KR20190063923A - 유기 화합물, 이를 포함하는 유기발광다이오드 및 유기발광장치 - Google Patents

유기 화합물, 이를 포함하는 유기발광다이오드 및 유기발광장치 Download PDF

Info

Publication number
KR20190063923A
KR20190063923A KR1020170163084A KR20170163084A KR20190063923A KR 20190063923 A KR20190063923 A KR 20190063923A KR 1020170163084 A KR1020170163084 A KR 1020170163084A KR 20170163084 A KR20170163084 A KR 20170163084A KR 20190063923 A KR20190063923 A KR 20190063923A
Authority
KR
South Korea
Prior art keywords
group
substituted
unsubstituted
light emitting
groups
Prior art date
Application number
KR1020170163084A
Other languages
English (en)
Inventor
윤경진
노효진
Original Assignee
엘지디스플레이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지디스플레이 주식회사 filed Critical 엘지디스플레이 주식회사
Priority to KR1020170163084A priority Critical patent/KR20190063923A/ko
Publication of KR20190063923A publication Critical patent/KR20190063923A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/36Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • H01L27/32
    • H01L51/0067
    • H01L51/0072
    • H01L51/5004
    • H01L51/5024
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 디벤조페나진 모이어티에, 연결기를 통하여 헤테로 방향족 모이어티가 연결된 유기 화합물에 관한 것이다. 본 발명에 따른 유기 화합물은 n-타입 특성이 우수한 헤테로 방향족 모이어티를 가지고 있어서, 도펀트의 삼중항 엑시톤과 주변 정공-폴라론의 상호작용에 의한 엑시톤 소광(exciton quenching)을 최소화한다. 이에 따라 전기-산화 및 광-산화에 의한 발광다이오드 소자의 수명이 저하되는 것을 방지할 수 있다. 또한, 본 발명의 유기 화합물은 견고한 구조의 디벤조페나진 모이어티를 가지고 있어서 열 안정성이 우수하며, 에너지 밴드갭과 여기 상태 삼중항 에너지 준위(T1)가 저하되지 않아 발광 효율이 향상된다. 따라서 본 발명의 유기 화합물은 예를 들어 청색을 발광하는 지연 형광 도펀트와 함께 사용되어 발광물질층의 호스트로 활용될 수 있다. 본 발명의 유기 화합물을 적용하여 발광 효율 및 특히 소자 수명이 개선된 유기발광다이오드 및 유기발광장치 등에 활용될 수 있다.

