KR20190110478A - 공간 밀도 분석에 기초한 반도체 웨이퍼의 유도식 검사 - Google Patents

공간 밀도 분석에 기초한 반도체 웨이퍼의 유도식 검사 Download PDF

Info

Publication number
KR20190110478A
KR20190110478A KR1020190031744A KR20190031744A KR20190110478A KR 20190110478 A KR20190110478 A KR 20190110478A KR 1020190031744 A KR1020190031744 A KR 1020190031744A KR 20190031744 A KR20190031744 A KR 20190031744A KR 20190110478 A KR20190110478 A KR 20190110478A
Authority
KR
South Korea
Prior art keywords
candidate sample
samples
review
semiconductor wafer
review tool
Prior art date
Application number
KR1020190031744A
Other languages
English (en)
Other versions
KR102272879B1 (ko
Inventor
아리엘 히르스조른
요탐 소퍼
Original Assignee
어플라이드 머티리얼즈 이스라엘 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 어플라이드 머티리얼즈 이스라엘 리미티드 filed Critical 어플라이드 머티리얼즈 이스라엘 리미티드
Publication of KR20190110478A publication Critical patent/KR20190110478A/ko
Application granted granted Critical
Publication of KR102272879B1 publication Critical patent/KR102272879B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/7065Defects, e.g. optical inspection of patterned layer for defects
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70681Metrology strategies
    • G03F7/706831Recipe selection or optimisation, e.g. select or optimise recipe parameters such as wavelength, polarisation or illumination modes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/24Optical enhancement of defects or not directly visible states, e.g. selective electrolytic deposition, bubbles in liquids, light emission, colour change
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • H01L22/34Circuits for electrically characterising or monitoring manufacturing processes, e. g. whole test die, wafers filled with test structures, on-board-devices incorporated on each die, process control monitors or pad structures thereof, devices in scribe line
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8854Grading and classifying of flaws
    • G01N2021/8867Grading and classifying of flaws using sequentially two or more inspection runs, e.g. coarse and fine, or detecting then analysing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

반도체 웨이퍼에 있는, 검토 툴에 의해 검토된 샘플들이 식별될 수 있다. 더욱이, 반도체 웨이퍼에 있는, 검토 툴에 의해 검토되지 않은 후보 샘플이 식별될 수 있다. 반도체 웨이퍼에 있는 후보 샘플의 위치 및 후보 샘플의 위치에 근접한 위치들에 있는 검토된 다수의 샘플들이 결정될 수 있다. 후보 샘플은, 검토를 위해, 후보 샘플의 위치에 근접한 위치들에 있는 복수의 샘플들의 개수에 기초하여 검토 툴에 의해 선택될 수 있다.

