KR20190047911A - Slag mixed type calcium silicated inorganic insulation fabrication method - Google Patents

Slag mixed type calcium silicated inorganic insulation fabrication method Download PDF

Info

Publication number
KR20190047911A
KR20190047911A KR1020170142292A KR20170142292A KR20190047911A KR 20190047911 A KR20190047911 A KR 20190047911A KR 1020170142292 A KR1020170142292 A KR 1020170142292A KR 20170142292 A KR20170142292 A KR 20170142292A KR 20190047911 A KR20190047911 A KR 20190047911A
Authority
KR
South Korea
Prior art keywords
slag
calcium silicate
based inorganic
slurry
inorganic insulation
Prior art date
Application number
KR1020170142292A
Other languages
Korean (ko)
Inventor
강대구
김영곤
추용식
조형규
박재완
Original Assignee
(주) 에스와이씨
한국세라믹기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 에스와이씨, 한국세라믹기술원 filed Critical (주) 에스와이씨
Priority to KR1020170142292A priority Critical patent/KR20190047911A/en
Publication of KR20190047911A publication Critical patent/KR20190047911A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0032Controlling the process of mixing, e.g. adding ingredients in a quantity depending on a measured or desired value
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/02Elements
    • C04B22/04Metals, e.g. aluminium used as blowing agent
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • C04B22/062Oxides, Hydroxides of the alkali or alkaline-earth metals
    • C04B22/064Oxides, Hydroxides of the alkali or alkaline-earth metals of the alkaline-earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • C04B28/16Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements containing anhydrite, e.g. Keene's cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/02Portland cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/30Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

The present invention relates to a method of manufacturing a slag-mixed calcium silicate-based inorganic insulation material and, more specifically, to a method of manufacturing a slag-mixed calcium silicate-based inorganic insulation material, capable of securing constructability through enhancement of the initial strength of a calcium silicate-based inorganic insulation material and securing economic feasibility through use of low-priced raw materials by mixing slag, which is a byproduct generated during a steel making process, with cement and by using the mixture. According to an embodiment of the present invention, the method of manufacturing a slag-mixed calcium silicate-based inorganic insulation material comprises the following steps of: (a) preparing 100 wt% of a starting raw material, which usually consists of 45 to 50 wt% of a Portland cement (OPC), 10 wt% of quicklime, 30 to 35 wt% of slag, and 10 wt% of anhydrous gypsum; (b) forming a mixture by mixing 0.6 wt% of fine aggregate aluminum powder with 0.06 wt% of a pore stabilize with the starting raw material; (c) manufacturing slurry by mixing 130 wt% of mixed water with the mixture; and (d) forming a cured body by curing and drying the slurry.

Description

슬래그 혼입형 칼슘실리케이트계 무기단열소재의 제조방법{SLAG MIXED TYPE CALCIUM SILICATED INORGANIC INSULATION FABRICATION METHOD}FIELD OF THE INVENTION [0001] The present invention relates to a slag-mixed calcium silicate-

본 발명은 슬래그 혼입형 칼슘실리케이트계 무기단열소재의 제조방법에 관한 것으로서, 더욱 상세하게는 재철과정에서 발생하는 부산물인 슬래그를 시멘트와 혼합하여 사용하도록 함으로써 칼슘실리케이트계 무기단열소재의 초기강도 증진을 통한 시공성 확보와 저가원료 사용을 통한 경제성을 확보하도록 하는 슬래그 혼입형 칼슘실리케이트계 무기단열소재의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a slag-incorporated calcium silicate-based inorganic heat insulating material, and more particularly, to a method of manufacturing a calcium silicate inorganic heat insulating material by mixing slag, which is a by- The present invention relates to a method of manufacturing a slag-incorporated calcium silicate-based heat insulating material which secures workability through the use of low-cost raw materials and ensures economical efficiency through use of low-cost raw materials.

칼슘실리케이트계 무기단열소재는 불연성 소재로 구성되어, 기존 유기계 단열소재의 문제점인 화재 취약성과 무기 섬유계 단열소재의 수분 취약성을 극복할 수 있는 제품이다. 더불어 칼슘실리케이트계 무기단열소재의 주요 원료는 저가의 시멘트로, 경제성까지 확보할 수 있다. Calcium silicate-based inorganic insulation materials are composed of non-combustible materials, which can overcome the vulnerability of existing organic insulation materials and the moisture vulnerability of inorganic insulation materials. In addition, the main raw material of the calcium silicate-based inorganic insulating material can be economically cured with low cost cement.

독일 및 러시아 등에서도 유사한 제품이 개발되고 있지만 압축강도 특성이 시공하기 적합한 단계에 이르지 못했기 때문에 연구개발단계에 있다. Similar products have been developed in Germany and Russia, but the characteristics of compressive strength have not reached the stage suitable for construction, so they are in the research and development stage.

칼슘실리케이트계 무기단열소재는 다공성 무기단열소재란 점에서 기존 ALC(Autoclaved Lightweight Concrete)와 유사하나 수열합성과정을 생략시켜 저가형 단열소재로 사용하고자 하였다. ALC에서 수열합성은 ALC의 출발원료 결정중 SiO2를 강도발현에 영향을 주는 토버모라이트로 변이시키거나, 알칼리성분의 반응을 중지시켜 기체 내 수화반응에 의한 수축크랙 등을 방지한다. Calcium silicate-based inorganic insulation material is similar to existing ALC (Autoclaved Lightweight Concrete) in that it is a porous inorganic insulation material. Hydrothermal synthesis in ALC prevents the shrinkage cracks caused by the hydration reaction in the gas by changing the SiO 2 to tobermorite which affects the intensity expression in the starting material crystals of ALC or stopping the reaction of alkaline components.