Description

유기 화합물, 이를 포함하는 유기발광다이오드 및 유기발광장치{ORGANIC COMPOUNDS, ORGANIC LIGHT EMITTING DIODE AND ORGNIC LIGHT EMITTING DEVICE HAVING THE COMPOUNDS}
본 발명은 유기 화합물에 관한 것으로, 더욱 상세하게는 발광다이오드의 발광층에 적용될 수 있는 유기 화합물과 이를 포함하는 유기발광다이오드 및 유기발광장치에 관한 것이다.
현재 널리 사용되고 있는 평면표시소자 중 하나로서 유기발광다이오드는 액정표시장치(Liquid Crystal Display Device; LCD)를 빠르게 대체하는 차세대 표시 소자로서 주목을 받고 있다. 유기발광다이오드(organic light emitting diodes; OLED)는 2000 Å 이내의 얇은 유기 박막으로 형성되고, 사용되는 전극의 구성에 따라 단일 방향 또는 양방향으로의 화상 구현이 가능하다. 또한 유기발광다이오드 표시장치는 플라스틱과 같은 플렉서블(flexible) 투명 기판 위에도 소자를 형성할 수 있어서 플렉서블 또는 폴더블(foldable) 표시장치를 구현하기 용이하다. 뿐만 아니라, 유기발광다이오드 표시장치는 낮은 전압에서 구동이 가능하고, 색순도가 우수하여, 액정표시장치에 비하여 큰 장점을 가지고 있다.
유기발광다이오드는 정공 주입 전극(양극)과, 전자 주입 전극(음극)과, 상기 양극과 음극 사이에 형성되는 유기발광층을 포함한다. 발광 효율을 증가시키기 위하여, 유기발광층은 정공 주입 전극 상에 순차적으로 적층되는 정공주입층(HIL), 정공수송층(HTL), 발광물질층(EML), 전자수송층(ETL), 전자주입층(EIL)을 포함할 수 있다. 이때, 양극에서 주입된 정공(hole)과 음극에서 주입된 전자(electron)가 발광물질층에서 결합하여 엑시톤(여기자, exciton)을 형성하여 불안정한 여기 상태(excited state)로 되었다가, 안정한 바닥 상태(ground state)로 돌아오며 빛을 방출한다.
OLED 소자의 실질적인 효율 특성은 최종적으로 외부에 방출되는 빛의 양을 측정한 외부양자효율에 의해 결정된다. 발광물질층에 적용된 발광 재료의 외부양자효율(external quantum efficiency, EQE; ηext)은 하기 식 (1)로 연산할 수 있다.
Figure pat00001
int는 내부양자효율(internal quantum efficiency; IQE); г는 전하 균형 인자(charge balance factor); Φ는 방사양자효율(radiative quantum efficiency); ηout-coupling은 광-추출 효율(out-coupling efficiency)임)
내부양자효율(ηint)은 생성된 엑시톤이 빛의 형태로 전환되는 비율로, 이론적으로 정공과 전자가 만나 엑시톤을 형성할 때, 스핀의 배열에 따라 짝스핀(paired spin) 형태인 단일항 엑시톤(singlet exciton)과 홀스핀(unpaired spin) 형태인 삼중항 엑시톤(triplet exciton)이 1:3의 비율로 생성된다. 형광 물질에서는 단일항 엑시톤만이 발광에 참여하고 나머지 75%의 삼중항 엑시톤은 발광에 참여하지 못한다. 이처럼, OLED 소자에서 단일항과 삼중항 생성 비율이 1:3이고 삼중항 엑시톤을 발광시킬 수 없는 일반적인 형광 재료의 경우 내부양자효율(ηint)은 최대 0.25에 불과하다.
전하균형인자(г)는 엑시톤을 형성하는 정공과 전자의 균형을 의미하는데, 일반적으로 100%의 1:1 매칭(matching)을 가정하여 '1'의 값을 갖는다. 방사양자효율(Φ)은 실질적인 발광 재료의 발광 효율에 관여하는 값으로, 호스트(host)-도펀트(dopant) 시스템에서는 도펀트의 광-발광(photoluminescence, PL)에 의존한다.
광-추출 효율(ηout-coupling)은 발광 재료에서 발광된 빛 중에서 외부로 추출되는 빛의 비율이다. 일반적으로 등방성(isotropic)한 형태의 발광 재료를 열증착하여 박막을 형성할 경우, 개개의 발광 분자는 일정한 방향성을 가지지 않고 무질서한 상태로 존재한다. 이와 같은 무질서한 배열(random orientation) 상태에서, 특별한 광 추출 기법을 적용하지 않았을 경우의 광-추출 효율은 0.2 내지 0.3 수준이다. 따라서 식 1에 나타난 4개의 요소들을 조합하면, 형광 재료를 이용한 유기발광다이오드의 최대 발광 효율은 5 내지 7.5%에 불과하다.
형광 재료가 가지는 낮은 외부양자효율을 해결하기 위하여 인광 재료가 개발되었다. 인광 재료의 경우 단일항 엑시톤이 계간 전이(Intersystem crossing, ISC)를 통해 대부분 삼중항 상태로 전이되고, 삼중항 상태의 에너지는 중금속에 의한 강한 스핀-궤도 커플링(spin-orbit coupling)에 의하여 바닥 상태로의 전이 가 가능하다. 이처럼, 인광 재료는 단일항 에너지와 삼중항 에너지를 모두 빛으로 전환시키는 발광 메커니즘을 가지고 있다. 따라서 인광 재료는 최대 20 내지 30%의 외부양자효율을 구현할 수 있다.
그런데 인광 재료로 일반적으로 사용되는 금속 착화합물은 고가일 뿐만 아니라 수명이 매우 짧아 상용화에 한계가 있다. 특히, 청색 인광 물질의 경우 색순도가 고화질 디스플레이에 적용하기 어려운 수준이며, 수명 또한 상용화 수준에 크게 미치지 못하고 있어서, 상용화된 OLED 패널에 적용되지 못하고 있는 실정이다.
더욱이, 인광 도펀트의 삼중항 에너지가 호스트로 전이(back energy transfer)되는 것을 방지하기 위하여, 인광 호스트의 삼중항 에너지는 인광 도펀트의 삼중항 에너지보다 높아야 한다. 하지만, 유기 방향족 화합물은 공액화(conjugation)가 늘어나거나 고리가 접합(fused ring)되면서 삼중항 에너지 준위가 급격히 낮아지기 때문에, 인광 호스트로 사용될 수 있는 유기 재료는 극히 제한되어 있다. 뿐만 아니라, 종래 인광 호스트들은 높은 삼중항 에너지 준위를 가지기 위하여 에너지 밴드갭이 3.5 내지 4.5 eV 이상으로 설계된다. 에너지 밴드갭이 지나치게 넓은 호스트를 사용할 경우, 전하의 주입 및 수송이 원활하지 않기 때문에, 높은 구동 전압이 요구되며 이에 따라 소자의 수명 특성에 악영향을 미칠 수 있다.
따라서 우수한 발광 효율을 가지면서도 수명 특성이 개선된 발광 가능한 유기 화합물, 이 유기 화합물이 적용된 발광다이오드 및 발광장치에 대한 지속적인 개발이 필요하다.
본 발명의 목적은 에너지 밴드갭과 삼중항 에너지 준위가 유지되면서도 전하 수송 특성이 우수며, 뛰어난 색순도를 가지는 유기 화합물을 제공하고자 하는 것이다.
본 발명의 다른 목적은 발광 효율이 양호하고 향상된 수명 특성을 가지는 유기발광다이오드 및 유기발광장치를 제공하고자 하는 것이다.
본 발명의 일 측면에 따르면, 본 발명은 디벤조페나진(dibenzophenazine) 모이어티에 헤테로 방향족 고리가 적절한 연결기(linker)를 통하여 연결된 유기 화합물을 제공한다.
일례로, 상기 유기 화합물은 하기 화학식 1로 표시될 수 있다.
화학식 1
Figure pat00002
(화학식 1에서 R1은 치환되지 않거나 치환된 C5~C30 호모 아릴기, 치환되지 않거나 치환된 C4~C30 헤테로 아릴기, 치환되지 않거나 치환된 C5~C30 호모 아릴알킬기, 치환되지 않거나 치환된 C4~C30 헤테로 아릴알킬기, 치환되지 않거나 치환된 C5~C30 호모 아릴옥실기, 치환되지 않거나 치환된 C4~C30 헤테로 아릴옥실기, 치환되지 않거나 치환된 C5~C30 호모 아릴아민기 및 치환되지 않거나 치환된 C4~C30 헤테로 아릴아민기로 구성되는 군에서 선택됨; R2는 치환되지 않거나 치환된 C4~C30 헤테로 아릴기, 치환되지 않거나 치환된 C4~C30 헤테로 아릴알킬기, 치환되지 않거나 치환된 C4~C30 헤테로 아릴옥실기 및 치환되지 않거나 치환된 C4~C30 헤테로 아릴아민기로 구성되는 군에서 선택됨; R3 내지 R14는 각각 독립적으로 수소, 중수소, 삼중수소, 치환되지 않거나 치환된 C1~C20 알킬기 및 치환되지 않거나 치환된 C1~C20 알콕시기로 구성되는 군에서 선택됨; L1은 치환되지 않거나 치환된 C5~C30 호모 아릴렌기, 치환되지 않거나 치환된 C4~C30 헤테로 아릴렌기, 치환되지 않거나 치환된 C5~C30 호모 아릴알킬렌기, 치환되지 않거나 치환된 C4~C30 헤테로 아릴알킬렌기, 치환되지 않거나 치환된 C5~C30 호모 아릴옥실렌기 및 치환되지 않거나 치환된 C4~C30 헤테로 아릴옥실렌기로 구성되는 군에서 선택됨)
본 발명의 다른 측면에 따르면 전술한 유기 화합물이 유기발광층에 적용된 유기발광다이오드와, 유기발광다이오드 표시장치를 제공한다.
일례로, 상기 유기 화합물은 발광물질층의 호스트로 사용될 수 있다.
본 발명의 유기 화합물은 디벤조페나진 모이어티에, 적절한 방향족 연결기를 통하여 연결된 헤테로 방향족 모이어티를 가지고 있다. 본 발명에 따른 유기 화합물은 견고한(rigid) 화학적 구조를 가지는 디벤조페나진 모이어티를 가지고 있다. 따라서 방향족 연결기를 통하여 연결되는 헤테로 방향족 모이어티와의 화학 결합을 형성할 때 분자의 회전이 제한된다. 따라서 발광을 구현할 때 회전 모드(vibration mode)에 의하여 에너지가 소멸되는 것을 방지할 수 있다. 또한, 견고한 화학 구조를 가지는 디벤조페나진 모이어티로 인하여 높은 열 안정성을 가지고 있기 때문에, 고온의 열에 의해서도 쉽게 분해되지 않는다.
또한, 견고한 화학 구조의 디벤조페나진 모이어티에 전자와의 친화력이 우수한 헤테로 방향족 모이어티가 방향족 연결기를 통하여 결합되어 있다. 이에 따라 본 발명의 유기 화합물은 전자의 주입 및 이동 특성을 향상시킬 수 있어서 발광 효율을 개선할 수 있다.
뿐만 아니라, 헤테로 방향족 모이어티는 전자끌개(electron withdrawing) 특성을 가지고 있는데, 본 발명에 따른 유기 화합물은 지연 형광 물질과 비교해서 상대적으로 넓은 밴드갭을 가지고 있으며, 삼중항 에너지 준위는 지연 형광 물질의 삼중항 에너지보다 높다. 따라서 본 발명에 따른 유기 화합물을 발광물질층에 적용하면, 도펀트의 삼중항 엑시톤과 주변의 정공-폴라론의 상호작용에 의한 엑시톤 소광이 최소화된다. 이에 따라 전기-산화 및 광-산화에 의하여 발광다이오드 소자의 수명이 저하되는 방지할 수 있으므로, 장수명의 발광 소자를 구현할 수 있다.
따라서 본 발명의 유기 화합물을 유기발광다이오드를 구성하는 유기발광층의 호스트로 사용하고 지연 형광 특성을 보이는 화합물을 도펀트로 사용하여, 발광 효율 및 소자 수명 특성이 개선되며, 고순도의 청색으로 발광할 수 있는 유기발광다이오드와, 유기발광장치를 제조할 수 있다.
도 1은 본 발명의 예시적인 실시형태에 따른 유기 화합물과 함께 사용되는 지연 형광 화합물의 발광 메커니즘을 설명하기 위한 모식도이다.
도 2는 본 발명의 예시적인 실시형태에 따른 유기 화합물을 호스트로 사용하였을 때, 지연 형광 도펀트의 단일항 및 삼중항 에너지 준위와 유기 호스트의 단일항 및 삼중항 에너지 준위의 상관관계를 설명하기 위한 모식도이다.
도 3은 본 발명의 예시적인 실시형태에 따라 유기 화합물이 유기발광층에 적용된 유기발광다이오드를 개략적으로 도시한 단면도이다.
도 4는 본 발명의 다른 예시적인 실시형태에 따라 유기 화합물이 유기발광층에 적용된 유기발광다이오드를 개략적으로 도시한 단면도로서, 전하차단층을 가지는 유기발광다이오드를 개략적으로 도시한 단면도이다.
도 5는 본 발명의 예시적인 실시형태에 따라 유기 화합물이 유기발광층에 적용된 유기발광다이오드를 가지는 발광 장치의 일례로서 유기발광다이오드 표시장치를 개략적으로 도시한 단면도이다.
도 6 내지 도 8은 각각 본 발명의 예시적인 실시예에 따라 합성된 유기 화합물에 대한 NMR 분석 결과를 나타내는 그래프이다.
이하, 필요한 경우에 첨부하는 도면을 참조하면서 본 발명을 보다 상세하게 설명한다.
[유기 화합물]
본 발명에 따른 유기 화합물은 본 발명에 따른 유기 화합물은 하기 화학식 1로 표시될 수 있다.
화학식 1
Figure pat00003
(화학식 1에서 R1은 치환되지 않거나 치환된 C5~C30 호모 아릴기, 치환되지 않거나 치환된 C4~C30 헤테로 아릴기, 치환되지 않거나 치환된 C5~C30 호모 아릴알킬기, 치환되지 않거나 치환된 C4~C30 헤테로 아릴알킬기, 치환되지 않거나 치환된 C5~C30 호모 아릴옥실기, 치환되지 않거나 치환된 C4~C30 헤테로 아릴옥실기, 치환되지 않거나 치환된 C5~C30 호모 아릴아민기 및 치환되지 않거나 치환된 C4~C30 헤테로 아릴아민기로 구성되는 군에서 선택됨; R2는 치환되지 않거나 치환된 C4~C30 헤테로 아릴기, 치환되지 않거나 치환된 C4~C30 헤테로 아릴알킬기, 치환되지 않거나 치환된 C4~C30 헤테로 아릴옥실기 및 치환되지 않거나 치환된 C4~C30 헤테로 아릴아민기로 구성되는 군에서 선택됨; R3 내지 R14는 각각 독립적으로 수소, 중수소, 삼중수소, 치환되지 않거나 치환된 C1~C20 알킬기 및 치환되지 않거나 치환된 C1~C20 알콕시기로 구성되는 군에서 선택됨; L1은 치환되지 않거나 치환된 C5~C30 호모 아릴렌기, 치환되지 않거나 치환된 C4~C30 헤테로 아릴렌기, 치환되지 않거나 치환된 C5~C30 호모 아릴알킬렌기, 치환되지 않거나 치환된 C4~C30 헤테로 아릴알킬렌기, 치환되지 않거나 치환된 C5~C30 호모 아릴옥실렌기 및 치환되지 않거나 치환된 C4~C30 헤테로 아릴옥실렌기로 구성되는 군에서 선택됨)
본 명세서에서 '치환되지 않은' 또는 '치환되지 않거나'란, 수소 원자가 치환된 것을 의미하며, 이 경우 수소 원자는 경수소, 중수소 및 삼중수소가 포함된다.
본 명세서에서 '치환된'에서 치환기는 예를 들어, 치환되지 않거나 할로겐으로 치환된 C1~C20 알킬기, 치환되지 않거나 할로겐으로 치환된 C1~C20 알콕시기, 할로겐, 시아노기, -CF3, 하이드록시기, 카르복시기, 카르보닐기, 아민기, C1~C10 알킬치환 아민기, C5~C30 아릴치환 아민기, C4~C30 헤테로아릴치환 아민기, 니트로기, 하이드라질기(hydrazyl group), 술폰산기, C1~C20 알킬 실릴기, C1~C20 알콕시 실릴기, C3~C30 사이클로알킬 실릴기, C5~C30 아릴 실릴기, C4~C30 헤테로아릴 실릴기, C5~C30 아릴기, C4~C30 헤테로 아릴기 등을 들 수 있지만, 본 발명이 이에 한정되는 것은 아니다. 예를 들어, 화학식 1에서 R5 및/또는 R6가 알킬기로 치환된 경우, 알킬기는 직쇄 또는 측쇄의 C1~C20, 바람직하게는 C1~C10 알킬기일 수 있다.
본 명세서에서 '헤테로 방향족 고리', '헤테로 사이클로알킬렌기', '헤테로 아릴렌기', '헤테로 아릴알킬렌기', '헤테로 아릴옥실렌기', '헤테로 사이클로알킬기', '헤테로 아릴기', '헤테로 아릴알킬기', '헤테로 아릴옥실기', '헤테로 아릴 아민기' 등에서 사용된 용어 '헤테로'는 이들 방향족(aromatic) 또는 지환족(alicyclic) 고리를 구성하는 탄소 원자 중 1개 이상, 예를 들어 1 내지 5개의 탄소 원자가 N, O, S 및 이들의 조합으로 구성되는 군에서 선택된 하나 이상의 헤테로 원자로 치환된 것을 의미한다.