Description

공간 밀도 분석에 기초한 반도체 웨이퍼의 유도식 검사{GUIDED INSPECTION OF A SEMICONDUCTOR WAFER BASED ON SPATIAL DENSITY ANALYSIS}
본 개시내용은 일반적으로, 유도식 검사에 관한 것이고, 더 구체적으로, 공간 밀도 분석에 기초한 반도체 웨이퍼의 유도식 검사에 관한 것이다.
반도체 디바이스의 제조는 극초대규모 집적(ultra large scale integration)과 연관된 미크론 미만의 피쳐들을 활용할 수 있다. 그러한 제조 프로세스들은, 제조 프로세스의 주의깊은 모니터링을 필요로 할 수 있는 높은 정밀도 및 균일성을 갖는 반도체 디바이스 피쳐들의 형성을 요구할 수 있다. 예를 들어, 반도체 웨이퍼의 임의의 결함들을 검출하기 위해 반도체 웨이퍼의 빈번하고 상세한 검사가 수행될 수 있다. 상세한 검사는 반도체 웨이퍼의 검사 이미지의 분석에 대응할 수 있다.
다음은, 본 개시내용의 일부 양상들의 기본적인 이해를 제공하기 위해 본 개시내용의 간략화된 요약이다. 이 요약은 본 개시내용의 광범위한 개요가 아니다. 이는 본 개시내용의 핵심적이거나 중요한 요소들을 식별하기 위해 의도된 것도 아니고, 본 개시내용의 특정 구현들의 임의의 범위 또는 청구항들의 임의의 범위를 기술하기 위해 의도된 것도 아니다. 그의 유일한 목적은, 이후에 제시되는 더 상세한 설명에 대한 서두로서 본 개시내용의 일부 개념들을 간략화된 형태로 제시하는 것이다.
본 개시내용의 구현들은, 검토 툴에 의해 검토된, 반도체 웨이퍼에서의 샘플들을 식별하고, 검토 툴에 의해 검토되지 않은, 반도체 웨이퍼에서의 후보 샘플을 식별하기 위해 메모리 및 처리 디바이스를 포함하는 시스템에 대응할 수 있다. 처리 디바이스는 추가로, 반도체 웨이퍼에서의 후보 샘플의 위치를 결정하고, 후보 샘플의 위치에 근접한 위치들에 있는 검토된 샘플들의 개수를 결정할 수 있다. 게다가, 처리 디바이스는, 후보의 위치에 근접한 위치들에 있는 샘플들의 개수에 기초하여, 검토 툴에 의한 검토를 위한 후보 샘플을 선택할 수 있다.
일부 구현들에서, 후보 샘플의 위치에 근접한 위치들에 있는 복수의 샘플들의 개수에 기초하여, 검토 툴에 의한 검토를 위한 후보 샘플을 선택하기 위해서, 처리 디바이스는, 후보 샘플의 위치에 근접한 위치들에 있는 복수의 샘플들의 개수가 임계 개수를 만족시키지 않을 때, 후보 샘플을 검토 툴에 더 제공할 수 있다.
일부 구현들에서, 처리 디바이스는, 검토 툴에 의해 검토되지 않은, 반도체 웨이퍼에서의 후속 후보 샘플을 식별하고, 반도체 웨이퍼에서의 후속 후보 샘플의 후속 위치를 결정하고, 후속 후보 샘플의 후속 위치에 근접한 위치들에 있는 검토된 후보 샘플 및 복수의 샘플들을 포함하는 샘플들의 개수를 결정하고, 후속 후보 샘플의 후속 위치에 근접한 위치들에 있는 샘플들의 개수에 기초하여, 검토 툴에 의해 검토될 후속 후보 샘플을 선택할 수 있다.
일부 구현들에서, 후보 샘플의 위치에 근접한 위치들에 있는 복수의 샘플들의 개수에 기초하여, 검토 툴에 의한 검토를 위한 후보 샘플을 선택하기 위해서, 처리 디바이스는, 후보 샘플을 포함하는, 반도체 웨이퍼의 다이를 더 식별할 수 있는데, 여기서, 후보 샘플의 위치에 근접한 검토된 복수의 샘플들의 위치들이, 후보 샘플을 포함하는 다이에 있다.
일부 구현들에서, 검토 툴은 주사 전자 현미경(SEM)에 대응한다.
일부 구현들에서, 검토 툴에 의한 검토를 위한 후보 샘플의 선택은 추가로, 검토 툴에 의해 검토된 반도체 웨이퍼에서의 복수의 샘플들의 분류 결과들에 기초한다.
일부 구현들에서, 후보 샘플의 위치에 근접한 위치들에 있는 복수의 샘플들의 개수에 기초한, 검토 툴에 의한 검토를 위한 후보 샘플의 선택은 검토 툴에 의해 이전에 검토된 복수의 샘플들의 밀도와 연관된다.
일부 구현들에서, 방법은, 검토 툴에 의해 검토된, 반도체 웨이퍼에서의 샘플들을 식별하고, 검토 툴에 의해 검토되지 않은, 반도체 웨이퍼에서의 후보 샘플을 식별하고, 반도체 웨이퍼에서의 후보 샘플의 위치를 결정하고, 후보 샘플의 위치에 근접한 위치들에 있는 검토된 샘플들의 개수를 결정하고, 후보의 위치에 근접한 위치들에 있는 샘플들의 개수에 기초하여, 검토 툴에 의한 검토를 위한 후보 샘플을 선택할 수 있다.
일부 구현들에서, 비일시적 컴퓨터 판독가능 매체는 명령어들을 포함할 수 있고, 이 명령어들은 처리 디바이스에 의해 실행될 때 처리 디바이스로 하여금, 검토 툴에 의해 검토된, 반도체 웨이퍼에서의 샘플들을 식별하고, 검토 툴에 의해 검토되지 않은, 반도체 웨이퍼에서의 후보 샘플을 식별하고, 반도체 웨이퍼에서의 후보 샘플의 위치를 결정하고, 후보 샘플의 위치에 근접한 위치들에 있는 검토된 샘플들의 개수를 결정하고, 후보의 위치에 근접한 위치들에 있는 샘플들의 개수에 기초하여, 검토 툴에 의한 검토를 위한 후보 샘플을 선택하게 한다.
본 개시내용은 아래에 주어진 상세한 설명으로부터 그리고 본 개시내용의 다양한 구현들의 첨부 도면들로부터 더 완전히 이해될 것이다.
도 1은 본 개시내용의 일부 실시예들에 따른 유도식 검사 시스템의 예시적인 환경을 예시한다.
도 2는 일부 실시예들에 따른, 이전에 검토된 후보 샘플들의 위치들에 기초하여, 검토 툴에 의한 검토를 위한 후보 샘플을 선택하기 위한 예시적인 방법의 흐름도이다.
도 3a는 일부 실시예들에 따른, 검토된 샘플들의 제1 분포를 갖는 반도체 웨이퍼를 예시한다.
도 3b는 일부 실시예들에 따른, 검토된 샘플들의 제1 분포를 갖는 반도체 웨이퍼를 예시한다.
도 4는 본 개시내용의 일부 실시예들에 따른, 이전에 검토된 샘플들의 밀도에 기초하여 검토를 위한 샘플들의 하위세트를 반복적으로 선택하기 위한 예시적인 방법의 흐름도이다.
도 5는 본 개시내용의 구현들이 작동할 수 있는 예시적인 컴퓨터 시스템의 블록도이다.
본 개시내용의 양상들은 공간 밀도 분석에 기초한 반도체 웨이퍼의 유도식 검사에 관한 것이다. 일반적으로, 반도체 웨이퍼 검사 시스템은 반도체 웨이퍼의 검사를 수행하는 데에 사용될 수 있다. 예를 들어, 반도체 웨이퍼 검사 시스템은 반도체 웨이퍼에서의 결함들을 식별하는 데에 사용될 수 있다.
반도체 웨이퍼 검사 시스템은 광학 툴 및 결함 검토 툴을 포함할 수 있다. 예를 들어, 광학 툴은 제조 프로세스 이후 또는 제조 프로세스 동안 반도체 웨이퍼에서의 잠재적 또는 후보 결함들을 식별하는 데에 사용될 수 있다. 후속하여, 결함 검토 툴은 후보 결함들이 실제 결함들인지 또는 결함들이 아닌지(예를 들어, '오경보') 여부를 검토, 분류, 또는 결정하는 데에 사용될 수 있다. 반도체 웨이퍼는 점점 더 작은 피쳐들로 제조될 수 있고, 이러한 더 작은 피쳐들의 검사는 특정 양의 검사 잡음을 수반할 수 있다. 피쳐들이 점점 더 작아지고 반도체 웨이퍼 검사 시스템이 특정 양의 검사 잡음과 연관되기 때문에, 반도체 웨이퍼의 더 작은 피쳐들은, 이들이 실제 결함들인지 또는 오경보들인지 여부를 확인하기 위해 결함 검토 툴에 의해 검토되어야 하는 잠재적 결함들로서 식별될 수 있다. 잠재적 결함들로서 식별되는 많은 수의 피쳐들이 반도체 웨이퍼 상에 있을 수 있기 때문에, 잠재적 결함들 각각을 검토하는 것은 많은 양의 시간을 사용할 수 있다.
