체 빔 존재 유무에 따른 네트워크 동작의 일례를 나타낸다.
도 11은 본 명세서에서 제안하는 방법들에 적용될 수 있는 빔 관련 설정 방법의 일례를 나타낸 도이다.
도 12는 본 명세서에서 제안하는 빔 복구를 수행하는 방법의 일례를 나타낸 순서도이다.
도 13은 본 발명의 일 실시 예에 따른 무선 통신 장치의 블록 구성도를 예시한다.
도 14는 본 발명의 일 실시 예에 따른 통신 장치의 블록 구성도를 예시한다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 통상의 기술자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point), gNB(generation NB) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치 등의 용어로 대체될 수 있다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), NOMA(non-orthogonal multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
본 발명의 실시 예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시 예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A/NR(New RAT)를 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다.
용어 정의
eLTE eNB: eLTE eNB는 EPC 및 NGC에 대한 연결을 지원하는 eNB의 진화(evolution)이다.
gNB: NGC와의 연결뿐만 아니라 NR을 지원하는 노드.
새로운 RAN: NR 또는 E-UTRA를 지원하거나 NGC와 상호 작용하는 무선 액세스 네트워크.
네트워크 슬라이스(network slice): 네트워크 슬라이스는 종단 간 범위와 함께 특정 요구 사항을 요구하는 특정 시장 시나리오에 대해 최적화된 솔루션을 제공하도록 operator에 의해 정의된 네트워크.
네트워크 기능(network function): 네트워크 기능은 잘 정의된 외부 인터페이스와 잘 정의된 기능적 동작을 가진 네트워크 인프라 내에서의 논리적 노드.
NG-C: 새로운 RAN과 NGC 사이의 NG2 레퍼런스 포인트(reference point)에 사용되는 제어 평면 인터페이스.
NG-U: 새로운 RAN과 NGC 사이의 NG3 레퍼런스 포인트(reference point)에 사용되는 사용자 평면 인터페이스.
비 독립형(Non-standalone) NR: gNB가 LTE eNB를 EPC로 제어 플레인 연결을 위한 앵커로 요구하거나 또는 eLTE eNB를 NGC로 제어 플레인 연결을 위한 앵커로 요구하는 배치 구성.
비 독립형 E-UTRA: eLTE eNB가 NGC로 제어 플레인 연결을 위한 앵커로 gNB를 요구하는 배치 구성.
사용자 평면 게이트웨이: NG-U 인터페이스의 종단점.
시스템 일반
도 1은 본 명세서에서 제안하는 방법이 적용될 수 있는 NR의 전체적인 시스템 구조의 일례를 나타낸 도이다.
도 1을 참조하면, NG-RAN은 NG-RA 사용자 평면(새로운 AS sublayer/PDCP/RLC/MAC/PHY) 및 UE(User Equipment)에 대한 제어 평면(RRC) 프로토콜 종단을 제공하는 gNB들로 구성된다.
상기 gNB는 Xn 인터페이스를 통해 상호 연결된다.
상기 gNB는 또한, NG 인터페이스를 통해 NGC로 연결된다.
보다 구체적으로는, 상기 gNB는 N2 인터페이스를 통해 AMF (Access and Mobility Management Function)로, N3 인터페이스를 통해 UPF (User Plane Function)로 연결된다.
NR(New Rat) 뉴머롤로지(Numerology) 및 프레임(frame) 구조
NR 시스템에서는 다수의 뉴머롤로지(numerology)들이 지원될 수 있다. 여기에서, 뉴머롤로지는 서브캐리어 간격(subcarrier spacing)과 CP(Cyclic Prefix) 오버헤드에 의해 정의될 수 있다. 이 때, 다수의 서브캐리어 간격은 기본 서브캐리어 간격을 정수 N(또는,
Figure pct00001
)으로 스케일링(scaling) 함으로써 유도될 수 있다. 또한, 매우 높은 반송파 주파수에서 매우 낮은 서브캐리어 간격을 이용하지 않는다고 가정될지라도, 이용되는 뉴머롤로지는 주파수 대역과 독립적으로 선택될 수 있다.
또한, NR 시스템에서는 다수의 뉴머롤로지에 따른 다양한 프레임 구조들이 지원될 수 있다.
이하, NR 시스템에서 고려될 수 있는 OFDM(Orthogonal Frequency Division Multiplexing) 뉴머롤로지 및 프레임 구조를 살펴본다.
NR 시스템에서 지원되는 다수의 OFDM 뉴머롤로지들은 표 1과 같이 정의될 수 있다.
Figure pct00002
NR 시스템에서의 프레임 구조(frame structure)와 관련하여, 시간 영역의 다양한 필드의 크기는
Figure pct00003
의 시간 단위의 배수로 표현된다. 여기에서,
Figure pct00004
이고,
Figure pct00005
이다. 하향링크(downlink) 및 상향링크(uplink) 전송은
Figure pct00006
의 구간을 가지는 무선 프레임(radio frame)으로 구성된다. 여기에서, 무선 프레임은 각각
Figure pct00007
의 구간을 가지는 10 개의 서브프레임(subframe)들로 구성된다. 이 경우, 상향링크에 대한 한 세트의 프레임들 및 하향링크에 대한 한 세트의 프레임들이 존재할 수 있다.
도 2는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 상향링크 프레임과 하향링크 프레임 간의 관계를 나타낸다.
도 2에 나타난 것과 같이, 단말(User Equipment, UE)로 부터의 상향링크 프레임 번호 i의 전송은 해당 단말에서의 해당 하향링크 프레임의 시작보다
Figure pct00008
이전에 시작해야 한다.
뉴머롤로지
Figure pct00009
에 대하여, 슬롯(slot)들은 서브프레임 내에서
Figure pct00010
의 증가하는 순서로 번호가 매겨지고, 무선 프레임 내에서
Figure pct00011
의 증가하는 순서로 번호가 매겨진다. 하나의 슬롯은
Figure pct00012
의 연속하는 OFDM 심볼들로 구성되고,
Figure pct00013
는, 이용되는 뉴머롤로지 및 슬롯 설정(slot configuration)에 따라 결정된다. 서브프레임에서 슬롯
Figure pct00014
의 시작은 동일 서브프레임에서 OFDM 심볼
Figure pct00015
의 시작과 시간적으로 정렬된다.
모든 단말이 동시에 송신 및 수신을 할 수 있는 것은 아니며, 이는 하향링크 슬롯(downlink slot) 또는 상향링크 슬롯(uplink slot)의 모든 OFDM 심볼들이 이용될 수는 없다는 것을 의미한다.
표 2는 뉴머롤로지
Figure pct00016
에서의 일반(normal) CP에 대한 슬롯 당 OFDM 심볼의 수를 나타내고, 표 3은 뉴머롤로지
Figure pct00017
에서의 확장(extended) CP에 대한 슬롯 당 OFDM 심볼의 수를 나타낸다.
Figure pct00018
Figure pct00019
NR 물리 자원(NR Physical Resource)
NR 시스템에서의 물리 자원(physical resource)과 관련하여, 안테나 포트(antenna port), 자원 그리드(resource grid), 자원 요소(resource element), 자원 블록(resource block), 캐리어 파트(carrier part) 등이 고려될 수 있다.
이하, NR 시스템에서 고려될 수 있는 상기 물리 자원들에 대해 구체적으로 살펴본다.
먼저, 안테나 포트와 관련하여, 안테나 포트는 안테나 포트 상의 심볼이 운반되는 채널이 동일한 안테나 포트 상의 다른 심볼이 운반되는 채널로부터 추론될 수 있도록 정의된다. 하나의 안테나 포트 상의 심볼이 운반되는 채널의 광범위 특성(large-scale property)이 다른 안테나 포트 상의 심볼이 운반되는 채널로부터 추론될 수 있는 경우, 2 개의 안테나 포트는 QC/QCL(quasi co-located 혹은 quasi co-location) 관계에 있다고 할 수 있다. 여기에서, 상기 광범위 특성은 지연 확산(Delay spread), 도플러 확산(Doppler spread), 주파수 쉬프트(Frequency shift), 평균 수신 파워(Average received power), 수신 타이밍(Received Timing) 중 하나 이상을 포함한다.
도 3은 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 지원하는 자원 그리드(resource grid)의 일 예를 나타낸다.
도 3을 참고하면, 자원 그리드가 주파수 영역 상으로
Figure pct00020
서브캐리어들로 구성되고, 하나의 서브프레임이 14 x 2u OFDM 심볼들로 구성되는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.
NR 시스템에서, 전송되는 신호(transmitted signal)는
Figure pct00021
서브캐리어들로 구성되는 하나 또는 그 이상의 자원 그리드들 및
Figure pct00022
의 OFDM 심볼들에 의해 설명된다. 여기에서,
Figure pct00023
이다. 상기
Figure pct00024
는 최대 전송 대역폭을 나타내고, 이는, 뉴머롤로지들뿐만 아니라 상향링크와 하향링크 간에도 달라질 수 있다.
이 경우, 도 4와 같이, 뉴머롤로지
Figure pct00025
및 안테나 포트 p 별로 하나의 자원 그리드가 설정될 수 있다.
도 4는 본 명세서에서 제안하는 방법이 적용될 수 있는 안테나 포트 및 뉴머롤로지 별 자원 그리드의 예들을 나타낸다.
뉴머롤로지
Figure pct00026
및 안테나 포트 p에 대한 자원 그리드의 각 요소는 자원 요소(resource element)로 지칭되며, 인덱스 쌍
Figure pct00027
에 의해 고유적으로 식별된다. 여기에서,
Figure pct00028
는 주파수 영역 상의 인덱스이고,
Figure pct00029
는 서브프레임 내에서 심볼의 위치를 지칭한다. 슬롯에서 자원 요소를 지칭할 때에는, 인덱스 쌍
Figure pct00030
이 이용된다. 여기에서,
Figure pct00031
이다.
뉴머롤로지
Figure pct00032
및 안테나 포트 p에 대한 자원 요소
Figure pct00033
는 복소 값(complex value)
Figure pct00034
에 해당한다. 혼동(confusion)될 위험이 없는 경우 혹은 특정 안테나 포트 또는 뉴머롤로지가 특정되지 않은 경우에는, 인덱스들 p 및
Figure pct00035
는 드롭(drop)될 수 있으며, 그 결과 복소 값은
Figure pct00036
또는
Figure pct00037
이 될 수 있다.
또한, 물리 자원 블록(physical resource block)은 주파수 영역 상의
Figure pct00038
연속적인 서브캐리어들로 정의된다. 주파수 영역 상에서, 물리 자원 블록들은 0부터
Figure pct00039
까지 번호가 매겨진다. 이 때, 주파수 영역 상의 물리 자원 블록 번호(physical resource block number)
Figure pct00040
와 자원 요소들
Figure pct00041
간의 관계는 수학식 1과 같이 주어진다.
Figure pct00042
또한, 캐리어 파트(carrier part)와 관련하여, 단말은 자원 그리드의 서브셋(subset)만을 이용하여 수신 또는 전송하도록 설정될 수 있다. 이 때, 단말이 수신 또는 전송하도록 설정된 자원 블록의 집합(set)은 주파수 영역 상에서 0부터
Figure pct00043
까지 번호가 매겨진다.
상향링크 제어 채널(Uplink control channel)
물리 상향링크 제어 시그널링(physical uplink control signaling)은 적어도 hybrid-ARQ acknowledgement, CSI 보고(CSI report)(가능하다면 빔포밍(beamforming) 정보 포함), 및 스케줄링 요청(scheduling request)을 운반할 수 있어야 한다.
NR 시스템에서 지원하는 상향링크 제어 채널(UL control channel)에 대해 적어도 두 가지 전송 방법이 지원된다.
상향링크 제어 채널은 슬롯(slot)의 마지막으로 전송된 상향링크 심볼(들) 주위에서 단기간(short duration)에 전송될 수 있다. 이 경우, 상향링크 제어 채널은 슬롯 내에서 상향링크 데이터 채널(UL data channel)과 시간-분할-다중화(time-division-multiplexed) 및/또는 주파수-분할-다중화(frequency-division-multiplexed)된다. 단기간의 상향링크 제어 채널에 대해, 슬롯의 1 심볼 단위 전송이 지원된다.
- 짧은 상향링크 제어 정보(Uplink Control Information, UCI) 및 데이터는 적어도 짧은 UCI 및 데이터에 대한 물리 자원 블록(Physical Resource Block, PRB)이 중첩되지 않는 경우 단말(UE) 및 단말들 사이에서 주파수-분할-다중화된다.
- 동일한 슬롯 내의 상이한 단말들로부터의 짧은 PUCCH(short PUCCH)의 시간 분할 다중화(Time Division Multiplexing, TDM)를 지원하기 위해, 짧은 PUCCH를 전송할 슬롯 내의 심볼(들)이 적어도 6GHz 이상에서 지원되는지 여부를 단말에게 알리는 메커니즘(mechanism)이 지원된다.
- 1 심볼 기간(1-symbol duration)에 대해서는 적어도 1) 참조 신호 (Reference Signal, RS)가 다중화되면 UCI와 RS는 주파수 분할 다중화(Frequency Division Multiplexing, FDM) 방식으로 주어진 OFDM 심볼에 다중화되는 점 및 2) 동일한 슬롯에서 하향링크(DL)/상향링크(UL) 데이터와 단기간의 PUCCH 사이의 서브캐리어 간격(subcarrier spacing)이 동일한 점이 지원된다.
- 적어도, 슬롯의 2 심볼 기간(2-symbol duration)에 걸친 단기간의 PUCCH가 지원된다. 이 때, 동일한 슬롯에서 하향링크(DL)/상향링크(UL) 데이터와 단기간의 PUCCH 사이의 서브캐리어 간격이 동일하다.
- 적어도, 슬롯내의 주어진 단말의 PUCCH 자원 즉, 상이한 단말들의 짧은 PUCCH들은 슬롯에서 주어진 지속 기간(duration) 내에 시분할 다중화될 수 있는 반-정적 구성(semi-static configuration)이 지원된다.
- PUCCH 자원에는 시간 영역(time domain), 주파수 영역(frequency domain), 및 적용 가능한 경우에는 코드 영역(code domain)이 포함된다.
- 단기간의 PUCCH는 단말 관점에서 슬롯의 끝까지 확장될 수 있다. 이 때, 단기 간의 PUCCH 이후 명시적인 갭 심볼(explicit gap symbol)이 불필요하다.
- 짧은 상향링크 부분(short UL part)을 갖는 슬롯(즉, DL 중심의 슬롯(DL-centric slot))에 대해, 데이터가 짧은 상향링크 부분에서 스케줄링(scheduling)되면 '짧은 UCI' 및 데이터는 하나의 단말에 의해 주파수 분할 다중화될 수 있다.