하나의 예시적인 실시형태에서, R1이 치환되지 않거나 치환된 C5~C30 호모 아릴기인 경우, R1은 각각 치환되지 않거나 치환된 페닐기, 바이페닐기, 터페닐기, 나프틸기, 안트라세닐기, 펜탄레닐기, 인데닐기, 인데노인데닐기, 헵탈레닐기, 바이페닐레닐기, 인다세닐기, 페날레닐기, 페난트레닐기, 벤조페난트레닐기, 디벤조페난트레닐기, 아줄레닐기, 파이레닐기, 플루오란테닐기, 트리페닐레닐기, 크라이세닐기, 테트라페닐기, 테트라세닐기, 플레이다에닐기, 파이세닐기, 펜타페닐기, 펜타세닐기, 플루오레닐기, 인데노플루오레닐기 또는 스파이로 플루오레닐기와 같은 축합되지 않거나 축합된(fused) 아릴기일 수 있다.
선택적인 실시형태에서, R1이 치환되지 않거나 치환된 C4~C30 헤테로 아릴기인 경우, R1은 각각 치환되지 않거나 치환된 피롤릴기, 피리디닐기, 피리미디닐기, 피라지닐기, 피리다지닐기, 트리아지닐기, 테트라지닐기, 이미다졸일기, 피라졸일기, 인돌일기, 이소인돌일기, 인다졸일기, 인돌리지닐기, 피롤리지닐기, 카바졸일기, 벤조카바졸일기, 디벤조카바졸일기, 인돌로카바졸일기, 인데노카바졸일기, 벤조퓨로카바졸일기, 벤조티에노카바졸일기, 퀴놀리닐기, 이소퀴놀리닐기, 프탈라지닐기, 퀴녹살리닐기, 시놀리닐기, 퀴나졸리닐기, 퀴노졸리닐기, 퀴놀리지닐기, 퓨리닐기, 프탈라지닐기, 퀴녹살리닐기, 벤조퀴놀리닐기, 벤조이소퀴놀리닐기, 벤조퀴나졸리닐기, 벤조퀴녹살리닐기, 아크리디닐기, 페난트롤리닐기, 페리미디닐기, 페난트리디닐기, 프테리디닐기, 신놀리닐기, 나프타리디닐기, 퓨라닐기, 파이라닐기, 옥사지닐기, 옥사졸일기, 옥사디아졸일기, 트리아졸일기, 디옥시닐기, 벤조퓨라닐기, 디벤조퓨라닐기, 티오파이라닐기, 잔테닐기, 크로메닐기, 이소크로메닐기, 티오아지닐기, 티오페닐기, 벤조티오페닐기, 디벤조티오페닐기, 디퓨로피라지닐기, 벤조퓨로디벤조퓨라닐기, 벤조티에노벤조티오페닐기, 벤조티에노디벤조티오페닐기, 벤조티에노벤조퓨라닐기, 벤조티에노디벤조퓨라닐기 또는 N-치환된 스파이로 플루오레닐기와 같은 축합되지 않거나 축합된 헤테로 아릴기일 수 있다.
한편, 화학식 1에서 R2는 전자끌개(electron withholding)로 작용하는 헤테로 방향족 고리로 이루어질 수 있다. 이에 따라, 본 발명에 따른 유기 화합물은 전자에 대한 결합 및 이동 특성이 향상되어, 이른바 n-타입 소재로 활용될 수 있다. 일례로, R2는 각각 치환되지 않거나 치환된 피롤릴기, 피리디닐기, 피리미디닐기, 피라지닐기, 피리다지닐기, 트리아지닐기, 테트라지닐기, 이미다졸일기, 피라졸일기, 인돌일기, 이소인돌일기, 인다졸일기, 인돌리지닐기, 피롤리지닐기, 카바졸일기, 벤조카바졸일기, 디벤조카바졸일기, 인돌로카바졸일기, 인데노카바졸일기, 벤조퓨로카바졸일기, 벤조티에노카바졸일기, 퀴놀리닐기, 이소퀴놀리닐기, 프탈라지닐기, 퀴녹살리닐기, 시놀리닐기, 퀴나졸리닐기, 퀴노졸리닐기, 퀴놀리지닐기, 퓨리닐기, 프탈라지닐기, 퀴녹살리닐기, 벤조퀴놀리닐기, 벤조이소퀴놀리닐기, 벤조퀴나졸리닐기, 벤조퀴녹살리닐기, 아크리디닐기, 페난트롤리닐기, 페리미디닐기, 페난트리디닐기, 프테리디닐기, 신놀리닐기, 나프타리디닐기, 퓨라닐기, 파이라닐기, 옥사지닐기, 옥사졸일기, 옥사디아졸일기, 트리아졸일기, 디옥시닐기, 벤조퓨라닐기, 디벤조퓨라닐기, 티오파이라닐기, 잔테닐기, 크로메닐기, 이소크로메닐기, 티오아지닐기, 티오페닐기, 벤조티오페닐기, 디벤조티오페닐기, 디퓨로피라지닐기, 벤조퓨로디벤조퓨라닐기, 벤조티에노벤조티오페닐기, 벤조티에노디벤조티오페닐기, 벤조티에노벤조퓨라닐기, 벤조티에노디벤조퓨라닐기 또는 N-치환된 스파이로 플루오레닐기와 같은 축합되지 않거나 축합된 헤테로 아릴기일 수 있다.
일례로, R2를 구성하는 방향족 고리의 개수가 많아지면, 전체 유기 화합물에서 공액화(conjugated) 구조가 지나치게 길어져서, 유기 화합물의 밴드갭이 지나치게 줄어들 수 있다. 따라서 바람직하게는 R2를 구성하는 방향족 고리의 개수는 1 내지 3개일 수 있다. 또한 전자의 주입 및 이동 특성과 관련해서, R2는 각각 5-원자 고리(5-membered ring) 내지 7-원자 고리(7-membered ring)일 수 있으며, 특히 6-원자 고리(6-membered ring)인 것이 바람직할 수 있다. 예를 들어, R2는 치환되지 않거나 치환된 피롤릴기, 트리아지닐기, 이미다졸일기, 피라졸일기, 피리디닐기, 피라지닐기, 피리미디닐기, 피리다지닐기, 퓨라닐기, 벤조퓨라닐기, 디벤조퓨라닐기, 티오페닐기, 벤조티오페닐기 또는 디벤조티오페닐기일 수 있다.
한편, 하나의 비-제한적인 실시형태에서, 화학식 1에서 L1은 디벤조페나진 모이어티와, 헤테로 방향족 고리를 매개하는 연결기(링커)이다. 연결기인 L1은 각각 치환되지 않거나 치환된 방향족 연결기일 수 있다. 예를 들어, L1이 치환되지 않거나 치환된 C5~C30 아릴렌기인 경우, L1은 각각 치환되지 않거나 치환된 페닐렌기(phenylene), 바이페닐렌기(biphenylene), 터페닐렌기(terphenylene), 테트라페닐렌기(tetraphenylene), 인데닐렌기(indenylene), 나프틸렌기(naphthylene), 아줄레닐렌기(azulenylene), 인다세닐렌기(indacenylene), 아세나프틸렌기(acenaphthylene), 플루오레닐렌기(fluorenylene), 스파이로-플루오레닐렌기, 페날레닐렌기(phenalenylene), 페난트레닐렌기(phenanthrenylene), 안트라세닐렌기(anthracenylene), 플루오란트레닐렌기(fluoranthrenylene), 트리페닐레닐렌기(triphenylenylene), 파이레닐렌기(pyrenylene), 크라이세닐렌기(chrysenylene), 나프타세닐렌기(naphthacenylene), 피세닐렌기(picenylene), 페릴레닐렌기(perylenylene), 펜타페닐렌기(pentaphenylene) 및 헥사세닐렌기(hexacenylene)로 구성되는 군에서 선택될 수 있다.
다른 선택적인 실시형태에서, L1이 치환되지 않거나 치환된 C4~C30 헤테로 아릴렌기인 경우, L1은 각각 치환되지 않거나 치환된 피롤릴렌기(pyrrolylene), 이미다졸일렌기(imidazolylene), 피라졸일렌기(pyrazolylene), 피리디닐렌기(pyridinylene), 피라지닐렌기(pyrazinylene), 피리미디닐렌기(pyrimidinylene), 피리다지닐렌기(pyridazinylene), 이소인돌일렌기(isoindolylene), 인돌일렌기(indolylene), 인다졸일렌기(indazolylene), 푸리닐렌기(purinylene), 퀴놀리닐렌기(quinolinylene), 이소퀴놀리닐렌기(isoquinolinylene), 벤조퀴놀리닐렌기(benzoquinolinylene), 프탈라지닐렌기(phthalazinylene), 나프티리디닐렌기(naphthyridinylene), 퀴녹살리닐렌기(quinoxalinylene), 퀴나졸리닐렌기(quinazolinylene), 벤조퀴놀리닐렌기, 벤조이소퀴놀리닐렌기, 벤조퀴나졸리닐렌기, 벤조퀴녹살리닐렌기, 시놀리닐렌기(cinnolinylene), 페난트리디닐렌기(phenanthridinylene), 아크리디닐렌기(acridinylene), 페난트롤리닐렌기(phenanthrolinylene), 페나지닐렌기(phenazinylene), 벤즈옥사졸일렌기(benzoxazolylene), 벤즈이미다졸일렌기(benzimidazolylene), 퓨라닐렌기(furanylene), 벤조퓨라닐렌기(benzofuranylene), 티오페닐렌기(thiophenylene), 벤조티오페닐렌기(benzothiophenylene), 티아졸일렌기(thiazolylene), 이소티아졸일렌기(isothiazolylene), 벤조티아졸일렌기(benzothiazolylene), 이소옥사졸일렌기(isoxazolylene), 옥사졸일렌기(oxazolylene), 트리아졸일렌기, 테트라졸일렌기, 옥사디아졸일렌기(oxadiazolylene), 트리아지닐렌기(triazinylene), 벤조퓨라닐렌기, 디벤조퓨라닐렌기(dibenzofuranylene), 벤조퓨로디벤조퓨라닐렌기, 벤조티에노벤조퓨라닐렌기, 벤조티에노디벤조퓨라닐렌기, 벤조티오페닐렌기, 디벤조티오페닐렌기(dibenzothiophenylene), 벤조티에토벤조티오페닐렌기, 벤조티에노디벤조티오페닐렌기, 카바졸일렌기, 벤조카바졸일렌기, 디벤조카바졸일렌기, 인돌로카바졸일렌기, 인데노카바졸일렌기, 벤조퓨로카바졸일렌기, 벤조티에노카바졸일렌기, 이미다조피리미디닐렌기(imidazopyrimidinylene) 및 이미다조피리디닐렌기(imidazopyridinylene)로 구성되는 군에서 선택될 수 있다.
하나의 예시적인 실시형태에서, L1을 구성하는 방향족 고리의 개수가 많아지면, 전체 유기 화합물에서 공액화(conjugated) 구조가 지나치게 길어져서, 유기 화합물의 에너지 밴드갭이 감소하고 삼중항 에너지 준위가 낮아질 수 있다. 따라서 바람직하게는 L1을 구성하는 방향족 고리의 개수는 1 내지 2개, 더욱 바람직하게는 1개이다. 또한 정공 또는 전자의 주입 및 이동 특성과 관련해서, L1은 각각 5-원자 고리(5-membered ring) 내지 7-원자 고리(7-membered ring)일 수 있으며, 특히 6-원자 고리(6-membered ring)인 것이 바람직할 수 있다. 예를 들어, L1은 치환되지 않거나 치환된 페닐렌기, 바이페닐렌기, 피롤릴렌기, 이미다졸일렌기, 피라졸일렌기, 피리디닐렌기, 피라지닐렌기, 피리미디닐렌기, 피리다지닐렌기, 퓨라닐렌기 또는 티오페닐렌기일 수 있다.
화학식 1로 표시되는 유기 화합물은 5개의 방향족 고리가 축합된 디벤조페나진 모이어티의 코어를 가지고 있어서 견고한 화학 구조를 형성할 수 있으며, 분자량이 증가하여 열 안정성이 향상된다. 견고한 화학 구조를 가지는 디벤조페나진 모이어티와, 디벤조페나진 모이어티의 질소 원자와 연결되는 방향족 고리 등의 치환기 사이의 분자 회전이 감소한다. 발광이 일어나는 과정에서 회전 모드(vibration mode)에 의한 에너지 손실이 감소하기 때문에, 발광 에너지가 소멸되어 소광되지 않고 효율적으로 다른 분자로 전달될 수 있다.
또한, 화학식 1로 표시되는 유기 화합물은 전자와 결합하여 전자를 이동시킬 수 있는 헤테로 방향족 모이어티를 가지고 있어서, 이른바 n-타입 소재로 활용될 수 있다. 종래 지연 형광 특성을 가지는 도펀트와 함께 호스트를 사용하는 경우, 전자에 비하여 정공이 신속하게 발광물질층(EML)으로 주입되면서, 정공과 전자가 재결합하는 영역(recombination zone)이 발광물질층(EML)-전자수송층(ETL)/정공차단층(HBL)의 계면에 형성된다. 이에 따라 도펀트의 삼중항 엑시톤과, 도펀트의 삼중항 엑시톤의 주변에 형성된 정공-폴라론(hole-polaron)이 만나 상호작용할 가능성이 높아지고, 도펀트의 엑시톤이 발광에 기여하지 못하여 비-발광 소멸함에 따라, 발광 재료에 손상(damage)이 가해지면서 소자 수명이 감소한다.
하지만, 본 발명에 따라 n-타입 특성이 강한 헤테로 방향족 모이어티를 가지는 유기 화합물을 호스트로 사용하게 되면, 정공과 전자가 재결합하는 영역(recombination zone)이 발광물질층(EML)-전자수송층(ETL)/정공차단층(HBL)의 계면에서 발광물질층의 중앙 영역으로 이동하게 된다. 이에 따라 도펀트와 정공-폴라론이 만날 가능성이 감소하고, 도펀트와 정공-폴라론의 상호 작용에 기인하는 전기-산화 및 광-산화가 방지되어 비-발광 소멸이 감소하고, 재료에 대한 손상이 감소하면서 소자 수명을 향상시킬 수 있다.
특히, 화학식 1로 표시되는 유기 화합물은 전자 수송 특성이 향상되면서도, 에너지 밴드갭과 삼중항 에너지 준위가 감소하지 않는다. 따라서 본 발명에 따른 유기 화합물은 유기발광다이오드를 구성하는 유기발광층의 호스트(host), 예를 들어 n-타입 호스트로 사용될 수 있다. 특히 이른바 지연 형광(delayed florescence) 화합물을 도펀트로 사용하는 발광물질층에 본 발명의 화합물이 n-타입 호스트로 사용될 수 있는데, 이에 대해서 설명한다.
도 1은 본 발명의 예시적인 실시형태에 따른 유기 화합물과 함께 사용되는 지연 형광 화합물의 발광 메커니즘을 설명하기 위한 모식도이다. 지연 형광은 열-활성지연형광(thermally activated delayed fluorescence; TADF)와 전계-활성지연형광(field activated delayed fluorescence; FADF)로 구분될 수 있는데, 열 또는 전계에 의하여 삼중항 엑시톤이 활성화되어, 종래 형광 물질에서의 최대 발광 효율을 뛰어넘는 이른바 초-형광을 구현할 수 있다.
즉, 지연 형광 화합물은 소자를 구동할 때 발생하는 열이나 전계에 의하여 삼중항 엑시톤이 활성화되어 삼중항 엑시톤도 발광에 관여한다. 일반적으로 지연 형광 화합물은 전자주개(electron donor) 모이어티와 전자받개(electron acceptor) 모이어티를 모두 가지고 있어서 분자내전하이동(intramolecular charge transfer, ICT) 상태가 가능하다. ICT 상태가 가능한 지연 형광 화합물을 도펀트로 이용하면, 지연 형광 화합물에서 단일항 에너지 준위(S1)를 가지는 엑시톤과 삼중항 에너지 준위(T1)를 가지는 엑시톤이 중간 상태인 ICT 상태로 이동하고, 바닥 상태(ground state, S0)로 전이되고(S1 →ICT←T1), 단일항 에너지 준위(S1)를 가지는 엑시톤과 삼중항 에너지 준위(T1)를 가지는 엑시톤이 모두 발광에 참여하기 때문에 내부양자효율이 향상되고, 이에 따라 발광 효율이 향상된다.
종래, 형광 재료는 최고준위점유분자궤도(highest occupied molecular orbital; HOMO)와 최저준위비점유분자궤도(lowest unoccupied molecular orbital; LUMO)가 분자 전체에 퍼져있기 때문에, 단일항 상태와 삼중항 상태 사이의 상호 전환이 불가능하다(선택 규칙, selection rule). 하지만, ICT 상태를 가지는 화합물은 HOMO와 LUMO의 궤도 겹침이 적기 때문에, HOMO 상태의 궤도와 LUMO 상태의 궤도 사이의 상호작용이 작다. 따라서 전자의 스핀 상태 변화가 다른 전자에 영향을 미치지 않게 되고, 선택 규칙을 따르지 않는 새로운 전하 이동 밴드(charge transfer band, CT band)가 형성된다.