본 개시내용의 양상들은 공간 밀도 분석에 기초하여 반도체 웨이퍼의 검사를 유도함으로써 상기 및 다른 결점들을 다룬다. 예를 들어, 반도체 웨이퍼의 검사는, 이전에 검토된, 반도체 웨이퍼에서의 잠재적 결함들의 위치들에 기초할 수 있다. 예를 들어, 광학 툴은 반도체 웨이퍼에서의 다수의 후보 결함들을 식별할 수 있다. 후보 결함들의 제1 하위세트가 식별되고 결함 검토 툴에 제공되어 제1 하위세트로부터의 후보 결함들 중 임의의 결함이 실제 결함들인지 또는 결함들이 아닌지 여부를 결정할 수 있다. 후속하여, 후보 결함들의 제2 하위세트는, 이전에 검토된, 제1 하위세트로부터의 후보 결함들의 위치들에 기초하여 식별될 수 있다. 제2 하위세트에 대한 후보 결함들은, 이전에 검토된, 반도체 웨이퍼 상의 후보 결함들의 위치들의 밀도에 기초하여 식별될 수 있다. 예를 들어, 제2 하위세트에서의 후보 결함들은, 제1 하위세트에서의 후보 결함들의 위치들과 결합된, 제2 하위세트에서의 후보 결함들의 위치들이 반도체 웨이퍼에 걸쳐 대략적으로 균등하게 분포되도록 선택될 수 있다. 이로써, 반도체 웨이퍼의 검사는 유도될 수 있거나, 이전에 검토된 후보 결함들의 위치들에 기초하여 능동적으로 학습될 수 있다. 예를 들어, 반도체 웨이퍼의 검사는 이전의 반복들에서 이전에 검토된 샘플들의 위치들에 기초하여 검토될 후보 샘플들의 하위세트를 선택하는 데에 사용되는 반복적인 결함 샘플링을 포함할 수 있다.
본 개시내용의 장점들은 반도체 웨이퍼에서의 실제 결함들을 식별하기 위한 시간의 양을 감소시키는 것으로부터 비롯된 개선된 결함 시스템을 포함하지만 이에 한정되지 않는다. 예를 들어, 반도체 웨이퍼의 검사는 이전의 검토된 잠재적 결함들의 위치들에 기초하여 선택된 잠재적 결함들의 하위세트들의 반복들에 기초할 수 있기 때문에, 검토된 잠재적 결함들은 반도체 웨이퍼의 특정 위치에 집중되는 대신에 반도체 웨이퍼에 걸쳐 나타날 수 있다. 따라서, 잠재적 결함들의 상이한 유형들의 증가된 개수가 분석될 수 있고, 반도체 웨이퍼의 검사는 더 적은 양의 시간으로 획득되는 더 광범위한 결함 정보를 초래할 수 있다. 예를 들어, 결함들의 상이한 유형들의 상이한 분류들이 식별될 수 있다.
도 1은 유도식 검사 시스템(100)의 예시적인 환경을 예시한다. 일반적으로, 유도식 검사 시스템(100)은 검사 툴(110), 결함 샘플링 구성요소(120), 및 결함 검토 툴(130)을 포함할 수 있다.
도 1에 도시된 바와 같이, 유도식 검사 시스템(100)은 반도체 제조 프로세스의 일부로서 결함들에 대한 대상물(예를 들어, 반도체 웨이퍼로부터의 샘플)의 검사로부터의 정보를 제공하는 데에 사용될 수 있는 검사 툴(110)을 포함한다. 검사는 반도체 제조 프로세스의 일부일 수 있고, 대상물의 제조 동안 수행될 수 있다. 유도식 검사 시스템(100)은 추가로, 대상물 제조 동안 또는 제조 후에 획득된 이미지들을 사용하여 반도체 결함 관련 정보를 자동으로 결정할 수 있다. 예를 들어, 검사 툴(110)은 입력들(105)을 수신할 수 있고, 반도체 웨이퍼에서의 잠재적 또는 후보 결함들(예를 들어, 후보 샘플들)의 맵을 생성할 수 있다. 입력들(105)은 반도체 웨이퍼의 이미지, 설계 데이터(예를 들어, 대상물들을 포함하는 설계의 구조들을 명시하는 컴퓨터 이용 설계(CAD) 데이터), 또는 사용자에 의해 식별된, 반도체 웨이퍼의 특정 부분들을 명시하는 관심 영역들 정보를 포함할 수 있지만, 이에 제한되지 않는다. 일부 실시예들에서, 검사 툴(110)은 검사 이미지들을 캡처하도록 구성될 수 있다. 예를 들어, 검사 툴(110)은 반도체 웨이퍼의 이미지를 획득하기 위해 고속 및/또는 저해상도 광학 시스템을 활용할 수 있다. 결과적인 이미지는 잠재적 결함들의 정보일 수 있다.
검사 툴(110)로부터의 검사 데이터(115)는 결함 샘플링 구성요소(120)에 제공될 수 있다. 검사 데이터(115)는 반도체 웨이퍼에서의 잠재적 결함들의 위치들을 식별할 수 있다. 일부 실시예들에서, 결함 샘플링 구성요소(120)는 결함 검출 시스템의 일부일 수 있다. 결함 검출 시스템은, 검토를 위한 후보 샘플들(예를 들어, 잠재적 결함들)을 선택하기 위해 수신된 검사 데이터(115)를 처리하도록 구성될 수 있다. 예를 들어, 결함 샘플링 구성요소(120)는, 잠재적 결함들이 실제 결함들인지 또는 실제 결함들이 아닌지(예를 들어, 오경보들) 여부를 결정하기 위해 검사 데이터(115)로부터 결함 검토 툴(130)까지 샘플들 또는 잠재적 결함들 중 하나 이상을 선택할 수 있고, 임의의 실제 결함들을 분류할 수 있다. 결함 검토 툴(130)은 검사 툴(110)에 의해 검출되고 결함 샘플링 구성요소(120)에 의해 선택된 잠재적 결함들의 적어도 일부 또는 하위세트의 검토 이미지들을 캡처하도록 구성될 수 있다. 예를 들어, 결함 검토 툴(130)은 검사 툴(110)의 고속 및/또는 저해상도 광학 시스템에 비해 저속 및/또는 고해상도 광학 시스템을 포함할 수 있다. 일부 실시예들에서, 결함 검토 툴(130)은 주사 전자 현미경(SEM)일 수 있다. 그 다음, 결함 검토 툴(130)의 출력(135)은, 결함 검토 툴(130)에 의해 검토될 추가적인 잠재적 결함들을 선택하기 위해 결함 샘플링 구성요소(120)에 제공될 수 있다.
작동 시에, 검사 툴(110)은 반도체 웨이퍼에서의 잠재적 결함들의 위치들을 식별할 수 있다. 검사 툴(110)은 잠재적 결함들의 위치들을 결함 샘플링 구성요소(120)에 제공할 수 있다. 후속하여, 결함 샘플링 구성요소(120)는 검사 툴(110)에 의해 식별된 잠재적 결함들의 하위세트들에 대한 반복적 선택 프로세스를 수행할 수 있다. 예를 들어, 잠재적 결함들의 제1 하위세트가 선택될 수 있고, 제1 하위세트로부터의 잠재적 결함들의 분류를 위해 결함 검토 툴(130)에 제공될 수 있다. 그 다음, 이러한 특정 잠재적 결함들로부터의 결함 정보가 수신될 수 있다. 후속하여, 이 결함 정보는 결함 검토 툴(130)에 의해 검토될 잠재적 결함들의 제2 하위세트에 대한 잠재적 결함들을 식별하는 데에 사용될 수 있다. 제2 하위세트에 대해 선택된 잠재적 결함들은, 이전에 검토된 다른 잠재적 결함들과 유사하지 않은 것으로 식별될 수 있고, 이전에 검토된 잠재적 결함들의 분포에 기초하여 식별될 수 있다.