상향링크 제어 채널은 커버리지(coverage)를 개선하기 위하여 다수의 상향링크 심볼들에 걸쳐 장기간(long-duration)에 전송될 수 있다. 이 경우, 상향링크 제어 채널은 슬롯 내의 상향링크 데이터 채널과 주파수 분할 다중화된다.
- 적어도 PAPR(Peak to Average Power Ratio)이 낮은 설계로 장시간의 상향링크 제어 채널(long duration UL control channel)에 의해 운반되는 UCI는 하나의 슬롯 또는 다수의 슬롯들에서 전송될 수 있다.
- 다수의 슬롯들을 이용하는 전송은 적어도 일부의 경우에 총 지속 시간(total duration)(예: 1ms) 동안 허용된다.
- 장시간의 상향링크 제어 채널의 경우, RS와 UCI 간의 시간 분할 다중화(TDM)는 DFT-S-OFDM에 대해 지원된다.
- 슬롯의 긴 상향링크 부분(long UL part)은 장시간의 PUCCH 전송에 이용될 수 있다. 즉, 장시간의 PUCCH는 상향링크 전용 슬롯(UL-only slot)과 최소 4개의 심볼들로 구성되는 가변 개수의 심볼들을 갖는 슬롯 모두에 대해 지원된다.
- 적어도 1 또는 2 비트 UCI에 대해, 상기 UCI는 N 개의 슬롯(N>1) 내에서 반복될 수 있으며, 상기 N 개의 슬롯은 장시간의 PUCCH가 허용되는 슬롯들에서 인접하거나 또는 인접하지 않을 수 있다.
- 적어도 긴 PUCCH(long PUCCH)에 대해 PUSCH와 PUCCH의 동시 전송(simultaneous transmission)이 지원된다. 즉, 데이터가 존재하는 경우에도 PUCCH 자원에 대한 상향링크 제어가 전송된다. 또한, PUCCH-PUSCH 동시 전송 외에도, PUSCH에서의 UCI가 지원된다.
- TTI 내에서의 슬롯 주파수 호핑(intra-TTI slot frequency hopping)이 지원된다.
- DFT-s-OFDM 파형(waveform)이 지원된다.
- 전송 안테나 다이버시티(transmit antenna diversity)가 지원된다.
단기간의 PUCCH와 장기간의 PUCCH 사이의 TDM 및 FDM은 적어도 하나의 슬롯에서 다른 단말들에 대해 지원된다. 주파수 영역에서, PRB(또는 다수의 PRB들)는 상향링크 제어 채널에 대한 최소 자원 단위 크기(minimum resource unit size)이다. 호핑(hopping)이 이용되는 경우, 주파수 자원 및 호핑은 캐리어 대역폭(carrier bandwidth)으로 확산되지 않을 수 있다. 또한, 단말 특정 RS는 NR-PUCCH 전송에 이용된다. PUCCH 자원들의 집합(set)은 상위 계층 시그널링(higher layer signaling)에 의해 설정되고, 설정된 집합 내의 PUCCH 자원은 하향링크 제어 정보(Downlink Control Information, DCI)에 의해 지시된다.
DCI의 일부로서, 데이터 수신(data reception)과 hybrid-ARQ acknowledgement 전송 간의 타이밍(timing)은 다이나믹하게(dynamically) (적어도 RRC와 함께) 지시될 수 있어야 한다. 반-정적 구성(semi-static configuration) 및(적어도 일부 유형의 UCI 정보에 대한) 다이나믹한 시그널링(dynamic signaling)의 결합은 '긴 및 짧은 PUCCH 포맷'에 대한 PUCCH 자원을 결정하기 위해 이용된다. 여기에서, PUCCH 자원은 시간 영역, 주파수 영역, 및 적용 가능한 경우에는 코드 영역을 포함한다. PUSCH 상의 UCI 즉, UCI에 대한 스케줄된 자원의 일부를 사용하는 것은 UCI와 데이터의 동시 전송의 경우에 지원된다.
또한, 적어도 단일 HARQ-ACK 비트의 상향링크 전송이 적어도 지원된다. 또한, 주파수 다이버시티(frequency diversity)를 가능하게 하는 메커니즘이 지원된다. 또한, URLLC(Ultra-Reliable and Low-Latency Communication)의 경우, 단말에 대해 설정된 스케줄링 요청(SR) 자원들 간의 시간 간격(time interval)은 한 슬롯보다 작을 수 있다.
빔 관리(Beam management)
NR에서 빔 관리는 다음과 같이 정의된다.
빔 관리(Beam management): DL 및 UL 송수신에 사용될 수 있는 TRP(들) 및/또는 UE 빔들의 세트(set)를 획득하고 유지하기 위한 L1/L2 절차들의 세트로서, 적어도 다음 사항들을 포함한다:
- 빔 결정: TRP (들) 또는 UE가 자신의 송신 / 수신 빔을 선택하는 동작.
- 빔 측정: TRP (들) 또는 UE가 수신된 빔 형성 신호의 특성을 측정하는 동작.
- 빔 보고: UE가 빔 측정에 기반하여 빔 형성된 신호의 정보를 보고하는 동작.
- 빔 스위핑 (Beam sweeping): 미리 결정된 방식으로 시간 간격 동안 송신 및 / 또는 수신된 빔을 이용하여 공간 영역을 커버하는 동작.
또한, TRP 및 UE에서의 Tx / Rx 빔 대응(correspondence)는 다음과 같이 정의된다.
- TRP에서의 Tx / Rx 빔 대응은 다음 중 적어도 하나가 충족되면 유지된다.
- TRP는 TRP의 하나 이상의 송신 빔에 대한 UE의 하향링크 측정에 기초하여 상향링크 수신을 위한 TRP 수신 빔을 결정할 수 있다.
- TRP는 TRP의 하나 이상의 Rx 빔들에 대한 TRP의 상향링크 측정에 기초하여 하향링크 전송에 대한 TRP Tx 빔을 결정할 수 있다.
- UE에서의 Tx / Rx 빔 대응은 다음 중 적어도 하나가 충족되면 유지된다.
- UE는 UE의 하나 이상의 Rx 빔에 대한 UE의 하향링크 측정에 기초하여 상향링크 전송을 위한 UE Tx 빔을 결정할 수 있다.
- UE는 하나 이상의 Tx 빔에 대한 상향링크 측정에 기초한 TRP의 지시에 기초하여 하향링크 수신을 위한 UE 수신 빔을 결정할 수 있다.
- TRP로 UE 빔 대응 관련 정보의 능력 지시가 지원된다.
다음과 같은 DL L1 / L2 빔 관리 절차가 하나 또는 다수의 TRP들 내에서 지원된다.
P-1: TRP Tx 빔 / UE Rx 빔 (들)의 선택을 지원하기 위해 상이한 TRP Tx 빔에 대한 UE 측정을 가능하게 하기 위해 사용된다.
- TRP에서의 빔포밍의 경우 일반적으로 서로 다른 빔 세트에서 인트라(intra)/인터(inter)-TRP Tx 빔 스윕(sweep)을 포함한다. UE에서의 빔포밍을 위해, 그것은 통상적으로 상이한 빔들의 세트로부터의 UE Rx 빔 sweep를 포함한다.
P-2: 상이한 TRP Tx 빔에 대한 UE 측정이 인터/인트라-TRP Tx 빔(들)을 변경하도록 하기 위해 사용된다.
P-3: UE가 빔 포밍을 사용하는 경우에 동일한 TRP Tx 빔에 대한 UE 측정이 UE Rx 빔을 변경시키는데 사용된다.
적어도 네트워크에 의해 트리거된 비주기적 보고(apreiodic reporting)는 P-1, P-2 및 P-3 관련 동작에서 지원된다.
빔 관리 (적어도 CSI-RS)를 위한 RS에 기초한 UE 측정은 K (빔의 총 개수) 빔으로 구성되며, UE는 선택된 N개의 Tx 빔들의 측정 결과를 보고한다. 여기서, N은 반드시 고정된 수는 아니다. 이동성 목적을 위한 RS에 기반한 절차는 배제되지 않는다. 보고 정보는 적어도 N <K 인 경우 N 개의 빔 (들)에 대한 측정량 및 N 개의 DL 송신 빔을 나타내는 정보를 포함한다. 특히, UE가 K'> 1 논-제로-파워 (NZP) CSI- RS 자원들에 대해, UE는 N'의 CRI (CSI-RS 자원 지시자)를 보고 할 수 있다.
UE는 빔 관리를 위해 다음과 같은 상위 계층 파라미터(higher layer parameter)들로 설정될 수 있다.
- N=1 보고 설정(setting), M≥1 자원 설정
- 보고 설정과 자원 설정 간의 링크들은 합의된 CSI 측정 설정에서 설정된다.
- CSI-RS 기반 P-1 및 P-2는 자원 및 보고 설정으로 지원된다.
- P-3은 보고 설정의 유무에 관계없이 지원될 수 있다.
- 적어도 이하 사항들을 포함하는 보고 설정(reporting setting)
- 선택된 빔을 나타내는 정보
- L1 측정 보고(L1 measurement reporting)
- 시간 영역 동작(예: 비주기적(aperiodic) 동작, 주기적(periodic) 동작, 반-지속적(semi-persistent) 동작)
- 여러 주파수 세분성(frequency granularity)이 지원되는 경우의 주파수 세분성
- 적어도 이하 사항들을 포함하는 리소스 설정(resource setting)
- 시간 영역 동작(예: 비주기적 동작, 주기적 동작, 반-지속적 동작)
- RS 유형: 적어도 NZP CSI-RS
- 적어도 하나의 CSI-RS 자원 세트. 각 CSI-RS 자원 세트는 K≥1 CSI-RS 자원들을 포함(K개의 CSI-RS 자원들의 일부 파라미터들은 동일할 수 있다. 예를 들어, 포트 번호, 시간 영역 동작, 밀도 및 주기)
또한, NR은 L> 1 인 L 그룹을 고려하여 다음 빔 보고를 지원한다.
- 최소한의 그룹을 나타내는 정보
- N1 빔에 대한 측정량(measurement quantity)(L1 RSRP 및 CSI 보고 지원 (CSI-RS가 CSI 획득을 위한 경우))
- 적용 가능한 경우, Nl개의 DL 송신 빔을 나타내는 정보
상술한 바와 같은 그룹 기반의 빔 보고는 UE 단위로 구성할 수 있다. 또한, 상기 그룹 기반의 빔 보고는 UE 단위로 턴-오프(turn-off) 될 수 있다(예를 들어, L = 1 또는 Nl = 1인 경우).
NR은 UE가 빔 실패로부터 복구하는 메커니즘을 트리거할 수 있음을 지원한다.
빔 실패(beam failure) 이벤트는 연관된 제어 채널의 빔 쌍 링크(beam pair link)의 품질이 충분히 낮을 때 발생한다(예를 들어 임계 값과의 비교, 연관된 타이머의 타임 아웃). 빔 실패(또는 장애)로부터 복구하는 메커니즘은 빔 장애가 발생할 때 트리거된다.
네트워크는 복구 목적으로 UL 신호를 전송하기 위한 자원을 갖는 UE에 명시적으로 구성한다. 자원들의 구성은 기지국이 전체 또는 일부 방향으로부터(예를 들어, random access region) 청취(listening)하는 곳에서 지원된다.
빔 장애를 보고하는 UL 송신/자원은 PRACH (PRACH 자원에 직교하는 자원)와 동일한 시간 인스턴스(instance)에 또는 PRACH와 다른 시간 인스턴스(UE에 대해 구성 가능)에 위치할 수 있다. DL 신호의 송신은 UE가 새로운 잠재적인 빔들을 식별하기 위해 빔을 모니터할 수 있도록 지원된다.
NR은 빔 관련 지시(beam-related indication)에 관계 없이 빔 관리를 지원한다. 빔 관련 지시가 제공되는 경우, CSI-RS 기반 측정을 위해 사용된 UE 측 빔 형성 / 수신 절차에 관한 정보는 QCL을 통해 UE에 지시될 수 있다. NR에서 지원할 QCL 파라미터로는 LTE시스템에서 사용하던 delay, Doppler, average gain등에 대한 파라미터 뿐만 아니라 수신단에서의 빔포밍을 위한 공간 파라미터가 추가될 예정이며, 단말 수신 빔포밍 관점에서 angle of arrival 관련 파라미터 및/또는 기지국 수신 빔포밍 관점에서 angle of departure 관련 파라미터들이 포함될 수 있다. NR은 제어 채널 및 해당 데이터 채널 전송에서 동일하거나 다른 빔을 사용하는 것을 지원한다.
빔 쌍 링크 블로킹(beam pair link blocking)에 대한 견고성(robustness)를 지원하는 NR-PDCCH 전송을 위해, UE는 동시에 M개의 빔 쌍 링크상에서 NR-PDCCH를 모니터링하도록 구성될 수 있다. 여기서, M≥1 및 M의 최대값은 적어도 UE 능력에 의존할 수 있다.
UE는 상이한 NR-PDCCH OFDM 심볼들에서 상이한 빔 쌍 링크(들)상의 NR-PDCCH를 모니터링하도록 구성될 수 있다. 다수의 빔 쌍 링크들 상에서 NR-PDCCH를 모니터링하기 위한 UE Rx 빔 설정과 관련된 파라미터는 상위 계층 시그널링 또는 MAC CE에 의해 구성되거나 및 / 또는 탐색 공간 설계에서 고려된다.
적어도, NR은 DL RS 안테나 포트(들)과 DL 제어 채널의 복조를 위한 DL RS 안테나 포트(들) 사이의 공간 QCL 가정의 지시를 지원한다. NR-PDCCH(즉, NR-PDCCH를 모니터링하는 구성 방법)에 대한 빔 지시를 위한 후보 시그널링 방법은 MAC CE 시그널링, RRC 시그널링, DCI 시그널링, 스펙 transparent 및/또는 암시적 방법, 및 이들 시그널링 방법의 조합이다.
유니 캐스트 DL 데이터 채널의 수신을 위해, NR은 DL RS 안테나 포트와 DL 데이터 채널의 DMRS 안테나 포트 사이의 공간 QCL 가정의 지시를 지원한다.
RS 안테나 포트를 나타내는 정보는 DCI (다운 링크 허가)를 통해 표시된다. 또한, 이 정보는 DMRS 안테나 포트와 QCL 되어 있는 RS 안테나 포트를 나타낸다. DL 데이터 채널에 대한 DMRS 안테나 포트의 상이한 세트는 RS 안테나 포트의 다른 세트와 QCL로서 나타낼 수 있다.
하이브리드 빔포밍(Hybrid beamforming)
다중 안테나(multiple antenna)를 이용하는 기존의 빔 형성(beamforming) 기술은 빔 형성 가중치 벡터(weight vector)/프리코딩 벡터(precoding vector)를 적용하는 위치에 따라 아날로그 빔 형성(analog beamforming) 기법과 디지털 빔 형성(digital beamforming) 기법으로 구분될 수 있다.