즉, 지연 형광 화합물에서 전자받개 모이어티와 전자주개 모이어티가 분자 내에서 이격되어 있기 때문에, 분자 내 쌍극자 모멘트(dipole moment)가 큰 분극 상태로 존재하게 된다. 쌍극자 모멘트가 분극된 상태에서 HOMO와 LUMO 상태의 궤도 간의 상호작용이 작아지고, 삼중항 상태와 단일항 상태에서 중간 상태(ICT)로 전이가 가능해지고, 단일항 에너지 준위(S1)의 엑시톤은 물론이고 삼중항 에너지 준위(T1)의 엑시톤이 모두 발광에 참여한다. 즉, 발광 소자가 구동되면, 열이나 전계에 의하여 25%의 단일항 에너지 준위(S1)를 가지는 엑시톤과 75%의 삼중항 에너지 준위(T1)를 가지는 엑시톤이 모두 중간 상태(ICT)로 전이되고, 다시 바닥 상태(S0)로 떨어지면서 발광이 일어나기 때문에, 내부양자효율은 이론적으로 100%가 된다.
지연 형광을 구현하기 위한 도펀트 및 호스트는 다음과 같은 특징을 가질 필요가 있다. 지연 형광 도펀트는 한 분자 내에 전자주개 모이어티와 전자받개 모이어티를 동시에 가지고 있어 ICT를 구현할 수 있어야 한다. 지연 형광 도펀트는 통상 ICT 착물 형태를 가지는데, 한 분자 내에 전자주개 모이어티와 전자받개 모이어티를 동시에 가지고 있어서 분자 내에서 전자 이동이 쉽게 일어난다. 즉, ICT 착물은 특정 조건에서 전자주개 모이어티에서 하나의 전자가 전자받개 부분으로 이동하여 분자 내에서 전하의 분리가 일어난다. 또한, 삼중항 상태와 단일항 상태에서 모두 에너지 전이가 일어나기 위해서, 지연 형광을 구현할 수 있는 도펀트는 단일항 에너지 준위(S1)와 삼중항 에너지 준위(T1)의 차이(ΔEST)가 0.3 eV 이하, 예를 들어 0.05 내지 0.3 eV이어야 한다. 이와 같이 ΔEST가 적은 화합물은 단일항 상태에서 삼중항 상태로 에너지가 전이되는 계간전이(Inter System Crossing; ICS)가 일어나면서 형광을 나타낼 뿐만 아니라, 상온 수준의 열에너지를 인가하면, 삼중항 상태에서 에너지가 보다 높은 단일항 상태로의 역 계간전이(Reverse Inter System Crossing, RISC)가 일어나고, 단일항 상태가 바닥 상태로 전이되면서 지연 형광을 나타낸다. 지연 형광의 경우 이론적으로 최대 100%의 효율을 얻을 수 있기 때문에, 종래의 중금속을 포함하는 인광 재료와 동등한 내부 양자 효율을 구현할 수 있다.
한편, 지연 형광을 구현하기 위한 호스트는 도펀트에서의 삼중항 상태의 엑시톤이 소광(비발광 소멸, quenching)되지 않고 발광에 관여할 수 있도록 유도할 수 있어야 한다. 도 2는 본 발명의 예시적인 실시형태에 따른 유기 화합물을 호스트로 사용하였을 때, 지연 형광 화합물과의 에너지 준위의 관계를 설명하기 위한 모식도이다.
도 2에 도시한 바와 같이, 지연 형광을 구현하기 위한 호스트는 도펀트와의 에너지 준위가 조절되어야 한다. 먼저, 호스트의 여기 상태 삼중항 에너지 준위(T1 H)는 지연 형광 도펀트의 여기 상태 삼중항 에너지 준위(T1 H)보다 높아야 한다. 호스트의 여기 상태 삼중항 에너지 준위(T1 H)이 지연 형광 도펀트의 여기 상태 삼중항 에너지 준위(T1 D)의 에너지보다 충분히 높지 않은 경우에는, 지연 형광 도펀트의 여기 상태 삼중항 에너지 준위(T1 D)의 엑시톤으로부터 호스트의 여기 상태 삼중항 에너지 준위(T1 H)로의 역-전하 이동이 발생한다. 삼중항 엑시톤이 발광할 수 없는 호스트에서 삼중항 엑시톤이 비-발광 소멸되기 때문에, 지연 형광 도펀트의 삼중항 상태 엑시톤이 발광에 기여하지 못하게 된다.
또한, 호스트와 지연 형광 도펀트의 최고준위점유분자궤도(highest occupied molecular orbital, HOMO) 에너지 준위와 최저준위비점유분자궤도(lowest unoccupied molecular orbital, LUMO) 에너지 준위를 적절하게 조정할 필요가 있다. 일례로, 호스트의 최고준위점유분자궤도 에너지 준위(HOMOH)와 지연 형광 도펀트의 최고준위점유분자궤도 에너지 준위(HOMOD)의 차이(|HOMOH-HOMOD|) 또는 호스트의 최저준위비점유분자궤도 에너지 준위(LUMOH)와 지연 형광 도펀트의 최저준위비점유분자궤도 에너지 준위(LUMOD)의 차이(|LUMOH-LUMOD|)는 0.5 eV 이하, 예를 들어, 0.1 내지 0.5 eV이하인 것이 바람직할 수 있다. 이에 따라, 호스트에서 지연 형광 도펀트로의 전하 이동 효율이 향상되어, 최종적으로 발광 효율을 향상시킬 수 있다.
뿐만 아니라, 지연 형광 도펀트를 적용한 발광 소자의 충분한 수명을 확보하기 위해서는 도펀트의 삼중항 엑시톤(triple exciton)과, 주변의 정공-폴라론(hole-polaron)이 만나 상호작용하면서 야기되는 엑시톤 소광(exciton quenching)을 최소화하여 전기-산화(electro oxidation) 및/또는 광-산화(photo oxidation)를 억제할 필요가 있다. 종래 유기발광층에 적용된 호스트를 사용하는 경우, 각각의 전극에서 이동한 전자와 정공이 만나 엑시톤을 형성하는 재결합 영역(recombination zone)이 발광물질층(EML, 260, 도 4 참조)과, 전자수송층(ETL, 270, 도 4 참조) 또는 정공차단층(HBL, 265, 도 4 참조)의 계면에서 형성된다.
전술한 바와 같이, 지연 형광 도펀트를 사용하면, 지연 형광 도펀트의 삼중항 엑시톤도 발광에 기여한다. 따라서, 엑시톤을 형성하는 재결합 영역이 발광물질층과, 전자수송층/정공차단층의 계면에서 형성되면, 지연 형광 도펀트의 삼중항 엑시톤과 정공-폴라론이 만나 상호작용할 가능성이 높아진다. 지연 형광 도펀트의 삼중항 엑시톤과 정공-플라론의 상호 작용에 의하여, 지연 형광 도펀트의 삼중항 삼중항 에너지가 발광 메커니즘에 기여하지 못하고 비-발광 소멸하게 된다. 비-발광 소멸이 증가하면 유기발광층에 적용된 소재에 스트레스가 가해지면서 손상(damage)이 야기되고, 이에 따라 소자 수명이 감소한다.
반면, 본 발명에 따라 화학식 1로 표시되는 유기 화합물은 전자에 대한 친화력이 우수하여 전자의 이동 속도를 향상시키는 헤테로 방향족 모이어티를 가지는 n-타입 유기 화합물이다. 본 발명의 예시적인 실시형태에 따라, 본 발명의 유기 화합물을 유기발광층의 호스트로 사용하면, 정공과 전자가 만나 엑시톤을 형성하는 재결합 영역이 발광물질층과 인접한 발광층과의 계면이 아니라, 발광물질층의 중앙에 형성된다. 결과적으로, 도펀트의 삼중항 엑시톤과, 정공-폴라론이 만나 상호작용할 가능성이 감소되고, 이들의 상호작용에 기인하여 삼중항 엑시톤이 비-발광 소멸되지 않는다. 따라서 발광 물질의 비-발광 소멸에 의하여 야기되는 발광 재료에 대한 손상이 방지되고, 발광 재료의 손상에 의한 소자 수명의 감소를 방지함으로써, 장수명의 발광 소자를 구현할 수 있다.
뿐만 아니라, 본 발명에 따른 유기 화합물은 n-타입 특성을 가지면서도, 에너지 밴드갭(band gap)이 넓을 뿐만 아니라, 여기 상태의 삼중항 에너지 준위(T1 H)이 높기 때문에, 유기발광층의 호스트로 사용하기에 적합하다. 즉, 본 발명에 따른 유기 화합물을 유기발광층의 호스트로 사용하는 경우, 지연 형광 도펀트의 여기 상태 삼중항 에너지 준위(T1 D)의 엑시톤이 호스트의 삼중항 에너지 준위(T1 H)로의 역-전하 이동이 억제되고, 호스트에서 삼중항 엑시톤의 비-발광 소멸이 억제되면서, 지연 형광 도펀트의 삼중항 상태 엑시톤이 발광에 모두 기여하면서 발광 효율을 향상시킬 수 있다.
하나의 예시적인 실시형태에서, 본 발명에 따른 유기 화합물은 하기 화학식 2로 표시되는 화합물을 포함한다.
화학식 2
Figure pat00004
(화학식 2에서 R21은 C5~C30 호모 아릴기임; R22는 치환되지 않거나 C1~C20 알킬기, C1~C20 알콕시기, C5~C30 호모 아릴기 또는 C4~C30 헤테로 아릴기로 치환된 C4~C30 헤테로 아릴기임; L2는 치환되지 않거나 C1~C20 알킬기로 치환된 C5~C30 호모 아릴렌기, 또는 치환되지 않거나 C1~C20 알킬기로 치환된 C4~C30 헤테로 아릴렌기임)
하나의 예시적인 실시형태에 따르면, 화학식 2에서 R21은 페닐기 또는 바이페닐기일 수 있다. R22는 각각 치환되지 않거나 C1~C20 알킬기, C1~C20 알콕시기, C5~C30 호모 아릴기 또는 C4~C30 헤테로 아릴기로 치환된 피리디닐기, 피라졸일기, 피라지닐기, 피리미디닐기, 피리다지닐기, 트리아지닐기, 벤조퓨라닐기, 디벤조퓨라닐기, 티오페닐기, 벤조티오페닐기 또는 디벤조티오페닐기일 수 있다. 한편, L2는 각각 5-원자 고리(5-membered ring) 내지 7-원자 고리(7-membered ring)일 수 있으며, 특히 6-원자 고리(6-membered ring)인 것이 바람직할 수 있다. 예를 들어, L2는 각각 치환되지 않거나 C1~C20 알킬기로 치환된 페닐렌기 또는 바이페닐렌기와 같은 호모 아릴렌기, 각각 치환되지 않거나 C1~C20 알킬기로 치환된 피라졸일렌기, 피리디닐렌기, 피라지닐렌기, 피리미디닐렌기, 피리다지닐렌기 또는 티오페닐렌기일 수 있지만, 본 발명이 이에 한정되는 것은 아니다.
보다 구체적으로, 본 발명에 따른 유기 화합물은 하기 화학식 3으로 표시되는 어느 하나의 화합물일 수 있다.
화학식 3
Figure pat00005
Figure pat00006
Figure pat00007
Figure pat00008
Figure pat00009
Figure pat00010
화학식 2 또는 화학식 3으로 표시되는 유기 화합물은, 견고한 화학적 구조를 가지는 디벤조페나진 모이어티 코어를 가지고 있어서 열 안정성이 우수하며, 발광 과정에서 회전 모드에 따른 에너지 손실이 없기 때문에 우수한 발광 특성을 갖는다. 또한, n-타입 특성을 가지는 헤테로 방향족 모이어티를 가지고 있다. 따라서 화학식 2 또는 화학식 3으로 표시되는 유기 화합물을 발광물질층에 사용하면, 전자와 정공이 만나 엑시톤이 형성되는 재결합 영역이 발광물질층의 중앙에 형성된다. 이에 따라, 도펀트의 삼중항 엑시톤과 주변 정공-폴라론의 상호작용에 의한 엑시톤 소광(exciton quenching)이 최소화되고, 전기-산화 및 광-산화에 의한 발광다이오드 소자의 수명이 저하되는 것을 방지할 수 있다.
또한, 화학식 2 또는 3으로 표시되는 화합물은 n-타입 특성을 가지면서도 넓은 에너지 밴드갭을 가지며 높은 삼중항 에너지 준위를 갖는다. 화학식 2 또는 화학식 3의 유기 화합물을 발광물질층의 호스트로 사용하는 경우, 도펀트로 에너지를 효율적으로 전달할 수 있기 때문에, 본 발명의 유기 화합물이 적용된 발광 소자의 발광 효율을 향상시킬 수 있다. 또한 발광물질층에 적용된 재료에 대한 손상이 감소하여 장수명의 발광 소자를 제조할 수 있다.
[유기발광다이오드 및 유기발광다이오드 표시장치]
전술한 바와 같이, 화학식 1 내지 화학식 3으로 표시되는 유기 화합물은 유기발광다이오드를 구성하는 유기발광층에서 발광 소재로 사용되어, 색순도가 양호하고, 발광 효율 및 소자 수명 특성이 개선된 발광 소자를 구현할 수 있다. 이에 대해서 설명한다. 도 3은 본 발명의 예시적인 실시형태에 따라 유기 화합물이 유기발광층에 적용된 유기발광다이오드를 개략적으로 도시한 단면도이다.
도 3에 도시한 바와 같이, 본 발명의 제 1 실시형태에 따른 유기발광다이오드(100)는 서로 마주하는 제 1 전극(110) 및 제 2 전극(120)과, 제 1 및 제 2 전극(110, 120) 사이에 위치하는 유기발광층(130)을 포함한다. 예시적인 실시형태에서, 유기발광층(130)은 제 1 전극(110)으로부터 순차적으로 적층되는 정공주입층(hole injection layer, HIL, 140), 정공수송층(hole transfer layer, HTL, 150), 발광물질층(emissitve material layer, EML, 160), 전자수송층(electron transfer layer, ETL, 170) 및 전자주입층(electron injection layer, EIL, 180)을 포함한다.
제 1 전극(110)은 발광물질층(160)에 정공을 공급하는 양극(anode)일 수 있다. 제 1 전극(110)은 일함수(work function) 값이 비교적 큰 도전성 물질, 예를 들어 투명 도전성 산화물(transparent conductive oxide; TCO)로 형성되는 것이 바람직하다. 예를 들어, 제 1 전극(110)은 인듐-주석-산화물 (indium-tin-oxide; ITO), 인듐-아연-산화물(indium-zinc-oxide; IZO), 인듐-주석-아연-산화물(indium-tin-zinc oxide; ITZO), 주석산화물(SnO), 아연산화물(ZnO), 인듐-구리-산화물(indium-copper-oxide; ICO) 및 알루미늄:산화아연(Al:ZnO; AZO)으로 이루어질 수 있다.
제 2 전극(120)은 발광물질층(160)에 전자를 공급하는 음극(cathode)일 수 있다. 제 2 전극(120)은 일함수 값이 비교적 작은 도전성 물질, 예를 들어 알루미늄(Al), 마그네슘(Mg), 칼슘(Ca), 은(Ag), 또는 이들의 합금이나 조합과 같은 반사 특성이 좋은 소재로 이루어질 수 있다.
정공주입층(140)은 제 1 전극(110)과 정공수송층(150) 사이에 위치하는데, 무기물인 제 1 전극(110)과 유기물인 정공수송층(150) 사이의 계면 특성을 향상시킨다. 하나의 예시적인 실시형태에서, 정공주입층(140)은 4,4',4"-트리스(3-메틸페닐아미노)트리페닐아민(4,4',4"-tris(3-methylphenylamino)triphenylamine; MTDATA), 프탈로시아닌구리(copper phthalocyanine; CuPc), 트리스(4-카바조일-9일-페닐)아민(Tris(4-carbazoyl-9-yl-phenyl)amine; TCTA), N,N'-디페닐-N,N'-비스(1-나프틸)-1,1'-바이페닐-4,4"-디아민(N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,1'-biphenyl-4,4"-diamine; NPB; NPD), 1,4,5,8,9,11-헥사아자트리페닐렌헥사카보니트릴(1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile; HAT-CN), 1,3,5-트리스[4-(디페닐아미노)페닐]벤젠(1,3,5-tris[4-(diphenylamino)phenyl]benzene; TDAPB), 폴리(3,4-에틸렌디옥시티오펜)폴리스티렌 술포네이트(poly(3,4-ethylenedioxythiphene)polystyrene sulfonate; PEDOT/PSS) 및/또는 N-(바이페닐-4-일)-9,9-디메틸-N-(4-(9-페닐-9H-카바졸-3-일)페닐)-9H-플루오렌-2-아민(N-(biphenyl-4-yl)-9,9-dimethyl-N-(4-(9-phenyl-9H-carbazol-3-yl)phenyl)-9H-fluoren-2-amine) 등으로 이루어지는 어느 하나의 화합물로 이루어질 수 있다. 유기발광다이오드(100)의 특성에 따라 정공주입층(140)은 생략될 수 있다.