일부 실시예들에서, 검사 툴(110), 결함 샘플링 구성요소(120), 및 결함 검토 툴(130)은 동일하거나 상이한 위치들에 위치된 상이한 툴들일 수 있거나, 상이한 모드들로 작동되는 단일 툴일 수 있다. 후자의 경우, 툴은 먼저, (예를 들어, 검사 툴(110)의 검사 이미지에 대응하는) 대상물의 관련 영역들의 전부 또는 적어도 큰 부분의 이미지들을 획득하기 위해, 더 낮은 해상도 및 고속으로 작동될 수 있다. 일단 잠재적 결함들이 검출되면, 툴은 (예를 들어, 결함 검토 툴(130) 작동들에 대응하는) 잠재적 결함들과 연관된 특정 위치들을 검사하기 위해 가능하게는 더 낮은 속도 및 더 높은 해상도로 작동될 수 있다. 일부 실시예들에서, 본원에서 설명되는 기능성은 결함 검토 툴에서 구현될 수 있다. 예를 들어, 결함 검토 툴은 결함 검토 툴에 의해 특정 반복들로 검토될 잠재적 결함들을 선택하기 위해 결함 샘플링 구성요소(120)에 대응하는 작동들을 수행할 수 있다. 일부 실시예들에서, 결함 샘플링 구성요소(120)는 독립형 툴 또는 서버에서 구현될 수 있다. 예를 들어, 결함 검사 시스템은 검사 검토 툴, 결함 샘플링 구성요소, 및 결함 검토 툴이 네트워크들을 통해 서로 결합되는 분산 환경에서 구현될 수 있다.
도 2는, 이전에 검토된 후보 샘플들의 위치들에 기초하여, 검토 툴에 의해 검토될 후보 샘플을 선택하기 위한 예시적인 방법(200)의 흐름도이다. 방법(200)은 하드웨어(예를 들어, 처리 디바이스, 회로, 전용 로직, 프로그램가능 로직, 마이크로코드, 디바이스의 하드웨어, 집적 회로 등), 소프트웨어(예를 들어, 처리 디바이스 상에서 작동 또는 실행되는 명령어들), 또는 이들의 조합을 포함할 수 있는 처리 로직에 의해 수행될 수 있다. 일부 실시예들에서, 방법(200)은 도 1의 결함 샘플링 구성요소(120)에 의해 수행될 수 있다.
도 2에 도시된 바와 같이, 방법(200)은, 블록(210)에서, 처리 로직이 반도체 웨이퍼에서의 샘플들을 식별하는 것으로 시작할 수 있다. 예를 들어, 검사 툴은 반도체 웨이퍼에서의 잠재적 또는 후보 결함들을 식별할 수 있다. 일부 실시예들에서, 잠재적 또는 후보 결함들은, 검사 툴에 의해 수신되고 분석된 입력 데이터로부터 식별될 수 있다. 예를 들어, 검사 툴은 반도체 웨이퍼의 이미지, 반도체 웨이퍼의 설계 데이터(예를 들어, 컴퓨터 이용 설계(CAD) 데이터), 관심 영역(ROI) 데이터(예를 들어, 잠재적 결함들을 포함할 수 있는 반도체 웨이퍼의 부분들을 나타내거나 기술하는, 사용자 또는 프로세스에 의해 명시된 정보), 또는 데이터의 다른 그러한 공급원들을 수신하거나 생성할 수 있다. 잠재적 또는 후보 결함들은 반도체 웨이퍼의 맵 상에 식별 또는 표기될 수 있으며, 맵은 반도체 웨이퍼를 따른 위치들에서의 잠재적 또는 후보 결함들의 위치들을 표시한다. 처리 로직은 후속하여, 반도체 웨이퍼에서의 샘플들의 제1 하위세트를 검토 툴에 제공할 수 있다(블록(220)). 예를 들어, 반도체 웨이퍼에서의 후보 결함들의 제1 개수 또는 적절한 하위세트가 검토 툴에 의해 검토되도록 제공될 수 있다. 후보 결함들의 제1 개수는 반도체 웨이퍼에 걸쳐 균등하게 또는 대략적으로 균등하게 분포된 위치들에 기초하여 선택될 수 있다. 예를 들어, 반도체 웨이퍼가 10개의 다이를 포함하고 100개의 잠재적 결함들이 제1 하위세트에 포함되는 경우, 각각의 다이로부터의 10개의 잠재적 결함들이 제1 하위세트에 포함될 수 있다. 동일한 또는 대안적인 실시예들에서, 각각의 다이로부터의 잠재적 결함들의 개수는, 잠재적 결함들의 범위가 각각의 다이로부터 선택되도록 선택될 수 있다. 예를 들어, 8 내지 12개의 잠재적 결함들의 범위가 각각의 다이(또는 다른 그러한 근접 위치들)로부터 선택될 수 있다. 후보 결함들이 실제 결함들인지 또는 실제 결함들이 아닌지(예를 들어, 오경보들) 여부의 결정 및/또는 분류는 검토 툴로부터 수신될 수 있다. 처리 로직은 반도체 웨이퍼에서의 후보 샘플을 식별할 수 있다(블록(230)). 예를 들어, 검토 툴에 의해 아직 검토되지 않은 잠재적 결함이 식별될 수 있다. 잠재적 결함은, 검토 툴에 의해 이전에 검토된 다른 잠재적 결함들과 일치하지 않는 속성들 또는 특성들을 포함할 수 있다. 예를 들어, 식별된 후보 샘플의 서명은 이전에 검토된 샘플의 서명과 일치하지 않을 수 있다. 처리 로직은 추가로, 반도체 웨이퍼에서의 후보 샘플의 위치를 결정할 수 있고(블록(240)), 후보 샘플의 위치에 가까운 위치들에 있는, 제1 하위세트로부터의 후보 샘플들의 위치들을 결정할 수 있다(블록(250)). 예를 들어, 후보 샘플의 위치의 임계 거리 내에 있는 다수의 이전에 검토된 후보 샘플들, 또는 후보 샘플과 동일한 다이 상에 있는 다수의 이전에 검토된 샘플들이 식별될 수 있다. 일부 실시예들에서, 후보 샘플을 포함하는 영역에서의 밀도(예를 들어, 반도체 웨이퍼 상의 검토된 샘플들의 개수)가 식별될 수 있다. 후속하여, 처리 로직은, 후보 샘플의 위치에 근접한 위치들에 있는, 제1 하위세트로부터의 샘플들의 개수에 기초하여, 검토 툴에 의해 검토될 후보 샘플을 선택할 수 있다(블록(260)). 예를 들어, 아직 검토되지 않은 후보 샘플은 검토 툴에 제공될 후보 샘플들의 제2 하위세트에 포함될 수 있다. 이전에 검토된 샘플들과 함께 후보 샘플의 위치의 분포가 반도체 웨이퍼에 걸쳐 대략적으로 균등하게 분포되는 경우, 후보 샘플은 제2 하위세트에 포함될 수 있다. 예를 들어, 후보 샘플은 반도체 웨이퍼의 다이당 이전에 검토된 결함들의 개수 및 후보 샘플을 포함하는 다이 상의 이전의 결함들의 개수에 기초하여 제2 하위세트에 포함될 수 있다.
도 3a는 검토된 샘플들의 제1 분포(300)를 갖는 반도체 웨이퍼를 예시한다. 분포(300)는 도 1의 결함 샘플링 구성요소(120)에 의해 선택된 잠재적 결함들을 포함할 수 있다.
도 3a에 도시된 바와 같이, 분포(300)는, 검토 툴에 의해 검토된 잠재적 결함들의 위치들을 갖는, 반도체 웨이퍼의 맵을 포함할 수 있다. 예를 들어, 반도체 웨이퍼는 다수의 다이들, 예컨대, 다이(310), 다이(320), 다이(330) 및 다이(340)를 포함할 수 있다. 분포(300)는, 잠재적 결함들이 실제 결함들인지 또는 실제 결함들이 아닌지 여부를 결정하기 위해, 검토 툴에 의해 이전에 검토된 잠재적 결함들을 포함할 수 있다. 도시된 바와 같이, 다이(310)는 검토된 10개의 잠재적 결함들을 포함할 수 있고, 다이(320)는 이전에 검토된 9개의 잠재적 결함들을 포함할 수 있고, 다이(330)는 검토된 10개의 잠재적 결함들을 포함할 수 있고, 다이(340)는 이전에 검토된 7개의 잠재적 결함들을 포함할 수 있다. 분포(300)의 이전에 검토된 결함들은 반도체 웨이퍼에 대해 식별된 잠재적 결함들의 제1 하위세트의 일부일 수 있다.