즉, 수열합성은 강도발현에 가장 큰 영향을 준다고 판단된다. 칼슘실리케이트계 무기단열소재는 기존 고가의 무기단열소재와 달리 저렴한 원료와 제작방법을 목적으로 한다. 현재까지 연구개발된 칼슘실리케이트계 무기단열소재는 비중 0.12g/cm3에 열전도율 0.045W/mK로 초경량에 우수한 단열성의 특성이 있지만 압축강도가 0.2MPa로 강도발현에 더 많은 연구가 필요하다.That is, hydrothermal synthesis is considered to have the greatest influence on the strength development. Calcium silicate-based inorganic insulation materials are aimed at cheap raw materials and production methods, unlike existing expensive thermal insulation materials. The calcium silicate-based inorganic insulation material so far developed has a specific gravity of 0.12 g / cm 3 and a thermal conductivity of 0.045 W / mK, which is excellent in heat insulation property at an ultra light weight, but further studies are required for strength development with a compressive strength of 0.2 MPa.

칼슘실리케이트계 무기단열소재를 연구개발 중 여러원료와 배합조건에 따른 실험을 통해 최적원료 및 배합조건이 도출되었다. 도출된 배합조건은 0.2MPa를 초과하는 압축강도가 발현되었으나(20일 이상양생), Lab의 최적 온도습도의 조건에서만 제작되었다. During the research and development of calcium silicate-based inorganic insulation material, optimum raw materials and mixing conditions were derived through various raw materials and mixing conditions. The resulting blend conditions exhibited compressive strength exceeding 0.2 MPa (curing for more than 20 days) but only at the conditions of the Lab's optimum temperature and humidity.

또한 대형 시편을 제작하고자 기존에 사용하는 스티로폼 실험용 몰드가 아닌 철재몰드를 사용시 제작과정에서 침하되어 제작에 어려움이 있었다. 침하원인은 출발원료의 분체원료 중 알칼리 성분이 과다 혼입되어 있어서 낮은 온도 및 발포에 영향을 주지 않는 몰드가 아니라면 수화열이 초기에 높아지기 때문에 발포과정에서 표면경화로 인해 경화되지 않은 내부가 견디지 못하고 침하된다. 출발원료의 분체원료중 알칼리 성분이 많은 원료는 강도에 영향을 주는 시멘트이다. 칼슘실리케이트계 무기단열소재 출발원료 중 50wt% 이상이 시멘트이기 때문에 시멘트를 대체하여 강도발현에 영향을 주며 알칼리성분이 적은 원료를 연구해야 할 필요가 있다. In addition, in order to produce a large specimen, it was difficult to fabricate a steel mold instead of the conventional styrofoam mold. The reason for settling is that the alkali component of the starting material is excessively mixed, so that the hydration heat is initially increased unless the mold has a low temperature and does not affect the foaming, so that the inside which is not hardened due to the surface hardening due to the foaming process is settled down . A raw material having a large amount of alkali component in the starting material of the starting material is a cement which affects the strength. Calcium silicate-based inorganic insulating material Since more than 50% by weight of the starting material is cement, it is necessary to study the raw material which affects the strength development by replacing cement and has low alkaline content.

본 발명의 배경이 되는 기술로는 특허등록 제1416046호 "시멘트계 무기단열소재 및 이의 제조방법"(특허문헌 1)이 있다. 상기 배경기술에서는 '시멘트 70.0 ~ 99.9wt%, 석고 0.1 ~ 30.0wt%, 혼합수 50 ~ 100wt%, 기능성 첨가제 0.1 - 5.0wt%, 기포안정제 0.1 ~ 7.0wt%를 혼합하여 시멘트 슬러리를 제조하는 단계; 상기 시멘트 슬러리에 0.1 ~ 5.0wt%의 발수제를 혼합하여 시멘트 슬러리를 발수 처리하는 단계; 50 ~ 100wt% 혼합수 및 0.1 ~5.0wt% 기포제로 기포를 제조하는 단계; 발수 처리된 시멘트 슬러리와 기포를 혼합하는 단계; 및 시멘트 슬러리 및 기포 혼합물을 양생하여 경화체를 생성하는 단계에 의해 제조되고, 상기 경화체는 0.05 ~ 0.15g/cm3의 비중 및 0.035 ~ 0.045W/mK의 열전도율을 갖는 시멘트계 무기단열소재'를 제안한다. As a background of the present invention, there is a patent registration No. 1416046 entitled " Cement-based inorganic heat insulating material and its manufacturing method " (Patent Document 1). In the background art, a cement slurry is prepared by mixing 70.0 to 99.9 wt% of cement, 0.1 to 30.0 wt% of gypsum, 50 to 100 wt% of mixed water, 0.1 to 5.0 wt% of functional additive, and 0.1 to 7.0 wt% ; Water repellent treatment of the cement slurry by mixing 0.1 to 5.0 wt% of a water repellent agent in the cement slurry; Producing bubbles with 50 to 100 wt% mixed water and 0.1 to 5.0 wt% foaming agent; Mixing the water-repellent cement slurry with air bubbles; And curing a mixture of cement slurry and foam to produce a cured body, which cement has a specific gravity of 0.05 to 0.15 g / cm < 3 > and a thermal conductivity of 0.035 to 0.045 W / mK.