아날로그 빔 형성 기법은 초기 다중 안테나 구조에 적용된 빔 형성 기법이다. 이는, 디지털 신호 처리가 완료된 아날로그 신호를 다수의 경로로 분기한 후, 각 경로에 대해 위상 쉬프트(Phase-Shift, PS)와 전력 증폭기(Power Amplifier, PA) 설정을 적용하여 빔을 형성하는 기법을 의미할 수 있다.
아날로그 빔 형성을 위해서는, 각 안테나에 연결된 PA와 PS가 단일 디지털 신호로부터 파생된 아날로그 신호를 처리(process)하는 구조가 요구된다. 다시 말해, 아날로그 단에서 상기 PA 및 상기 PS가 복소 가중치(complex weight를 처리한다.
도 5는 아날로그 빔포머(analog beamformer) 및 RF 체인(RF chain)으로 구성되는 송신단(transmitter)의 블록도(block diagram)의 일례를 나타낸다. 도 5는 단지 설명의 편의를 위한 것일 뿐, 본 발명의 범위를 제한하는 것이 아니다.
도 5에서, RF 체인은 기저대역(baseband, BB) 신호가 아날로그 신호로 변환되는 처리 블록을 의미한다. 아날로그 빔 형성 기법은 상기 PA와 상기 PS의 소자의 특성에 따라 빔의 정확도가 결정되고, 상기 소자의 제어 특성상 협대역(narrowband) 전송에 유리할 수 있다.
또한, 아날로그 빔 형성 기법의 경우, 다중 스트림(stream) 전송을 구현하기 어려운 하드웨어 구조로 구성되므로, 전송률 증대를 위한 다중화 이득(multiplexing gain)이 상대적으로 작다. 또한, 이 경우, 직교 자원할당 기반의 단말 별 빔 형성이 용이하지 않을 수도 있다.
이와 달리, 디지털 빔 형성 기법의 경우, MIMO 환경에서 다이버시티(diversity)와 다중화 이득을 최대화하기 위해 BB(Baseband) 프로세스를 이용하여 디지털 단에서 빔 형성이 수행된다.
도 6은 디지털 빔포머(digital beamformer) 및 RF 체인으로 구성되는 송신단의 블록도의 일례를 나타낸다. 도 6은 단지 설명의 편의를 위한 것일 뿐, 본 발명의 범위를 제한하는 것이 아니다.
도 6의 경우, 빔 형성은 BB 프로세스에서 프리코딩이 수행됨에 따라 수행될 수 있다. 여기에서, RF 체인은 PA를 포함한다. 이는, 디지털 빔 형성 기법의 경우, 빔 형성을 위해 도출된 복소 가중치가 송신 데이터에 직접적으로 적용되기 때문이다.
또한, 단말 별로 상이한 빔 형성이 수행될 수 있으므로, 동시에 다중 사용자 빔 형성을 지원할 수 있다. 뿐만 아니라, 직교 자원이 할당된 단말 별로 독립적인 빔 형성이 가능하므로, 스케줄링의 유연성이 향상되고, 이에 따라, 시스템 목적에 부합하는 송신단의 운용이 가능하다. 또한, 광대역 전송을 지원하는 환경에서 MIMO-OFDM과 같은 기술이 적용되는 경우에, 부반송파(subcarrier) 별로 독립적인 빔이 형성될 수도 있다.
따라서, 디지털 빔 형성 기법은 시스템의 용량 증대와 강화된 빔 이득을 기반으로 하여 단일 단말(또는 사용자)의 최대 전송률을 극대화할 수 있다. 상술한 바와 같은 특징에 기반하여, 기존의 3G/4G(예: LTE(-A)) 시스템에서는 디지털 빔포밍 기반의 MIMO 기법이 도입되었다.
NR 시스템에서, 송수신 안테나가 크게 증가하는 거대(massive) MIMO 환경이 고려될 수 있다. 일반적으로 셀룰러(cellular) 통신에서는 MIMO 환경에 적용되는 최대 송수신 안테나가 8개로 가정된다. 그러나, 거대 MIMO 환경이 고려됨에 따라, 상기 송수신 안테나의 수는 수십 또는 수백 개 이상으로 증가할 수 있다.
이 때, 거대 MIMO 환경에서 앞서 설명된 디지털 빔 형성 기술이 적용되면, 송신단은 디지털 신호 처리를 위하여 BB 프로세스를 통해 수백 개의 안테나에 대한 신호 처리를 수행해야 한다. 이에 따라, 신호 처리의 복잡도가 매우 커지고, 안테나 수만큼의 RF 체인이 필요하므로 하드웨어 구현의 복잡도도 매우 커질 수 있다.
또한, 송신단은 모든 안테나에 대해 독립적인 채널 추정(channel estimation)이 필요하다. 뿐만 아니라, FDD 시스템의 경우, 송신단은 모든 안테나로 구성된 거대 MIMO 채널에 대한 피드백 정보가 필요하므로, 파일럿(pilot) 및/또는 피드백 오버헤드가 매우 커질 수 있다.
반면, 거대 MIMO 환경에서 앞서 설명된 아날로그 빔 형성 기술이 적용되면, 송신단의 하드웨어 복잡도는 상대적으로 낮다.
이에 반해, 다수 안테나를 이용한 성능의 증가 정도는 매우 작으며, 자원 할당의 유연성이 낮아질 수 있다. 특히, 광대역 전송 시, 주파수 별로 빔을 제어하는 것이 용이하지 않다.
따라서, 거대 MIMO 환경에서는 아날로그 빔 형성과 디지털 빔 형성 기법 중 한 개 만을 배타적으로 선택하는 것이 아닌, 아날로그 빔 형성과 디지털 빔 형성 구조가 결합된 하이브리드(hybrid) 형태의 송신단 구성 방식이 필요하다.
아날로그 빔 스캐닝(analog beam scanning)
일반적으로, 아날로그 빔포밍은 순수 아날로그 빔포밍 송수신단과 하이브리드 빔포밍 송수신단에서 이용될 수 있다. 이 때, 아날로그 빔 스캐닝은 동일한 시간에 한 개의 빔에 대한 추정을 수행할 수 있다. 따라서, 빔 스캐닝에 필요한 빔 트레이닝(beam training) 시간은 전체 후보 빔의 수에 비례하게 된다.
상술한 바와 같이, 아날로그 빔 포밍의 경우, 송수신단 빔 추정을 위하여 시간 영역에서의 빔 스캐닝 과정이 반드시 요구된다. 이 때, 전체 송수신 빔에 대한 추정 시간 ts는 아래 수학식 2와 같이 표현될 수 있다.
Figure pct00044
수학식 2에서, ts는 하나의 빔 스캐닝을 위해 필요한 시간을 의미하고, KT는 송신 빔의 수를 의미하고, KR은 수신 빔의 수를 의미한다.
도 7은 본 발명의 다양한 실시 예들에 따른 아날로그 빔 스캐닝 방식의 일례를 나타낸다. 도 7은 단지 설명의 편의를 위한 것일 뿐, 본 발명의 범위를 제한하는 것이 아니다.
도 7의 경우, 전체 송신 빔의 수 KT가 L이고, 전체 수신 빔의 수 KR가 1인 경우가 가정된다. 이 경우, 전체 후보 빔의 개수는 총 L개가 되므로, 시간 영역에서 L개의 시간 구간이 요구된다.
다시 말해, 아날로그 빔 추정을 위하여 단일 시간 구간에서 1개의 빔 추정만이 수행될 수 있으므로, 도 7에 나타난 바와 같이, 전체 L개의 빔(P1 내지 PL) 추정을 수행하기 위하여 L개의 시간 구간이 요구된다. 단말은 아날로그 빔 추정 절차가 종료된 후, 가장 높은 신호 세기를 갖는 빔의 식별자(예: ID)를 기지국으로 피드백한다. 즉, 송수신 안테나 수의 증가에 따라 개별 빔 수가 증가할 수록, 보다 긴 트레이닝 시간이 요구될 수 있다.
아날로그 빔포밍은 DAC(Digital-to-Analog Converter) 이후에 시간 영역의 연속적인 파형(continuous waveform)의 크기와 위상각을 변화시키기 때문에, 디지털 빔포밍과 달리 개별 빔에 대한 트레이닝 구간이 보장될 필요가 있다. 따라서, 상기 트레이닝 구간의 길이가 증가할수록 시스템의 효율이 감소(즉, 시스템의 손실(loss)이 증가)될 수 있다.
채널 상태 정보(Channel state information:CSI) 피드백(feedback)
LTE 시스템을 포함한 대부분의 cellular system에서 단말은 채널 추정을 위한 파일럿 신호 (reference signal)를 기지국으로부터 수신하여 CSI(channel state information)을 계산하고 이를 기지국에게 보고한다.
기지국은 단말로부터 피드백 받은 CSI 정보를 토대로 데이터 신호를 전송한다.
LTE 시스템에서 단말이 피드백하는 CSI 정보에는 CQI(channel quality information), PMI(precoding matrix index), RI(rank indicator)가 있다.
CQI 피드백은 기지국이 데이터를 전송할 때 어떤 MCS(modulation & coding scheme)을 적용할 지에 대한 가이드를 제공하려는 목적(link adaptation용도)으로 기지국에게 제공하는 무선 채널 품질 정보이다.
기지국과 단말 사이에 무선 품질이 높으면 단말은 높은 CQI 값을 피드백하여 기지국은 상대적으로 높은 modulation order와 낮은 channel coding rate을 적용하여 데이터를 전송할 것이고, 반대의 경우 단말은 낮은 CQI 값을 피드백하여 기지국은 상대적으로 낮은 modulation order와 높은 channel coding rate을 적용하여 데이터를 전송할 것이다.
PMI 피드백은 기지국이 다중 안테나를 설치한 경우, 어떠한 MIMO precoding scheme을 적용할 지에 대한 가이드를 제공하려는 목적으로 기지국에게 제공하는 preferred precoding matrix 정보이다.
단말은 파일럿 신호로부터 기지국과 단말간의 downlink MIMO channel을 추정하여 기지국이 어떠한 MIMO precoding을 적용하면 좋을 지를 PMI 피드백을 통해 추천한다.
LTE 시스템에서는 PMI 구성에 있어 행렬 형태로 표현 가능한 linear MIMO precoding만 고려한다.
기지국과 단말은 다수의 precoding 행렬들로 구성된 코드북을 공유하고 있고, 코드북 내에 각각의 MIMO precoding 행렬은 고유의 index를 갖고 있다.
따라서, 단말은 코드북 내에서 가장 선호하는 MIMO precoding 행렬에 해당하는 인덱스를 PMI로서 피드백함으로써 단말의 피드백 정보량을 최소화한다.
PMI 값이 꼭 하나의 인덱스로만 이루어져야 하는 것은 아니다. 일례로, LTE 시스템에서 송신 안테나 포트 수가 8개인 경우, 두 개의 인덱스들(first PMI & second PMI)을 결합하여야만 최종적인 8tx MIMO precoding행렬을 도출할 수 있도록 구성되어 있다.
RI 피드백은 기지국과 단말이 다중 안테나를 설치하여 spatial multiplexing을 통한 multi-layer전송이 가능한 경우, 단말이 선호하는 전송 layer의 수에 대한 가이드를 제공하려는 목적으로 기지국에게 제공하는 선호하는 전송 layer수에 대한 정보이다.
RI는 PMI와 매우 밀접한 관계를 지닌다. 그것은 전송 레이어 수에 따라 기지국은 각각의 레이어에 어떠한 precoding을 적용해야 하는지 알 수 있어야 하기 때문이다.
PMI/RI 피드백 구성에 있어 single layer 전송을 기준으로 PMI 코드북을 구성한 뒤 layer별로 PMI를 정의하여 피드백 할 수 있으나, 이러한 방식은 전송 레이어의 수의 증가에 따라 PMI/RI피드백 정보량이 크게 증가하는 단점이 있다.
따라서, LTE 시스템에서는 각각의 전송 레이어의 수에 따른 PMI 코드북을 정의하였다. 즉, R-layer전송을 위해서 크기 Nt x R 행렬 N개를 코드북 내에 정의한다 (여기서, R은 layer수, Nt는 송신안테나 포트 수, N은 코드북의 크기).
따라서, LTE에서는 전송 레이어의 수에 무관하게 PMI 코드북의 크기가 정의된다. 결국 이러한 구조로 PMI/RI를 정의하다 보니 전송 레이어 수(R)는 결국 precoding 행렬(Nt x R 행렬)의 rank값과 일치하게 되므로 rank indicator(RI)라는 용어를 사용하게 되었다.
본 명세서에서 기술되는 PMI/RI는 꼭 LTE 시스템에서의 PMI/RI처럼 Nt x R 행렬로 표현되는 precoding 행렬의 인덱스 값과 precoding 행렬의 rank값을 의미하는 것으로 제한되지는 않는다.
본 명세서에게 기술되는 PMI는 전송단에서 적용 가능한 MIMO precoder중에서 선호하는 MIMO precoder정보를 나타내는 것으로, 그 precoder의 형태가 LTE시스템에서처럼 행렬로 표현 가능한 linear precoder만으로 한정되지 않는다. 또한, 본 명세서에서 기술되는 RI는 LTE에서의 RI보다 더 넓은 의미로 선호하는 전송 레이어 수를 나타내는 피드백 정보를 모두 포함한다.
CSI 정보는 전체 시스템 주파수 영역에서 구해질 수도 있고, 일부 주파수 영역에서 구해질 수도 있다. 특히, 광대역 시스템에서는 단말 별로 선호하는 일부 주파수 영역(e.g. subband)에 대한 CSI정보를 구해서 피드백하는 것이 유용할 수 있다.
LTE시스템에서 CSI 피드백은 uplink 채널을 통해 이루어 지는데, 일반적으로 주기적인 CSI 피드백은 PUCCH(physical uplink control channel)를 통해 이루어 지고, 비주기적인 CSI피드백은 uplink data 채널인 PUSCH(physical uplink shared channel)을 통해 이루어 진다.
비주기적인 CSI 피드백은 기지국이 CSI 피드백 정보를 원할 때에만 일시적으로 피드백하는 것을 의미하는 것으로, 기지국이 PDCCH/ePDCCH와 같은 downlink control channel을 통해 CSI피드백을 trigger한다.
LTE 시스템에서는 CSI 피드백이 trigger되었을 때, 단말이 어떠한 정보를 피드백해야 하는 지가 도 8과 같이 PUSCH CSI reporting mode로 구분되어 있고, 단말이 어떠한 PUSCH CSI reporting mode로 동작해야 할지는 상위 계층 메시지를 통해 단말에게 미리 알려준다.