도 3b는 검토된 샘플들의 제2 분포(350)를 갖는 반도체 웨이퍼를 예시한다. 분포(350)는 도 1의 결함 샘플링 구성요소(120)에 의해 선택된 추가적인 잠재적 결함들을 포함할 수 있다.
도 3b에 도시된 바와 같이, 분포(350)는 분포(300)의 이전에 검토된 결함들 및 반도체 웨이퍼의 잠재적 결함들의 제2 하위세트의 일부로서 후속하여 검토된 추가적인 결함들을 포함할 수 있다. 그 다음, 분포(300)에 기초하여, 검토 툴에 의해 검토되도록 추가적인 결함들이 선택될 수 있다. 예를 들어, 도시된 바와 같이, 검토된 잠재적 결함들의 분포(350)가 균등하게 분포되도록, 다이(320) 및 다이(340)로부터의 잠재적 결함들이 검토 툴에 의해 검토되도록 선택될 수 있다. 예를 들어, 각각의 다이(310, 320, 330, 및 340)는 검토 툴에 의해 검토된 동일한 개수의 잠재적 결함들을 포함한다.
달성될 분포가, 다이당 기반으로 균등한 분포로서 설명되지만, 검토될 추가적인 잠재적 결함들을 선택할 때 임의의 그러한 대략적인 분포가 사용될 수 있다. 예를 들어, 분포(350)를 완료하기 위해 선택된 잠재적 결함들은, 각각의 다이가, 다양한 잠재적 결함들을 포함하는 것일 수 있다(예를 들어, 각각의 다이(310, 320, 330, 및 340)는 검토 툴에 의해 검토된 잠재적 결함들의 더 낮은 개수와 더 높은 개수 사이를 포함함). 일부 실시예들에서, 대략적인 분포는 선택된 잠재적 결함의 임계 거리 내의 이전에 검토된 잠재적 결함들의 개수에 대응할 수 있다.
도 4는, 이전에 검토된 샘플들의 밀도에 기초하여 검토를 위한 샘플들의 하위세트를 반복적으로 선택하기 위한 예시적인 방법(400)의 흐름도이다. 방법(400)은 하드웨어(예를 들어, 처리 디바이스, 회로, 전용 로직, 프로그램가능 로직, 마이크로코드, 디바이스의 하드웨어, 집적 회로 등), 소프트웨어(예를 들어, 처리 디바이스 상에서 작동 또는 실행되는 명령어들), 또는 이들의 조합을 포함할 수 있는 처리 로직에 의해 수행될 수 있다. 일부 실시예들에서, 방법(400)은 도 1의 결함 샘플링 구성요소(120)에 의해 수행될 수 있다.
도 4에 도시된 바와 같이, 방법(400)은, 블록(410)에서, 처리 로직이, 실제 결함을 나타내는 특성들을 갖는 잠재적 결함을 식별하는 것으로 시작할 수 있다. 예를 들어, 식별된 잠재적 결함은 실제 결함으로서 분류된 이전에 검토된 잠재적 결함과 특성을 공유할 수 있다. 처리 로직은 이전에 검토된 잠재적 결함들의 위치들을 더 수신할 수 있다(블록(420)). 예를 들어, 이전에 검토된 잠재적 결함들은, 이전에 설명된 바와 같은 결함 샘플링 프로세스의 이전의 반복들에서 선택되었을 수 있다. 처리 로직은 식별된 잠재적 결함에 대응하는 위치를 더 수신할 수 있다(블록(430)). 후속하여, 처리 로직은, 잠재적 결함들 및 이전에 검토된 결함들의 위치들을 포함하는 반도체 웨이퍼의 영역의 밀도가 높은지 여부를 결정할 수 있다(블록(440)). 예를 들어, 결정은 식별된 잠재적 결함의 위치를 포함하는 반도체 웨이퍼의 영역의 밀도와 식별된 잠재적 결함의 위치를 포함하지 않는 반도체 웨이퍼의 영역들의 밀도들의 비교에 기초할 수 있다. 반도체 웨이퍼의 영역의 밀도가 반도체 웨이퍼의 다른 영역들의 밀도들에 비해 높으면, 처리 로직은 검토를 위한 잠재적 결함을 선택하지 않기로 결정할 수 있고(블록(450)), 그 대신에, 이전에 검토된 결함들의 더 낮은 밀도를 갖는 반도체 웨이퍼의 영역에서의 다른 잠재적 결함을 선택할 수 있다(블록(460)). 일부 실시예들에서, 이러한 잠재적 결함을 포함하는 반도체 웨이퍼의 영역의 밀도가 반도체 웨이퍼의 다른 영역들보다 덜 조밀한 것으로 추후에 간주될 때, 검토되도록 선택되지 않은 잠재적 결함은 결함 샘플링 프로세스의 후속 반복 또는 다른 시간에서 선택될 수 있다. 대안적으로, 처리 로직이, 반도체 웨이퍼의 영역의 밀도가 반도체 웨이퍼의 다른 영역들의 밀도들에 비해 높지 않은 것으로 결정하면(예를 들어, 밀도는 반도체 웨이퍼의 다른 영역들의 밀도보다 낮음), 처리 로직은 검토를 위한 잠재적 결함을 선택하기로 결정할 수 있다(블록(470)). 검토를 위한 잠재적 결함의 선택은 후속하여, 잠재적 결함을 포함하는 반도체의 영역의 밀도를 증가시킬 수 있다.
도 5는, 기계로 하여금 본원에 논의된 방법론들 중 임의의 하나 이상을 수행하게 하기 위한 명령어들의 세트가 내부에서 실행될 수 있는 컴퓨터 시스템(500)의 예시적인 기계를 예시한다. 대안적인 구현들에서, 기계는 LAN, 인트라넷, 엑스트라넷 및/또는 인터넷으로 다른 기계들에 연결(예를 들어, 네트워킹)될 수 있다. 기계는 클라이언트-서버 네트워크 환경에서의 서버 또는 클라이언트 기계로서, 또는 피어-투-피어(또는 분산형) 네트워크 환경에서의 피어 기계로서, 또는 클라우드 컴퓨팅 기반구조 또는 환경에서의 서버 또는 클라이언트 기계로서 작동할 수 있다.
기계는 개인용 컴퓨터(PC), 태블릿 PC, 셋톱 박스(STB), 휴대 정보 단말기(PDA), 셀룰러 전화기, 웹 기기, 서버, 네트워크 라우터, 스위치 또는 브리지, 또는 기계에 의해 취해질 동작들을 명시하는 (순차적 또는 다른 방식의) 명령어들의 세트를 실행할 수 있는 임의의 기계일 수 있다. 또한, 단일 기계가 예시되어 있지만, "기계"라는 용어는 또한, 본원에 논의된 방법론들 중 임의의 하나 이상을 수행하도록 명령어들의 세트(또는 복수의 세트들)를 개별적으로 또는 공동으로 실행하는 기계들의 임의의 집합을 포함하는 것으로 간주되어야 한다.
예시적인 컴퓨터 시스템(500)은, 버스(530)를 통해 서로 통신하는, 처리 디바이스(502), 주 메모리(504)(예를 들어, 판독 전용 메모리(ROM), 플래시 메모리, 동적 랜덤 액세스 메모리(DRAM), 예컨대, 동기식 DRAM(SDRAM) 또는 램버스 DRAM(RDRAM) 등), 정적 메모리(506)(예를 들어, 플래시 메모리, 정적 랜덤 액세스 메모리(SRAM) 등) 및 데이터 저장 디바이스(518)를 포함한다.
처리 디바이스(502)는 하나 이상의 범용 처리 디바이스들, 예컨대, 마이크로프로세서, 중앙 처리 유닛 등을 나타낸다. 더 구체적으로, 처리 디바이스는 복합 명령어 세트 컴퓨팅(CISC) 마이크로프로세서, 축소 명령어 세트 컴퓨팅(RISC) 마이크로프로세서, 매우 긴 명령어(VLIW) 마이크로프로세서, 또는 다른 명령어 세트들을 구현하는 프로세서, 또는 명령어 세트들의 조합을 구현하는 프로세서들일 수 있다. 처리 디바이스(502)는 또한, 하나 이상의 특수 목적 처리 디바이스, 예컨대, 주문형 집적 회로(ASIC), 필드 프로그래밍가능 게이트 어레이(FPGA), 디지털 신호 프로세서(DSP), 네트워크 프로세서 등일 수 있다. 처리 디바이스(502)는 본원에 논의된 작동들과 단계들을 수행하기 위한 명령어들(526)을 실행하도록 구성된다.