정공수송층(150)은 제 1 전극(110)과 발광물질층(160) 사이에 발광물질층(160)에 인접하여 위치한다. 하나의 예시적인 실시형태에서, 정공수송층(150)은 N,N'-디페닐-N,N'-비스(3-메틸페닐)-1,1'-바이페닐-4,4'-디아민(N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine; TPD), NPD, 4,4'-비스(N-카바졸릴)-1,1'-바이페닐(4,4'-bis(N-carbazolyl)-1,1'-biphenyl; CBP), 1,3-비스(N-카바졸릴)벤젠(1,3-bis(N-carbazolyl)benzene; mCP), N-(비페닐-4-일)-9,9-디메틸-N-(4-(9-페닐-9H-카바졸-3-일)페닐)-9H-플루오렌-2-아민(N-(biphenyl-4-yl)-9,9-dimethyl-N-(4-(9-phenyl-9H-carbazol-3-yl)phenyl)-9H-fluoren-2-amine) 및/또는 N-(바이페닐-4-일)-N-(4-(9-페닐-9H-카바졸-3-일)페닐)바이페닐)-4-아민(N-(biphenyl-4-yl)-N-(4-(9-phenyl-9H-carbazol-3-yl)phenyl)biphenyl-4-amine) 등으로 표시되는 화합물로 이루어질 수 있지만, 본 발명이 이에 한정되는 것은 아니다.
발광물질층(160)은 호스트(host)에 도펀트(dopant)가 도핑되어 이루어질 수 있다. 일례로, 발광물질층(160)은 호스트에 도펀트가 약 1 내지 30 중량% 첨가될 수 있으며, 청색을 발광할 수 있다.
화학식 1 내지 화학식 3으로 표시되는 유기 화합물은 발광물질층(160)의 호스트로 사용될 수 있다. 한편, 발광물질층(160)에 사용되는 도펀트는 지연 형광 특성을 가지는 도펀트일 수 있다.
전술한 바와 같이, 지연 형광 특성을 가지는 화합물은 열이나 전계에 의해 활성화되어 ICT 착물 형태와 같은 중간 에너지 상태를 갖는다. 단일항 에너지 준위를 가지는 엑시톤과 삼중항 에너지 준위를 가지는 엑시톤이 모두 발광에 관여하기 때문에 유기발광다이오드(100)의 발광 효율을 향상시킬 수 있다. 또한, 도펀트의 여기 상태 단일항 에너지 준위(S1)와 여기 상태 삼중항 에너지 준위(T1)의 차이(ΔEST)가 0.3 eV 이하인 경우, 이들 에너지 준위에서 중간 에너지 상태로 전이되고, 최종적으로 바닥 상태로 떨어지면서 도펀트의 양자 효율이 향상될 수 있다. 즉, ΔEST가 작을수록 발광 효율이 증가할 수 있으며, 도펀트의 여기 상태 단일항 에너지 준위(S1 D)과 여기 상태 삼중항 에너지 준위(T1 D) 차이가 0.3 eV 이하인 경우, 열이나 전계에 의하여 단일항 상태 엑시톤과 삼중항 상태 엑시톤이 중간 상태인 ICT 착물 상태로 전이될 수 있다.
또한, 지연 형광에 의한 발광 효율을 극대화하기 위해서, 호스트로 사용되는 화학식 1 내지 화학식 3으로 표시되는 유기 화합물의 여기 상태 삼중항 에너지 준위(T1 H, 도 2 참조)은 도펀트로 사용되는 지연 형광 화합물의 여기 상태 삼중항 에너지 준위(T1 D, 도 2 참조)보다 높아야 한다. 특히, 호스트의 최고준위점유분자궤도 에너지 준위(HOMOH)와 도펀트의 최고준위점유분자궤도 에너지 준위(HOMOD)의 차이(|HOMOH-HOMOD|) 또는 호스트의 최저준위비점유분자궤도 에너지 준위(LUMOH)와 도펀트의 최저준위비점유분자궤도 에너지 준위(LUMOD)의 차이(|LUMOH-LUMOD|)는 0.5 eV 이하인 경우에, 호스트에서 도펀트로 에너지가 효율적으로 전달되면서 발광 효율을 극대화할 수 있다.
하나의 예시적인 실시형태에 따라, 화학식 1 내지 화학식 3으로 표시되는 유기 화합물을 발광물질층(160)의 호스트로 사용하는 경우, 지연 형광 특성을 보이면서 호스트와의 에너지 준위가 적절한 도펀트를 사용하는 것이 바람직할 수 있다. 예를 들어, 지연 형광 도펀트는 청색으로 발광하는 지연 형광 도펀트일 수 있다. 표시장치에 적용할 수 있는 수준의 청색 발광을 구현하기 위하여, 지연 형광 도펀트의 여기 상태 단일항 에너지 준위(S1 D)는 2.7 내지 2.8 eV 수준일 수 있고, 여기 상태 삼중항 에너지 준위(T1 D)는 2.4 내지 2.5 eV 이상일 수 있지만, 본 발명이 이에 한정되는 것은 아니다.
본 발명의 예시적인 실시형태에 따라 발광물질층(160)의 도펀트로 사용될 수 있는 청색 발광 지연 형광 도펀트는 10-(4-(4,6-디페닐-1,3,5-트리아진-2-일)페닐)-9,9-디메틸-9,10-디하이드로아크리딘(10-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-9,9-dimethyl-9,10-dihydroacridine, DMAC-TRZ), 10,10'-(4,4'-술포닐비스(4,1-페닐렌))비스(9,9-디메틸-9,10-디하이드로아크리딘)(10,10'-(4,4'-sulfonylbis(4,1-phenylene))bis(9,9-dimethyl-9,10-dihydroacridine), DMAC-DPS), 10-페닐-10H,10'H-스파이로[아크리딘-9,9'-안트라센]-10'-온(10-phenyl-10H,10'H-spiro[acridine-9,9'-anthracen]-10'-one, ACRSA), 3,6-디벤조일-4,5-디(1-메틸-9-페닐-9H-카바조일)-2-에티닐벤조니트릴(3,6-dibenzoyl-4,5-di(1-methyl-9-phenyl-9H-carbazoyl)-2-ethynylbenzonitrile, Cz-VPN), 9,9',9"-(5-(4,6-디페닐-1,3,5-트리아진-2-일)벤젠-1,2,3-트리일)트리스(9H-카바졸(9,9',9"-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)benzene-1,2,3-triyl) tris(9H-carbazole), TcZTrz), 9,9'-(5-(4,6-디페닐-1,3,5-트리아진-2-일)-1,3-페닐렌)비스(9H-카바졸)(9,9'-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)-1,3-phenylene)bis(9H-carbazole), DczTrz), 9,9',9",9"'-((6-페닐-1,3,5-트리아진-2,4-디일)비스(벤젠-5,3,1-트리일))테트라키스(9H-carbazole)(9,9',9",9"'-((6-phenyl-1,3,5-triazin-2,4-diyl)bis(benzene-5,3,1-triyl))tetrakis(9H-carbazole, DDczTrz), 비스(4-(9H-3,9'-바이카바졸-9-일)페닐)메타논(bis(4-(9H-3,9'-bicarbazol-9-yl)phenyl)methanone, CC2BP), 9'-[4-(4,6-디페닐-1,3,5-트리아진-2-일)페닐]-3,3",6,6"-테트라페닐-9,3',6',9"-터르-9H-카바졸(9'-[4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl]-3,3",6,6"-tetraphenyl-9,3':6',9"-ter-9H-carbazole, BDPCC-TPTA), 9'-[4-(4,6-디페닐-1,3,5-트리아진-2-일)페닐]-9,3':6',9"-터르-9H-카바졸(9'-[4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl]-9,3':,6',9"-ter-9H-carbazole, BCC-TPTA),
9,9'-(4,4'-설포닐비스(4,1-페닐렌))비스(3,6-디메톡시-9H-카바졸)(9,9'-(4,4'-sulfonylbis(4,1-phenylene))bis(3,6-dimethoxy-9H-carbazole), DMOC-DPS), 9-(4-(4,6-디페닐-1,3,5-트리아진-2-일)페닐)-3',6'-디페닐-9H-3,9'-바이카바졸(9-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-3',6'-diphenyl-9H-3,9'-bicarbazole, DPCC-TPTA), 10-(4,6-디페닐-1,3,5-트리아진-2-일)-10H-페녹사진(10-(4,6-diphenyl-1,3,5-triazin-2-yl)-10H-phenoxazine, Phen-TRZ), 9-(4-(4,6-디페닐-1,3,5-트리아진-2-일)페닐)-9H-카바졸(9-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-9H-carbazole, Cab-Ph-TRZ), 1,2,3,5-테트라키스(3,6-카바졸-9-일)-4,6-디시아노벤젠(1,2,3,5-Tetrakis(3,6-carbazol-9-yl)-4,6-dicyanobenzene, 4CzIPN), 2,3,4,6-테트라(9H-카바졸-9-일)-5-플루오로벤조니트릴(2,3,4,6-tetra(9H-carbazol-9-yl)-5-fluorobenzonitrile, 4CZFCN), 10-(4-(4,6-디페닐-1,3,5-트리아진-2-일)페닐)-10H-스파이로[아크리딘-9,9'-플루오렌](10-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-10H-spiro[acridine-9,9'-fluorene], SpiroAC-TRZ) 또는 하기 화학식 4로 표시될 수 있지만, 본 발명이 이에 한정되는 것은 아니다.
화학식 4
Figure pat00011
일례로, 지연 형광 도펀트일 수 있는 도펀트는 발광물질층(160) 중에 1 내지 50 중량%의 비율로 첨가될 수 있지만, 본 발명이 이에 한정되는 것은 아니다.
발광물질층(160)과 제 2 전극(120) 사이에는 전자수송층(170)과 전자주입층(180)이 순차적으로 적층될 수 있다. 전자수송층(170)을 이루는 소재는 높은 전자 이동도가 요구되는데, 원활한 전자 수송을 통하여 발광물질층(160)에 전자를 안정적으로 공급한다.
하나의 예시적인 실시형태에서, 전자수송층(170)은 옥사디아졸(oxadiazole), 트리아졸(triazole), 페난트롤린(phenanthroline), 벤족사졸(benzoxazole), 벤조티아졸(benzothiazole), 벤즈이미다졸, 트리아진 등의 유도체일 수 있다.
일례로, 전자수송층(170)은 트리스(8-하이드록시퀴놀린)알루미늄(tris-(8-hydroxyquinoline aluminum; Alq3), 2-바이페닐-4-일-5-(4-터셔리-부틸페닐)-1,3,4-옥사디아졸(2-biphenyl-4-yl-5-(4-t-butylphenyl)-1,3,4-oxadiazole; PBD), 스파이로-PBD, 리튬 퀴놀레이트(lithium quinolate; Liq), 2-[4-(9,10-디-2-나프탈레닐-2-안트라세닐)페닐]-1-페닐-1H-벤즈이미다졸((2-[4-(9,10-di-2-naphthalenyl-2-anthracenyl)phenyl]-1-phenyl-1H-benzimidazole), 비스(2-메틸-8-퀴놀리노라토-N1,O8)-(1,1'-바이페닐-4-올라토)알루미늄(Bis(2-methyl-8-quinolinolato-N1,O8)-(1,1'-biphenyl-4-olato)aluminum; BAlq), 3-(바이페닐-4-일)-5-(4-터르부틸페닐)-4-페닐-4H-1,2,4-트리아졸(3-(biphenyl-4-yl)-5-(4-terbutylphenyl)-4-phenyl-4H-1,2,4-triazole; TAZ), 4,7-디페닐-1,10-페난트롤린(4,7-diphenyl-1,10-phenanthroline; Bphen), 트리스(페닐퀴녹살린)(tris(phenylquinoxaline; TPQ), 및/또는 1,3,5-트리스(N-페닐벤즈이미다졸-2-일)벤젠(1,3,5-tris(N-phenylbenzimiazole-2-yl)benzene; TPBi) 등으로 이루어질 수 있지만, 본 발명이 이에 한정되는 것은 아니다.
전자주입층(180)은 제 2 전극(120)과 전자수송층(170) 사이에 위치하는데, 제 2 전극(120)의 특성을 개선하여 소자의 수명을 개선할 수 있다. 하나의 예시적인 실시형태에서, 전자주입층(180)의 소재로는 LiF, CsF, NaF, BaF2 등의 알칼리 할라이드계 물질 및/또는 Liq(lithium quinolate), 리튬 벤조에이트(lithium benzoate), 소듐 스테아레이트(sodium stearate) 등의 유기금속계 물질이 사용될 수 있지만, 본 발명이 이에 한정되는 것은 아니다.
본 발명의 예시적인 실시형태에 따른 유기발광다이오드(100)는 유기발광층(130)을 구성하는 발광물질층(160)에 지연 형광 특성을 가지는 도펀트를 가지고 있다. 단일항 에너지 상태 및 삼중항 에너지 상태의 엑시톤이 모두 발광에 관여하기 때문에, 발광 효율이 향상된다. 또한, 발광물질층(160)에 화학식 1 내지 화학식 3으로 표시되는 유기 화합물로 이루어지는 호스트를 포함하고 있다.
화학식 1 내지 화학식 3으로 표시되는 유기 화합물은 n-타입 특성을 가지는 헤테로 방향족 모이어티를 포함하고 있기 때문에, 화학식 1 내지 화학식 3으로 표시되는 유기 화합물을 발광물질층에 사용하면, 전자와 정공이 만나 엑시톤이 형성되는 재결합 영역이 발광물질층과 전자수송층의 계면이 아니라, 발광물질층의 중앙에 형성된다. 이에 따라, 도펀트의 삼중항 엑시톤과 주변 정공-폴라론의 상호작용에 의한 엑시톤 소광(exciton quenching)이 최소화되고, 전기-산화 및 광-산화에 의한 발광다이오드 소자의 수명이 저하되는 것을 방지할 수 있다. 또한, 본 발명의 유기 화합물은 n-타입 특성을 가지면서도 에너지 밴드갭이 넓고 삼중항 에너지 준위가 높다. 견고한 디벤조페나진 모이어티를 가지고 있어서 열 안정성이 높고, 발광 과정에서 에너지 손실 없이 다른 분자에 에너지를 효율적으로 전달할 수 있다. 따라서 화학식 1 내지 화학식 3으로 표시되는 유기 화합물을 발광층에 사용하여 발광 효율이 향상되고, 소자 수명이 개선되며 색순도가 양호한 발광다이오드(100)를 구현할 수 있다.
한편, 본 발명에 따른 유기발광다이오드는 1개 이상의 엑시톤 차단층을 더욱 포함할 수 있다. 도 4는 본 발명의 예시적인 제 2 실시형태에 따라 인광 화합물이 적용된 유기발광다이오드를 개략적으로 도시한 단면도이다. 도 4에 도시한 바와 같이, 본 발명의 제 2 실시형태에 따른 유기발광다이오드(200)는 서로 마주하는 제 1 전극(210) 및 제 2 전극(220)과, 제 1 및 제 2 전극(210, 220) 사이에 위치하는 유기발광층(230)을 포함한다.
예시적인 실시형태에서, 유기발광층(230)은 제 1 전극(210)으로부터 순차적으로 적층되는 정공주입층(240), 정공수송층(250), 발광물질층(260), 전자수송층(270) 및 전자주입층(280)을 포함한다. 또한, 유기발광층(230)은 정공수송층(250)과 발광물질층(260) 사이에 위치하는 제 1 엑시톤 차단층인 전자차단층(electron blocking layer, EBL, 255) 및/또는 발광물질층(260)과 전자수송층(270) 사이에 위치하는 제 2 엑시톤 차단층인 정공차단층(hole blocking layer, HBL, 265)을 더욱 포함한다.