그러나 상기 배경기술의 무기단열 소재는 무기단열소재의 초기강도 증진이 어려우며 저가원료 사용을 통한 경제성을 확보할 수 없는 문제점이 있었다.However, the inorganic thermal insulation material of the background art has a problem that it is difficult to improve the initial strength of the inorganic thermal insulation material and the economical efficiency through the use of low-cost raw materials can not be secured.

특허등록 제1416046호 "시멘트계 무기단열소재 및 이의 제조방법"Patent Registration No. 1416046 " Cement-based inorganic insulating material and its manufacturing method "

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 시멘트에 재철과정에서 발생하는 부산물인 슬래그를 시멘트와 혼합하여 사용하도록 함으로써 초기수화열이 매우 낮아 저온고습의 양생조건이 아니라도 안정적으로 발포되며 철제몰드에서도 안정적으로 제작될 수 있는 효과가 있다. 또한, 시멘트를 다량 슬래그로 대체하였기 때문에 칼슘실리케이트계 무기단열소재의 초기강도 증진을 통한 시공성 확보와 저가원료 사용을 통한 경제성을 확보하도록 하는 슬래그 혼입형 칼슘실리케이트계 무기단열소재의 제조방법을 제공하는데 그 목적이 있다.SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a cement mortar composition which is obtained by mixing slag, which is a by- Can be manufactured stably. In addition, since the cement is replaced with a large amount of slag, a method of manufacturing a slag-incorporated calcium silicate-based inorganic insulating material is provided, which secures workability through improvement of initial strength of a calcium silicate-based inorganic insulating material and secures economical efficiency by using a low- It has its purpose.

본 발명은 (a) 보통 포틀랜드 시멘트(OPC) 45~50wt%, 생석회 10wt%, 슬래그 30~35wt%, 무수석고 10wt%로 이뤄지는 100wt%의 출발원료를 준비하는 단계; (b) 출발원료에 알루미늄 분말을 외할로 0.6wt% 및 Pore Stabilizer 0.06 wt% 혼합하여 배합물을 조성하는 단계; (c) 혼합수 130wt%를 상기 배합물에 혼합하여 슬러리를 제조하는 단계; 및 (d) 슬러리를 양생하고 건조하여 경화체를 형성하는 단계;를 포함하여 이루어지는 것을 특징으로 하는 슬래그 혼입형 칼슘실리케이트계 무기단열소재의 제조방법을 제공하고자 한다.The present invention provides a method for producing a cement composition, comprising the steps of: (a) preparing a starting material of 100 wt% consisting of 45 to 50 wt% of ordinary Portland cement (OPC), 10 wt% of burnt lime, 30 to 35 wt% of slag, and 10 wt% (b) mixing the starting material with 0.6wt% aluminum powder and 0.06wt% porestabilizer to form a blend; (c) blending 130wt% of the mixed water into the formulation to prepare a slurry; And (d) curing and drying the slurry to form a cured body. The present invention provides a method for manufacturing a slag-incorporated calcium silicate-based inorganic heat insulating material.

또한, 슬래그는 24.3 wt%의 SiO2, 40.9 wt%의 CaO, 12.8 wt%의 Al2O3, 0.50 wt%의 Fe2O3, 4.0 wt%의 SO3, 6.69wt%의 MgO로 구성되는 것을 특징으로 하는 슬래그 혼입형 칼슘실리케이트계 무기단열소재의 제조방법을 제공하고자 한다.The slag is composed of 24.3 wt% of SiO 2 , 40.9 wt% of CaO, 12.8 wt% of Al 2 O 3 , 0.50 wt% of Fe 2 O 3 , 4.0 wt% of SO 3 , and 6.69 wt% of MgO Wherein the slag-mixed calcium silicate-based inorganic heat-insulating material is a slag-mixed calcium silicate-based inorganic heat-insulating material.

또한, (a) 단계에서, 출발원료에 50.5 wt%의 SiO2와, 29.7 wt%의 CaO와, 1.80 wt%의 SO3를 추가 혼합하는 것을 특징으로 하는 슬래그 혼입형 칼슘실리케이트계 무기단열소재의 제조방법을 제공하고자 한다.In addition, in step (a), the slag-incorporated calcium silicate-based thermal insulation material is further characterized in that 50.5 wt% of SiO 2 , 29.7 wt% of CaO, and 1.80 wt% of SO 3 are further added to the starting material And to provide a manufacturing method thereof.

본 발명의 슬래그 혼입형 칼슘실리케이트계 무기단열소재의 제조방법은 시멘트에 재철과정에서 발생하는 부산물인 슬래그를 시멘트와 혼합하여 사용하도록 함으로써 초기수화열이 매우 낮아 저온고습의 양생조건이 아니라도 안정적으로 발포되며 철제몰드에서도 안정적으로 제작될 수 있는 효과가 있다. 또한, 시멘트를 다량 슬래그로 대체하였기 때문에 칼슘실리케이트계 무기단열소재의 초기강도 증진을 통한 시공성 확보와 저가원료 사용을 통한 경제성을 확보하도록 하는 매우 유용한 효과가 있다.The slag-incorporated calcium silicate-based inorganic thermal insulation material of the present invention is produced by mixing slag, which is a byproduct produced in the ferrous metal process, with cement so that the initial hydration heat is very low, And can be stably manufactured in an iron mold. In addition, since the cement is replaced with a large amount of slag, there is a very useful effect of securing the workability through the improvement of the initial strength of the calcium silicate-based heat insulating material and securing the economical efficiency by using the low-cost raw material.