컴퓨터 시스템(500)은 네트워크(520)를 통해 통신하기 위해 네트워크 인터페이스 디바이스(508)를 더 포함할 수 있다. 컴퓨터 시스템(500)은 또한, 비디오 디스플레이 유닛(510)(예를 들어, 액정 디스플레이(LCD) 또는 음극선관(CRT)), 문자숫자식 입력 디바이스(512)(예를 들어, 키보드), 커서 제어 디바이스(514)(예를 들어, 마우스), 그래픽 처리 유닛(522), 신호 발생 디바이스(516)(예를 들어, 스피커), 그래픽 처리 유닛(522), 비디오 처리 유닛(528), 및 오디오 처리 유닛(532)을 포함할 수 있다.
데이터 저장 디바이스(518)는, 본원에 설명된 방법론들 또는 기능들 중 임의의 하나 이상을 실현하는 소프트웨어 또는 명령어들(526)의 하나 이상의 세트가 저장되어 있는 기계 판독가능 저장 매체(524)(또한, 컴퓨터 판독가능 매체로 알려짐)를 포함할 수 있다. 명령어들(526)은 또한, 컴퓨터 시스템(500)에 의한 명령어들의 실행 동안 완전하게 또는 적어도 부분적으로 주 메모리(504) 내에 그리고/또는 처리 디바이스(502) 내에 상주할 수 있으며, 주 메모리(504) 및 처리 디바이스(502)는 또한, 기계 판독가능 저장 매체를 구성한다.
일 구현에서, 명령어들(526)은 결함 샘플링 구성요소(예를 들어, 도 1의 결함 샘플링 구성요소(120))에 대응하는 기능성을 구현하는 명령어들을 포함한다. 예시적인 구현에서 기계 판독가능 저장 매체(524)가 단일 매체인 것으로 도시되어 있지만, "기계 판독가능 저장 매체"라는 용어는 명령어들의 하나 이상의 세트를 저장하는 단일 매체 또는 복수 매체들(예를 들어, 중앙집중형 또는 분산형 데이터베이스 및/또는 연관된 캐시들 및 서버들)을 포함하는 것으로 간주되어야 한다. "기계 판독가능 저장 매체"라는 용어는 또한, 기계에 의한 실행을 위해 명령어들의 세트를 저장하거나 인코딩할 수 있으며 기계로 하여금 본 개시내용의 방법론들 중 임의의 하나 이상을 수행하게 하는 임의의 매체를 포함하는 것으로 간주되어야 한다. 이에 따라, "기계 판독가능 저장 매체"라는 용어는, 고체 상태 메모리들, 광학 매체들 및 자기 매체들(그러나 이에 제한되지는 않음)을 포함하는 것으로 간주되어야 한다.
전술한 상세한 설명의 일부 부분들은 컴퓨터 메모리 내의 데이터 비트들에 대한 연산들의 상징적 표현들 및 알고리즘들의 측면에서 제시되었다. 이러한 알고리즘 설명들 및 표현들은, 데이터 처리 기술분야의 통상의 기술자가, 그들의 작업의 본질을 관련 기술분야의 다른 통상의 기술자에게 가장 효과적으로 전달하기 위해 사용하는 방식들이다. 알고리즘은 본원에서 그리고 일반적으로, 원하는 결과로 이어지는 자기 부합적인 일련의 작동들인 것으로 생각된다. 이 작동들은 물리적 양들의 물리적 조작들을 요구하는 작동들이다. 꼭 그럴 필요는 없지만 보통, 이러한 양들은 저장, 결합, 비교, 그리고 다른 방식으로 조작될 수 있는 전기 또는 자기 신호들의 형태를 취한다. 이러한 신호들을 비트들, 값들, 요소들, 심볼들, 문자들, 용어들, 숫자들 등으로 지칭하는 것이, 주로, 공통 사용이라는 이유로, 때때로 편리하다는 것이 증명되었다.
그러나, 이러한 용어들 및 유사한 용어들 전부는 적절한 물리적 양들과 연관되어야 하며 단지 이러한 양들에 적용되는 편리한 표시들이라는 점을 염두에 두어야 한다. 위의 논의로부터 명백한 것으로서 다른 방식으로 구체적으로 언급되지 않는 한, 설명 전반에 걸쳐, "식별" 또는 "결정" 또는 "실행" 또는 "수행" 또는 "수집" 또는 "생성" 또는 "전송" 등과 같은 용어들을 활용한 논의들이, 컴퓨터 시스템의 레지스터들 및 메모리들 내에서 물리적 (전기적) 양들로서 표현되는 데이터를 컴퓨터 시스템 메모리들 또는 레지스터들 또는 다른 그러한 정보 저장 디바이스들 내에서 물리적 양들로서 유사하게 표현되는 다른 데이터로 조작하고 변환시키는 컴퓨터 시스템 또는 유사한 전자 컴퓨팅 디바이스의 작동 및 프로세스들을 지칭한다는 것이 이해된다.
본 개시내용은 또한, 본원의 작동들을 수행하기 위한 장치에 관한 것이다. 이러한 장치는 의도된 목적들을 위해 특별히 구성될 수 있거나, 이는 컴퓨터에 저장된 컴퓨터 프로그램에 의해 선택적으로 활성화되거나 재구성되는 범용 컴퓨터를 포함할 수 있다. 그러한 컴퓨터 프로그램은 컴퓨터 판독가능 저장 매체, 예컨대, 각각이 컴퓨터 시스템 버스에 결합된, 플로피 디스크들, 광학 디스크들, CD-ROM들, 및 광자기 디스크들을 포함한 임의의 유형의 디스크, 판독 전용 메모리들(ROM들), 랜덤 액세스 메모리들(RAM들), EPROM들, EEPROM들, 자기 또는 광학 카드들, 또는 전자적 명령어들을 저장하기에 적합한 임의의 유형의 매체들(그러나 이에 제한되지 않음)에 저장될 수 있다.
본원에서 제공된 알고리즘들 및 디스플레이들은 임의의 특정한 컴퓨터 또는 다른 장치와 본질적으로 관련되지 않는다. 다양한 범용 시스템들이, 본원의 교시들에 따라 프로그램들과 함께 사용될 수 있거나, 방법을 수행하기 위해 더 특화된 장치를 구성하기에 편리하다는 것이 증명될 수 있다. 다양한 이러한 시스템들에 대한 구조가 아래의 설명에 설명되는 바와 같이 나타날 것이다. 추가적으로, 본 개시내용은 임의의 특정 프로그래밍 언어와 관련하여 설명되지 않는다. 다양한 프로그래밍 언어들이, 본원에 설명된 바와 같은 본 개시내용의 교시들을 구현하는 데에 사용될 수 있다는 것이 이해될 것이다.
본 개시내용은, 본 개시내용에 따른 프로세스를 수행하도록 컴퓨터 시스템(또는 다른 전자 디바이스들)을 프로그래밍하는 데에 사용될 수 있는 명령어들이 저장되어 있는 기계 판독가능 매체를 포함할 수 있는 컴퓨터 프로그램 제품 또는 소프트웨어로서 제공될 수 있다. 기계 판독가능 매체는 기계(예를 들어, 컴퓨터)에 의해 판독가능한 형태로 정보를 저장하기 위한 임의의 메커니즘을 포함한다. 예를 들어, 기계 판독가능(예를 들어, 컴퓨터 판독가능) 매체는 기계(예를 들어, 컴퓨터) 판독가능 저장 매체, 예컨대, 판독 전용 메모리("ROM"), 랜덤 액세스 메모리("RAM"), 자기 디스크 저장 매체, 광학 저장 매체, 플래시 메모리 디바이스 등을 포함한다.
전술한 명세서에서, 본 개시내용의 구현들은 그의 특정한 예시적인 구현들을 참조하여 설명되었다. 다음의 청구항들에 열거된 바와 같이 본 개시내용의 구현들의 더 넓은 사상 및 범위로부터 벗어나지 않고 그에 대해 다양한 수정들이 이루어질 수 있다는 것이 명백할 것이다. 이에 따라, 본 명세서 및 도면들은 제한적인 의미보다는 예시적인 의미로 간주되어야 한다.