전술한 바와 같이, 제 1 전극(210)은 양극일 수 있으며, 일함수 값이 비교적 큰 도전성 물질인 ITO, IZO, ITZO, , SnO, ZnO, ICO 및 AZO 등으로 이루어질 수 있다. 제 2 전극(220)은 음극일 수 있으며, 일함수 값이 비교적 적은 도전성 물질인 Al, Mg, Ca, Ag 또는 이들의 합금이나 조합으로 이루어질 수 있다.
정공주입층(240)은 제 1 전극(210)과 정공수송층(22) 사이에 위치한다. 정공주입층(240)은 MTDATA, CuPc, TCTA, NPB(NPD), HAT-CN, TDAPB, PEDOT/PSS 및/또는 N-(비페닐-4-일)-9,9-디메틸-N-(4-(9-페닐-9H-카바졸-3-일)페닐)-9H-플루오렌-2-아민 등으로 이루어지는 어느 하나의 화합물로 이루어질 수 있다. 유기발광다이오드(200)의 특성에 따라 정공주입층(240)은 생략될 수 있다.
정공수송층(250)은 제 1 전극(210)과 발광물질층(260) 사이에 발광물질층(260)에 인접하여 위치한다. 정공수송층(250)은 TPD, NPD, CBP, mCP, N-(비페닐-4-일)-9,9-디메틸-N-(4-(9-페닐-9H-카바졸-3-일)페닐)-9H-플루오렌-2-아민 및/또는 N-(비페닐-4-일)-N-(4-(9-페닐-9H-카바졸-3-일)페닐)비페닐)-4-아민 과 같은 방향족 아민 화합물로 이루어질 수 있다.
발광물질층(260)은 호스트(host)에 도펀트(dopant)가 도핑되어 이루어질 수 있다. 일례로, 발광물질층(260)은 호스트에 도펀트가 약 1 내지 50 중량% 첨가될 수 있으며, 청색을 발광할 수 있다. 예를 들어, 화학식 1 내지 화학식 3으로 표시되는 유기 화합물이 발광물질층(260)의 호스트로 사용되고, 지연 형광 특성을 보이는 화합물, 예를 들어 DMAC-TRZ, DMAC-DPS, ACRSA, Cz-VPN, TcZTrz, DczTrZ, DDczTrZ, CC2BP, BDPCC-TPTA, BCC-TPTA, DMOC-DPS, DPCC-TPTA, Phen-TRZ, Cab-Ph-TRZ, 4CzIPN, 4CZFCN, SpiroAC-TRZ 및/또는 상기 화학식 4로 표시되는 화합물이 도펀트로 사용될 수 있다.
전자수송층(270)은 발광물질층(260)과 전자주입층(280) 사이에 위치한다. 일례로, 전자수송층(270)은 옥사디아졸(oxadiazole), 트리아졸(triazole), 페난트롤린(phenanthroline), 벤족사졸(benzoxazole), 벤조티아졸(benzothiazole), 벤즈이미다졸, 트리아진 등의 유도체일 수 있다. 예를 들어, 전자수송층(270)은 Alq3, PBD, 스파이로-PBD, Liq, 2-[4-(9,10-디-2-나프탈레닐-2-안트라세닐)페닐]-1-페닐-1H-벤즈이미다졸, BAlq, TAZ, Bphen, TPQ, 및/또는 TPBi 등으로 이루어질 수 있지만, 본 발명이 이에 한정되는 것은 아니다.
전자주입층(280)은 제 2 전극(220)과 전자수송층(270) 사이에 위치한다. 전자주입층(280)의 소재로는 LiF, CsF, NaF, BaF2 등의 알칼리 할라이드계 물질 및/또는 Liq, 리튬 벤조에이트), 소듐 스테아레이트 등의 유기금속계 물질이 사용될 수 있지만, 본 발명이 이에 한정되는 것은 아니다.
한편, 정공이 발광물질층(260)을 지나 제 2 전극(220)으로 이동하거나, 전자가 발광물질층(260)을 지나 제 1 전극(210)으로 가는 경우, 소자의 수명과 효율에 감소를 가져올 수 있다. 이를 방지하기 위하여, 본 발명의 예시적인 제 2 실시형태에 따른 유기발광다이오드(200)는 발광물질층(260)에 인접하여 적어도 1개의 엑시톤 차단층이 위치한다.
예를 들어, 본 발명의 제 2 실시형태에 따른 유기발광다이오드(200)는 정공수송층(250)과 발광물질층(260) 사이에 전자의 이동을 제어, 방지할 수 있는 전자차단층(electron blocking layer, EBL, 255)이 위치한다.
일례로, 전자차단층(255)은 TCTA, 트리스[4-(디에틸아미노)페닐]아민(tris[4-(diethylamino)phenyl]amine), N-(바이페닐-4-일)-9,9-디메틸-N-(4-(9-페닐-9H-카바졸-3-일)페닐)-9H-플루오렌-2-아민, 트리-p-톨릴아민(tri-p-tolylamine), 1,1-비스(4-(N,N-디(p-톨릴)아미노)페닐)사이클로헥산(1,1-bis(4-(N,N'-di(ptolyl)amino)phenyl)cyclohexane; TAPC), MTDATA, mCP, 3,3'-비스(N-카바졸릴)-1,1'-바이페닐(3,3'-bis(N-carbazolyl)-1,1'-biphenyl; mCBP), TPD, CuPC, N,N'-비스[4-[비스(3-메틸페닐)아미노]페닐]-N,N'-디페닐-[1,1'-바이페닐]-4,4'-디아민(N,N'-bis[4-[bis(3-methylphenyl)amino]phenyl]-N,N'-diphenyl-[1,1'-biphenyl]-4,4'-diamine; DNTPD) 및/또는 TDAPB 등으로 이루어질 수 있다.
또한, 발광물질층(260)과 전자수송층(270) 사이에 제 2 엑시톤 차단층으로서 정공차단층(265)이 위치하여 발광물질층(260)과 전자수송층(270) 사이에 정공의 이동을 방지한다. 하나의 예시적인 실시형태에서, 정공차단층의 소재로서 전자수송층(270)에 사용될 수 있는 옥사디아졸(oxadiazole), 트리아졸(triazole), 페난트롤린(phenanthroline), 벤족사졸(benzoxazole), 벤조티아졸(benzothiazole), 벤즈이미다졸, 트리아진 등의 유도체가 사용될 수 있다.
예를 들어 정공차단층(265)은 발광물질층(260)에 사용된 소재와 비교해서 HOMO(highest occupied molecular orbital; 최고점유분자궤도) 에너지 준위가 낮은 2,9-디메틸-4,7-디페닐-1,10-페난트롤린(2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline; BCP), BAlq, Alq3, PBD, 스파이로-PBD 및/또는 Liq 등으로 이루어질 수 있다.
본 발명의 제 2 실시형태에 따른 유기발광다이오드(200)는 발광물질층(260)에 지연 형광 특성을 가지는 도펀트를 가지고 있으므로, 발광 효율이 향상된다. 또한, 발광물질층(260)에 화학식 1 내지 화학식 3으로 표시되는 유기 화합물로 이루어지는 호스트를 포함하고 있다.
화학식 1 내지 화학식 3으로 표시되는 유기 화합물을 발광층에 사용하면, 전자와 정공이 만나 엑시톤이 형성되는 재결합 영역이 발광물질층의 중앙에 형성된다. 이에 따라, 도펀트의 삼중항 엑시톤과 주변 정공-폴라론의 상호작용에 의한 엑시톤 소광(exciton quenching)이 최소화되고, 전기-산화 및 광-산화에 의한 발광다이오드 소자의 수명이 저하되는 것을 방지할 수 있다. 또한, 본 발명의 유기 화합물은 에너지 밴드갭이 넓고 삼중항 에너지 준위가 높을 뿐만 아니라, 열 안정성이 높고, 발광 과정에서 에너지 손실 없이 다른 분자에 에너지를 효율적으로 전달할 수 있다. 따라서 화학식 1 내지 화학식 3으로 표시되는 유기 화합물을 발광층에 사용하여 발광 효율이 향상되고, 소자 수명이 개선되며 색순도가 양호한 발광다이오드(200)를 구현할 수 있다.
아울러, 본 발명의 제 2 실시형태에 따른 유기발광다이오드(200)는 적어도 하나의 엑시톤 차단층(255, 265)을 포함하고 있기 때문에, 발광물질층(260)과 인접한 전하 수송층(250, 270)과의 계면에서 발광을 방지함으로써, 유기발광다이오드(200)의 발광 효율과 소자 수명을 더욱 향상시킬 수 있다.
본 발명에 따른 유기발광다이오드는 유기발광다이오드 표시장치 또는 전술한 유기발광다이오드를 적용한 조명 장치와 같은 유기발광장치에 적용될 수 있다. 본 발명에 따른 유기발광장치의 일례로 전술한 유기발광다이오드를 적용한 표시장치에 대해서 설명한다. 도 5는 본 발명의 예시적인 실시형태에 따른 유기발광다이오드 표시장치의 개략적인 단면도이다.
도 5에 도시한 바와 같이, 유기발광다이오드 표시장치(300)는 구동 소자인 구동 박막트랜지스터(Td)와, 구동 박막트랜지스터(Td)를 덮는 평탄화층(360)과, 평탄화층(360) 상에 위치하며 구동 소자인 구동 박막트랜지스터(Td)에 연결되는 유기발광다이오드(400)를 포함한다. 구동 박막트랜지스터(Td)는, 반도체층(310)과, 게이트 전극(330)과, 소스 전극(352)과, 드레인 전극(354)을 포함하는데, 도 5에서는 코플라나(coplanar) 구조의 구동 박막트랜지스터(Td)를 나타낸다.
기판(302)은 유리 기판, 얇은 플렉서블(flexible) 기판 또는 고분자 플라스틱 기판일 수 있다. 예를 들어, 플렉서블 기판은 폴리이미드(polyimide; PI), 폴리에테르술폰(Polyethersulfone; PES), 폴리에틸렌나프탈레이트(polyethylenenaphthalate; PEN), 폴리에틸렌테레프탈레이트(polyethylene Terephthalate; PET) 및 폴리카보네이트(polycarbonate; PC) 중 어느 하나로 형성될 수 있다. 구동 소자인 구동 박막트랜지스터(Td)와, 유기발광다이오드(400)가 위치하는 기판(302)은 어레이 기판을 이룬다.
기판(302) 상부에 반도체층(310)이 형성된다. 예를 들어, 반도체층(310)은 산화물 반도체 물질로 이루어질 수 있다. 이 경우 반도체층(310) 하부에는 차광패턴(미도시)과 버퍼층(미도시)이 형성될 수 있으며, 차광패턴은 반도체층(310)으로 빛이 입사되는 것을 방지하여 반도체층(310)이 빛에 의해 열화되는 것을 방지한다. 이와 달리, 반도체층(310)은 다결정 실리콘으로 이루어질 수도 있으며, 이 경우 반도체층(310)의 양 가장자리에 불순물이 도핑되어 있을 수 있다.
반도체층(310) 상부에는 절연물질로 이루어진 게이트 절연막(320)이 기판(302) 전면에 형성된다. 게이트 절연막(320)은 실리콘산화물(SiO2) 또는 실리콘질화물(SiNx)과 같은 무기절연물질로 이루어질 수 있다.
게이트 절연막(320) 상부에는 금속과 같은 도전성 물질로 이루어진 게이트 전극(330) 반도체층(310)의 중앙에 대응하여 형성된다. 또한, 게이트 절연막(320) 상부에는 게이트 배선(미도시)과 제 1 캐패시터 전극(미도시)이 형성될 수 있다. 게이트 배선은 제 1 방향을 따라 연장되고, 제 1 캐패시터 전극은 게이트 전극(330)에 연결될 수 있다. 한편, 게이트 절연막(320)이 기판(302) 전면에 형성되어 있으나, 게이트 절연막(320)은 게이트 전극(330)과 동일한 모양으로 패터닝 될 수도 있다.
게이트 전극(330) 상부에는 절연물질로 이루어진 층간 절연막(340)이 기판(302) 전면에 형성된다. 층간 절연막(340)은 실리콘산화물(SiO2) 또는 실리콘질화물(SiNx)과 같은 무기절연물질로 형성되거나, 벤조사이클로부텐(benzocyclobutene)이나 포토 아크릴(photo-acryl)과 같은 유기절연물질로 형성될 수 있다.
층간 절연막(340)은 반도체층(310)의 양측 상면을 노출하는 제 1 및 제 2 반도체층 컨택홀(342, 344)을 갖는다. 제 1 및 제 2 반도체층 컨택홀(342, 344)은 게이트 전극(330)의 양측에서 게이트 전극(330)과 이격되어 위치한다. 여기서, 제 1 및 제 2 반도체층 컨택홀(342, 344)은 게이트 절연막(320) 내에도 형성된다. 이와 달리, 게이트 절연막(320)이 게이트 전극(330)과 동일한 모양으로 패터닝 될 경우, 제 1 및 제 2 반도체층 컨택홀(342, 344)은 층간 절연막(340) 내에만 형성된다.
층간 절연막(340) 상부에는 금속과 같은 도전성 물질로 이루어진 소스 전극(352)과 드레인 전극(354)이 형성된다. 또한, 층간 절연막(340) 상부에는 제 2 방향을 따라 연장되는 데이터 배선(미도시)과 전원 배선(미도시) 및 제 2 캐패시터 전극(미도시)이 형성될 수 있다.
소스 전극(352)과 드레인 전극(354)은 게이트 전극(330)을 중심으로 이격되어 위치하며, 각각 제 1 및 제 2 반도체층 컨택홀(342, 344)을 통해 반도체층(310)의 양측과 접촉한다. 도시하지 않았지만, 데이터 배선은 제 2 방향을 따라 연장되고 게이트 배선과 교차하여 화소영역을 정의하며, 고전위 전압을 공급하는 전원 배선은 데이터 배선과 이격되어 위치한다. 제 2 캐패시터 전극은 드레인 전극(354)과 연결되고 제 1 캐패시터 전극과 중첩함으로써, 제 1 및 제 2 캐패시터 전극 사이의 층간 절연막(340)을 유전체층으로 하여 스토리지 캐패시터를 이룬다.
한편, 반도체층(310), 게이트 전극(330), 소스 전극(352) 및 드레인 전극(354)은 구동 박막트랜지스터(Td)를 이룬다. 도 5에 예시된 구동 박막트랜지스터(Td)는 반도체층(310)의 상부에 게이트 전극(330), 소스 전극(352) 및 드레인 전극(354)이 위치하는 코플라나(coplanar) 구조를 가진다. 이와 달리, 구동 박막트랜지스터(Td)는 반도체층의 하부에 게이트 전극이 위치하고, 반도체층의 상부에 소스 전극과 드레인 전극이 위치하는 역 스태거드(inverted staggered) 구조를 가질 수 있다. 이 경우, 반도체층은 비정질 실리콘으로 이루어질 수 있다.
또한, 구동 박막트랜지스터(Td)와 실질적으로 동일한 구조의 스위칭 소자인 스위칭 박막트랜지스터(미도시)가 기판(302) 상에 더 형성된다. 구동 박막트랜지스터(Td)의 게이트 전극(330)은 스위칭 박막트랜지스터(미도시)의 드레인 전극(미도시)에 연결되고 구동 박막트랜지스터(Td)의 소스 전극(352)은 전원 배선(미도시)에 연결된다. 또한, 스위칭 박막트랜지스터(미도시)의 게이트 전극(미도시)과 소스 전극(미도시)은 게이트 배선 및 데이터 배선과 각각 연결된다.
한편, 유기발광다이오드 표시장치(300)는 유기발광다이오드(400)에서 생성된 빛을 흡수하는 컬러 필터(미도시)를 포함할 수 있다. 예를 들어, 컬러 필터(미도시)는 적색(R), 녹색(G), 청색(B) 및 백색(W) 광을 흡수할 수 있다. 이 경우, 광을 흡수하는 적색, 녹색 및 청색의 컬러 필터 패턴이 각각의 화소영역 별로 분리되어 형성될 수 있으며, 이들 각각의 컬러 필터 패턴은 흡수하고자 하는 파장 대역의 빛을 방출하는 유기발광다이오드(400) 중의 유기발광층(430)과 각각 중첩되게 배치될 수 있다. 컬러 필터(미도시)를 채택함으로써, 유기발광다이오드 표시장치(300)는 풀-컬러를 구현할 수 있다.
예를 들어, 유기발광다이오드 표시장치(300)가 하부 발광 타입인 경우, 유기발광다이오드(400)에 대응하는 층간 절연막(340) 상부에 광을 흡수하는 컬러 필터(미도시)가 위치할 수 있다. 선택적인 실시형태에서, 유기발광다이오드 표시장치(300)가 상부 발광 타입인 경우, 컬러 필터는 유기발광다이오드(400)의 상부, 즉 제 2 전극(420) 상부에 위치할 수도 있다.