도 8은 PUSCH CSI 보고 모드의 일례를 나타낸 도이다.
PUCCH를 통한 주기적 CSI 피드백에 대해 PUCCH CSI reporting mode 역시 정의된다.
도 9는 PUCCH CSI 보고 모드의 일례를 나타낸 도이다.
PUCCH의 경우, PUSCH보다 한번에 보낼 수 있는 데이터 양(payload size)이 작으므로 보내고자 하는 CSI정보를 한번에 보내기가 어렵다.
따라서, 각 CSI reporting mode에 따라 CQI및 PMI를 전송하는 시점과 RI를 전송하는 시점이 다르다. 예를 들어, reporting mode 1-0에서는 특정 PUCCH전송시점에는 RI만 전송하고, 다른 PUCCH전송시점에 wideband CQI를 전송한다. 특정 PUCCH 전송 시점에 구성되는 CSI정보의 종류에 따라 PUCCH reporting type이 정의된다. 예를 들어, 상기 예에서 RI만 전송하는 reporting type은 type3에 해당하고, wideband CQI만 전송하는 reporting type은 type4에 해당한다. RI 피드백 주기 및 offset값과 CQI/PMI 피드백 주기 및 offset값은 상위 계층 메시지를 통해 단말에게 설정된다.
상기 CSI feedback 정보는 uplink control information (UCI)에 포함된다.
LTE에서 기준 신호들(Reference signals in LTE)
LTE system에서 파일럿 혹은 RS(reference signal)의 용도는 크게 다음으로 나눌 수 있다.
1. Measurement RS : 채널 상태 측정용 파일럿
A. CSI measurement/reporting 용도 (short term measurement): Link adaptation, rank adaptation, closed loop MIMO precoding 등의 목적
B. Long term measurement/reporting 용도: Handover, cell selection/reselection등의 목적
2. Demodulation RS: 물리 채널 수신용 파일럿
3. Positioning RS: 단말 위치 추정용 파일럿
4. MBSFN RS: Multi-cast/Broadcast 서비스를 위한 파일럿
LTE Rel-8에서는 대부분의 하향링크 물리 채널에 대한 measurement(용도 1A/B) 및 demodulation(용도 2)을 위해 CRS(Cell-specific RS)를 사용하였으나, 안테나 수가 많아짐에 따른 RS overhead 문제를 해결하기 위해 LTE Advanced (Rel-10) 부터는 CSI measurement(용도 1A) 전용으로 CSI-RS와 하향링크 데이터 채널(PDSCH)에 대한 수신 (용도 2) 전용으로 UE-specific RS를 사용한다.
CSI-RS는 CSI 측정 및 피드백 전용으로 설계된 RS로 CRS에 비해 매우 낮은 RS overhead를 갖는 것이 특징이며, CRS는 4개의 다중 안테나 포트까지 지원하는데 반해, CSI-RS는 8개의 다중 안테나 포트까지 지원 가능하도록 설계되었다. UE-specific RS는 데이터 채널의 demodulation전용으로 설계되어 CRS 와 달리 해당 UE에게 데이터 전송 시 적용된 MIMO precoding기법이 파일럿 신호에 동일하게 적용된 RS (precoded RS)라는 점이 특징이다.
따라서, UE-specific RS는 CRS, CSI-RS처럼 안테나 포트의 개수만큼 전송될 필요가 없고, 전송 layer의 개수 (전송 rank)만큼만 전송되면 된다.
또한, UE-specific RS는 기지국의 scheduler를 통해 각 UE에게 할당된 데이터 채널 자원 영역과 동일한 자원 영역에 해당 UE의 데이터 채널 수신 용도로 전송되므로, 단말 특정적인 RS라는 특징이 있다.
CRS는 cell 내의 모든 UE가 measurement 및 demodulation용도로 사용할 수 있도록 시스템 대역폭 내에서 동일한 패턴으로 항상 전송되므로 셀 특정적이다.
LTE 상향링크에서는 Measurement RS 로 Sounding RS(SRS)가 설계되었으며, 상향링크 데이터 채널(PUSCH)에 대한Demodulation RS (DMRS)와 ACK/NACK 및 CSI 피드백을 위한 상향링크 컨트롤 채널(PUCCH)에 대한 DMRS가 각각 설계되었다.
빔 관리 및 빔 복구(Beam management and beam recovery)
기지국은 단말에게 주기적(periodic) CSI 보고, 반-고정적(semi-persistent) CSI 보고(특정 시간 구간 동안에만 주기적 CSI 보고가 활성화(activation)되거나, 혹은 연속적인 복수 번의 CSI 보고를 수행), 또는 비주기적(aperiodic) CSI 보고를 요청할 수 있다.
여기서, 상기 주기적(periodic) 및 반-고정적(semi-persistent,SP) CSI reporting은 보고가 활성화된 기간에는 단말에게 특정 주기로 CSI 보고를 위한 UL (uplink) 자원 (e.g. PUCCH in LTE)이 할당된다.
단말의 CSI 측정을 위해서는 기지국의 downlink(DL) reference signal (RS)의 전송이 필요하다.
(아날로그) 빔포밍이 적용된 beamformed system의 경우, 상기 DL RS 전송/수신을 위한 DL transmission(Tx)/reception(Rx) 빔 쌍(beam pair)와 UCI(uplink control information: e.g. CSI, ACK/NACK) 전송/수신을 위한 UL Tx/Rx beam pair의 결정이 필요하다.
DL beam pair의 결정 절차는 (1) 복수 개의 TRP Tx beam에 해당하는 DL RS를 기지국이 단말로 전송하는 절차와, (2) 상기 단말이 이 중 하나를 선택 및/또는 보고하는 TRP Tx beam 선택 절차와, (3) 기지국이 각 TRP Tx beam에 해당하는 동일한 RS 신호를 반복 전송하는 절차와, (4) 상기 단말이 상기 반복 전송된 신호들에 서로 다른 UE Rx beam으로 측정하여 UE Rx beam을 선택하는 절차의 조합으로 구성될 수 있다.
또한, UL beam pair 결정 절차는 (1) 복수 개의 UE Tx beam에 해당하는 UL RS를 단말이 기지국이 전송하는 절차와, (2) 기지국이 이 중 하나를 선택 및/또는 signaling 하는 UE Tx beam 선택 절차와, (3) 상기 단말이 각 UE Tx beam에 해당하는 동일한 RS 신호를 기지국으로 반복 전송하는 절차와, (4) 상기 기지국이 상기 반복 전송된 신호들에 서로 다른 TRP Rx beam으로 측정하여 TRP Rx beam을 선택하는 절차의 조합으로 구성될 수 있다.
DL/UL의 beam reciprocity(혹은 beam correspondence)가 성립하는 경우, 즉 기지국과 단말 간 통신에서 기지국 DL Tx 빔과 기지국 UL Rx 빔이 일치하고, 단말 UL Tx 빔과 단말 DL Rx 빔이 일치한다고 가정할 수 있는 경우, DL beam pair와 UL beam pair 중 어느 하나만 결정하면 다른 하나를 결정하는 절차를 생략할 수 있다.
DL 및/또는 UL 빔 pair에 대한 결정 과정은 주기적 혹은 비주기적으로 수행될 수 있다.
후보(candidate) 빔 수가 많은 경우, 요구되는 RS overhead가 클 수 있기 때문에 상기 DL 및/또는 UL 빔 pair에 대한 결정 과정이 자주 발생하는 것은 바람직하지 않다.
DL/UL 빔 pair 결정 과정이 완료된 이후, 단말은 주기적(periodic) 또는 SP(Semi-Persistent) CSI reporting 을 수행한다고 가정하자.
여기서, 단말의 CSI 측정(measurement)를 위한 단일 혹은 복수 개의 antenna port를 포함하는 CSI-RS는 DL 빔으로 결정된 TRP Tx beam으로 빔포밍되어 전송될 수 있고, CSI-RS의 전송 주기는 CSI 보고(reporting) 주기와 같거나 혹은 더 자주 전송될 수 있다.
또는, 단말은 비주기적(aperiodic) CSI-RS를 CSI 보고 주기에 맞춰서 혹은 보다 자주 전송하는 것도 가능하다.
단말(예:UE)은 측정된 CSI 정보를 주기적으로 UL beam pair 결정 과정에서 기 결정된 UL Tx beam으로 전송할 수 있다.
DL/UL beam management 과정을 수행함에 있어 설정된 beam management의 주기에 따라 빔 불일치(mismatch) 문제가 발생할 수 있다.
특히, 단말이 위치를 이동하거나, 단말이 회전하거나, 혹은 상기 단말 주변 물체의 이동으로 무선 채널 환경이 바뀌는 경우(예를 들어, LoS(Line-of-Sight) 환경이다가 빔이 block되어 Non-LoS 환경으로 바뀌는 경우), 최적의 DL/UL beam pair는 바뀔 수 있다.
이러한 변화를 일반적으로 네트워크 지시에 의해 수행하는 빔 management 과정으로 tracking이 실패하였을 때 빔 실패 이벤트(beam failure event)가 발생하였다고 할 수 있다.
이러한 beam failure event의 발생 여부는 단말이 하향링크 RS의 수신 품질을 통해 판단할 수 있으며, 이러한 상황에 대한 보고 메시지 또는 빔 복구 요청을 위한 메시지(이하, '빔 복구 요청 메시지(beam recovery request message)'라 정의함)가 단말로부터 전달되어야 한다.
상기 빔 복구 요청 메시지는 빔 실패 복구 요청 메시지, 제어 신호, 제어 메시지, first message 등으로 다양하게 표현될 수 있다.
상기 단말로부터 상기 빔 복구 요청 메시지를 수신한 기지국은 빔 복구를 위해 단말로 beam RS 전송, beam reporting 요청 등 다양한 과정을 통해 beam 복구를 수행할 수 있다.
이와 같은 일련의 빔 복구 과정을 '빔 복구(beam recovery)'라 표현하기로 한다.
3GPP에서 LTE 이후 NR(new radio or New Rat)이라 명명한 새로운 통신 시스템에 대한 표준화가 진행 중이며, 빔 관리(beam management) 관련하여 아래와 같은 내용들이 포함된다.
(내용 1)
NR은 UE가 빔 실패(beam failure)로부터 복구(recovery)하는 메커니즘을 트리거할 수 있음을 지원한다.
네트워크는 복구 목적을 위해 신호들의 UL 전송에 대한 자원을 UE에 명시 적으로 구성한다.
기지국이 전체 또는 일부 방향으로부터 청취하고(listening) 있는 자원의 구성을 지원한다(예를 들어, 랜덤 액세스 영역).
(추후 논의) RS / 제어 채널 / 데이터 채널 모니터링의 UE 동작과 관련된 복구 신호 (신규 또는 기존 신호)의 트리거 조건
UE가 새로운 잠재적인 빔들을 식별하기 위해 빔을 모니터할 수 있도록 허용하는 DL 신호의 전송을 지원한다.
(추후 논의) beam sweep 제어 채널의 전송이 배제되지 않는다.
이 메커니즘은 성능과 DL 시그널링 오버헤드 사이의 균형(tradeoff)를 고려해야 한다.
(내용 2)
가능한 아래 후보 솔루션을 고려하여 빔 관리 오버헤드 및 지연 시간은 NR 빔 관리를 위한 CSI-RS 설계 중에 고려되어야 한다.
Opt1. IFDMA
Opt2. 큰 부반송파 간격(large subcarrier spacing)
NR 빔 관리를 위한 CSI-RS 설계 중에 고려되는 다른 측면들은 예를 들어, CSI-RS 멀티플렉싱, UE 빔 switch latency 및 UE 구현 복잡성 (예를 들어, AGC 트레이닝 시간), CSI-RS의 커버리지 등을 포함한다.
(내용 3)
CSI-RS는 DL Tx 빔 sweeping 및 UE Rx 빔 sweeping을 지원한다.
NR CSI-RS는 다음 매핑 구조를 지원한다.
NP CSI-RS 포트는 (서브) 시간 단위 별로 매핑될 수 있다.
(서브)시간 단위(unit)에 걸쳐 동일한 CSI-RS 안테나 포트들이 매핑될 수 있다.
여기서 "시간 단위"는 configured / reference numerology에서 n> = 1 OFDM 심볼을 나타낸다.
각 시간 단위는 서브-시간 단위로 partition될 수 있다.
이 매핑 구조는 다수의 패널들 / Tx chain을 지원하기 위해 사용될 수 있다.
(Option 1)
Tx 빔(들)은 각 시간 단위 내의 서브 시간 단위에 걸쳐 동일하다.
Tx 빔(들)은 시간 단위에 따라 다르다.
(Option 2)
Tx 빔(들)은 각 시간 단위 내에서 서브 시간 단위마다 다르다.
Tx 빔(들)은 시간 단위들에서 동일하다.
(Option 3): Option 1과 Option 2의 조합
하나의 시간 단위 내에서, Tx 빔(들)은 서브 시간 단위들에서 동일하다.
다른 시간 단위 내에서, Tx 빔(들)은 서브 시간 단위마다 다르다.
이하, 본 명세서에서 제안하는 방법들과 관련된 단말의 빔 실패 복구 메커니즘(Beam failure recovery mechanism)에 대해 간략히 살펴본다.
상기 단말의 빔 실패 복구 메커니즘은 아래 (1) 내지 (4)의 과정들을 포함한다.
(1) 빔 실패를 감지한다.
(2) 새로운 후보 빔을 식별한다.
(3) 빔 실패 복구 요청을 전송한다.
(4) UE는 빔 실패 복구 요청에 대한 gNB의 응답을 모니터링한다.
먼저, 빔 실패 감지 과정에 대해 살펴보면, UE는 빔 실패 트리거 조건이 만족되었는지 여부를 평가하기 위해 빔 실패 감지 RS를 모니터링한다.
그리고, 빔 실패 감지 RS는 적어도 빔 관리를 위한 주기적인 CSI-RS를 포함한다. 여기서, SS(Synchronization Signal) 블록(block)도 빔 관리에 사용될 수 있으며, SS block이 빔 관리에 사용되는 경우, 서빙 셀 내 SS 블록이 고려될 수 있다.
여기서, SS block은 동기 신호(SS)가 슬롯 단위 또는 특정 시간 단위로 전송되는 것으로 해석될 수 있다.
여기서, 빔 실패 감지 RS는 해당 RS의 품질 자체를 측정하는 경우뿐만 아니라 해당 RS와 QCL(Quasi Co-Location) 지시자 등으로 연관된 무선 채널의 detection/demodulation 품질을 측정하는 경우를 포함한다. 예를 들어, (primary) PDCCH 모니터링을 위해 지시된 CSI-RS 혹은 SS block 관련 ID를 상기 빔 실패 감지 RS로 이해할 수 있으며, 이 때 빔 실패 이벤트 발생 여부는 해당 PDCCH의 detection/demodulation 성능이 일정 이하일 경우로 정의될 수 있다.