Claims (20)

  1. 시스템으로서,
    메모리; 및
    처리 디바이스를 포함하고, 상기 처리 디바이스는:
    검토 툴에 의해 검토된, 반도체 웨이퍼에서의 복수의 샘플들을 식별하고;
    상기 검토 툴에 의해 검토되지 않은, 상기 반도체 웨이퍼에서의 후보 샘플을 식별하고;
    상기 반도체 웨이퍼에서의 상기 후보 샘플의 위치를 결정하고;
    상기 후보 샘플의 위치에 근접한 위치들에 있는 검토된 상기 복수의 샘플들의 개수를 결정하고;
    상기 후보 샘플의 위치에 근접한 위치들에 있는 상기 복수의 샘플들의 개수에 기초하여, 상기 검토 툴에 의한 검토를 위한 상기 후보 샘플을 선택하도록, 상기 메모리와 작동적으로 결합된, 시스템.
  2. 제1항에 있어서,
    상기 후보 샘플의 위치에 근접한 위치들에 있는 상기 복수의 샘플들의 개수에 기초하여, 상기 검토 툴에 의한 검토를 위한 상기 후보 샘플을 선택하기 위하여, 상기 처리 디바이스는 추가로:
    상기 후보 샘플의 위치에 근접한 위치들에 있는 상기 복수의 샘플들의 개수가 임계 개수를 만족시키지 않을 때 상기 후보 샘플을 상기 검토 툴에 제공하는, 시스템.
  3. 제2항에 있어서,
    상기 처리 디바이스는 추가로:
    상기 검토 툴에 의해 검토되지 않은, 상기 반도체 웨이퍼에서의 후속 후보 샘플을 식별하고;
    상기 반도체 웨이퍼에서의 상기 후속 후보 샘플의 후속 위치를 결정하고;
    상기 후속 후보 샘플의 후속 위치에 근접한 위치들에 있는 검토된 상기 후보 샘플 및 상기 복수의 샘플들을 포함하는 샘플들의 개수를 결정하고;
    상기 후속 후보 샘플의 후속 위치에 근접한 위치들에 있는 상기 샘플들의 개수에 기초하여, 상기 검토 툴에 의해 검토될 상기 후속 후보 샘플을 선택하는, 시스템.
  4. 제1항에 있어서,
    상기 후보 샘플의 위치에 근접한 위치들에 있는 상기 복수의 샘플들의 개수에 기초하여, 상기 검토 툴에 의한 검토를 위한 상기 후보 샘플을 선택하기 위하여, 상기 처리 디바이스는 추가로:
    상기 후보 샘플을 포함하는, 상기 반도체 웨이퍼의 다이를 식별하며, 상기 후보 샘플의 위치에 근접한 검토된 상기 복수의 샘플들의 위치들은 상기 후보 샘플을 포함하는 상기 다이에 있는, 시스템.
  5. 제1항에 있어서,
    상기 검토 툴은 주사 전자 현미경(SEM)에 대응하는, 시스템.
  6. 제1항에 있어서,
    상기 검토 툴에 의한 검토를 위한 상기 후보 샘플의 선택은 추가로, 상기 검토 툴에 의해 검토된, 상기 반도체 웨이퍼에서의 상기 복수의 샘플들의 분류 결과에 기초하는, 시스템.
  7. 제1항에 있어서,
    상기 후보 샘플의 위치에 근접한 위치들에 있는 상기 복수의 샘플들의 개수에 기초한, 상기 검토 툴에 의한 검토를 위한 상기 후보 샘플의 선택은 상기 검토 툴에 의해 이전에 검토된 상기 복수의 샘플들의 밀도와 연관되는, 시스템.
  8. 방법으로서,
    검토 툴에 의해 검토된, 반도체 웨이퍼에서의 복수의 샘플들을 식별하는 단계;
    상기 검토 툴에 의해 검토되지 않은, 상기 반도체 웨이퍼에서의 후보 샘플을 식별하는 단계;
    상기 반도체 웨이퍼에서의 상기 후보 샘플의 위치를 결정하는 단계;
    처리 디바이스에 의해, 상기 후보 샘플의 위치에 근접한 위치들에 있는 검토된 상기 복수의 샘플들의 개수를 결정하는 단계; 및
    상기 후보 샘플의 위치에 근접한 위치들에 있는 상기 복수의 샘플들의 개수에 기초하여, 상기 검토 툴에 의한 검토를 위한 상기 후보 샘플을 선택하는 단계를 포함하는, 방법.
  9. 제8항에 있어서,
    상기 후보 샘플의 위치에 근접한 위치들에 있는 상기 복수의 샘플들의 개수에 기초하여, 상기 검토 툴에 의한 검토를 위한 상기 후보 샘플을 선택하는 단계는:
    상기 후보 샘플의 위치에 근접한 위치들에 있는 상기 복수의 샘플들의 개수가 임계 개수를 만족시키지 않을 때 상기 후보 샘플을 상기 검토 툴에 제공하는 단계를 포함하는, 방법.
  10. 제9항에 있어서,
    방법은:
    상기 검토 툴에 의해 검토되지 않은, 상기 반도체 웨이퍼에서의 후속 후보 샘플을 식별하는 단계;
    상기 반도체 웨이퍼에서의 상기 후속 후보 샘플의 후속 위치를 결정하는 단계;
    상기 후속 후보 샘플의 후속 위치에 근접한 위치들에 있는 검토된 상기 후보 샘플 및 상기 복수의 샘플들을 포함하는 샘플들의 개수를 결정하는 단계; 및
    상기 후속 후보 샘플의 후속 위치에 근접한 위치들에 있는 상기 샘플들의 개수에 기초하여, 상기 검토 툴에 의해 검토될 상기 후속 후보 샘플을 선택하는 단계를 더 포함하는, 방법.
  11. 제8항에 있어서,
    상기 후보 샘플의 위치에 근접한 위치들에 있는 상기 복수의 샘플들의 개수에 기초하여, 상기 검토 툴에 의한 검토를 위한 상기 후보 샘플을 선택하는 단계는:
    상기 후보 샘플을 포함하는 상기 반도체 웨이퍼의 다이를 식별하는 단계 ― 상기 후보 샘플의 위치에 근접한 검토된 상기 복수의 샘플들의 위치들은 상기 후보 샘플을 포함하는 상기 다이에 있음 ― 를 포함하는, 방법.
  12. 제8항에 있어서,
    상기 검토 툴은 주사 전자 현미경(SEM)에 대응하는, 방법.
  13. 제8항에 있어서,
    상기 검토 툴에 의한 검토를 위한 상기 후보 샘플의 선택은 추가로, 상기 검토 툴에 의해 검토된, 상기 반도체 웨이퍼에서의 상기 복수의 샘플들의 분류 결과에 기초하는, 방법.
  14. 제8항에 있어서,
    상기 후보 샘플의 위치에 근접한 위치들에 있는 상기 복수의 샘플들의 개수에 기초한, 상기 검토 툴에 의한 검토를 위한 상기 후보 샘플의 선택은 상기 검토 툴에 의해 이전에 검토된 상기 복수의 샘플들의 밀도와 연관되는, 방법.
  15. 비일시적 컴퓨터 판독가능 매체로서,
    명령어들을 포함하고, 상기 명령어들은 처리 디바이스에 의해 실행될 때:
    검토 툴에 의해 검토된, 반도체 웨이퍼에서의 복수의 샘플들을 식별하는 것;
    상기 검토 툴에 의해 검토되지 않은, 상기 반도체 웨이퍼에서의 후보 샘플을 식별하는 것;
    상기 반도체 웨이퍼에서의 상기 후보 샘플의 위치를 결정하는 것;
    상기 후보 샘플의 위치에 근접한 위치들에 있는 검토된 복수의 샘플들의 개수를 결정하는 것; 및
    상기 후보 샘플의 위치에 근접한 위치들에 있는 상기 복수의 샘플들의 개수에 기초하여, 상기 검토 툴에 의한 검토를 위한 상기 후보 샘플을 선택하는 것을 포함하는 작동들을 상기 처리 디바이스로 하여금 수행하게 하는, 비일시적 컴퓨터 판독가능 매체.
  16. 제15항에 있어서,
    상기 후보 샘플의 위치에 근접한 위치들에 있는 상기 복수의 샘플들의 개수에 기초하여, 상기 검토 툴에 의한 검토를 위한 상기 후보 샘플을 선택하기 위하여, 상기 작동들은:
    상기 후보 샘플의 위치에 근접한 위치들에 있는 상기 복수의 샘플들의 개수가 임계 개수를 만족시키지 않을 때 상기 후보 샘플을 상기 검토 툴에 제공하는 것을 더 포함하는, 비일시적 컴퓨터 판독가능 매체.
  17. 제16항에 있어서,
    상기 작동들은:
    상기 검토 툴에 의해 검토되지 않은, 상기 반도체 웨이퍼에서의 후속 후보 샘플을 식별하는 것;
    상기 반도체 웨이퍼에서의 상기 후속 후보 샘플의 후속 위치를 결정하는 것;
    상기 후속 후보 샘플의 후속 위치에 근접한 위치들에 있는 검토된 상기 후보 샘플 및 상기 복수의 샘플들을 포함하는 샘플들의 개수를 결정하는 것; 및
    상기 후속 후보 샘플의 후속 위치에 근접한 위치들에 있는 상기 샘플들의 개수에 기초하여, 상기 검토 툴에 의해 검토될 상기 후속 후보 샘플을 선택하는 것을 더 포함하는, 비일시적 컴퓨터 판독가능 매체.
  18. 제15항에 있어서,
    상기 후보 샘플의 위치에 근접한 위치들에 있는 상기 복수의 샘플들의 개수에 기초하여, 상기 검토 툴에 의한 검토를 위한 상기 후보 샘플을 선택하기 위하여, 상기 작동들은,
    상기 후보 샘플을 포함하는 상기 반도체 웨이퍼의 다이를 식별하는 단계 ― 상기 후보 샘플의 위치에 근접한 검토된 상기 복수의 샘플들의 위치들은 상기 후보 샘플을 포함하는 상기 다이에 있음 ― 를 더 포함하는, 비일시적 컴퓨터 판독가능 매체.
  19. 제15항에 있어서,
    상기 검토 툴은 주사 전자 현미경(SEM)에 대응하는, 비일시적 컴퓨터 판독가능 매체.
  20. 제15항에 있어서,
    상기 검토 툴에 의한 검토를 위한 상기 후보 샘플의 선택은 추가로, 상기 검토 툴에 의해 검토된, 상기 반도체 웨이퍼에서의 상기 복수의 샘플들의 분류 결과에 기초하는, 비일시적 컴퓨터 판독가능 매체.
KR1020190031744A 2018-03-20 2019-03-20 공간 밀도 분석에 기초한 반도체 웨이퍼의 유도식 검사 KR102272879B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/926,990 2018-03-20
US15/926,990 US11060981B2 (en) 2018-03-20 2018-03-20 Guided inspection of a semiconductor wafer based on spatial density analysis