소스 전극(352)과 드레인 전극(354) 상부에는 평탄화층(360)이 기판(302) 전면에 형성된다. 평탄화층(360)은 상면이 평탄하며, 구동 박막트랜지스터(Td)의 드레인 전극(354)을 노출하는 드레인 컨택홀(362)을 갖는다. 여기서, 드레인 컨택홀(362)은 제 2 반도체층 컨택홀(344) 바로 위에 형성된 것으로 도시되어 있으나, 제 2 반도체층 컨택홀(344)과 이격되어 형성될 수도 있다.
발광다이오드(400)는 평탄화층(360) 상에 위치하며 구동 박막트랜지스터(Td)의 드레인 전극(354)에 연결되는 제 1 전극(410)과, 제 1 전극(410) 상에 순차 적층되는 유기발광층(430) 및 제 2 전극(420)을 포함한다.
1 전극(410)은 각 화소영역 별로 분리되어 형성된다. 제 1 전극(410)은 양극(anode)일 수 있으며, 일함수 값이 비교적 큰 도전성 물질로 이루어질 수 있다. 예를 들어, 상기 제 1 전극(410)은 ITO, IZO, ITZO, SnO, ZnO, ICO 및 AZO 등과 같은 투명 도전성 물질로 이루어질 수 있다.
한편, 본 발명의 유기발광다이오드 표시장치(300)가 상부 발광 방식(top-emission type)인 경우, 상기 제 1 전극(310) 하부에는 반사전극 또는 반사층이 더욱 형성될 수 있다. 예를 들어, 상기 반사전극 또는 상기 반사층은 알루미늄-팔라듐-구리(aluminum-palladium-copper: APC) 합금으로 이루어질 수 있다.
또한, 상기 평탄화층(360) 상에는 상기 제 1 전극(410)의 가장자리를 덮는 뱅크층(370)이 형성된다. 상기 뱅크층(370)은 화소영역에 대응하여 상기 제 1 전극(410)의 중앙을 노출한다.
상기 제 1 전극(410) 상에는 유기발광층(430)이 형성된다. 하나의 예시적인 실시형태에서, 상기 유기발광층(430)은, 발광물질층의 단층 구조를 가질 수 있다. 이와 달리, 유기발광층(430)은 도 3 내지 도 4에 도시한 바와 같이, 정공주입층, 정공수송층, 전자차단층, 발광물질층, 정공차단층, 전자수송층 및/또는 전자주입층과 같은 다수의 유기물층으로 이루어질 수도 있다.
유기발광층(430)이 형성된 상기 기판(302) 상부로 제 2 전극(420)이 형성된다. 상기 제 2 전극(420)은 표시 영역의 전면에 위치하며 일함수 값이 비교적 작은 도전성 물질로 이루어져 음극(cathode)으로 이용될 수 있다. 예를 들어, 상기 제 2 전극(420)은 알루미늄(Al), 마그네슘(Mg), 칼슘(ca), 은(Ag) 또는 알루미늄-마그네슘 합금(AlMg)과 같은 이들의 합금이나 조합 중 어느 하나로 이루어질 수 있다.
제 2 전극(420) 상에는, 외부 수분이 유기발광다이오드(400)로 침투하는 것을 방지하기 위해, 인캡슐레이션 필름(encapsulation film, 380)이 형성된다. 상기 인캡슐레이션 필름(380)은 제 1 무기 절연층(382)과, 유기 절연층(384)과 제 2 무기 절연층(386)의 적층 구조를 가질 수 있으나, 이에 한정되는 것은 아니다.
전술한 바와 같이, 유기발광다이오드(400)는 유기발광층(430)에 지연 형광 특성을 가지는 도펀트를 가지고 있으므로, 발광 효율이 향상된다. 또한, 유기발광층(430)은 화학식 1 내지 화학식 3으로 표시되는 유기 화합물을 호스트로 포함하고 있다.
화학식 1 내지 화학식 3으로 표시되는 유기 화합물을 발광물질층에 사용하면, 전자와 정공이 만나 엑시톤이 형성되는 재결합 영역이 발광물질층의 중앙에 형성된다. 도펀트의 삼중항 엑시톤과 주변 정공-폴라론의 상호작용에 의한 엑시톤 소광(exciton quenching)이 최소화되어, 발광다이오드 소자의 수명이 저하되는 것을 방지할 수 있다. 또한, 본 발명의 유기 화합물은 에너지 밴드갭과 여기 상태 삼중항 에너지 준위(T1 H)가 저하되지 않는다. 따라서, 화학식 1 내지 화학식 3으로 표시되는 유기 화합물을 유기발광층(430)에 적용함으로써, 유기발광다이오드(400)와 유기발광다이오드 표시장치(300)의 색순도와 발광 효율을 향상시킬 수 있으며, 소자 수명을 개선할 수 있다.
이하, 예시적인 실시예를 통하여 본 발명을 보다 상세하게 설명하지만, 본 발명이 하기 실시예에 기재된 기술사상으로 한정되는 것은 아니다.
합성예 1: 화합물 1의 합성
1) 화합물 C 합성
Figure pat00012
질소 환경 하에서, 1 당량의 화합물 A와 1 당량의 화합물 B와 1.2 당량의 K2CO3, 0.2 당량의 Cu(CF3SO3)2와 trichlorobenzene를 넣고 교반하였다. 이후 반응 혼합물을 환류시키며 8시간 동안 교반하고 반응을 종결하였다. 반응 종료 후 trichlorobenzene을 제거하고 dichloromethane을 넣고 약 30분 동안 교반하였다. 혼합물을 필터하고 dichloromethane/Hexane으로 컬럼하고 재침전을 통해 화합물 C를 얻었다.
2) 화합물 1 합성
Figure pat00013
질소 환경 하에서, 화합물 C를 tetrahydrofuran/toluene(5:1)에 녹인 다음 1.2 당량의 화합물 D를 첨가하였다. 4.4 당량의 Potassium carbonate을 증류수(DI water)에 녹인 후, 0.05 당량의 Pd(0)(Tetrakis(triphenylphosphine)palladium(0))을 첨가하였다. 이후 반응 혼합물을 80℃에서 환류시키며 24시간 동안 교반하고 반응을 종결하였다. 유기 용매로 추출 후, 유기 용매를 제거하였다. 컬럼(column) 후 재침전을 통해 화합물 1을 얻었다. 합성된 화합물 1에 대한 NMR 분석 결과를 도 6에 나타낸다.
합성예 2: 화합물 4의 합성
Figure pat00014
질소 환경 하에서, 화합물 C를 tetrahydrofuran/toluene(5:1)에 녹인 다음 1.2 당량의 화합물 E를 첨가하였다. 4.4 당량의 Potassium carbonate을 Di water에 녹인 후, 0.05 당량의 Pd(0)을 첨가하였다. 이후 반응 혼합물을 80℃에서 환류시키며 24시간 동안 교반하고 반응을 종결하였다. 유기 용매로 추출 후, 유기 용매를 제거하였다. 컬럼(column) 후 재침전을 통해 화합물 4를 얻었다. 합성된 화합물 4에 대한 NMR 분석 결과를 도 7에 나타낸다
합성예 3: 화합물 13의 합성
1) 화합물 H 합성
Figure pat00015
질소 환경 하에서, 화합물 G를 tetrahydrofuran/toluene(5:1)에 녹인 다음 0.9 당량의 화합물 F를 첨가하였다. 4.4 당량의 Potassium carbonate을 DI water에 녹인 후, 0.05 당량의 Pd(0)을 첨가하였다. 이후 반응 혼합물을 80℃에서 환류시키며 24시간 동안 교반하고 반응을 종결하였다. 유기 용매로 추출 후, 유기 용매를 제거하였다. 컬럼(column) 후 재침전을 통해 화합물 H를 얻었다.
2) 화합물 I 합성
Figure pat00016
질소 환경 하(N2 purging)에서, 화합물 H를 tetrahydrofuran에 녹인 다음, 1.2 당량의 n-butyllithium을 -78℃에서 서서히 첨가했다. 반응 혼합물을 -78℃에서 1시간 동안 교반한 후, 반응 혼합물을 상온에서 2시간 교반하였다. 다시 반응 혼합물을 -78℃로 냉각하여 trimethyl borate를 첨가하고 천천히 상온으로 올려 2시간 동안 교반하였다. 반응 혼합물에 희석시킨 HCl(5.0%)을 서서히 붓고 pH를 5~6 사이를 유지하면서, 1시간 동안 교반한 후, dichloromethane로 추출하였다. 유기층을 brine 및 DI water로 추출한 후, MgSO4로 수분을 제거하였다. 유기용매를 제거한 후, 화합물 I를 수득하였다.
3) 화합물 13 합성
Figure pat00017
질소 환경 하에서, 화합물 C를 tetrahydrofuran/toluene(5:1)에 녹인 다음 1.2 당량의 화합물 I를 첨가하였다. 4.4 당량의 Potassium carbonate을 DI water에 녹인 후, 0.05 당량의 Pd(0)을 첨가하였다. 이후 반응 혼합물을 80℃에서 환류시키며 24시간 동안 교반하고 반응을 종결하였다. 유기 용매로 추출 후, 유기 용매를 제거하였다. 컬럼(column) 후 재침전을 통해 화합물 13을 얻었다. 합성된 화합물 13에 대한 NMR 분석 결과를 도 8에 나타낸다
실험예 1: 에너지
전술한 화학식 3으로 표시되는 화합물 1 내지 화합물 22의 유기 화합물에 대하여 spartan'10 소프트웨어를 사용하여 발광과 관련한 물성을 모의 평가하였다. 각각의 유기 화합물에 대한 최고준위점유분자궤도(HOMO) 에너지 준위, 최저준위비점분자궤도(LUMO) 에너지 준위, 밴드갭 에너지, 삼중항 에너지 준위(ET)를 평가하였다. 평가 결과를 하기 표 1에 표시하였다.
유기 화합물의 물성
화합물 HOMO(eV) LUMO(eV) 밴드갭(eV)a ET(eV)
1 -4.72 -1.36 3.36 2.84
2 -4.59 -1.28 3.31 2.81
3 -4.66 -1.23 3.43 2.83
4 -4.74 -1.40 3.34 2.80
5 -4.72 -1.21 3.51 2.82
6 -4.57 -1.68 2.89 2.77
7 -4.67 -1.70 2.97 2.81
8 -4.65 -1.84 2.81 2.72
9 -4.65 -1.12 3.53 2.87
10 -4.70 -1.18 3.52 2.88
11 -4.97 -1.38 3.59 2.86
12 -4.91 -1.93 2,98 2.74
13 -4.60 -1.12 3.48 2.88
14 -4.60 -1.14 3.46 2.70
15 -4.56 -1.22 3.34 2.89
16 -4.60 -1.18 3.42 2.81
17 -5.10 -1.29 3.81 2.73
18 -4.83 -1.11 3.72 2.89
19 -4.84 -1.12 3.72 2.82
20 -4.86 -1.16 3.70 2.90
21 -5.02 -1.08 3.94 2.83
22 -4.68 -1.44 3.24 2.71
a: LUMO - HOMO
표 1에 나타낸 바와 같이, 화합물 1 내지 화합물 22의 HOMO 에너지 준위, LUMO 에너지 준위, 에너지 밴드갭은 발광물질층에 사용하기에 적합하였다. 또한, 화합물 1 내지 화합물 22의 삼중항 에너지 준위를 고려해 볼 때, 지연형광 특성을 가지는 도펀트와 병용하면, 엑시톤을 형성하기 위한 에너지 전달에 있어서 유리하며, 비발광 소멸을 감소시키면서 양호한 발광 효율을 얻을 것으로 확인되었다.
실시예 1: 화합물 1을 적용한 유기발광다이오드 제작
화합물 1을 발광물질층의 호스트로 적용한 유기발광다이오드를 제작하였다. 먼저 40 mm x 40 mm x 두께 0.5 mm의 ITO(반사판 포함) 전극 부착 유리 기판을 이소프로필알코올, 아세톤, DI Water로 5분 동안 초음파 세정을 진행한 후 100℃ Oven에 건조하였다. 기판 세정 후 진공상태에서 2분 동안 O2 플라즈마 처리하고 상부에 다른 층들을 증착하기 위하여 증착 챔버로 이송하였다. 약 10-7 Torr 진공 하에 가열 보트로부터 증발에 의해 다음과 같은 순서로 유기물층을 증착하였다.
정공주입층(HAT-CN, 50Å), 정공수송층(NPB, 500 Å), 전자차단층(mCP, 100 Å), 발광물질층(화합물 1을 호스트로 사용하고 상기 화학식 4의 물질이 30 중량% 도핑, 300Å), 전자수송층(TPBI, 300Å), 전자주입층(LiF), 음극(Al).
CPL(capping layer)을 성막한 뒤에 유리로 인캡슐레이션 하였다. 이러한 층들의 증착 후 피막 형성을 위해 증착 챔버에서 건조 박스 내로 옮기고 후속적으로 UV 경화 에폭시 및 수분 게터(getter)를 사용하여 인캡슐레이션 하였다.
실시예 2: 화합물 4를 적용한 유기발광다이오드 제작
발광물질층의 호스트로서 화합물 1 대신에 합성예 2에서 합성한 화합물 4를 사용한 것을 제외하고 실시예 1의 절차를 반복하여 유기발광다이오드를 제작하였다.
실시예 3: 화합물 13을 적용한 유기발광다이오드 제작
발광물질층의 호스트로서 화합물 1 대신에 합성예 3에서 합성한 화합물 13을 사용한 것을 제외하고 실시예 1의 절차를 반복하여 유기발광다이오드를 제작하였다.
비교예: 유기발광다이오드 제작
발광물질층의 호스트로서 화합물 1 대신에 하기 화학식 5로 표시되는 물질을 사용한 것을 제외하고 실시예 1의 절차를 반복하여 유기발광다이오드를 제작하였다.
화학식 5
Figure pat00018
실험예: 유기발광다이오드의 발광 특성 측정
실시예 1 내지 실시예 3과 비교예에서 각각 제작된 유기발광다이오드를 대상으로 물성을 측정하였다. 9 ㎟의 방출 영역을 갖는 각각의 유기발광다이오드를 외부전력 공급원에 연결하였으며, 전류 공급원(KEITHLEY) 및 광도계(PR 650)를 사용하여 실온에서 소자 특성을 평가하였다. 10 ㎃/㎠의 전류밀도에서 측정한 각각의 유기발광다이오드의 구동 전압(V), 전류효율(cd/A), 전력효율(lm/W), 외부양자효율(EQE) 및 CIE 색좌표 측정 결과를 하기 표 2에 나타낸다.
유기발광다이오드의 물성
소자 V cd/A lm/W EQE (%) CIE(x) CIE(y)
비교예 4.1 14.6 11.3 7.7 0.163 0.335
실시예 1 3.4 19.1 17.5 9.9 0.158 0.309
실시예 2 3.5 18.9 17.0 9.8 0.157 0.327
실시예 3 3.7 18.4 15.7 10.9 0.172 0.336
표 2에 나타낸 바와 같이, 비교예의 유기 화합물을 발광물질층의 호스트로 사용한 경우와 비교해서, 본 발명에 따라 합성된 유기 화합물을 발광물질층의 호스트로 사용한 경우, 구동 전압은 최대 17.1% 감소하였으며, 전류효율, 전력효율 및 외부양자효율은 각각 최대 30.8%, 54.9%, 41.6% 향상되었다. 또한 색좌표에 있어서도 본 발명에 따라 합성된 유기 화합물을 사용하면 고색순도의 청색을 구현할 수 있다는 것을 확인하였다. 결국, 본 발명의 유기 화합물을 유기발광층에 적용하여 발광 효율이 향상되고, 색순도가 개선된 유기발광다이오드를 제작할 수 있다. 따라서 본 발명의 유기 화합물이 적용된 유기발광다이오드를 이용하여, 발광 효율 및 색순도 등이 향상된 유기발광다이오드 표시장치 및/또는 조명 장치와 같은 발광 장치 등에 활용될 수 있다.
상기에서는 본 발명의 예시적인 실시형태 및 실시예를 토대로 본 발명을 설명하였으나, 본 발명의 권리범위가 실시형태 및 실시예에 기재된 기술사상으로 한정되는 것은 아니다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면, 전술한 실시형태 및 실시예에 기초하여 다양한 변형과 변경을 용이하게 추고할 수 있다. 하지만, 이러한 변형과 변경은 모두 본 발명의 권리범위에 속한다는 점은, 첨부하는 청구범위를 통하여 분명하다.
100, 200, 400: 유기발광다이오드
110, 210, 410: 제 1 전극 120, 220, 420: 제 2 전극
130, 230, 430: 유기발광층 140, 240: 정공주입층
150, 250: 정공수송층 160, 260: 발광물질층
170, 270: 전자수송층 180, 280: 전자주입층
255: 전자차단층 265: 정공차단층
300: 유기발광다이오드 표시장치 Td: 구동 박막트랜지스터

Claims (12)

  1. 하기 화학식 1로 표시되는 유기 화합물.
    화학식 1
    Figure pat00019

    (화학식 1에서 R1은 치환되지 않거나 치환된 C5~C30 호모 아릴기, 치환되지 않거나 치환된 C4~C30 헤테로 아릴기, 치환되지 않거나 치환된 C5~C30 호모 아릴알킬기, 치환되지 않거나 치환된 C4~C30 헤테로 아릴알킬기, 치환되지 않거나 치환된 C5~C30 호모 아릴옥실기, 치환되지 않거나 치환된 C4~C30 헤테로 아릴옥실기, 치환되지 않거나 치환된 C5~C30 호모 아릴아민기 및 치환되지 않거나 치환된 C4~C30 헤테로 아릴아민기로 구성되는 군에서 선택됨; R2는 치환되지 않거나 치환된 C4~C30 헤테로 아릴기, 치환되지 않거나 치환된 C4~C30 헤테로 아릴알킬기, 치환되지 않거나 치환된 C4~C30 헤테로 아릴옥실기 및 치환되지 않거나 치환된 C4~C30 헤테로 아릴아민기로 구성되는 군에서 선택됨; R3 내지 R14는 각각 독립적으로 수소, 중수소, 삼중수소, 치환되지 않거나 치환된 C1~C20 알킬기 및 치환되지 않거나 치환된 C1~C20 알콕시기로 구성되는 군에서 선택됨; L1은 치환되지 않거나 치환된 C5~C30 호모 아릴렌기, 치환되지 않거나 치환된 C4~C30 헤테로 아릴렌기, 치환되지 않거나 치환된 C5~C30 호모 아릴알킬렌기, 치환되지 않거나 치환된 C4~C30 헤테로 아릴알킬렌기, 치환되지 않거나 치환된 C5~C30 호모 아릴옥실렌기 및 치환되지 않거나 치환된 C4~C30 헤테로 아릴옥실렌기로 구성되는 군에서 선택됨)
  2. 제 1항에 있어서,
    상기 화학식 1로 표시되는 유기 화합물은 하기 화학식 2로 표시되는 화합물인 유기 화합물.
    화학식 2
    Figure pat00020

    (화학식 2에서 R21은 C5~C30 호모 아릴기임; R22는 치환되지 않거나 C1~C20 알킬기, C1~C20 알콕시기, C5~C30 호모 아릴기 또는 C4~C30 헤테로 아릴기로 치환된 C4~C30 헤테로 아릴기임; L2는 치환되지 않거나 C1~C20 알킬기로 치환된 C5~C30 호모 아릴렌기, 또는 치환되지 않거나 C1~C20 알킬기로 치환된 C4~C30 헤테로 아릴렌기임)

  3. 제 1항에 있어서,
    상기 화학식 1로 표시되는 유기 화합물은 하기 화학식 3으로 표시되는 어느 하나의 화합물인 유기 화합물.
    화학식 3
    Figure pat00021

    Figure pat00022

    Figure pat00023

    Figure pat00024

    Figure pat00025

    Figure pat00026

  4. 서로 마주하는 제 1 전극 및 제 2 전극; 및
    상기 제 1 전극과 상기 제 2 전극 사이에 위치하는 유기발광층을 포함하고,
    상기 유기발광층은 하기 화학식 1로 표시되는 유기 화합물을 포함하는 유기발광다이오드.
    화학식 1
    Figure pat00027

    (화학식 1에서 R1은 치환되지 않거나 치환된 C5~C30 호모 아릴기, 치환되지 않거나 치환된 C4~C30 헤테로 아릴기, 치환되지 않거나 치환된 C5~C30 호모 아릴알킬기, 치환되지 않거나 치환된 C4~C30 헤테로 아릴알킬기, 치환되지 않거나 치환된 C5~C30 호모 아릴옥실기, 치환되지 않거나 치환된 C4~C30 헤테로 아릴옥실기, 치환되지 않거나 치환된 C5~C30 호모 아릴아민기 및 치환되지 않거나 치환된 C4~C30 헤테로 아릴아민기로 구성되는 군에서 선택됨; R2는 치환되지 않거나 치환된 C4~C30 헤테로 아릴기, 치환되지 않거나 치환된 C4~C30 헤테로 아릴알킬기, 치환되지 않거나 치환된 C4~C30 헤테로 아릴옥실기 및 치환되지 않거나 치환된 C4~C30 헤테로 아릴아민기로 구성되는 군에서 선택됨; R3 내지 R14는 각각 독립적으로 수소, 중수소, 삼중수소, 치환되지 않거나 치환된 C1~C20 알킬기 및 치환되지 않거나 치환된 C1~C20 알콕시기로 구성되는 군에서 선택됨; L1은 치환되지 않거나 치환된 C5~C30 호모 아릴렌기, 치환되지 않거나 치환된 C4~C30 헤테로 아릴렌기, 치환되지 않거나 치환된 C5~C30 호모 아릴알킬렌기, 치환되지 않거나 치환된 C4~C30 헤테로 아릴알킬렌기, 치환되지 않거나 치환된 C5~C30 호모 아릴옥실렌기 및 치환되지 않거나 치환된 C4~C30 헤테로 아릴옥실렌기로 구성되는 군에서 선택됨)
  5. 제 4항에 있어서,
    상기 유기 화합물은 하기 화학식 2로 표시되는 화합물인 유기발광다이오드.
    화학식 2
    Figure pat00028

    (화학식 2에서 R21은 C5~C30 호모 아릴기임; R22는 치환되지 않거나 C1~C20 알킬기, C1~C20 알콕시기, C5~C30 호모 아릴기 또는 C4~C30 헤테로 아릴기로 치환된 C4~C30 헤테로 아릴기임; L2는 치환되지 않거나 C1~C20 알킬기로 치환된 C5~C30 호모 아릴렌기, 또는 치환되지 않거나 C1~C20 알킬기로 치환된 C4~C30 헤테로 아릴렌기임)
  6. 제 4항에 있어서,
    상기 화학식 1로 표시되는 유기 화합물은 하기 화학식 3으로 표시되는 어느 하나의 화합물인 유기발광다이오드.
    Figure pat00029

    Figure pat00030

    Figure pat00031

    Figure pat00032

    Figure pat00033

    Figure pat00034

  7. 제 4항에 있어서,
    상기 유기 화합물은, 발광물질층의 호스트로 사용되는 유기발광다이오드.
  8. 제 7항에 있어서,
    상기 발광물질층은 도펀트를 더욱 포함하는 유기발광다이오드.
  9. 제 8항에 있어서,
    상기 호스트의 최고준위점유분자궤도 에너지 준위(HOMOH)와 상기 도펀트의 최고준위점유분자궤도 에너지 준위(HOMOD)의 차이(|HOMOH-HOMOD|) 또는 상기 호스트의 최저준위비점유분자궤도 에너지 준위(LUMOH)와 상기 도펀트의 최저준위비점유분자궤도 에너지 준위(LUMOD)의 차이(|LUMOH-LUMOD|)는 0.5 eV 이하인 유기발광다이오드.
  10. 제 8항에 있어서,
    상기 도펀트의 여기 상태 단일항 에너지 준위(S1 D)와 여기 상태 삼중항 에너지 준위(T1 D)의 차이(ΔEST)가 0.3 eV 이하인 유기발광다이오드.
  11. 기판;
    상기 기판 상에 위치하며 제 4항 내지 제 10항 중 어느 하나의 기재된 유기발광다이오드; 및
    상기 기판 상에 위치하며 상기 유기발광다이오드의 제 1 전극과 연결되는 구동 소자
    를 포함하는 유기발광장치.
  12. 제 11항에 있어서,
    상기 유기발광장치는 유기발광다이오드 표시장치를 포함하는 유기발광장치.
KR1020170163084A 2017-11-30 2017-11-30 유기 화합물, 이를 포함하는 유기발광다이오드 및 유기발광장치 KR20190063923A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170163084A KR20190063923A (ko) 2017-11-30 2017-11-30 유기 화합물, 이를 포함하는 유기발광다이오드 및 유기발광장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170163084A KR20190063923A (ko) 2017-11-30 2017-11-30 유기 화합물, 이를 포함하는 유기발광다이오드 및 유기발광장치

Publications (1)

Publication Number Publication Date
KR20190063923A true KR20190063923A (ko) 2019-06-10

Family

ID=66848463

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170163084A KR20190063923A (ko) 2017-11-30 2017-11-30 유기 화합물, 이를 포함하는 유기발광다이오드 및 유기발광장치

Country Status (1)

Country Link
KR (1) KR20190063923A (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112563521A (zh) * 2020-12-01 2021-03-26 常州大学 基于电活性吩嗪衍生物负极的碱性水系混合液流电池
CN113072800A (zh) * 2021-03-26 2021-07-06 华东理工大学 一种可拉伸荧光变色材料的制备方法
CN113097401A (zh) * 2021-04-07 2021-07-09 京东方科技集团股份有限公司 有机发光二极管、显示面板和显示装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112563521A (zh) * 2020-12-01 2021-03-26 常州大学 基于电活性吩嗪衍生物负极的碱性水系混合液流电池
CN113072800A (zh) * 2021-03-26 2021-07-06 华东理工大学 一种可拉伸荧光变色材料的制备方法
CN113097401A (zh) * 2021-04-07 2021-07-09 京东方科技集团股份有限公司 有机发光二极管、显示面板和显示装置
CN113097401B (zh) * 2021-04-07 2024-04-23 京东方科技集团股份有限公司 有机发光二极管、显示面板和显示装置

Similar Documents

Publication Publication Date Title
KR101944851B1 (ko) 유기 화합물과 이를 포함하는 유기발광다이오드 및 유기발광 표시장치
KR102635062B1 (ko) 유기 화합물과 이를 이용한 발광다이오드 및 유기발광다이오드 표시장치
KR20180067321A (ko) 유기 화합물과 이를 포함하는 유기발광다이오드 및 유기발광 표시장치
KR101891168B1 (ko) 유기 화합물과 이를 포함하는 유기발광다이오드 및 유기발광 표시장치
KR20230062533A (ko) 유기 화합물, 이를 포함하는 유기발광다이오드와 유기발광장치
US10700290B2 (en) Organic compound, and organic light-emitting diode and organic light-emitting diode display device including the same
KR20200077777A (ko) 유기 화합물, 이를 포함하는 발광다이오드 및 유기발광장치
KR102326304B1 (ko) 우수한 발광 특성을 가지는 유기 화합물, 이를 포함하는 유기발광다이오드 및 유기발광장치
KR20190063923A (ko) 유기 화합물, 이를 포함하는 유기발광다이오드 및 유기발광장치
KR102649050B1 (ko) 유기 화합물과 이를 이용한 발광다이오드 및 유기발광다이오드 표시장치
KR20230078620A (ko) 유기 화합물, 이를 포함하는 유기발광다이오드 및 유기발광장치
KR102413121B1 (ko) 유기 화합물과 이를 포함하는 유기발광다이오드 및 유기발광장치
KR102515819B1 (ko) 유기 화합물, 이를 포함하는 유기발광다이오드 및 유기발광장치
KR102598478B1 (ko) 유기 화합물과 이를 이용한 발광다이오드 및 유기발광다이오드 표시장치
KR102642605B1 (ko) 유기 화합물, 이를 포함하는 유기발광다이오드와 유기발광장치
KR102515820B1 (ko) 유기 화합물, 이를 포함하는 유기발광다이오드 및 유기발광장치
KR102505168B1 (ko) 유기 화합물과 이를 포함하는 유기발광다이오드 및 유기발광장치
KR102577042B1 (ko) 유기 화합물, 이를 포함하는 유기발광다이오드 및 유기발광장치
EP3608307B1 (en) Organic compound, organic light-emitting diode and organic light-emitting device containing the compound
KR102451310B1 (ko) 유기 화합물, 이를 포함하는 유기발광다이오드 및 유기발광장치
KR102493805B1 (ko) 유기 화합물, 이를 포함하는 유기발광다이오드와 유기발광장치
KR102667321B1 (ko) 유기 화합물과 이를 포함하는 유기발광다이오드 및 유기발광다이오드 표시장치
KR20180066411A (ko) 유기 화합물과 이를 이용한 발광다이오드 및 유기발광다이오드 표시장치
KR102630959B1 (ko) 유기 화합물과 이를 이용한 발광다이오드 및 유기발광다이오드 표시장치
KR20230098748A (ko) 유기 화합물, 이를 포함하는 유기발광다이오드 및 유기발광장치