상기 빔 실패 이벤트 발생은 연관된(associated) 제어 채널의 beam pair link(s)의 품질이 일정 수준 이하로 떨어졌을 때 발생할 수 있다.
구체적으로, 상기 연관된 제어 채널의 beam pair link(s)의 품질은 PDCCH 검출 성능(detection performance)으로 결정될 수도 있다.
예를 들어, 단말이 PDCCH를 모니터링(또는 blind decoding)하는 과정에서 CRC check 결과 PDCCH detection 성능이 좋지 않은 경우, 단말은 빔 실패를 검출할 수 있게 된다.
또는, multiple PDCCHs가 multiple beams을 통해(또는 multiple PDCCHs가 각각 서로 다른 beam으로) 전송되는 경우, 특정 PDCCH(예: serving beam과 associated PDCCH)에 대한 검출 성능으로 상기 빔 실패 이벤트 발생 여부를 판단할 수 있다.
여기서, multiple PDCCHs 각각은 서로 다른 control channel 영역(예: symbol, slot, subframe 등)에서 서로 다른 beam 별로 전송 및/또는 수신될 수 있다.
이 경우, beam 별 control channel 영역이 미리 정의될 수 있거나 higher layer signaling을 통해 송수신될 수 있다.
또한, 상기 연관된 제어 채널의 beam pair link(s)의 품질로 상기 빔 실패 이벤트 발생 여부를 판단할 때, DL beam의 품질만이 일정 수준 이하로 떨어졌는지, 또는 UL beam의 품질만이 일정 수준 이하로 떨어졌는지, 또는 DL beam과 UL beam의 품질 모두가 일정 수준 이하로 떨어졌는지에 따라 상기 빔 실패 이벤트 발생 여부가 결정될 수 있다.
여기서, 상기 일정 수준 이하는 임계값 이하, 연관된 타이머의 time-out 등일 수 있다.
또한, 상기 빔 실패를 검출하는 signal로 BRS, fine timing/frequency tracking을 위한 RS, SS Blocks, PDCCH를 위한 DM-RS, PDSCH를 위한 DM-RS 등이 사용될 수 있다.
다음, 새로운 후보 빔 식별 과정에 대해 살펴보면, UE는 빔 식별 RS를 모니터링하여 새로운 후보 빔을 찾는다.
- 빔 식별 RS는 1) NW에 의해 구성된 경우, 빔 관리를 위한 주기적 CSI-RS, 2) SS 블록이 빔 관리에 사용되는 경우, 서빙 셀 내의 주기적인 CSI-RS 및 SS 블록에 대한 정보를 포함한다.
다음, 빔 실패 복구 요청 전송 과정에 대해 살펴보면, 빔 실패 복구 요청에 의해 운반되는 정보는 1) UE 및 새로운 gNB TX 빔 정보를 식별하기 위한 명시적 / 암시적 정보, 또는 2) UE를 식별하고 새로운 후보 빔이 존재하는지 여부에 대한 명시적 / 암시적 정보 중 적어도 하나를 포함한다.
또한, 빔 실패 복구 요청의 전송은 PRACH, PUCCH, PRACH-like(예를 들어, PRACH로부터의 프리앰블 시퀀스에 대한 상이한 파라미터) 중 하나를 선택할 수 있다.
- 빔 실패 복구 요청 자원 / 신호는 스케줄링 요청에 추가적으로 사용될 수 있다.
다음, UE는 빔 실패 복구 요청에 대한 gNB 응답을 수신하기 위해 제어 채널 검색 공간을 모니터링한다.
또한, 빔 실패 복구 요청 전송에 대해 아래 트리거링 조건을 지원한다.
- 조건: CSI-RS만이 새로운 후보 빔 식별을 위해 사용되는 경우 빔 실패가 검출되고 후보 빔이 식별되는 경우
또한, 빔 실패 복구 요청 전송을 위해 아래와 같은 채널을 지원한다.
- PRACH에 기반한 비-경쟁 기반 채널, FDM에 대해 적어도 다른 PRACH 전송의 자원에 직교하는 자원을 사용한다.
- 빔 실패 복구 요청 전송을 위한 PUCCH를 지원한다.
앞서 살핀 것처럼, NR의 경우, 빔 복구 요청 메시지(beam recovery request message)는 (1) PRACH와 동일 심볼들을 이용하여 전송되거나(첫 번째), (2) PRACH 이외의 심볼들을 이용하여 전송하는(두 번째) 두 가지 mechanism이 모두 지원될 수 있다.
첫 번째는, 빔 실패(failure)로 인해 상향링크 동기까지 잃어버린 경우(빔 품질이 상대적으로 많이 떨어졌거나, 대체 빔이 없는 경우), 그리고/또는 빔 실패 이벤트(beam failure event) 발생 시점과 기 설정된 PRACH 자원이 시간적으로 가까운 경우 유용한 mechanism일 수 있다.
두 번째는, 빔 실패(failure) 상황이나 상향링크 동기는 잃어버리지 않은 경우(빔 품질이 상대적으로 조금 떨어졌거나, 대체 빔이 있는 경우), 그리고/또는 beam failure event 발생 시점과 기 설정된 PRACH 자원이 시간적으로 멀어서 PRACH 자원(예: 심볼)까지 기다리기에는 빠른 빔 복구가 어려운 경우에 유용한 mechanism일 수 있다.
또한, 단말은 빔 실패(beam failure) 시, 기지국으로 빔 복구 요청 메시지를 소정 횟수 전송한 후 상기 기지국으로부터 상기 요청에 대한 응답을 수신하지 못한 경우, RLF(Radio Link Failure) 동작을 수행할 수 있다.
이하, 본 명세서에서 제안하는 단말의 이동 등으로 인해 빔 실패(beam failure)가 발생한 경우, 빔을 복구(recovery)하기 위한 방법에 대해 살펴보기로 한다.
특히, 본 명세서는 대체 빔의 존재 여부에 따라 빔을 복구하는 방법이 다르게 수행될 수 있으며, 구체적인 내용에 대해서는 후술하기로 한다.
본 명세서에서 사용하는 Beam RS(Reference Signal)(BRS)는 빔 관리(management)를 위해 사용되는 하향링크 물리 신호로서, CSI-RS, Mobility RS(MRS), 동기 신호(Synchronization Signal) 등이 Beam RS로서 사용될 수 있다.
상기 Beam RS는 빔 관리 프레임워크(beam management framework) (혹은 CSI framework) 상에서 자원 세팅(resource setting)에 의해 (RRC layer 메시지로서) 설정될 수 있다. 즉, 상기 자원 세팅에 의해 상기 Beam RS는 미리 설정될 수 있다.
후술할 바와 같이, 상기 빔 관리 프레임워크는 Beam reporting setting(s), Beam resource setting(s), Beam resource set, Measurement setting(s)들의 연관 관계를 나타내는 구조이다. 이와 관련된 좀 더 구체적인 내용은 후술하기로 한다.
또한, 본 명세서에서 사용하는 빔 보고(Beam reporting)은 빔과 관련된 단말의 피드백 정보를 의미하며, 빔 품질 관련 정보 및/또는 빔 indication 정보를 포함할 수 있다.
본 명세서에서 'A 및/또는 B', 'A 그리고/또는 B', 'A/B'는 'A 또는 B 중 적어도 하나를 포함한다'는 의미와 동일하게 해석될 수 있다.
상기 빔 품질 관련 정보는 CQI(Channel Quality Information), Layer 3 RSRP(Reference Signals Received Power), Layer 1 RSRP 등일 수 있다.
또한, 상기 빔 indication 정보는 CRI(CSI-RS resource indicator), PMI(Precoding Matrix Indicator), RS port index 등일 수 있다.
상기 빔과 관련된 피드백 정보, 파라미터(parameter), 보고 주기, 주파수 단위(granularity)(e.g. wideband feedback, subband feedback)등은 상기 beam management framework (또는 CSI framework) 상에서 보고 세팅(reporting setting)에 의해 (RRC layer 메시지로서) 설정될 수 있다.
즉, 상기 보고 세팅에 의해 상기 빔과 관련된 피드백 정보, 보고 주기, 주파수 단위 등이 미리 설정될 수 있다.
단말이 빔 복구 요청(Beam recovery request)을 네트워크(예: 기지국)으로 전송하는 경우, 상기 네트워크는 아래와 같이 두 가지 동작(방법 1 및 방법 2)를 취할 수 있다.
(방법 1)
방법 1은 대체 빔(예: 대체 DL beam pair)가 없는 경우의 네트워크 동작을 나타낸다.
즉, 방법 1은 네트워크가 단말로부터 빔 복구 요청을 수신한 경우, (aperiodic) Beam RS를 단말로 전송하고(또는 Beam RS를 trigger하고), (aperiodic) Beam reporting trigger를 단말로 전송하는 방법에 관한 것이다.
상기 대체 빔이란 기지국이 주기적인 빔 management 혹은 monitoring을 위해 설정한 RS set으로 이해될 수 있고, 단말이 측정 가능한 빔의 set보다 같거나 작을 수 있다.
즉, 상기 대체 빔은 빔 관리 목적으로 설정된 RS들 중 특정 품질 이상을 가지는 RS(s)일 수 있다.
예를 들어, 네트워크가 단말에게 주기적인 빔 management 혹은 monitoring을 위해 N개의 CSI-RS 자원들을 설정할 수 있다.
그러나, 단말은 N개의 CSI-RS 자원들뿐만 아니라 (더 넓은 커버리지를 갖는) M개의 beamformed SS block들로부터 신호 품질을 측정할 수 있다. 따라서 어떠한 단말은 설정된 N개의 CSI-RS 중에서는 대체 빔이 없으나, M개의 SS block중에서는 대체 빔, 즉 특정 품질 이상의 신호를 찾을 수도 있다. 그러나, 이러한 경우 SS block은 cell-specific하며 주기적인 속성을 지니므로 on-demand로 UE-specific하게 전송해야 하는 상기 기술한 (aperiodic) Beam RS 범주에 포함하기는 적합하지 못하다. 따라서 이러한 경우는 대체 SS block 빔이 있더라도 (aperiodic) Beam RS (e.g. CSI-RS)를 단말로 전송하는 후속 과정이 필요한 방법 1의 범주로 볼 수 있다.
도 10은 본 명세서에서 제안하는 대체 빔 존재 유무에 따른 네트워크 동작의 일례를 나타낸다.
구체적으로, 도 10a는 본 명세서에서 제안하는 방법 1을 도식화한 도면이다.
여기서, 상기 Beam RS trigger 및 Beam reporting trigger는 독립적으로 signaling되거나 함께(jointly) signaling될 수 있다.
일례로, 네트워크는 하나의 DCI를 이용하여 Beam RS 및 Beam reporting을 함께 trigger할 수 있다.
도 10a를 참조하면, 네트워크는 단말로 주기적(Periodic) Beam RS를 DL로 전송한다.
이후, 상기 네트워크가 상기 단말로부터 빔 복구 요청을 수신한 경우, (방법 1에 따라) 상기 네트워크는 상기 단말로 (aperiodic) Beam RS와 (aperiodic) Beam reporting을 함께 트리거한다.
이에 따라, 상기 단말은 기준 자원(reference resource)을 통해 빔 측정(beam measurement)를 수행하고, 상기 빔 측정 결과를 상기 네트워크로 보고한다.
상기 기준 자원을 결정하는 구체적인 방법에 대해서는 후술하기로 한다.
(방법 2)
방법 2는 대체 DL beam pair가 있는 경우의 네트워크 동작을 나타낸다.
즉, 방법 2는 네트워크가 단말로부터 빔 복구 요청을 수신한 경우, 상기 네트워크는 도 10b에 도시된 바와 같이, (aperiodic) Beam reporting trigger을 수행한다.
도 10b는 본 명세서에서 제안하는 방법 2를 도식화한 도면이다.
도 10b를 참조하면, 네트워크는 단말로 주기적(Periodic) Beam RS를 DL로 전송한다.
이후, 상기 네트워크가 상기 단말로부터 빔 복구 요청을 수신한 경우, 상기 네트워크는 상기 단말로 (aperiodic) Beam reporting을 트리거한다.
여기서, 방법 2는 방법 1과 달리, 단말이 대체 DL beam pair를 알고 있기 때문에 상기 네트워크는 해당 단말로 (aperiodic) Beam RS를 별도로 전송하지 않는다(또는 trigger하지 않는다).
이에 따라, 상기 단말은 기준 자원(reference resource)을 통해 빔 측정(beam measurement)를 수행하고, 상기 빔 측정 결과를 상기 네트워크로 보고한다.
여기서, 상기 빔 보고 과정에서 선호되는 전송 빔 지시자(preferred Tx beam Indicator)와 빔 품질 메트릭(Beam quality metric)이 함께 전송될 수 있다. 이에 대한 구체적인 설명은 후술하기로 한다.
살핀 것처럼, 방법 2는 단말이 기 설정된 RS를 통해 측정한 채널로부터 대체할 수 있는 DL Tx 빔(또는 DL 빔 pair) 정보를 알고 있을 때, 네트워크의 beam RS 전송과 단말의 beam RS 수신을 생략할 수 있으므로 유용한 방식이다.
이에 반해, 앞서 살핀 방법 1은 대체 빔이 없거나 기지국이 대체 빔 유무에 대한 정보를 알 수 없을 때 유용한 방식이다.
또한, 상기 방법 1 및 방법 2에 대해 (Beam) reporting setting이 구별되지 않을 수 있다.
즉, 방법 1 및 방법 2에서 beam reporting은 동일한 피드백 정보를 구성하고, 단말의 동일한 시간 영역 행동(time domain behavior)(e.g. aperiodic reporting)을 가지며, 동일한 주파수 측 granularity를 가질 수 있다.
상기 동일한 피드백 정보는 예를 들어, 선호되는 DL 전송 빔 지시자(preferred DL Tx beam indicator(s)) 및 빔 품질 메트릭(beam quality metric(s))을 포함할 수 있다.
상기 선호되는 DL 전송 빔 지시자는 예를 들어, beam ID, CRI(CSI-RS Resource Indicator), RS port index 등일 수 있다.
상기 빔 품질 메트릭은 예를 들어, L1 RSRP, CQI 등일 수 있다.
본 명세서에서 제안하는 빔 복구 방법에서, 네트워크는 RRC signaling을 통해 단말에게 다음 중 적어도 하나의 설정 방식을 지원할 수 있다.
도 11은 본 명세서에서 제안하는 방법들에 적용될 수 있는 빔 관련 설정 방법의 일례를 나타낸 도이다.
(설정 방법 1)
도 11a를 참조하면, 보고 세팅(Reporting setting)은 하나의 aperiodic CSI/beam reporting setting을 포함하며, 자원 세팅(Resource setting)은 하나의 aperiodic beam RS setting(e.g. CSI-RS)과 하나의 periodic/semi-persistent beam RS setting을 포함할 수 있다.
여기서, 복수의 보고 세팅은 reporting settings 등으로 표현될 수 있고, 복수의 자원 세팅은 resource settings 등으로 표현될 수 있다.
또한, resource setting은 하나 이상의 resource set들을 포함할 수 있다.
도 11a를 참조하면, 측정 세팅(Measurement setting)에서 하나의 reporting setting과 두 resource setting들이 각각 link(또는 channel)로 연결되는 것을 볼 수 있다.
(설정 방법 2)
도 11b를 참조하면, 보고 세팅(Reporting setting)은 하나의 aperiodic CSI/beam reporting setting을 포함하고, 자원 세팅(Resource setting)은 하나의 beam RS setting을 포함하며, 상기 beam RS setting은 아래와 같이 적어도 두 개의 resource set을 포함한다.
- 비주기적 beam RS를 갖는 자원 세트(Resource set with aperiodic beam RS(s))(e.g. CSI-RS)
- 주기적/반-고정적 beam RS를 가지는 자원 세트(Resource set with periodic/semi-persistent beam RS(s))(e.g. CSI-RS)
또한, 상기 두 setting들(reporting setting, resource setting)은 측정 세팅(Measurement setting) 내의 하나의 link(또는 channel)로 연결된다.
앞서 살핀 것처럼, 설정 방법 1은 시간-영역 행동(time-domain behavior)(aperiodic, semi-persistent(SP), periodic)가 자원 세팅(Resource setting) 단위로 공통 설정될 때 유용하다.
그리고, 설정 방법 2는 시간-영역 행동(time-domain behavior)가 자원 세팅(Resource setting) 내의 자원 세트(resource set) 단위로 공통 설정될 때 유용할 수 있다.
다음으로, 단말이 앞서 살핀 방법 1과 방법 2 중 어느 방법을 선호하는 지에 대한 정보 또는 기 측정된 RS로부터 대체 빔 존재 유무 (또는 측정치 존재의 유무)에 대한 정보를 네트워크(또는 기지국)으로 알려주는 방법에 대해 구체적으로 살펴본다.
상기 단말이 네트워크로 전송하는 어떤 방법을 선호하는지에 대한 정보 또는 대체 빔 유무에 대한 정보를 이하 '제어 정보'로 표현하기로 한다.
여기서, 상기 제어 정보는 빔 복구 요청(beam recovery request) 신호 또는 빔 실패 보고(beam failure reporting) 신호에 포함될 수 있다.
상기 제어 정보는 대체 빔 존재 유무를 직접적으로 지시하는 indicator 또는 indication information이거나, pre-configured aperiodic beam reporting setting에 연관된(associated) preferred link 정보(설정 방법 1의 경우), preferred resource setting 정보(설정 방법 1의 경우), 또는 preferred resource set 정보(설정 방법 2의 경우)일 수 있다.
상기 제어 정보는 LTE 시스템에서의 UCI(Uplink Control Information)과 같이 물리계층 제어 정보로서 네트워크로 전달될 수도 있고, 상위 계층 메시지 형태(e.g. MAC CE)로 전달될 수도 있다.
특히, 단말은 상기 제어 정보를 PRACH와 동일한 자원(예:심볼(들))을 이용하여 전송할 수 있다.
상기 단말이 상기 PRACH와 CDM(Code Division Multiplexing)되거나 FDM(Frequency Division Multiplexing)된 신호를 beam recovery 요청 신호로 사용(또는 전송)하는 경우, 대체 빔 존재 유무에 따라 PRACH에서 사용되는 시퀀스 세트(sequence set)을 나누어 사용할 수 있다.
예를 들어, PRACH에서 사용되는 시퀀스 세트를 나누어 사용할 경우, 분리된 루트 인덱스(separated root index(es)) 또는 사이클릭 쉬프트 값(cyclic shift values) 등이 사용될 수 있다.
또는, 상기 단말이 상기 PRACH와 CDM되거나 FDM된 신호를 beam recovery 요청 신호로 사용하는 경우, 상기 PRACH에서 사용되는 sequence set와 동일한 sequence set을 사용할 수 있다. 다만 이 경우, PRACH인지 또는 빔 복구 요청 신호인지는 서로 다른 시간 영역 / 주파수 영역 OCC(Orthogonal Cover Code)를 적용하여 구별할 수 있다.
그리고, 네트워크(또는 기지국)은 상위 계층 메시지인 MAC CE(control element) 및/또는 물리 계층 메시지인 DCI(Downlink Control Information)으로 비주기적 보고 트리거링(aperiodic reporting triggering)을 단말로 지시할 때 아래 정보들((1) 내지 (4)) 중 적어도 하나를 포함할 수 있다.
(1) 미리 연관된 세팅들 내 유효/유효하지 않은 링크(Valid/invalid Link within the pre-associated settings)에 대한 정보 (설정 방법 1의 경우)
: 단말은 측정 세팅(measurement setting)으로 미리 연관된(pre-associated) 복수의 resource setting들 중에서 valid link로 지시되는 (또는 invalid link로 지시되지 않은) resource setting에 포함된 RS만을 기준 자원(reference resource)로 판단하여 빔 측정과 상기 빔 측정에 대한 빔 보고(Beam measurement 및 Beam reporting)을 수행한다.
(2) 미리 연관된 세팅들 내 유효/유효하지 않은 자원 세팅(Valid/invalid Resource setting within the pre-associated settings)에 대한 정보(설정 방법 2의 경우)
: 단말은 측정 세팅(measurement setting)으로 미리 연관된(pre-associated) 복수의 resource setting들 중에서 유효한 자원 세팅에 포함된 (또는 유효하지 않은 자원 세팅에 포함되지 않은) RS만을 기준 자원(reference resource)로 판단하여 빔 측정 및 빔 보고를 수행한다.
(3) 미리 연관된 자원 세팅 내에 유효/유효하지 않은 자원 세트에 대한 정보(설정 방법 2의 경우)
: 단말은 측정 세팅(measurement setting)으로 pre-associated된 자원 세팅(resource setting) 내에서 유효한 자원 세트(valid resource set)에 포함된 RS만을 기준 자원(reference resource)로 판단하여 빔 측정과 빔 보고를 수행한다.
(4) 보고 타입 / 모드(Reporting type/mode) 설정 정보(설정 방법 1 및 설정 방법 2에 모두 적용)
: 보고 타입 / 모드 설정 정보는 비주기적 자원의 트리거링과 비주기적 보고의 트리거링이 함께 지시되는지 아니면 비주기적 보고 트리거링만 지시되는지에 대한 지시자 또는 지시 정보를 나타낸다.
여기서, 비주기적 자원의 트리거링과 비주기적 보고의 트리거링이 함께 지시되는 경우의 보고 타입 또는 모드는 joint triggering mode 또는 제 1 모드로 표현될 수 있고, 비주기적 보고 트리거링만 지시되는 경우의 보고 타입 또는 모드는 reporting triggering only mode 또는 제 2 모드로 표현될 수 있다.
상기 Joint triggering mode(또는 제 1 모드)인 경우, 단말은 RRC로 설정된 자원 세팅(resource setting)(설정 방법 1) 또는 자원 세트(resource set)(설정 방법 2) 중 비주기적 자원 세팅 / 자원 세트(aperiodic resource setting / resource set)만을 기준 자원(reference resource)로 판단하여 빔 측정 및 빔 보고를 수행한다.
즉, 단말은 aperiodic reporting과 연결 설정된 주기적 자원 / 반-고정적 자원을 무시한다.
그리고, Reporting triggering only mode(또는 제 2 모드)인 경우, 단말은 RRC로 설정된 자원 세팅(resource setting)(설정 방법 1) / 자원 세트(resource set)(설정 방법 2) 중 주기적(periodic) 또는 반-고정적(semi-persistent) 자원 세팅 / 자원 세트만을 기준 자원(reference resource)로 판단하여 빔 측정 및 빔 보고를 수행한다.
즉, 단말은 비주기적 보고(aperiodic reporting)과 연결 설정된 비주기적 자원(aperiodic resource)를 무시한다.
추가적으로, 단말이 기지국으로 방법 1과 방법 2 중 어느 방법을 선호하는 지에 대한 정보 또는 기 측정된 RS로부터 대체 빔 존재 유무 (또는 측정치 존재의 유무)에 대한 정보를 보고한 경우, 기지국은 단말의 보고 정보에 대한 적용 여부를 나타내는 정보(confirmation message 또는 ACK/NACK)를 단말로 전송할 수 있다.
상기 단말의 보고 정보가 앞서 살핀 기지국의 aperiodic reporting triggering을 지시하기 전에 기지국으로 전송된 경우, 상기 단말의 보고 정보에 대한 적용 여부를 나타내는 정보는 앞의 (1) 내지 (4)의 정보와 함께 기지국의 aperiodic reporting triggering을 지시할 때 전송될 수도 있다.
단말이 기지국으로 방법 1과 방법 2 중 어느 방법을 선호하는 지에 대한 정보 또는 기 측정된 RS로부터 대체 빔의 존재 유무 (또는 측정치 존재의 유무)에 대한 정보를 전송하는 경우, 기지국은 해당 단말로 해당 정보의 수신 및 적용을 확정하는 정보를 전송할 수 있다.
예를 들어, 기지국이 확인(confirmed) (또는 ACK) 메시지를 단말로 전송한 경우, 이는 단말이 전송한 정보를 기지국에서 적용하는 것을 확정하는 것을 나타낸다.
또는, 기지국이 confirmed 메시지를 전송하지 않거나 not-confirmed (또는 NACK) 메시지를 단말로 전송한 경우, 상기 기지국은 앞서 살핀 (1) 내지 (4)의 정보들 중 일부 정보를 추가로 전송할 것을 단말에게 요구하거나, 해당 단말로 하여금 방법 1과 방법 2 중 어느 방법을 선호하는 지에 대한 정보 또는 대체 빔 유무 (혹은 측정치 존재의 유무)에 대한 정보를 재송신하도록 할 수 있다.
앞서 살핀 것처럼, 상기 방법 1과 방법 2 중 어느 방법을 선호하는 지에 대한 정보 또는 대체 빔 존재 유무 (혹은 측정치 존재의 유무)에 대한 정보는 간단히 '제어 정보'로 호칭될 수 있다.
또한, 앞서 살핀 (1) 내지 (4)의 정보는 단말이 방법 1과 방법 2 중 어느 방법을 선호하는 지에 대한 정보 또는 대체 빔의 존재 유무 (또는 측정치 존재의 유무)에 대한 정보를 기지국으로 (먼저) 보고한 경우 생략될 수도 있다.
다음으로, 단말이 빔 측정 및 빔 보고를 위해 기준 자원을 결정(또는 판단)하는 방법에 대해 살펴보기로 한다.
단말은 빔 복구 요청(beam recovery request) 신호(또는 beam failure reporting 신호)에 (i) 대체 빔에 대한 측정치가 있다(또는 방법 2를 선호한다)는 정보를 기지국으로 명시적 또는 암시적으로(explicit 또는 implicit) 보고한다.
이후, 상기 단말이 (특정 시간 이내에, 또는 특정 타이머 만료 전에) 기지국으로부터 aperiodic beam reporting triggering 지시를 받은 경우, 상기 단말은 해당 aperiodic beam reporting에 연결된 resource setting(설정 방법 1) / resource set(설정 방법 2)에 포함된 resource (RS) 중 reporting triggering 메시지를 수신한 슬롯(slot) 이전에 활성화(또는 트리거 또는 설정)되어 측정(measurement)가 가능한 resource (예: periodic RS, activated semi-persistent RS, 또는 pre-triggered aperiodic RS)을 기준 자원(reference resource)로 판단하고 빔 측정 및 빔 보고를 수행할 수 있다.
즉, 상기 기준 자원은 상기 reporting triggering 메시지를 수신한 슬롯 이전에 활성화된 특정 resource로 결정된다.
이에 대한 내용은 방법 2를 설명한 도 -를 참조하기로 한다.
또 다른 일례로, 단말이 beam recovery request 신호(또는 beam failure reporting 신호)에 (ii) 대체 빔에 대한 측정치가 없다(또는 방법 1을 선호한다)는 정보를 explicit 또는 implicit하게 기지국으로 보고한다.
이후, 상기 단말이 (특정 시간 이내에 또는 특정 타이머 만료 전에) 기지국으로부터 aperiodic beam reporting triggering 지시를 받은 경우, 상기 단말은 해당 aperiodic beam reporting에 associated된 resource setting(설정 방법 1) / resource set(설정 방법 2)에 포함된 resource (RS) 중 reporting triggering 메시지를 수신한 slot과 동일 slot (e.g. jointly triggered aperiodic RS) 또는 이후 시점에 활성화(또는 트리거 또는 설정)될 resource (예: triggered/activated aperiodic RS in later slot(s))를 reference resource로 판단하고, 빔 측정 및 빔 보고를 수행할 수 있다. 이에 대한 내용은 방법 1을 설명한 도 -를 참조하기로 한다.
즉, 상기 기준 자원은 상기 reporting triggering 메시지를 수신한 슬롯과 동일한 슬롯 또는 상기 reporting triggering 메시지를 수신한 이후 슬롯에 활성화될 특정 resource로 결정된다.
도 12는 본 명세서에서 제안하는 빔 복구를 수행하는 방법의 일례를 나타낸 순서도이다.
먼저, 단말은 빔 관리(beam management)에 사용되는 빔 기준 신호(beam reference signal: BRS)를 기지국으로부터 수신한다(S1210).
이후, 상기 단말은 빔 실패 이벤트(beam failure event)가 검출된 경우, 빔 실패 복구 요청(beam failure recovery request)를 위한 제어 신호를 상기 기지국으로 전송한다(S1220).
상기 빔 실패 이벤트는 상기 수신된 빔 기준 신호에 기초하여 검출될 수 있다.
상기 제어 신호는 대체 빔이 존재하는지 여부를 나타내는 지시 정보를 포함한다.
앞서 살핀 것처럼, 상기 대체 빔은 상기 빔 관리를 위해 설정된 기준 신호들 중에서 특정 채널 품질보다 큰 채널 품질을 가지는 기준 신호를 의미할 수 있다.
이후, 상기 단말은 빔 보고(beam reporting)가 트리거된(triggered) 경우, 특정 자원에서 빔 측정 결과를 상기 기지국으로 보고(report)한다(S1230).
상기 제어 신호는 PRACH(Physical Random Access Channel)와 동일한 시간 자원을 사용할 수 있다.
이 경우, 상기 제어 신호는 상기 PRACH와 상기 시간 자원에서 CDM(Code Division Multiplexing) 또는 FDM(Frequency Division Multiplexing)될 수 있다.
상기 제어 신호는 PUCCH(Physical Uplink Control Channel)을 통해 전송될 수 있다.
상기 제어 신호는 상기 대체 빔의 존재 유무에 따라 서로 다른 시간 및/또는 주파수 자원, 서로 다른 시퀀스 세트(sequence set), 및/또는 서로 다른 UCI(Uplink Control Information)을 사용할 수 있다.
이 경우, 상기 서로 다른 시퀀스 세트는 루트 시퀀스 인덱스(root sequence index) 또는 사이클릭 쉬프트 값(cyclic shift value)에 의해 구별될 수 있다.
또한, 상기 지시 정보는 미리 설정된 비주기적 빔 보고 세팅(beam reporting setting)에 연관된(associated) 선호되는 링크에 대한 정보, 미리 설정된 비주기적 빔 보고 세팅에 연관된 선호되는 자원 세팅(resource setting)에 대한 정보 또는 미리 설정된 비주기적 빔 보고 세팅에 연관된 선호되는 자원 세트(resource set)에 대한 정보일 수 있다.
추가적으로, 상기 단말은 상기 빔 보고의 트리거링(triggering)을 지시하는 지시 메시지를 상기 기지국으로부터 수신할 수 있다.
여기서, 상기 빔 보고는 상기 지시 메시지에 기초하여 트리거될 수 있다.
상기 지시 메시지는 측정 세팅(measurement setting)으로 미리 연관된(pre-associated) 세팅들 내에서 유효(valid) 또는 유효하지 않은(invalid) 링크와 관련된 정보, 상기 측정 세팅(measurement setting)으로 미리 연관된(pre-associated) 세팅들 내에서 유효 또는 유효하지 않은 자원 세팅(resource setting)과 관련된 정보, 상기 측정 세팅(measurement setting)으로 미리 연관된(pre-associated) 세팅들 내에서 유효 또는 유효하지 않은 자원 세트(resource set)와 관련된 정보 또는 빔 보고 모드 설정 정보 중 적어도 하나를 포함할 수 있다.
상기 측정 세팅은 하나의 보고 세팅과 두 개의 자원 세팅들이 각각 링크(link)로 연결되거나 또는 하나의 보고 세팅과 하나의 자원 세팅이 링크로 연결될 수 있다.
상기 빔 보고 모드 설정 정보는 비주기적 빔 기준 신호의 전송과 비주기적 빔 보고가 함께 트리거되는 제 1 모드 또는 비주기적 빔 보고만 트리거되는 제 2 모드를 지시할 수 있다.
상기 제 1 모드는 앞서 살핀 joint triggering mode를 나타내며, 상기 제 2 모드는 앞서 살핀 reporting triggering only mode를 나타낸다.
만약 상기 빔 보고 모드 설정 정보가 상기 제 1 모드로 설정된 경우, 상기 특정 자원은 RRC(Radio Resource Control)로 설정된 자원 세팅(resource setting) 또는 자원 세트(resource set) 중 비주기적 자원 세팅 또는 비주기적 자원 세트일 수 있다.
이 경우, 상기 특정 자원은 상기 지시 메시지를 수신한 슬롯과 동일한 슬롯 또는 상기 지시 메시지를 수신한 슬롯 이후의 빔 측정이 가능하도록 활성화된 자원일 수 있다.
또는, 상기 빔 보고 모드 설정 정보가 상기 제 2 모드로 설정된 경우, 상기 특정 자원은 RRC로 설정된 자원 세팅 또는 자원 세트 중 주기적 또는 반-고정적 자원 세팅 또는 자원 세트일 수 있다.
이 경우, 상기 특정 자원은 상기 지시 메시지를 수신한 슬롯 이전에 빔 측정이 가능하도록 활성화된 자원일 수 있다.
추가적으로, 상기 단말은 상기 기지국으로부터 상기 보고에 대한 응답을 수신할 수 있다.
만약 상기 응답이 NACK인 경우, 상기 단말은 상기 지시 정보 또는 상기 지시 메시지에 포함된 정보 중 적어도 하나를 포함하는 정보를 상기 기지국으로 재전송할 수 있다.
본 발명이 적용될 수 있는 장치 일반
도 13은 본 발명의 일 실시 예에 따른 무선 통신 장치의 블록 구성도를 예시한다.
도 13을 참조하면, 무선 통신 시스템은 기지국(또는 네트워크)(1310)와 단말(1320)을 포함한다.
기지국(1310)는 프로세서(processor, 1311), 메모리(memory, 1312) 및 통신 모듈(communication module, 1313)을 포함한다.
프로세서(1311)는 앞서 도 1 내지 도 12에서 제안된 기능, 과정 및/또는 방법을 구현한다. 유/무선 인터페이스 프로토콜의 계층들은 프로세서(1311)에 의해 구현될 수 있다. 메모리(1312)는 프로세서(1311)와 연결되어, 프로세서(1311)를 구동하기 위한 다양한 정보를 저장한다. 통신 모듈(1313)은 프로세서(1311)와 연결되어, 유/무선 신호를 송신 및/또는 수신한다.
상기 통신 모듈(1313)은 무선 신호를 송/수신하기 위한 RF부(radio frequency unit)을 포함할 수 있다.
단말(1320)은 프로세서(1321), 메모리(1322) 및 통신 모듈(또는 RF부)(1323)을 포함한다. 프로세서(1321)는 앞서 도 1 내지 도 12에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(1321)에 의해 구현될 수 있다. 메모리(1322)는 프로세서(1321)와 연결되어, 프로세서(1321)를 구동하기 위한 다양한 정보를 저장한다. 통신 모듈(1323)는 프로세서(1321)와 연결되어, 무선 신호를 송신 및/또는 수신한다.
메모리(1312, 1322)는 프로세서(1311, 1321) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(1311, 1321)와 연결될 수 있다.
또한, 기지국(1310) 및/또는 단말(1320)은 한 개의 안테나(single antenna) 또는 다중 안테나(multiple antenna)를 가질 수 있다.
도 14는 본 발명의 일 실시 예에 따른 통신 장치의 블록 구성도를 예시한다.
특히, 도 14에서는 앞서 도 13의 단말을 보다 상세히 예시하는 도면이다.
도 14를 참조하면, 단말은 프로세서(또는 디지털 신호 프로세서(DSP: digital signal processor)(1410), RF 모듈(RF module)(또는 RF 유닛)(1435), 파워 관리 모듈(power management module)(1405), 안테나(antenna)(1440), 배터리(battery)(1455), 디스플레이(display)(1415), 키패드(keypad)(1420), 메모리(memory)(1430), 심카드(SIM(Subscriber Identification Module) card)(1425)(이 구성은 선택적임), 스피커(speaker)(1445) 및 마이크로폰(microphone)(1450)을 포함하여 구성될 수 있다. 단말은 또한 단일의 안테나 또는 다중의 안테나를 포함할 수 있다.
프로세서(1410)는 앞서 도 1 내지 도 12에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층은 프로세서(1410)에 의해 구현될 수 있다.
메모리(1430)는 프로세서(1410)와 연결되고, 프로세서(1410)의 동작과 관련된 정보를 저장한다. 메모리(1430)는 프로세서(1410) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(1410)와 연결될 수 있다.
사용자는 예를 들어, 키패드(1420)의 버튼을 누르거나(혹은 터치하거나) 또는 마이크로폰(1450)를 이용한 음성 구동(voice activation)에 의해 전화 번호 등과 같은 명령 정보를 입력한다. 프로세서(1410)는 이러한 명령 정보를 수신하고, 전화 번호로 전화를 거는 등 적절한 기능을 수행하도록 처리한다. 구동 상의 데이터(operational data)는 심카드(1425) 또는 메모리(1430)로부터 추출할 수 있다. 또한, 프로세서(1410)는 사용자가 인지하고 또한 편의를 위해 명령 정보 또는 구동 정보를 디스플레이(1415) 상에 디스플레이할 수 있다.
RF 모듈(1435)는 프로세서(1410)에 연결되어, RF 신호를 송신 및/또는 수신한다. 프로세서(1410)는 통신을 개시하기 위하여 예를 들어, 음성 통신 데이터를 구성하는 무선 신호를 전송하도록 명령 정보를 RF 모듈(1435)에 전달한다. RF 모듈(1435)은 무선 신호를 수신 및 송신하기 위하여 수신기(receiver) 및 전송기(transmitter)로 구성된다. 안테나(1440)는 무선 신호를 송신 및 수신하는 기능을 한다. 무선 신호를 수신할 때, RF 모듈(1435)은 프로세서(1410)에 의해 처리하기 위하여 신호를 전달하고 기저 대역으로 신호를 변환할 수 있다. 처리된 신호는 스피커(1445)를 통해 출력되는 가청 또는 가독 정보로 변환될 수 있다.
이상에서 설명된 실시 예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시 예를 구성하는 것도 가능하다. 본 발명의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시 예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시 예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시 예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시 예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 통상의 기술자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명의 무선 통신 시스템에서 빔 관리 방법은 3GPP LTE/LTE-A 시스템, 5G에 적용되는 예를 중심으로 설명하였으나, 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (14)

  1. 무선 통신 시스템에서 빔 복구(beam recovery)를 수행하는 방법에 있어서, 단말에 의해 수행되는 방법은,
    빔 관리(beam management)에 사용되는 빔 기준 신호(beam reference signal: BRS)를 기지국으로부터 수신하는 단계;
    빔 실패 이벤트(beam failure event)가 검출된 경우, 빔 실패 복구 요청(beam failure recovery request)를 위한 제어 신호를 상기 기지국으로 전송하는 단계; 및
    빔 보고(beam reporting)가 트리거된(triggered) 경우, 특정 자원에서 빔 측정 결과를 상기 기지국으로 보고(report)하는 단계를 포함하되,
    상기 제어 신호는 대체 빔이 존재하는지 여부를 나타내는 지시 정보를 포함하며,
    상기 대체 빔은 상기 빔 관리를 위해 설정된 기준 신호들 중에서 특정 채널 품질보다 큰 채널 품질을 가지는 기준 신호인 것을 특징으로 하는 방법.
  2. 제 1항에 있어서,
    상기 지시 정보는 미리 설정된 비주기적 빔 보고 세팅(beam reporting setting)에 연관된(associated) 선호되는 링크에 대한 정보, 미리 설정된 비주기적 빔 보고 세팅에 연관된 선호되는 자원 세팅(resource setting)에 대한 정보 또는 미리 설정된 비주기적 빔 보고 세팅에 연관된 선호되는 자원 세트(resource set)에 대한 정보인 것을 특징으로 하는 방법.
  3. 제 1항에 있어서,
    상기 제어 신호는 PRACH(Physical Random Access Channel)와 동일한 시간 자원을 사용하며,
    상기 제어 신호는 상기 PRACH와 상기 시간 자원에서 CDM(Code Division Multiplexing) 또는 FDM(Frequency Division Multiplexing)되는 것을 특징으로 하는 방법.
  4. 제 3항에 있어서,
    상기 제어 신호는 PUCCH(Physical Uplink Control Channel)을 통해 전송되며,
    상기 제어 신호는 상기 대체 빔의 존재 유무에 따라 서로 다른 시간 및/또는 주파수 자원, 서로 다른 시퀀스 세트(sequence set), 및/또는 서로 다른 UCI(Uplink Control Information)을 사용하는 것을 특징으로 하는 방법.
  5. 제 4항에 있어서,
    상기 서로 다른 시퀀스 세트는 루트 시퀀스 인덱스(root sequence index) 또는 사이클릭 쉬프트 값(cyclic shift value)에 의해 구별되는 것을 특징으로 하는 방법.
  6. 제 1항에 있어서,
    상기 빔 보고의 트리거링(triggering)을 지시하는 지시 메시지를 상기 기지국으로부터 수신하는 단계를 더 포함하며,
    상기 빔 보고는 상기 지시 메시지에 기초하여 트리거되는 것을 특징으로 하는 방법.
  7. 제 6항에 있어서,
    상기 지시 메시지는 측정 세팅(measurement setting)으로 미리 연관된(pre-associated) 세팅들 내에서 유효(valid) 또는 유효하지 않은(invalid) 링크와 관련된 정보, 상기 측정 세팅(measurement setting)으로 미리 연관된(pre-associated) 세팅들 내에서 유효 또는 유효하지 않은 자원 세팅(resource setting)과 관련된 정보, 상기 측정 세팅(measurement setting)으로 미리 연관된(pre-associated) 세팅들 내에서 유효 또는 유효하지 않은 자원 세트(resource set)와 관련된 정보 또는 빔 보고 모드 설정 정보 중 적어도 하나를 포함하는 것을 특징으로 하는 방법.
  8. 제 7항에 있어서,
    상기 측정 세팅은 하나의 보고 세팅과 두 개의 자원 세팅들이 각각 링크(link)로 연결되거나 또는 하나의 보고 세팅과 하나의 자원 세팅이 링크로 연결되는 것을 특징으로 하는 방법.
  9. 제 8항에 있어서,
    상기 빔 보고 모드 설정 정보는 비주기적 빔 기준 신호의 전송과 비주기적 빔 보고가 함께 트리거되는 제 1 모드 또는 비주기적 빔 보고만 트리거되는 제 2 모드를 지시하는 정보인 것을 특징으로 하는 방법.
  10. 제 9항에 있어서,
    상기 빔 보고 모드 설정 정보가 상기 제 1 모드로 설정된 경우, 상기 특정 자원은 RRC(Radio Resource Control)로 설정된 자원 세팅(resource setting) 또는 자원 세트(resource set) 중 비주기적 자원 세팅 또는 비주기적 자원 세트인 것을 특징으로 하는 방법.
  11. 제 6항에 있어서,
    상기 특정 자원은 상기 지시 메시지를 수신한 슬롯과 동일한 슬롯 또는 상기 지시 메시지를 수신한 슬롯 이후의 활성화된 자원인 것을 특징으로 하는 방법.
  12. 제 10항에 있어서,
    상기 빔 보고 모드 설정 정보가 상기 제 2 모드로 설정된 경우, 상기 특정 자원은 RRC로 설정된 자원 세팅 또는 자원 세트 중 주기적 또는 반-고정적 자원 세팅 또는 자원 세트인 것을 특징으로 하는 방법.
  13. 제 6항에 있어서,
    상기 특정 자원은 상기 지시 메시지를 수신한 슬롯 이전의 활성화된 자원인 것을 특징으로 하는 방법.
  14. 무선 통신 시스템에서 빔 복구(beam recovery)를 수행하기 위한 단말에 있어서,
    무선 신호를 송수신하기 위한 RF 모듈(radio frequency module); 및
    상기 RF 모듈과 기능적으로 연결되어 있는 프로세서를 포함하고,
    상기 프로세서는,
    빔 관리(beam management)에 사용되는 빔 기준 신호(beam reference signal: BRS)를 기지국으로부터 수신하며;
    빔 실패 이벤트(beam failure event)가 검출된 경우, 빔 실패 복구 요청(beam failure recovery request)를 위한 제어 신호를 상기 기지국으로 전송하며; 및
    빔 보고(beam reporting)가 트리거된(triggered) 경우, 특정 자원에서 빔 측정 결과를 상기 기지국으로 보고(report)하도록 제어하되,
    상기 제어 신호는 대체 빔이 존재하는지 여부를 나타내는 지시 정보를 포함하며,
    상기 대체 빔은 상기 빔 관리를 위해 설정된 기준 신호들 중에서 특정 채널 품질보다 큰 채널 품질을 가지는 기준 신호인 것을 특징으로 하는 단말.
KR1020197029170A 2017-03-09 2017-08-21 무선 통신 시스템에서 빔 복구를 수행하는 방법 및 이를 위한 장치 KR20190120373A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762469507P 2017-03-09 2017-03-09
US62/469,507 2017-03-09
PCT/KR2017/009084 WO2018164332A1 (ko) 2017-03-09 2017-08-21 무선 통신 시스템에서 빔 복구를 수행하는 방법 및 이를 위한 장치

Publications (1)

Publication Number Publication Date
KR20190120373A true KR20190120373A (ko) 2019-10-23

Family

ID=63448319

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020197029170A KR20190120373A (ko) 2017-03-09 2017-08-21 무선 통신 시스템에서 빔 복구를 수행하는 방법 및 이를 위한 장치

Country Status (6)

Country Link
US (2) US11539421B2 (ko)
EP (1) EP3595189A4 (ko)
JP (1) JP6898999B2 (ko)
KR (1) KR20190120373A (ko)
CN (2) CN110521134B (ko)
WO (1) WO2018164332A1 (ko)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108632833A (zh) * 2017-03-23 2018-10-09 株式会社Ntt都科摩 波束配置方法、移动台和基站
JP7160813B2 (ja) * 2017-03-24 2022-10-25 富士通株式会社 情報設定装置、監視装置、方法及び通信システム
CN108633043B (zh) * 2017-03-24 2021-06-29 中兴通讯股份有限公司 波束恢复的处理方法及装置
CN108633045A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 一种链路重建方法及设备
CN108923896B (zh) 2017-04-19 2021-03-26 上海朗帛通信技术有限公司 一种被用于寻呼的用户设备、基站中的方法和装置
US11696287B2 (en) * 2017-04-27 2023-07-04 Ntt Docomo, Inc. User terminal and radio communication method
JP7060617B2 (ja) * 2017-05-05 2022-04-26 中▲興▼通▲訊▼股▲ふぇん▼有限公司 リソースを配分するためのシステムおよび方法
KR102580213B1 (ko) * 2017-06-15 2023-09-19 삼성전자주식회사 이동 통신 시스템에서의 데이터 전송 방법 및 장치
US11343876B2 (en) * 2017-09-11 2022-05-24 Apple Inc. Method and apparatus for beam failure recovery
US10873866B2 (en) * 2017-09-27 2020-12-22 Electronics And Telecommunications Research Institute Method for managing radio resources in communication system and apparatus for the same
JP2020535719A (ja) * 2017-09-27 2020-12-03 日本電気株式会社 端末デバイス、ネットワークデバイス、および方法
US10743204B2 (en) * 2017-11-10 2020-08-11 Futurewei Technologies, Inc. System and method for reporting beam information
CN113329503B (zh) * 2017-11-17 2023-10-17 中兴通讯股份有限公司 信息处理方法、通信设备及存储介质
ES2853487T3 (es) * 2017-11-17 2021-09-16 Asustek Comp Inc Método y aparato para el comportamiento de monitoreo del equipo de usuario (UE) para la recuperación del haz en un sistema de comunicación inalámbrico
EP3713340A4 (en) * 2017-11-17 2021-08-18 Lg Electronics Inc. METHOD OF PERFORMING FAILURE RESTORATION IN A WIRELESS COMMUNICATION SYSTEM AND DEVICE FOR DOING IT
CN109842940B (zh) * 2017-11-27 2021-09-07 华为技术有限公司 一种链路恢复方法、终端设备及网络设备
PE20210141A1 (es) * 2017-11-29 2021-01-22 Ntt Docomo Inc Aparato de usuario
EP3729901A4 (en) * 2017-12-22 2021-07-07 ZTE Corporation METHOD AND WIRELESS COMMUNICATION DEVICE FOR PERFORMING FAILURE RECOVERY
CN109981155B (zh) 2017-12-27 2021-08-13 华为技术有限公司 一种波束训练方法及相关设备
JP7157513B2 (ja) * 2017-12-27 2022-10-20 株式会社Nttドコモ 端末、無線通信方法及びシステム
CA3045809A1 (en) * 2018-05-10 2019-11-10 Comcast Cable Communications, Llc Prioritization in beam failure recovery procedures
US11856432B2 (en) * 2018-06-08 2023-12-26 Qualcomm Incorporated Acknowledgement design for multi-transmission configuration indicator state transmission
CN109076365A (zh) * 2018-07-20 2018-12-21 北京小米移动软件有限公司 波束故障恢复请求发送方法、响应方法、装置及存储介质
WO2020032685A1 (ko) * 2018-08-09 2020-02-13 엘지전자 주식회사 무선 통신 시스템에서 빔 실패 검출을 수행하는 방법 및 이에 대한 장치
WO2020051890A1 (zh) * 2018-09-14 2020-03-19 富士通株式会社 评估无线链路质量的方法、参数配置方法、装置和系统
BR112021005272A2 (pt) * 2018-09-21 2021-06-15 Ntt Docomo, Inc. terminal de usuário e método de radiocomunicação
US12063089B2 (en) 2018-09-21 2024-08-13 Apple Inc. Signaling to child nodes for backhaul beam failure in fifth generation (5G) new radio (NR) (5G-NR) integrated access and backhaul (IAB)
US11963151B2 (en) 2018-09-27 2024-04-16 Nokia Technologies Oy Beam failure recovery for serving cell
CN111247825B (zh) * 2018-09-28 2023-09-01 联发科技股份有限公司 用于波束故障恢复的方法、电子设备和计算机可读介质
CN118199694A (zh) * 2018-11-01 2024-06-14 交互数字专利控股公司 非故障小区上的波束故障恢复
US11563510B2 (en) * 2018-12-21 2023-01-24 Qualcomm Incorporated Adaptation of predetermined beam switching
JP7216114B2 (ja) * 2018-12-21 2023-01-31 株式会社Nttドコモ 端末、無線通信方法及びシステム
US11018750B2 (en) 2019-01-03 2021-05-25 Qualcomm Incorporated Recovery mechanism for secondary cell
EP3909274A1 (en) * 2019-01-10 2021-11-17 Convida Wireless, LLC User equipment and base station for managing beam failure detection
US12047150B2 (en) * 2019-02-01 2024-07-23 Lg Electronics Inc. Beam failure reporting method of terminal in wireless communication system, and terminal and base station supporting same
US20200313755A1 (en) * 2019-03-28 2020-10-01 Mediatek Inc. Assistance Information For Doppler Compensation In Non-Terrestrial Networks
WO2020204325A1 (ko) * 2019-03-29 2020-10-08 엘지전자 주식회사 무선 통신 시스템에서 상향링크 데이터 채널의 전력 제어에 기반한 단말의 빔 관리 수행 방법 및 이를 지원하는 단말 및 기지국
WO2020202398A1 (ja) * 2019-03-29 2020-10-08 株式会社Nttドコモ ユーザ端末及び無線通信方法
WO2020204323A1 (ko) * 2019-03-29 2020-10-08 엘지전자 주식회사 무선 통신 시스템에서 상향링크 제어 채널의 전력 제어에 기반한 단말의 채널 상태 정보 보고 방법 및 이를 지원하는 단말 및 기지국
CN111818591B (zh) * 2019-04-10 2022-02-25 华为技术有限公司 链路失败恢复的方法和装置
US20220295302A1 (en) * 2019-08-15 2022-09-15 Ntt Docomo, Inc. Terminal and radio communication method
CN114600547B (zh) * 2019-10-02 2024-08-23 交互数字专利控股公司 联合通信与感测辅助随机接入信道
EP4104496A1 (en) * 2020-02-11 2022-12-21 Nokia Technologies Oy Methods and apparatuses for beam management reporting
US11832329B2 (en) * 2020-06-12 2023-11-28 Qualcomm Incorporated Sidelink DRX and network-assisted sidelink beam failure detection and recovery
CN114071535A (zh) * 2020-08-07 2022-02-18 华为技术有限公司 一种通信方法及装置
CN114080030A (zh) * 2020-08-13 2022-02-22 索尼公司 电子设备、无线通信方法以及计算机可读存储介质
US20220295498A1 (en) * 2021-03-15 2022-09-15 Samsung Electronics Co., Ltd. Method and apparatus for aperiodic csi measurement and reporting
CN114245397B (zh) * 2021-11-24 2024-07-26 中国信息通信研究院 一种随机接入资源与波束映射方法和设备

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10264478B2 (en) * 2011-12-16 2019-04-16 Samsung Electronics Co., Ltd. Methods and apparatus to enhance reliability in millimeter wave wideband communications
EP2954714A2 (en) * 2013-02-07 2015-12-16 Interdigital Patent Holdings, Inc. Interference measurements and management in directional mesh networks
KR102183213B1 (ko) * 2013-05-10 2020-11-25 삼성전자주식회사 무선 통신 시스템에서 송수신 빔을 선택하기 위한 장치 및 방법
CN107005858B (zh) 2015-02-13 2020-09-29 联发科技(新加坡)私人有限公司 波束追踪以及恢复的方法以及用户设备
CN107534466B (zh) * 2015-04-21 2021-03-30 瑞典爱立信有限公司 用于监测无线电链路质量的方法和装置
EP3335494A4 (en) 2015-08-11 2018-08-01 Telefonaktiebolaget LM Ericsson (PUBL) Recovery from beam failure
US10700752B2 (en) * 2016-01-14 2020-06-30 Samsung Electronics Co., Ltd. System, method, and apparatus of beam-tracking and beam feedback operation in a beam-forming based system
US11088747B2 (en) * 2016-04-13 2021-08-10 Qualcomm Incorporated System and method for beam management
US11451976B2 (en) * 2016-06-24 2022-09-20 Asustek Computer Inc. Method and apparatus for performing UE beamforming in a wireless communication system
EP3276851B1 (en) * 2016-07-29 2024-07-10 ASUSTek Computer Inc. Method and apparatus for channel state information report for beam operation in a wireless communication system
US10425139B2 (en) * 2016-09-21 2019-09-24 Samsung Electronics Co., Ltd. Method and apparatus for beam management reference signals in wireless communication systems
US10405353B2 (en) * 2016-09-23 2019-09-03 Samsung Electronics Co., Ltd. Method and apparatus for random access in wireless systems
EP3319244B1 (en) * 2016-11-04 2020-09-09 ASUSTek Computer Inc. Method and apparatus for user equipment beamforming operation in a wireless communication system
US11071160B2 (en) * 2016-11-11 2021-07-20 Qualcomm Incorporated Methods for beam recovery in millimeter wave systems
US10420018B2 (en) * 2016-11-23 2019-09-17 Qualcomm Incorporated Steady-state beam scanning and codebook generation
WO2018129319A1 (en) * 2017-01-06 2018-07-12 Convida Wireless, Llc Mechanisms for efficient access and transmission in nr
CN110521139B (zh) * 2017-01-06 2024-05-24 索尼公司 波束失效恢复
US10148337B2 (en) * 2017-02-01 2018-12-04 Samsung Electronics Co., Ltd. Beam management of downlink data channel and downlink control channel for 5G next radio systems
BR112019015947A2 (pt) * 2017-02-03 2020-03-24 Ntt Docomo, Inc. Terminal e método de radiocomunicação
US10548126B2 (en) * 2017-06-16 2020-01-28 Qualcomm Incorporated Carrier aggregation under different subframe structures in new radio
US11259320B2 (en) * 2017-07-21 2022-02-22 Qualcomm Incorporated Multiple-beam uplink random access channel messages

Also Published As

Publication number Publication date
JP6898999B2 (ja) 2021-07-07
US11539421B2 (en) 2022-12-27
CN110521134A (zh) 2019-11-29
EP3595189A4 (en) 2020-11-04
CN116318301A (zh) 2023-06-23
US20230082579A1 (en) 2023-03-16
US11750266B2 (en) 2023-09-05
EP3595189A1 (en) 2020-01-15
WO2018164332A1 (ko) 2018-09-13
JP2020511834A (ja) 2020-04-16
CN110521134B (zh) 2023-04-04
US20200389220A1 (en) 2020-12-10

Similar Documents

Publication Publication Date Title
KR102083951B1 (ko) 무선 통신 시스템에서 상향링크 채널을 송수신하는 방법 및 이를 위한 장치
US11750266B2 (en) Method for recovering beam in wireless communication system and device therefor
KR102039640B1 (ko) 무선 통신 시스템에서 채널 상태 정보를 보고하기 위한 방법 및 이를 위한 장치
JP7059373B2 (ja) 無線通信システムにおいてビーム失敗復旧を行う方法及びそのための装置
JP7110328B2 (ja) 無線通信システムにおけるビーム失敗復旧を行う方法、及びこのための装置
CN110168995B (zh) 在无线通信系统中发送物理上行链路控制信道的方法及其装置
US11323892B2 (en) Method for transmitting and receiving data on basis of QCL in wireless communication system, and device therefor
KR102182601B1 (ko) 무선 통신 시스템에서 빔 실패 복구를 수행하는 방법 및 이를 위한 장치
US10433312B2 (en) Method of performing uplink transmission in wireless communication system and apparatus therefor
KR102521791B1 (ko) 무선 통신 시스템에서 채널 상태 정보를 보고하는 방법 및 이를 위한 장치
JP7229938B2 (ja) 無線通信システムにおけるチャネル状態情報を報告するための方法、およびこのための装置
US20200068416A1 (en) Method for performing beam recovery in wireless communication system and apparatus therefor
US11140673B2 (en) Method for reporting channel state information in wireless communication system, and apparatus therefor
KR20190117704A (ko) 무선 통신 시스템에서 채널 상태 정보를 측정 및 보고하는 방법 및 이를 위한 장치
KR102137605B1 (ko) 무선 통신 시스템에서 상향링크 채널을 송수신하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X601 Decision of rejection after re-examination
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL NUMBER: 2021101000474; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20210224

Effective date: 20220106