본 명세서에서 첨부되는 다음의 도면들은 본 발명의 바람직한 실시 예를 예시하는 것이며, 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 첨부한 도면에 기재된 사항에만 한정되어서 해석되어서는 아니 된다.
도 1은 기존 칼슘실리케이트계 무기단열소재 제조방법을 도시한 도이다.
도 2는 슬래그 시멘트 대체 함량 별 압축강도를 도시한 그래프이다.
BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate exemplary embodiments of the invention and, together with the description, serve to explain the principles of the invention, Shall not be construed as limiting.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing a conventional method of manufacturing a calcium silicate-based heat insulating material. FIG.
FIG. 2 is a graph showing the compressive strength of each slag cement substitute.

아래에서 본 발명은 첨부된 도면에 제시된 실시 예를 참조하여 상세하게 설명이 되지만 제시된 실시 예는 본 발명의 명확한 이해를 위한 예시적인 것으로 본 발명은 이에 제한되지 않는다. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the embodiments shown in the accompanying drawings, but the present invention is not limited thereto.

이하 바람직한 실시예에 따라 본 발명의 기술적 구성을 상세히 설명하면 다음과 같다.Hereinafter, the technical structure of the present invention will be described in detail with reference to the preferred embodiments.

도 1은 기존 칼슘실리케이트계 무기단열소재 제조방법을 도시한 도이다.BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing a conventional method of manufacturing a calcium silicate-based heat insulating material. FIG.

도 1에서와 같이, 종래의 칼슘실리케이트계 무기단열소재 제조방법은 시멘트, 무수석고, 생석회 등의 분체원료를 주원료로, 분체원료와 혼합수를 섞어 슬러리를 제조 후 Aluminum 분말을 혼합한다. Aluminum 분말은 칼슘실리케이트계 무기단열소재에서 발포제로 사용된다. 슬러리는 알칼리 성분의 수화반응으로 발포하게 된다. (식 1 참조) 이때 알루미늄 분말은 수화물 (Al(OH)3)로 변화하면서 생석회 또는 시멘트에서 생성되는 수산화칼슘(Ca(OH2)과 반응으로 수소가스가 발생한다.As shown in FIG. 1, conventional calcium silicate-based thermal insulation materials are prepared by mixing powders of raw materials such as cement, anhydrous gypsum and quicklime as raw materials, mixing powdery materials and mixed water, and then mixing the aluminum powder. Aluminum powder is used as a foaming agent in calcium silicate-based insulating material. The slurry is foamed by the hydration reaction of the alkali component. (See Equation 1). At this time, the aluminum powder changes into a hydrate (Al (OH) 3 ), and hydrogen gas is generated by reaction with calcium hydroxide (Ca (OH) 2 ) generated from calcium oxide or cement.

2Al + 3Ca(OH)2 + 6H2O 3CaO + Al2O3 + 6H2O + 3H2 2Al + 3Ca (OH) 2 + 6H 2 O 3CaO + Al 2 O 3 + 6H 2 O + 3H 2

또는 2Al + Ca(OH)2 + 6H2O Ca(Al(OH)4)2 + 3H2 + 3H2 (식 1)Or 2Al + Ca (OH) 2 + 6H 2 O Ca (Al (OH) 4) 2 + 3H 2 + 3H 2 ( Equation 1)

수소가스에 인해 발포하는 슬러리는 분체원료의 수화반응에서 발생하는 수화열로 발포와 동시에 경화가 진행된다. 경화된 발포체가 24시간동안 양생과정을 통해 탈형되면 칼슘실리케이트계 무기단열소재가 완성된다.The slurry to be foamed due to the hydrogen gas is hardened by the hydration heat generated in the hydration reaction of the powder raw material and simultaneously with the foaming. When the cured foam is dehydrated through the curing process for 24 hours, the calcium silicate-based heat insulating material is completed.

본 발명에 따르는 슬래그 혼입형 칼슘실리케이트계 무기단열소재의 제조방법은 (a) 보통 포틀랜드 시멘트(OPC) 45~50wt%, 생석회 10wt%, 슬래그 30~35wt%, 무수석고 10wt%로 이뤄지는 100wt%의 출발원료를 준비하는 단계; (b) 출발원료에 알루미늄 분말을 외할로 0.6wt% 및 Pore Stabilizer 0.06 wt% 혼합하여 배합물을 조성하는 단계; (c) 혼합수 130wt%를 상기 배합물에 혼합하여 슬러리를 제조하는 단계; 및 (d) 슬러리를 양생하고 건조하여 경화체를 형성하는 단계;로 이루어진다.The method for producing a slag-incorporated calcium silicate-based thermal insulation material according to the present invention comprises the steps of: (a) preparing a slag-containing calcium silicate-based heat insulating material comprising 100 to 100 wt% of an ordinary Portland cement (OPC) 45 to 50 wt%, quicklime 10 wt%, slag 30 to 35 wt% Preparing a starting material; (b) mixing the starting material with 0.6wt% aluminum powder and 0.06wt% porestabilizer to form a blend; (c) blending 130wt% of the mixed water into the formulation to prepare a slurry; And (d) curing and drying the slurry to form a cured body.

이때, (a)(b) 및 (c) 단계는 차례로 이루어질 수도 있으며, 동시에 진행될 수 있다.At this time, steps (a), (b) and (c) may be performed one after the other or simultaneously.

출발 원료 준비Starting material preparation

본 발명에 따르는 슬래그 혼입형 칼슘실리케이트계 무기단열소재의 제조방법을 위해, 출발 원료인 분말 원료로는 표 1과 같이,구성하였다.For the production method of the slag-incorporated calcium silicate-based inorganic heat insulating material according to the present invention, the powder raw material as the starting material was constituted as shown in Table 1.

%% SiO2 SiO 2 Al2O3 Al 2 O 3 Fe2O3 Fe 2 O 3 CaOCaO MgOMgO SO3 SO 3 분말도 (g/cm2)Powder (g / cm 2 ) OPCOPC 11.811.8 5.865.86 2.832.83 59.759.7 4.024.02 3.553.55 8,6008,600 SlagSlag 24.324.3 12.812.8 0.500.50 40.940.9 6.696.69 4.024.02 6,3006,300 Anhydrous gypsumAnhydrous gypsum 1.71.7 0.40.4 0.10.1 39.339.3 -- 53.153.1 2,8002,800 Lime stoneLime stone 1.61.6 0.30.3 0.40.4 90.390.3 0.80.8 0.70.7 4,1004,100

표 1은 본 발명에서 사용한 출발원료의 성분분석표이다.Table 1 is an ingredient analysis table of the starting materials used in the present invention.

본 발명에 사용한 출발원료 중 OPC는 동양 1종 보통 시멘트를 분쇄하여 분말도 8,600 g/cm2으로 조정하여 사용하며, Slag는 OO레미콘에서 슬래그시멘트 제조시 사용하는 슬래그로 6,300 g/cm2로 조정하여 분쇄하였다. 케미우스코리아社의 무수석고와 백광소재社 생석회를 사용하였다. 추가적으로, Pore Stabilizer(기포 안정제)는 Wacker社의 PDMS를 사용하였으며, 발포제인 AL 분말은 알코엔지니어링社의 Y250을 사용하였다.Of the starting materials used in the present invention, the OPC is prepared by pulverizing one kind of ordinary cement and adjusting the powder to 8,600 g / cm 2. Slag is slag used in the production of slag cement in OO concrete to 6,300 g / cm 2 . Anhydrous gypsum of Chemius Korea Co., Ltd. In addition, the Pore Stabilizer (PDMS) from Wacker was used, and the AL powder, the blowing agent, was Y250 from Alco Engineering.

No.No. 8,600
OPC
8,600
OPC
SlagSlag Lime stoneLime stone Anhydrous gypsumAnhydrous gypsum WaterWater Pore
Stabilizer
Pore
Stabilizer
Al
Powder
Al
Powder
1One 4545 3535 1010 1010 130130 0.060.06 0.60.6 22 5050 3030 33 5555 2525 44 6060 2020 55 6565 1515 66 7070 1010

표 2는 본 발명에서 사용한 출발원료의 배합조건이다.Table 2 shows the mixing conditions of the starting materials used in the present invention.

칼슘실리케이트계 무기단열소재는 슬러리화된 출발원료를 몰드에 타설 후 양생과정을 거쳐 탈형한다. 탈형시 슬러리가 탈형하기 적합한 경도에 맞게 발포한 슬러리의 빠른 초기강도발현 또한 중요하다. 슬래그는 초기강도보다 장기강도 발현에 영향을 주기 때문에 분쇄를 통한 반응촉진을 위해 슬래그의 분말도를 6,300 g/cm2로 분쇄하여 사용하였다. The calcium silicate-based heat insulating material is desorbed through the curing process after the slurry raw material is poured into the mold. It is also important that the fast initial strength development of the slurry foamed to a hardness suitable for demoulding the slurry at demoulding. Since the slag affects the long - term strength development more than the initial strength, the slag powder was pulverized to 6,300 g / cm 2 in order to accelerate the reaction through pulverization.

일반적으로 사용하는 3종 슬러리의 분말도는 3,200 g/cm2로 모르타르에 혼입시 양생15일 이후 강도 발현한다. 슬래그 혼입형 칼슘실리케이트계 무기단열소재는 타설 후 24시간 후 슬러리의 경도는 기존 칼슐실리케이트계 무기단열소재보다 2배의 경도차이가 나타났다. (슬러리 혼입 20kgf, 기존시편 10kgf - ALC 슬러리 경도측정기 사용) 탈형 후 시편을 3일, 7일 15일 동안 온도 25 ~ 30℃ , 상대습도 60 ~ 75 %의 양생조건에서 양생 후 압축강도 비중을 측정하였다.The powders of the three kinds of slurries generally used are 3,200 g / cm 2 , and when mixed into the mortar, they show strength after 15 days of curing. In slag-incorporated calcium silicate-based insulating material, the hardness of the slurry after 24 hours was two times harder than that of the existing calcium silicate insulation material. (Slurry incorporation 20kgf, conventional specimen 10kgf - using ALC slurry hardness tester) After demolding, the specimens were measured after 3 days, 7 days and 15 days curing conditions of 25 ~ 30 ℃ and relative humidity 60 ~ 75% Respectively.

본 발명에 따르는 슬래그를 사용하는 칼슘실리케이트계 단열 소재의 주원료인 OPC, 생석회, 석고를 분말원료로 사용하는 기존 칼슘실리케이트계 무기단열소재에 비해, OPC 대신에 슬래그를 일부 대체하는 칼슘실리케이트계 무기단열소재의 경우 비중, 열전도율 및 압축강도에 있어서 어떠한 특성을 알아보고, 슬래그 최적 배합비를 얻기 위해 다음과 같은 실험을 실시한다.Compared with existing calcium silicate-based heat insulating materials using OPC, calcium oxide, and gypsum as main raw materials for the calcium silicate heat insulating material using the slag according to the present invention, calcium silicate type heat insulating material In the case of the material, the characteristics such as specific gravity, thermal conductivity and compressive strength are examined, and the following experiment is carried out to obtain the optimum blending ratio of slag.

기본 시편 제작Basic Specimen Production

상기 표 2의 배합실험은 OPC를 슬래그와 일부함량을 대체하는 실험으로, 대체량에 따라 강도변화를 확인하는 것이 목표이며, 추가적으로 열전도율과 비중을 0.045 W/mK, 0.13 g/cm3을 유지하고자 하였다.The mixing experiment in Table 2 is to replace OPC with slag and a part of the content. It is aimed to confirm the strength change according to the replacement amount, and further to maintain the thermal conductivity and specific gravity at 0.045 W / mK and 0.13 g / cm 3 .

열전도율 측정Thermal Conductivity Measurement

열전도율(평판열류계법, HC-074, EKO社, Japan)KS L 9016 규격에 따라 상판 35℃, 하판 15℃에서 측정하였다. 열전도율의 단위는 두께 1m인 양면에 1K의 온도 차가 있을 때 그 판의 1m2를 통해서 1초 동안에 흐르는 열량을 줄(joule)로 측정한 값으로 W/mK로 표시된다. 열전도율 시편의 크기는 20㎝x20㎝x3㎝이다.Thermal conductivity (Plate Heat Flow Method, HC-074, EKO Co., Japan) Measured at 35 ° C in the upper plate and 15 ° C in the lower plate according to KS L 9016 standard. The unit of thermal conductivity is expressed as W / mK, measured in joules over 1 second through 1 m 2 of the plate when there is a temperature difference of 1 K on both sides with a thickness of 1 m. The size of the thermal conductivity specimen is 20 cm x 20 cm x 3 cm.

비중 측정Specific gravity measurement

KS F 2701에 의해 측정에 맞는 조건의 시편을 100℃로 24시간 건조시켜, 시편의 부피와 무게를 측정하여 g/cm3의 단위로 나타낸다.The specimens were dried at 100 ° C for 24 hours under the conditions specified in KS F 2701, and the volume and weight of the specimens were measured and expressed in g / cm 3 .

압축강도 측정Compressive strength measurement

압축강도는 WooJin사의 만능재료시험기 WJ-100S을 이용하여 KS F 2701 규격에 따라 매초 9.8 N/의 재하속도로 측정하였다. 압축강도는 하중을 시험편의 원 단면적(㎠)으로 나눈 값(kgf/)으로 MPa환산하였다. 압축강도를 측정하기 위하여 100이상에서 24시간 동안 건조시킨 시편을 이용하였다.The compressive strength was measured at a load rate of 9.8 N / sec according to KS F 2701 standard using WJ-100S, a universal material tester of WooJin. The compressive strength was converted into MPa by a value (kgf /) obtained by dividing the load by the sectional area of the test piece (㎠). The specimens were dried for more than 100 hours to measure compressive strength.

도 2는 표 2의 조건으로 배합한 슬래그 시멘트 대체 함량 별 압축강도를 도시한 그래프이다.Fig. 2 is a graph showing the compressive strengths of the slag cement substitute contents blended under the conditions of Table 2. Fig.

도 2a는 양생 후 측정한 결과로 도 2a에서와 같이, 압축강도와 비중은 KS F 2701에 따라 측정하였다. No. 1 ~ No. 6의 배합조건에 따라 슬래그가 줄어들수록 압축강도가 낮아지는 경향을 확인할 수 있다. FIG. 2A shows the results of curing, and the compressive strength and specific gravity were measured according to KS F 2701 as shown in FIG. 2A. No. 1 to No. 6, the compressive strength tends to decrease with decreasing slag.

비중은 양생 3일 0.21g/cm3, 7일 0.18g/cm3 15일 0.15 g/cm3로 기건양생에 따라 다소 건조되면서 비중은 낮아졌으나, 압축강도는 양생일에 따라 높아지는 경향을 확인하였으며, No. 2의 보통 포틀랜드 시멘트(OPC) 50wt%, 슬래그 305wt%dls 조건에서 15일 압축강도가 가장 높은것으로 나타났다.With a specific gravity of less dry, depending on curing to cured air dry average 3 days 0.21g / cm 3, 7 il 0.18g / cm 3 15 il 0.15 g / cm 3 specific gravity jyeoteuna lowered, the compressive strength was confirmed a tendency increasing with the amount birthday , No. 2, 50 wt% of ordinary Portland cement (OPC) and 305 wt% of slag.

도 2b는 80℃ 24hr 건조 후 측정한 슬래그 시멘트 대체함량 별 압축강도를 도시한 그래프이다.FIG. 2B is a graph showing the compressive strengths of the slag cement substitute contents measured after drying at 80 ° C. for 24 hours.

상기 도 2a와 동일하게 제작 및 양생되었지만 양생기간에 따른 비중을 0.13 g/cm3 으로 동일하게 건조시켜 압축강도를 측정해 보았다. 건조시 건조수축으로 크랙발생을 유념하여 30℃부터 5시간마다 10℃씩 올려 80℃까지 올려 80℃에서 24시간 건조하였다. 비중은 0.13 g/cm3로 낮아졌으나 모든 시편에 건조수축으로 인한 크랙들이 확인되었다. 크랙의 유무와 정도는 시편마다 다소 차이가 있기 때문에 시편에 따른 압축강도의 재현성이 떨어졌지만 No. 1 배합조건에서 No. 6 배합조건으로 변화에 따라 압축강도가 떨어지는 것을 확인하였으며, No. 1의 보통 포틀랜드 시멘트(OPC) 45wt%, 슬래그 35wt%의 조건에서 15일 압축강도가 가장 높은 것으로 나타났다.The compressive strength was measured by drying the specimens in the same manner as in FIG. 2A but drying the specimens with a specific gravity of 0.13 g / cm 3 according to the curing period. In consideration of the occurrence of cracks due to drying shrinkage during drying, the temperature was raised by 10 ° C every 5 hours from 30 ° C to 80 ° C and dried at 80 ° C for 24 hours. The specific gravity was lowered to 0.13 g / cm 3 , but cracks due to drying shrinkage were found in all specimens. The reproducibility of the compressive strength according to the specimen was deteriorated due to the difference in the presence or absence of cracks and the degree of each specimen. Under the condition 1, 6 It was confirmed that the compressive strength was decreased with the change in the condition of mixing. 1, the average Portland cement (OPC) 45wt%, and the slag 35wt%.

본 발명에 따르는 슬래그 혼입형 칼슘실리케이트계 무기단열소재의 제조방법의 바람직한 일 실시예로는 8,600 g/cm2의 OPC와 6,300 g/cm2의 슬래그 등 표 1의 출발원료를 사용한다. As a preferred embodiment of the method for producing a slag-incorporated calcium silicate-based inorganic insulating material according to the present invention, the starting materials of Table 1 such as OPC of 8,600 g / cm 2 and slag of 6,300 g / cm 2 are used.

배합조건은 OPC 50 wt%, 슬래그 30 wt%, 생석회 10 wt%, 무수석고 10 wt%를 혼합수 130 wt%와 전동드릴로 3분간 혼합하여 1차 슬러리를 제조 후, Pore Stabilizer를 0.06wt%(분체대비 외할) 혼입하여 2차 혼합을 진행한다. 마지막으로, Al 분말 0.6wt%(분체대비 외할) 혼입하여 3차 혼합을 진행하면 슬래그 혼입형 칼슘실케이트계 무기단열소재의 슬러리가 완성된다.The blending conditions were as follows: OPC 50 wt%, slag 30 wt%, quicklime 10 wt% and anhydrite 10 wt% were mixed with 130 wt% of mixed water for 3 minutes using an electric drill to prepare a primary slurry, and 0.06 wt% (Not to be compared with the powder), and the second mixing is carried out. Lastly, mixing of the Al powder with 0.6 wt% (relative to the powder) is carried out to complete the slurry of the slag-incorporated calcium silicate-based heat insulating material.

완성된 슬러리는 몰드에 타설하고 25 ~ 30℃ , 60 ~ 75%의 상대습도를 유지시키면 1시간 이내 Al분말이 발포 및 경화된다. 24시간동안 제작조건에서 양생 후 탈형하여 사용하고자 하는 용도에 맞게 사용한다.The completed slurry is poured into a mold and maintained at a relative humidity of 60 to 75% at 25 to 30 ° C, whereby the Al powder is foamed and cured within 1 hour. Degrease after curing in production condition for 24 hours and use according to the intended use.

상기와 같은 본 발명의 슬래그 혼입형 칼슘실리케이트계 무기단열소재의 제조방법은 시멘트에 재철과정에서 발생하는 부산물인 슬래그를 시멘트와 혼합하여 사용하도록 함으로써 초기수화열이 매우 낮아 저온고습의 양생조건이 아니라도 안정적으로 발포되며 철제몰드에서도 안정적으로 제작될 수 있는 효과가 있다. 또한, 시멘트를 다량 슬래그로 대체하였기 때문에 칼슘실리케이트계 무기단열소재의 초기강도 증진을 통한 시공성 확보와 저가원료 사용을 통한 경제성을 확보하도록 하는 매우 유용한 효과가 있다.The method of manufacturing a slag-incorporated calcium silicate-based inorganic heat insulating material of the present invention as described above allows the slag, which is a byproduct produced in the ferrous metal process, to be mixed with cement so that the initial hydration heat is very low, It can be stably foamed and can be manufactured stably even in an iron mold. In addition, since the cement is replaced with a large amount of slag, there is a very useful effect of securing the workability through the improvement of the initial strength of the calcium silicate-based heat insulating material and securing the economical efficiency by using the low-cost raw material.

지금까지 본 발명은 제시된 실시 예를 참조하여 상세하게 설명이 되었지만 이 분야에서 통상의 지식을 가진 자는 제시된 실시 예를 참조하여 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다양한 변형 및 수정 발명을 만들 수 있을 것이다. 본 발명은 이와 같은 변형 및 수정 발명에 의하여 제한되지 않으며 다만 아래에 첨부된 청구범위에 의하여 제한된다. While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art in light of the above teachings. will be. The invention is not limited by these variations and modifications, but is limited only by the claims appended hereto.

Claims (3)

(a) 보통 포틀랜드 시멘트(OPC) 45~50wt%, 생석회 10wt%, 슬래그 30~35wt%, 무수석고 10wt%로 이뤄지는 100wt%의 출발원료를 준비하는 단계;
(b) 출발원료에 알루미늄 분말을 외할로 0.6wt% 및 Pore Stabilizer 0.06 wt% 혼합하여 배합물을 조성하는 단계;
(c) 혼합수 130wt%를 상기 배합물에 혼합하여 슬러리를 제조하는 단계; 및
(d) 슬러리를 양생하고 건조하여 경화체를 형성하는 단계;를 포함하여 이루어지는 것을 특징으로 하는 슬래그 혼입형 칼슘실리케이트계 무기단열소재의 제조방법.
(a) preparing 100 wt% starting material consisting of 45 to 50 wt% of ordinary Portland cement (OPC), 10 wt% of burnt lime, 30 to 35 wt% of slag, and 10 wt% of anhydrous gypsum;
(b) mixing the starting material with 0.6wt% aluminum powder and 0.06wt% porestabilizer to form a blend;
(c) blending 130wt% of the mixed water into the formulation to prepare a slurry; And
and (d) curing and drying the slurry to form a cured body. The method for producing a slag-incorporated calcium silicate-based inorganic heat insulating material according to claim 1,
청구항 1에 있어서,
슬래그는 24.3 wt%의 SiO2, 40.9 wt%의 CaO, 12.8 wt%의 Al2O3, 0.50 wt%의 Fe2O3, 4.0 wt%의 SO3, 6.69wt%의 MgO로 구성되는 것을 특징으로 하는 슬래그 혼입형 칼슘실리케이트계 무기단열소재의 제조방법.
The method according to claim 1,
The slag is composed of 24.3 wt% of SiO 2 , 40.9 wt% of CaO, 12.8 wt% of Al 2 O 3 , 0.50 wt% of Fe 2 O 3 , 4.0 wt% of SO 3 , and 6.69 wt% of MgO By weight based on the total weight of the calcium silicate-based inorganic insulating material.
청구항 1에 있어서,
(a) 단계에서,
출발원료에 50.5 wt%의 SiO2와, 29.7 wt%의 CaO와, 1.80 wt%의 SO3를 추가 혼합하는 것을 특징으로 하는 슬래그 혼입형 칼슘실리케이트계 무기단열소재의 제조방법.
The method according to claim 1,
In step (a)
A method for producing a slag-incorporated calcium silicate-based thermal insulation material, which comprises adding 50.5 wt% SiO 2 , 29.7 wt% CaO and 1.80 wt% SO 3 to the starting material.
KR1020170142292A 2017-10-30 2017-10-30 Slag mixed type calcium silicated inorganic insulation fabrication method KR20190047911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170142292A KR20190047911A (en) 2017-10-30 2017-10-30 Slag mixed type calcium silicated inorganic insulation fabrication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170142292A KR20190047911A (en) 2017-10-30 2017-10-30 Slag mixed type calcium silicated inorganic insulation fabrication method

Publications (1)

Publication Number Publication Date
KR20190047911A true KR20190047911A (en) 2019-05-09

Family

ID=66546394

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170142292A KR20190047911A (en) 2017-10-30 2017-10-30 Slag mixed type calcium silicated inorganic insulation fabrication method

Country Status (1)

Country Link
KR (1) KR20190047911A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023122768A1 (en) * 2021-12-23 2023-06-29 Graymont Western Canada Inc. Lime-based cement extender compositions, and associated systems and methods

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101416046B1 (en) 2013-11-25 2014-07-08 한국세라믹기술원 Cementitious Inorganic Insulations and fabrication Method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101416046B1 (en) 2013-11-25 2014-07-08 한국세라믹기술원 Cementitious Inorganic Insulations and fabrication Method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023122768A1 (en) * 2021-12-23 2023-06-29 Graymont Western Canada Inc. Lime-based cement extender compositions, and associated systems and methods

Similar Documents

Publication Publication Date Title
Zhang et al. Engineered Cementitious Composites (ECC) with limestone calcined clay cement (LC3)
Nath et al. Early age properties of low-calcium fly ash geopolymer concrete suitable for ambient curing
KR101121724B1 (en) A composition of cement zero concrete using the mixed blast slag, powder type sodium silicate and desulfurization gypsum as binder and method for it
JP5931317B2 (en) Hydraulic composition and concrete using the hydraulic composition
JP4911580B2 (en) Low specific gravity lightweight foam concrete and method for producing the same
RU2705646C1 (en) Cement-free binder and use thereof
KR100873514B1 (en) Binder for concrete having ultra high strength and a method for manufacturing concrete using the binder
KR101359277B1 (en) Concrete composition having improved initial strength and concrete structure prepared by the same
KR100999438B1 (en) Csa high early strength binder and the method for manufacturing precast concrete using thereof
KR100653311B1 (en) Cement composition for autoclaved lightwiht concrete production comprising heavy oil ash and manufacturing method of alc using the same
KR101390132B1 (en) high strength concrete composition using rapid hardening type portland cement
Zaidi et al. Utilisation of glass powder in high strength copper slag concrete
KR100978289B1 (en) Preparation method for adiabatic mortar using low absorption lightweight aggregates made from bottom ash and waste glass
JP6295085B2 (en) Cement composition
KR102260445B1 (en) Light Weight And Heat Insulation Mortar Composition Based on Industrial By-products
KR101074486B1 (en) Cement binder composition, super ultra high strength precast concrete composition and method for producing super ultra high strength precast concrete goods using the same
KR20190047911A (en) Slag mixed type calcium silicated inorganic insulation fabrication method
KR20190027994A (en) Manufacturing Method of Waterproof Foamed Concrete Block
KR20100028693A (en) A method for manufacturing concrete having high performance
US9957197B1 (en) Porous geopolymers
KR20090012556A (en) High-strenght concrete powder mineral admixture composition
KR20110109286A (en) Autoclaved lightweight concrete using base materials for high strength concrete and its preparing method
JP6037073B2 (en) Cement composition
KR101272814B1 (en) Non-sintering inorganic binder comprising blast-furnace slag and mortar composition using thereof
JP2008074659A (en) Air bubble mixed calcium silicate hardened body

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application