Publications (2)

Publication Number Publication Date
KR20190110478A true KR20190110478A (ko) 2019-09-30
KR102272879B1 KR102272879B1 (ko) 2021-07-06

Family

ID=67983540

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190031744A KR102272879B1 (ko) 2018-03-20 2019-03-20 공간 밀도 분석에 기초한 반도체 웨이퍼의 유도식 검사

Country Status (4)

Country Link
US (1) US11060981B2 (ko)
KR (1) KR102272879B1 (ko)
CN (2) CN110310897B (ko)
TW (1) TWI695979B (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11360030B2 (en) * 2020-02-04 2022-06-14 Applied Materials Isreal Ltd Selecting a coreset of potential defects for estimating expected defects of interest
WO2024099710A1 (en) * 2022-11-11 2024-05-16 Asml Netherlands B.V. Creating a dense defect probability map for use in a computational guided inspection machine learning model

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150310600A1 (en) * 2011-12-21 2015-10-29 Applied Materials Israel Ltd. System, method and computer program product for classification within inspection images
KR20150140349A (ko) * 2013-04-08 2015-12-15 케이엘에이-텐코 코포레이션 반도체 검사 레시피 생성, 결함 리뷰 및 계측을 위한 적응적 샘플링
JP2017129369A (ja) * 2016-01-18 2017-07-27 株式会社東芝 欠陥検査装置、欠陥検査方法、および欠陥検査プログラム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6420722B2 (en) * 2000-05-22 2002-07-16 Omniprobe, Inc. Method for sample separation and lift-out with one cut
US7796804B2 (en) * 2007-07-20 2010-09-14 Kla-Tencor Corp. Methods for generating a standard reference die for use in a die to standard reference die inspection and methods for inspecting a wafer
JP2009071136A (ja) * 2007-09-14 2009-04-02 Hitachi High-Technologies Corp データ管理装置、検査システムおよび欠陥レビュー装置
KR20100036155A (ko) * 2008-09-29 2010-04-07 매그나칩 반도체 유한회사 실리콘 웨이퍼 및 그의 제조방법
US8593230B2 (en) * 2011-10-14 2013-11-26 Nxp, B.V. Circuit and method for correcting temperature dependence of frequency for piezoresistive oscillators
US9053213B2 (en) * 2012-02-07 2015-06-09 Koninklijke Philps N.V. Interactive optimization of scan databases for statistical testing
US8855399B2 (en) 2012-02-07 2014-10-07 Applied Materials Israel, Ltd. System, a method and a computer program product for CAD-based registration
US8948494B2 (en) * 2012-11-12 2015-02-03 Kla-Tencor Corp. Unbiased wafer defect samples
KR102513021B1 (ko) 2016-05-12 2023-03-21 에이에스엠엘 네델란즈 비.브이. 측정치 획득 방법, 프로세스 단계 수행 장치, 계측 장치, 디바이스 제조 방법
US11041815B2 (en) 2016-05-23 2021-06-22 Hitachi High-Tech Corporation Inspection information generation device, inspection information generation method, and defect inspection device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150310600A1 (en) * 2011-12-21 2015-10-29 Applied Materials Israel Ltd. System, method and computer program product for classification within inspection images
KR20150140349A (ko) * 2013-04-08 2015-12-15 케이엘에이-텐코 코포레이션 반도체 검사 레시피 생성, 결함 리뷰 및 계측을 위한 적응적 샘플링
JP2017129369A (ja) * 2016-01-18 2017-07-27 株式会社東芝 欠陥検査装置、欠陥検査方法、および欠陥検査プログラム

Also Published As

Publication number Publication date
TW201945722A (zh) 2019-12-01
US11060981B2 (en) 2021-07-13
TWI695979B (zh) 2020-06-11
CN110310897A (zh) 2019-10-08
CN116435204A (zh) 2023-07-14
US20190293569A1 (en) 2019-09-26
KR102272879B1 (ko) 2021-07-06
CN110310897B (zh) 2022-12-13

Similar Documents

Publication Publication Date Title
JP6905954B2 (ja) 自動欠陥分類のための未知欠陥除去の最適化
US10818000B2 (en) Iterative defect filtering process
CN110945528B (zh) 产生可用于检查半导体样品的训练集的方法及其系统
JP6285640B2 (ja) 自動及び手動欠陥分類の統合
CN110660694B (zh) 基于系统缺陷的半导体晶片的引导式检验
US20180218492A1 (en) Method And System For Identifying Defects Of Integrated Circuits
US20220222806A1 (en) Machine learning-based classification of defects in a semiconductor specimen
US10133838B2 (en) Guided defect detection of integrated circuits
US11562476B2 (en) Determination of a simulated image of a specimen
KR102272879B1 (ko) 공간 밀도 분석에 기초한 반도체 웨이퍼의 유도식 검사
US11639906B2 (en) Method and system for virtually executing an operation of an energy dispersive X-ray spectrometry (EDS) system in real-time production line
JP2021166284A (ja) 3次元情報の決定
JP2019046253A (ja) 画像処理装置及びプログラム
TW202409550A (zh) 半導體樣品的缺陷偵測
US20220222797A1 (en) Determination of defects and/or edge roughness in a specimen based on a reference image
US12131458B2 (en) Determination of a simulated image of a specimen

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant