JP2008074659A - Air bubble mixed calcium silicate hardened body - Google Patents

Air bubble mixed calcium silicate hardened body Download PDF

Info

Publication number
JP2008074659A
JP2008074659A JP2006255273A JP2006255273A JP2008074659A JP 2008074659 A JP2008074659 A JP 2008074659A JP 2006255273 A JP2006255273 A JP 2006255273A JP 2006255273 A JP2006255273 A JP 2006255273A JP 2008074659 A JP2008074659 A JP 2008074659A
Authority
JP
Japan
Prior art keywords
calcium silicate
slurry
parts
mass
hardened body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006255273A
Other languages
Japanese (ja)
Inventor
Katsumi Matsui
克己 松井
Takayuki Hayakawa
隆之 早川
Kenta Masuda
賢太 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2006255273A priority Critical patent/JP2008074659A/en
Publication of JP2008074659A publication Critical patent/JP2008074659A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/27Water resistance, i.e. waterproof or water-repellent materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/20Mortars, concrete or artificial stone characterised by specific physical values for the density

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air bubble mixed calcium silicate hardened body which is excellent in strength characteristics and water resistance, which is unnecessary for complex controlling and which can lighten in weight at a low cost. <P>SOLUTION: The air bubble mixed calcium silicate hardened body has (A) a specific gravity of 0.2-0.8 g/cm<SP>3</SP>, (B) a pore volume measured by a mercury penetration method in the range of 10-45 μm to that in the range of 10-300 μm of 50 vol% or more and (C) an air permeability measured by JIS R 2115 of 0.5 mL*cm/sec*cm<SP>2</SP>*cm H<SB>2</SB>O or less. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、強度特性及び耐水性に優れた気泡混入珪酸カルシウム硬化体に関する。   The present invention relates to a foamed calcium silicate hardened body excellent in strength characteristics and water resistance.

珪酸カルシウム系建材は、不燃性、寸法安定性、化学的安定性に優れることから、建築分野において幅広く利用されている。特に、気泡を混入した珪酸カルシウム系建材は、建築物の軽量化・高機能化等の要望から、ビルや住宅の内・外装材、吸音材及び断熱材として普及している。   Calcium silicate building materials are widely used in the construction field because they are excellent in incombustibility, dimensional stability, and chemical stability. In particular, calcium silicate building materials mixed with air bubbles are widely used as interior and exterior materials, sound absorbing materials, and heat insulating materials for buildings and houses because of demands for building weight reduction and high functionality.

これらの気泡混入珪酸カルシウム系建材は、界面活性剤によるミックスフォーム、プレフォーム又はAl発泡等により、200〜1000μm程度の気孔を含み、軽量、吸音、断熱等の特性を発現するものである。しかし、その一方で、この気孔により製品の曲げ強度、耐衝撃性(角欠け性)等が低下してしまうという問題がある。   These foam-mixed calcium silicate building materials contain pores of about 200 to 1000 μm due to a mixed foam, preform, or Al foaming with a surfactant, and exhibit characteristics such as light weight, sound absorption, and heat insulation. However, on the other hand, there is a problem that the bending strength, impact resistance (corner chipping property) and the like of the product are lowered due to the pores.

このため、珪酸カルシウム基材に、有機合成繊維、無機繊維等の繊維を補強剤として均質に分散させることにより、強度低下を防止し、耐衝撃性を確保することが行なわれていた(特許文献1、特許文献2)。
しかしながら、珪酸カルシウム系建材は、製造時に高温・高圧養生(オートクレーブ養生)を行なうため、使用される繊維は耐湿熱性の高い繊維に限定され、このような繊維は一般的に高価であることから、原材料コストが高くなる。
For this reason, it has been carried out to prevent strength reduction and ensure impact resistance by uniformly dispersing fibers such as organic synthetic fibers and inorganic fibers as a reinforcing agent in the calcium silicate base material (Patent Literature). 1, Patent Document 2).
However, since calcium silicate building materials are subjected to high-temperature and high-pressure curing (autoclave curing) at the time of production, the fibers used are limited to fibers with high moisture and heat resistance, and such fibers are generally expensive. Raw material costs increase.

このため、繊維によることなく、高強度化を実現すべく、種々の検討が行なわれ、トバモライトの結晶性を高めた珪酸カルシウム硬化体(特許文献3)や、硬化体内の気孔形状や気孔径を特定化した珪酸カルシウム硬化体(特許文献4、特許文献5)等が提案されている。   For this reason, various studies have been conducted to achieve high strength without using fibers, and the hardened calcium silicate (Patent Document 3) with enhanced crystallinity of tobermorite, the pore shape and pore diameter in the cured body Specificized hardened calcium silicate (Patent Document 4, Patent Document 5) and the like have been proposed.

特許文献3には、セメント等の石灰質原料や珪酸質原料を微粉化して水熱反応性を高めることにより、高結晶性のトバモライトが合成され、硬化体強度が向上する技術が提案されている。しかしながら、反応性を高めるためにセメント等の原料を微粉化して使用すると、スラリーの粘性が増加して成形性が著しく低下するおそれがあり、これを防止するためには、減水剤、流動化剤等の混和剤が多量に必要となる。また、一般に流通している原料に比べ、微粉化した原料は粉砕に多大なエネルギーと時間を要することから、原料コストが増大する。   Patent Document 3 proposes a technique in which a highly crystalline tobermorite is synthesized and a cured body strength is improved by pulverizing a calcareous raw material such as cement or a siliceous raw material to increase hydrothermal reactivity. However, if a raw material such as cement is used in a fine powder form in order to increase the reactivity, the viscosity of the slurry may increase and the moldability may be significantly reduced. To prevent this, a water reducing agent, a fluidizing agent is used. A large amount of admixture such as is required. Moreover, compared with the raw material currently distribute | circulated, since the raw material atomized requires much energy and time for a grinding | pulverization, raw material cost increases.

また、特許文献4には、有機系の発泡粒子を混入し、250℃以下で加熱処理することにより、独立気泡を形成させる軽量気泡セメント成型体の製造方法が提案されている。この方法によれば、加熱処理によって発泡粒子が溶融し、発泡粒子跡に独立気泡が形成されることにより、高強度の軽量気泡コンクリートが得られるが、発泡粒子は高価であり、また溶融させなければならないため、製造面でもコスト高となる。   Patent Document 4 proposes a method for producing a lightweight foam cement molded body in which closed cells are formed by mixing organic foam particles and heat-treating at 250 ° C. or lower. According to this method, the foamed particles are melted by the heat treatment, and closed cells are formed in the foamed particle traces to obtain high-strength lightweight cellular concrete. However, the foamed particles are expensive and must be melted. Therefore, the manufacturing cost is high.

特許文献5では、硬化体断面において200μm以上の気孔を実質的になくし、かつミクロフィブリル化したパルプ繊維を使用することにより、珪酸カルシウム硬化体の高強度化を図っている。しかし、泡沫によって気孔を形成させる手法では、200μm以下の気泡を均質に作製することは事実上困難であり、具体的な作成方法は記載されていない。一般に、気泡の除去方法として消泡剤の使用が知られている。しかし、消泡剤の消泡作用は、その添加量に対して大変敏感であり、また完全に気泡をなくすか又は巻き込み気泡を発生させないために使用するのが一般的であり、200μm以上の気泡のみを除去するためには、その添加量の調整が極めて難しい。
特開昭56−37266号公報 特開平9−263461号公報 特開平5−286780号公報 特開平2−145492号公報 特開2001−58888号公報
In Patent Document 5, the strength of the hardened calcium silicate is increased by substantially eliminating pores of 200 μm or more in the cross section of the hardened body and using microfibrillated pulp fibers. However, in the method of forming pores by foam, it is practically difficult to uniformly produce bubbles of 200 μm or less, and no specific production method is described. In general, the use of an antifoaming agent is known as a method for removing bubbles. However, the defoaming action of the antifoaming agent is very sensitive to the amount of addition, and is generally used in order to completely eliminate bubbles or prevent entrained bubbles from being generated. Therefore, it is extremely difficult to adjust the addition amount.
JP-A-56-37266 Japanese Patent Laid-Open No. 9-263461 JP-A-5-286780 Japanese Patent Laid-Open No. 2-145492 JP 2001-58888 A

従って、本発明の目的は、強度特性及び耐水性に優れ、かつ複雑な制御を必要とせず低コストで軽量化できる気泡混入珪酸カルシウム硬化体を提供することにある。   Accordingly, an object of the present invention is to provide a foamed calcium silicate hardened body which is excellent in strength characteristics and water resistance and can be reduced in weight at low cost without requiring complicated control.

斯かる実情に鑑み、本発明者らは、鋭意検討した結果、特定の細孔容積及び通気率を有する気泡混入珪酸カルシウム硬化体が、強度特性及び耐水性に優れることを見出し、本発明を完成した。   In view of such circumstances, the present inventors have intensively studied, and as a result, found that a foamed calcium silicate cured body having a specific pore volume and air permeability is excellent in strength characteristics and water resistance, and completed the present invention. did.

すなわち、本発明は、(A)比重0.2〜0.8g/cm3
(B)10〜45μmの範囲における細孔の容積が、10〜300μmの範囲における細孔の容積に対して、水銀圧入法で測定して、50vol%以上、
(C)JIS R 2115で測定した通気率が0.5mL・cm/sec・cm2・cmH2O以下
である気泡混入珪酸カルシウム硬化体を提供するものである。
That is, the present invention provides (A) specific gravity of 0.2 to 0.8 g / cm 3 ,
(B) The volume of the pores in the range of 10 to 45 μm is 50 vol% or more as measured by the mercury intrusion method with respect to the volume of the pores in the range of 10 to 300 μm.
(C) A foamed calcium silicate hardened body having an air permeability measured by JIS R 2115 of 0.5 mL · cm / sec · cm 2 · cmH 2 O or less is provided.

本発明の気泡混入珪酸カルシウム硬化体は、強度特性及び耐水性に優れたものである。   The foamed calcium silicate cured product of the present invention has excellent strength characteristics and water resistance.

本発明の硬化体は、(A)比重が0.2〜0.8g/cm3、好ましくは0.3〜0.7g/cm3のものである。比重は、直方体の型枠にスラリーを流し込み硬化させた硬化体の質量と、ノギスにて計測した硬化体の縦、横及び厚みの寸法を用いて求められる。 The cured product of the present invention has (A) a specific gravity of 0.2 to 0.8 g / cm 3 , preferably 0.3 to 0.7 g / cm 3 . Specific gravity is calculated | required using the dimension of the vertical, horizontal, and thickness of the hardened | cured body measured with the caliper, and the mass of the hardened | cured body which poured the slurry into the rectangular parallelepiped mold and was hardened.

また、(B)10〜45μmの範囲における細孔の容積が、10〜300μmの範囲における細孔の容積に対して、水銀圧入法で測定して、50vol%以上、好ましくは60vol%以上である。この細孔容積の割合が50vol%未満では、十分な強度及び耐水性が得られない。
水銀圧入法(ポロシメータ)とは、珪酸カルシウム硬化体内部に水銀を圧入させ、そのときの圧力と侵入量の関係から、細孔径の分布を0.001〜300μmの範囲で測定するものである。
本発明において対象とする細孔径分布が10〜300μmの範囲は、気泡によって形成された気孔であることを示す。
(B) The volume of the pores in the range of 10 to 45 μm is 50 vol% or more, preferably 60 vol% or more, as measured by the mercury intrusion method with respect to the pore volume in the range of 10 to 300 μm. . When the pore volume ratio is less than 50 vol%, sufficient strength and water resistance cannot be obtained.
In the mercury intrusion method (porosimeter), mercury is intruded into the hardened calcium silicate body, and the pore size distribution is measured in the range of 0.001 to 300 μm from the relationship between the pressure and the amount of penetration.
In the present invention, the target pore size distribution in the range of 10 to 300 μm indicates pores formed by bubbles.

また、本発明の硬化体は、(C)JIS R 2115の「耐火れんがの通気率の試験方法」に従って測定した通気率が0.5mL・cm/sec・cm2・cmH2O以下、好ましくは0.25mL・cm/sec・cm2・cmH2O以下のものである。
この通気率は、硬化体の表面から裏面への空気の透過しやすさを示す指標である。硬化体の気孔同士が連通しているほど空気は透過しやすく、通気率は高い値を示す。逆に、独立気孔を形成している場合、通気率は低い値を示す。
この通気率が0.5mL・cm/sec・cm2・cmH2Oを超えると、独立気泡の存在率が低くなり、強度や耐水性が低下してしまう。
Further, the cured body of the present invention has an air permeability measured in accordance with (C) JIS R 2115 “Test method for air permeability of refractory brick” of 0.5 mL · cm / sec · cm 2 · cmH 2 O or less, preferably 0.25 mL · cm / sec · cm 2 · cmH 2 O or less.
This air permeability is an index indicating the ease of air permeation from the front surface to the back surface of the cured body. The more the pores of the cured body communicate with each other, the more easily air will permeate and the higher the air permeability. On the contrary, when the independent pores are formed, the air permeability shows a low value.
If this air permeability exceeds 0.5 mL · cm / sec · cm 2 · cmH 2 O, the abundance of closed cells decreases, and the strength and water resistance decrease.

このような硬化体は、例えば、セメント原料、珪酸質原料、水、気泡、混和剤並びにポリ硫酸第二鉄及び/又はポリ硫酸アルミニウムを含有するスラリーを、硬化させることにより、製造することができる。
ここで用いられるセメント原料としては、セメント単独、あるいはセメント、消石灰及び生石灰の混合物を使用することができる。セメント成分としては、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱セメント等のJIS R 5201に規定されているセメントのほか、JIS R TR 0002に規定されているエコセメントを使用することができる。また、セメントと消石灰及び生石灰の混合割合は、目的とする製品の性能等に応じて、選択することができる。
Such a cured product can be produced, for example, by curing a slurry containing cement raw material, siliceous raw material, water, bubbles, admixture and polyferric sulfate and / or aluminum polysulfate. .
As the cement raw material used here, cement alone or a mixture of cement, slaked lime and quicklime can be used. As cement components, in addition to the cements specified in JIS R 5201 such as ordinary Portland cement, early-strength Portland cement, ultra-early strong Portland cement, intermediate heat cement, etc., eco-cement specified in JIS R TR 0002 is used. can do. The mixing ratio of cement, slaked lime and quicklime can be selected according to the performance of the target product.

珪酸質原料としては、珪石粉、珪石砂、高炉スラグ、フライアッシュ、シリカフューム等が挙げられ、目的とする製品の性能に応じて、種類及び配合量を選択することができる。   Examples of the siliceous raw material include silica powder, silica sand, blast furnace slag, fly ash, silica fume and the like, and the type and blending amount can be selected according to the performance of the target product.

セメント原料と珪酸質原料の混合割合は、CaO/SiO2のモル比換算で、0.5〜0.9であるのが、珪酸カルシウム硬化体の主成分となるトバモライトが十分に生成され、十分な強度が得られるので好ましい。 The mixing ratio of the cement raw material and the siliceous raw material is 0.5 to 0.9 in terms of the molar ratio of CaO / SiO 2. It is preferable because a high strength can be obtained.

水は、一般的な水道水や工業水を使用することができる。配合量は、セメント原料及び珪酸質原料の合計100質量部に対して20〜70質量部、特に30〜60質量部であるのが好ましく、目的とする硬化体の比重、強度等を勘案して決定される。   Common tap water or industrial water can be used as the water. The blending amount is preferably 20 to 70 parts by mass, particularly 30 to 60 parts by mass with respect to a total of 100 parts by mass of the cement raw material and siliceous raw material, taking into account the specific gravity, strength, etc. of the target cured product. It is determined.

本発明において、気泡をスラリーに混入するには、界面活性剤及び/又は蛋白質系起泡剤を含む水溶液からプレフォーミングする方法や、起泡剤を直接スラリーに投入して発泡させるミックスフォームなどを使用することができる。
起泡剤として用いる界面活性剤としては、通常用いられるものであれば特に制限されないが、例えば、マレイン化樹脂系、高級アルコール硫酸塩系、アルキルアリルスルホン酸塩系、アルキル硫酸エステル塩系、ポリオキシエチレンアルキルエーテル硫酸塩等が挙げられる。また、蛋白質系起泡剤も特に制限されないが、例えば、ゼラチン、カゼイン等が挙げられる。
In the present invention, in order to mix the bubbles into the slurry, a method of pre-forming from an aqueous solution containing a surfactant and / or a protein-based foaming agent, a mixed foam for foaming by directly adding the foaming agent to the slurry, etc. Can be used.
The surfactant used as the foaming agent is not particularly limited as long as it is usually used. For example, maleated resin, higher alcohol sulfate, alkyl allyl sulfonate, alkyl sulfate ester, polysulfate Examples thereof include oxyethylene alkyl ether sulfates. The protein foaming agent is not particularly limited, and examples thereof include gelatin and casein.

また、ポリビニルアルコールやグリセリン等の気泡安定剤を併用することもできる。その場合、気泡安定剤は10〜100倍に希釈して使用するのが好ましい。
気泡の混合量は、目的とする製品比重に応じて適宜決定される。
Further, a bubble stabilizer such as polyvinyl alcohol or glycerin can be used in combination. In that case, it is preferable to use the bubble stabilizer diluted 10 to 100 times.
The amount of bubbles mixed is appropriately determined according to the target product specific gravity.

本発明において、ポリ硫酸第二鉄及び/又はポリ硫酸アルミニウムは、気泡調整剤として用いられる。ポリ硫酸第二鉄は、〔Fe2(OH)n(SO4)3-n/2mで表され、ポリ硫酸アルミニウムは、〔Al2(OH)n(SO4)3-n/2mで表される化合物であり、単独又は組み合わせて用いることができる。特に、ポリ硫酸第二鉄を単独で用いるのが、入手しやすさ等の点から好ましい。 In the present invention, polyferric sulfate and / or aluminum polysulfate is used as a bubble regulator. Polyferric sulfate is represented by [Fe 2 (OH) n (SO 4 ) 3-n / 2 ] m , and polyaluminum sulfate is represented by [Al 2 (OH) n (SO 4 ) 3-n / 2 ] A compound represented by m , which can be used alone or in combination. In particular, it is preferable to use polyferric sulfate alone from the viewpoint of availability.

ポリ硫酸第二鉄及び/又はポリ硫酸アルミニウムは、セメント原料100質量部に対して、鉄イオン及び/又はアルミニウムイオン換算の合計で、0.2〜0.75質量部、特に0.2〜0.5質量部用いるのが、十分な気泡調整効果が得られるとともに、成形状態も良好となるので好ましい。   The ferric sulfate and / or aluminum polysulfate is 0.2 to 0.75 parts by mass, particularly 0.2 to 0, in terms of iron ions and / or aluminum ions in terms of 100 parts by mass of the cement raw material. It is preferable to use 0.5 parts by mass because a sufficient bubble adjusting effect can be obtained and the molded state can be improved.

本発明においては、上記のような原料を混合して調製したスラリーの粘度が、50dPa・s以上、特に50〜90dPa・sであるのが、スラリーを流し込む観点から好ましい。粘度は、原料を混合して均一になったスラリーについて、30℃において、B型粘度計を用いて測定される。
スラリーをこのような粘度に調整するために、例えば、減水剤、凝結促進剤、スラリー流動化剤、スラリー粘性調整剤、分散剤等の各種混和剤を添加することができる。
In the present invention, the viscosity of the slurry prepared by mixing the raw materials as described above is preferably 50 dPa · s or more, particularly 50 to 90 dPa · s from the viewpoint of pouring the slurry. The viscosity is measured using a B-type viscometer at 30 ° C. for the slurry that has become uniform by mixing the raw materials.
In order to adjust the slurry to such a viscosity, for example, various admixtures such as a water reducing agent, a setting accelerator, a slurry fluidizing agent, a slurry viscosity adjusting agent, and a dispersing agent can be added.

減水剤としては、セメントスラリーの流動性改善を目的に使用されるものであれば特に制限されず、例えば、ナフタレンスルホン酸系、ポリカルボン酸系、リグニンスルホン酸系のものを使用することができる。これらのうち、セメントの水和反応を遅延する性質を有するものについては、凝結促進剤や、スラリー粘性調整剤と併用して、前記粘度に調整するのが好ましい。   The water reducing agent is not particularly limited as long as it is used for the purpose of improving the fluidity of the cement slurry. For example, naphthalene sulfonic acid type, polycarboxylic acid type, lignin sulfonic acid type can be used. . Among these, those having the property of delaying the hydration reaction of cement are preferably adjusted to the above viscosity in combination with a setting accelerator or a slurry viscosity modifier.

凝結促進剤としては、通常用いられる硫酸カルシウム(石膏)、硫酸ナトリウム、硫酸カリウム、塩化カルシウム等の無機系化合物や、アーウィン化合物、カルシウムアルミネート化合物などが挙げられる。   Examples of the setting accelerator include commonly used inorganic compounds such as calcium sulfate (gypsum), sodium sulfate, potassium sulfate, and calcium chloride, Irwin compounds, and calcium aluminate compounds.

スラリー粘性調整剤としては、例えば、メチルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロース、ポリエチレンオキサイド、ポリビニルアルコール等が挙げられる。   Examples of the slurry viscosity modifier include methyl cellulose, hydroxypropyl methyl cellulose, carboxymethyl cellulose, polyethylene oxide, polyvinyl alcohol, and the like.

また、スラリーの養生温度を制御して、セメント原料の硬化速度をコントロールすることにより、スラリーの粘度を調整することもできる。養生温度により制御する場合、その養生温度は、20〜80℃、特に40〜70℃であるのが好ましい。   Moreover, the viscosity of a slurry can also be adjusted by controlling the curing temperature of a slurry and controlling the hardening rate of a cement raw material. When controlling by curing temperature, it is preferable that the curing temperature is 20-80 degreeC, especially 40-70 degreeC.

本発明においては、補強繊維を配合することもでき、ポリ硫酸第二鉄及び/又は硫酸アルミニウムの有する凝集作用により、繊維の表面に水硬性原料等の粉体原料が吸着され、強度を飛躍的に向上させることができる。
ここで、補強繊維とは、補強効果、加工性付与、軽量化、増量を目的に用いられるもので、例えば、木片や木質繊維等の木質フィラー、パルプ繊維、無機質繊維、有機合成繊維などが挙げられる。これらの繊維の種類及び配合量は、目的とする製品の性能に応じて適宜選択することができる。
In the present invention, reinforcing fibers can be blended, and powder materials such as hydraulic materials are adsorbed on the surface of the fibers by the aggregating action of polyferric sulfate and / or aluminum sulfate. Can be improved.
Here, the reinforcing fiber is used for the purpose of reinforcing effect, imparting workability, reducing weight, and increasing the weight, and examples thereof include wood fillers such as wood fragments and wood fibers, pulp fibers, inorganic fibers, and organic synthetic fibers. It is done. The types and blending amounts of these fibers can be appropriately selected according to the performance of the target product.

このようにして得られたスラリーを型枠流し込み成形法や、連続流し込み成形法等で成形することにより、本発明の硬化体を得ることができる。流し込み成形法は、例えば、コンベアによって移動している所望形状の型枠にスラリーを流し込み、スラリーが移動しながら硬化する成形法である。   The cured product of the present invention can be obtained by molding the slurry thus obtained by a mold casting method or a continuous casting method. The casting method is, for example, a molding method in which a slurry is poured into a mold having a desired shape that is being moved by a conveyor, and the slurry is cured while moving.

成形して得られた硬化体は、そのまま、あるいは必要に応じて切断加工や切削加工を施した後、オートクレーブによって養生させる。オートクレーブ養生は160〜180℃で6時間以上行なうのが好ましい。   The cured product obtained by molding is cured as it is or after being subjected to cutting or cutting as necessary, and then cured by an autoclave. The autoclave curing is preferably performed at 160 to 180 ° C. for 6 hours or more.

次に、実施例により本発明をさらに説明するが、本発明は、これら実施例により限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further, this invention is not limited by these Examples.

まず、実施例において用いた原料を以下に示す。
(1)セメント:早強セメント(太平洋セメント社製)
(2)珪石粉:工業用珪石(群馬産;ブレーン比表面積3000cm2/g)
(3)水:水道水
(4)減水剤:ポリカルボン酸系減水剤
(コアフロー、太平洋マテリアル社製;固形分濃度50質量%)
(5)ポリ硫酸第二鉄:日鉄鉱業社製(Fe含有率11質量%)
(6)ポリ硫酸アルミニウム:工業用乾燥水酸化アルミニウムと工業用硫酸を原料として用い、オートクレーブにて140℃、0.4MPaで2時間保持して反応させた。Al3+濃度は14.0質量%であった。
(7)速硬基材:アーウィン系速硬材。電気炉を用いて常法により製造したアーウィン(3CaO・3Al2O3・CaSO4)、2CaO・SiO2 及び4CaO・Al2O3・Fe2O3 をそれぞれ60質量%、30質量%及び5質量%含み、ブレーン比表面積3800cm2/gに調整したもの。
First, the raw materials used in the examples are shown below.
(1) Cement: early strong cement (manufactured by Taiheiyo Cement)
(2) Silica powder: Industrial silica (Gunma; Blaine specific surface area 3000cm 2 / g)
(3) Water: Tap water (4) Water reducing agent: Polycarboxylic acid water reducing agent
(Core flow manufactured by Taiheiyo Materials Co., Ltd .; solid concentration 50% by mass)
(5) Polyferric sulfate: manufactured by Nippon Steel Mining Co., Ltd. (Fe content: 11% by mass)
(6) Polyaluminum sulfate: Industrial dry aluminum hydroxide and industrial sulfuric acid were used as raw materials and reacted in an autoclave at 140 ° C. and 0.4 MPa for 2 hours. The Al 3+ concentration was 14.0% by mass.
(7) Fast-hardening substrate: Irwin-based fast-hardening material. Irwin (3CaO · 3Al 2 O 3 · CaSO 4 ), 2CaO · SiO 2 and 4CaO · Al 2 O 3 · Fe 2 O 3 produced by a conventional method using an electric furnace were 60% by mass, 30% by mass and 5%, respectively. Including mass%, adjusted to a Blaine specific surface area of 3800 cm 2 / g.

(8)起泡剤:ポリオキシエチレンアルキルエーテル硫酸塩(エマールD3D、花王社製)
(9)パルプ繊維:クロフトン(モーリ社製)
(10)増粘剤:ヒドロキシプロピルメチルセルロース(ハイメトローズ90SH-4000、信越化学社製)
(11)凝結調整剤:塩化アルミニウム(試薬1級、関東化学社製)
(12)凝結調整剤:硫酸第一鉄(試薬1級、関東化学社製)
(13)凝結調整剤:硫酸第二鉄(試薬1級、関東化学社製)
(14)凝結調整剤:工業用無水石膏(旭ガラス社製)
(8) Foaming agent: polyoxyethylene alkyl ether sulfate (Emar D3D, manufactured by Kao Corporation)
(9) Pulp fiber: Crofton (Morri)
(10) Thickener: Hydroxypropyl methylcellulose (High Metroise 90SH-4000, manufactured by Shin-Etsu Chemical Co., Ltd.)
(11) Setting agent: Aluminum chloride (reagent grade 1, manufactured by Kanto Chemical Co., Inc.)
(12) Setting controller: ferrous sulfate (reagent grade 1, manufactured by Kanto Chemical Co., Inc.)
(13) Setting controller: ferric sulfate (reagent grade 1, manufactured by Kanto Chemical Co., Inc.)
(14) Setting controller: Industrial anhydrous gypsum (Asahi Glass Co., Ltd.)

次に、実施例で用いた測定方法を示す。
(1)比重:
得られた気泡混入珪酸カルシウム硬化体から、縦5cm×横23cm×厚さ3cmの試験体を切り出した。この試験体の縦、横、厚さ(cm)をノギスで計測し、さらに質量(g)を測定して、下記式より比重を算出した。
比重(g/cm3)=(質量)/((縦)×(横)×(厚さ))
Next, the measurement method used in the examples is shown.
(1) Specific gravity:
A test body having a length of 5 cm, a width of 23 cm, and a thickness of 3 cm was cut out from the obtained bubble-containing calcium silicate cured body. The length, width, and thickness (cm) of the test specimen were measured with a caliper, and the mass (g) was further measured. The specific gravity was calculated from the following formula.
Specific gravity (g / cm 3 ) = (mass) / ((vertical) × (horizontal) × (thickness))

(2)細孔容積比:
オートクレーブ養生後、絶乾状態にした硬化体から、7mm×7mm×7mmの角片を試験体として切り出した後、数個を専用のカラムに詰め込み、水銀圧入法により細孔容積を測定した。測定後、10〜45μmの範囲における細孔容積(a)、10〜300μmの範囲における細孔容積(b)をそれぞれ求め、下記式より細孔容積比を算出した。
細孔容積比(vol%)=((a)/(b))×100
(2) Pore volume ratio:
After curing the autoclave, a 7 mm × 7 mm × 7 mm square piece was cut out as a test piece from a completely dried body, and several pieces were packed in a dedicated column, and the pore volume was measured by a mercury intrusion method. After the measurement, the pore volume (a) in the range of 10 to 45 μm and the pore volume (b) in the range of 10 to 300 μm were determined, and the pore volume ratio was calculated from the following formula.
Pore volume ratio (vol%) = ((a) / (b)) × 100

(3)通気率:
オートクレーブ養生後、絶乾状態にした硬化体から、直径50mm、厚さ30mmの円柱を切り出して試験体とした。この試験体を用い、JIS R 2115「耐火れんがの通気率の試験方法」に従って通気率を測定した。
(3) Air permeability:
After curing the autoclave, a cylinder having a diameter of 50 mm and a thickness of 30 mm was cut out from the cured body that had been completely dried to prepare a test body. Using this test body, the air permeability was measured in accordance with JIS R 2115 “Test method for air permeability of refractory bricks”.

(4)スラリー粘度:
気泡混入スラリーを150mLビーカーに採取し、30℃において、B型粘度計(ビスコテスターVT-04、リオン社製)を用いてスラリー粘度を測定した。
(4) Slurry viscosity:
The bubble-containing slurry was collected in a 150 mL beaker, and the viscosity of the slurry was measured at 30 ° C. using a B-type viscometer (Viscotester VT-04, manufactured by Rion Corporation).

(5)成形性:
気泡混入スラリーを、JIS R 5201に規定されているフローテーブル上に設置した直径60mm、高さ60mmのアクリル製パイプコーンに充填した。コーン流し込み後60秒後に静かにフローコーンを引抜き、スラリーの広がりを、ノギスを用いて測定し、フロー値(mm)とした。このフロー値が160mm以上で、さらに型枠に流し込んだときのスラリーの充填具合を目視観察して問題がない場合を「良好」、またどちらか一方に不具合がある場合を「不良」とした。
(5) Formability:
The bubble-containing slurry was filled in an acrylic pipe cone having a diameter of 60 mm and a height of 60 mm installed on a flow table specified in JIS R 5201. The flow cone was gently withdrawn 60 seconds after casting the cone, and the spread of the slurry was measured using a caliper to obtain a flow value (mm). When this flow value was 160 mm or more and there was no problem by visually observing the filling condition of the slurry when it was poured into the mold, it was judged as “good”, and when there was a problem in either one, it was judged as “bad”.

(6)曲げ強度・比強度:
得られた気泡混入珪酸カルシウム硬化体から、縦5cm×横23cm×厚さ3cmの試験体を切り出し、インストロン万能試験機を用い、3点曲げにて載荷し、支点間距離20cm、載荷速度0.5mm/minで測定した。得られた破壊荷重より、下記式に基づき、曲げ強度及び比強度を算出した。
(6) Bending strength / specific strength:
A test piece measuring 5 cm in length × 23 cm in width × 3 cm in thickness was cut out from the resulting foam-containing hardened calcium silicate, and loaded using an Instron universal testing machine with a three-point bend. Measured at 5 mm / min. The bending strength and specific strength were calculated from the obtained breaking load based on the following formula.

曲げ強度(N/mm2
=3×(破壊荷重)×(スパン:200)/2/(幅:50mm)/(厚さ:30mm)
比強度(N/mm2)=(曲げ強度)/(比重)/(比重)
Bending strength (N / mm 2 )
= 3 x (Fracture load) x (Span: 200) / 2 / (Width: 50mm) / (Thickness: 30mm)
Specific strength (N / mm 2 ) = (Bending strength) / (Specific gravity) / (Specific gravity)

(7)吸水率:
得られた気泡混入珪酸カルシウム硬化体から、縦5cm×横10cm×厚さ3cmの試験体を切り出し、絶乾状態にした試験体の質量(G1)、吸水30分後の試験体の質量(G2)を測定した。下記式より、吸水率を算出した。
吸水率(%)=〔((G2)−(G1))/G1〕×100
(7) Water absorption rate:
From the obtained foam-containing hardened calcium silicate body, a specimen having a length of 5 cm, a width of 10 cm, and a thickness of 3 cm was cut out and completely dried (G1), and after 30 minutes of water absorption (G2). ) Was measured. The water absorption was calculated from the following formula.
Water absorption rate (%) = [((G2) − (G1)) / G1] × 100

実施例1〜3及び比較例1〜3
早強セメント17質量部、速硬基材26.5質量部、珪石粉53質量部、無水石膏3.5質量部及び増粘剤0.2質量部を予備混合し、粉体原料とした。この粉体原料に、実施例1〜3は、水50質量部、減水剤0.5質量部及びポリ硫酸第二鉄水溶液2.78質量部(Fe換算で0.65質量部)を、比較例1〜3はポリ硫酸第二鉄水溶液を無添加で、ハンドミキサーにて1分間混合し、回転式発泡機を用いて起泡剤溶液(起泡剤濃度2質量%)と空気によりプレフォームした気泡(気泡比重0.1)を、硬化体の比重が0.65、0.5、0.4になるよう投入し、気泡混入スラリーを得た。この気泡混入スラリーを、25cm×35cm×4cmのプラスチック製型枠に流し込み、30℃で24時間養生後、脱型し、さらにオートクレーブで180℃、10時間養生を行ない、気泡混入珪酸カルシウム硬化体を得た。
得られた硬化体について、比重、細孔容積比、通気率、曲げ強度、比強度及び吸水率を測定した。結果を表1に示す。
Examples 1-3 and Comparative Examples 1-3
17 parts by weight of early-strength cement, 26.5 parts by weight of fast-hardening base material, 53 parts by weight of silica powder, 3.5 parts by weight of anhydrous gypsum and 0.2 parts by weight of thickener were premixed to obtain a powder raw material. Examples 1 to 3 were compared with 50 parts by mass of water, 0.5 parts by mass of a water reducing agent, and 2.78 parts by mass of a ferric sulfate aqueous solution (0.65 parts by mass in terms of Fe). In Examples 1 to 3, a polyferric sulfate aqueous solution was not added, and the mixture was mixed with a hand mixer for 1 minute. The bubbles (bubble specific gravity of 0.1) were added so that the specific gravity of the cured body was 0.65, 0.5, and 0.4, and bubble mixed slurry was obtained. This aerated slurry is poured into a 25 cm × 35 cm × 4 cm plastic mold, cured at 30 ° C. for 24 hours, demolded, and then cured at 180 ° C. for 10 hours in an autoclave to form a foamed calcium silicate cured body. Obtained.
About the obtained hardening body, specific gravity, pore volume ratio, air permeability, bending strength, specific strength, and water absorption were measured. The results are shown in Table 1.

表1の結果より、ポリ硫酸第二鉄を添加した実施例1〜3では、細孔容積比が60%以上、通気率が0.5mL・cm/sec・cm2・cmH2O以下となり、同じ比重の比較例1〜3に比べ、曲げ強度が向上していた。また、吸水率も低く、耐水性が向上した。 From the results of Table 1, in Examples 1 to 3 to which polyferric sulfate was added, the pore volume ratio was 60% or more, and the air permeability was 0.5 mL · cm / sec · cm 2 · cmH 2 O or less, Bending strength was improved as compared with Comparative Examples 1 to 3 having the same specific gravity. Moreover, the water absorption rate was low and the water resistance was improved.

実施例4〜7及び比較例4〜6
実施例4及び5は、早強セメント13質量部、速硬基材30質量部、珪石粉53質量部、無水石膏4質量部及び増粘剤0.2質量部を予備混合し、粉体原料とした。この粉体原料に、水50質量部、減水剤0.5質量部及び実施例4はポリ硫酸第二鉄水溶液1.75質量部(Fe換算で0.45質量部)、実施例5はポリ硫酸第二鉄水溶液2.78質量部(Fe換算で0.65質量部)を加え、ハンドミキサーにて1分間混合し、回転式発泡機を用いて起泡剤溶液(起泡剤濃度2質量%)と空気によりプレフォームした気泡(気泡比重0.1)を、硬化体の比重が0.6になるよう投入し、気泡混入スラリーを得た。この気泡混入スラリーを、型枠に流し込み、60℃で30分養生後、実施例1〜3と同様にオートクレーブ養生を行ない、気泡混入珪酸カルシウム硬化体を得た。
Examples 4-7 and Comparative Examples 4-6
In Examples 4 and 5, 13 parts by weight of early-strength cement, 30 parts by weight of a fast-hardening base material, 53 parts by weight of silica powder, 4 parts by weight of anhydrous gypsum, and 0.2 parts by weight of a thickener are preliminarily mixed. It was. In this powder raw material, 50 parts by mass of water, 0.5 parts by mass of a water reducing agent and Example 4 were 1.75 parts by mass of an aqueous polyferric sulfate solution (0.45 parts by mass in terms of Fe). 2.78 parts by mass of ferric sulfate aqueous solution (0.65 parts by mass in terms of Fe) was added, mixed for 1 minute with a hand mixer, and a foaming agent solution (foaming agent concentration 2 masses) using a rotary foaming machine. %) And air-preformed bubbles (bubble specific gravity of 0.1) were added so that the specific gravity of the cured product was 0.6 to obtain a bubble mixed slurry. This foam-mixed slurry was poured into a mold, and after curing at 60 ° C. for 30 minutes, autoclave curing was performed in the same manner as in Examples 1 to 3 to obtain a foam-mixed calcium silicate cured body.

実施例6及び7は、早強セメント31.7質量部、速硬基材13.5質量部、珪石粉53質量部、無水石膏1.8質量部及び増粘剤0.2質量部を予備混合し、粉体原料とした。この粉体原料に、水50質量部、減水剤0.5質量部及びポリ硫酸アルミニウム水溶液を、実施例6は0.81質量部(Al換算で0.25質量部)、実施例7は1.29質量部(Al換算で0.4質量部)を加え、ハンドミキサーにて1分間混合し、回転式発泡機を用いて起泡剤溶液(起泡剤濃度2質量%)と空気によりプレフォームした気泡(気泡比重0.1)を、硬化体の比重が0.55及び0.7になるよう投入し、気泡混入スラリーを得た。この気泡混入スラリーを、型枠に流し込み、実施例6は60℃、実施例7は80℃で30分養生後、実施例1〜3と同様にオートクレーブ養生を行ない、気泡混入珪酸カルシウム硬化体を得た。   In Examples 6 and 7, 31.7 parts by weight of early-strength cement, 13.5 parts by weight of a fast-hardening base material, 53 parts by weight of silica powder, 1.8 parts by weight of anhydrous gypsum, and 0.2 parts by weight of a thickener are reserved. It mixed and it was set as the powder raw material. In this powder raw material, 50 parts by mass of water, 0.5 parts by mass of a water reducing agent, and an aqueous solution of polyaluminum sulfate were used. Example 6 was 0.81 parts by mass (0.25 parts by mass in terms of Al), and Example 7 was 1 .29 parts by mass (0.4 parts by mass in terms of Al) was added, mixed for 1 minute with a hand mixer, and pre-treated with a foaming agent solution (foaming agent concentration 2% by mass) and air using a rotary foaming machine. The foamed bubbles (cell specific gravity 0.1) were added so that the specific gravity of the cured body was 0.55 and 0.7, and a bubble mixed slurry was obtained. This aerated slurry is poured into a mold, and after curing at 60 ° C. for Example 6 and at 80 ° C. for 30 minutes, autoclave curing is performed in the same manner as in Examples 1 to 3, and the aerated calcium silicate cured body is obtained. Obtained.

比較例4は、ポリ硫酸第二鉄を用いない以外は実施例4と同様にして、硬化体を作製した。   The comparative example 4 produced the hardening body like Example 4 except not using polyferric sulfate.

比較例5及び6は、早強セメント31.7質量部、速硬基材13.5質量部、珪石粉53質量部、無水石膏1.8質量部及び増粘剤0.2質量部を予備混合し、粉体原料とした。この粉体原料に、水50質量部、減水剤0.5質量部及びポリ硫酸第二鉄水溶液を、比較例5は0.61質量部(Fe換算で0.15質量部)、比較例6は3.1質量部(Fe換算で0.75質量部)を加え、ハンドミキサーにて1分間混合し、回転式発泡機を用いて起泡剤溶液(起泡剤濃度2質量%)と空気によりプレフォームした気泡(気泡比重0.1)を、硬化体の比重が0.7及び0.6になるよう投入し、気泡混入スラリーを得た。この気泡混入スラリーを、型枠に流し込み、60℃で30分養生後、実施例1〜3と同様にオートクレーブ養生を行ない、気泡混入珪酸カルシウム硬化体を得た。   In Comparative Examples 5 and 6, 31.7 parts by weight of early strength cement, 13.5 parts by weight of fast-hardening base material, 53 parts by weight of silica stone powder, 1.8 parts by weight of anhydrous gypsum, and 0.2 parts by weight of thickening agent are reserved. It mixed and it was set as the powder raw material. In this powder raw material, 50 parts by mass of water, 0.5 parts by mass of a water reducing agent and an aqueous solution of polyferric sulfate were used. Comparative Example 5 was 0.61 parts by mass (0.15 parts by mass in terms of Fe), Comparative Example 6 Add 3.1 parts by mass (0.75 parts by mass in terms of Fe), mix with a hand mixer for 1 minute, and use a rotary foaming machine to create a foaming agent solution (foaming agent concentration of 2% by mass) and air. Bubbles (bubble specific gravity of 0.1) preformed by the above were added so that the specific gravity of the cured product was 0.7 and 0.6 to obtain a bubble mixed slurry. This foam-mixed slurry was poured into a mold, and after curing at 60 ° C. for 30 minutes, autoclave curing was performed in the same manner as in Examples 1 to 3 to obtain a foam-mixed calcium silicate cured body.

硬化前のスラリー粘性及び成形性、さらに、得られた硬化体について、比重、細孔容積比、通気率、曲げ強度、比強度及び吸水率を測定した。結果を表2に示す。   The slurry viscosity and moldability before curing, and the specific weight, pore volume ratio, air permeability, bending strength, specific strength and water absorption of the obtained cured product were measured. The results are shown in Table 2.

表2の結果より、実施例4〜7の硬化体はいずれも、曲げ強度及び耐水性が向上していた。   From the results in Table 2, the cured bodies of Examples 4 to 7 all had improved bending strength and water resistance.

試験例1
実施例1及び比較例1で得られた気泡混入珪酸カルシウム硬化体について、硬化体中の気泡の状態を顕微鏡により観察した。結果を図1及び図2に示す。
実施例1で得られた気泡混入珪酸カルシウム硬化体は、細かい気泡が均一にかつ独立して分散していることが確認された。
Test example 1
About the bubble mixing calcium silicate hardening body obtained in Example 1 and Comparative Example 1, the state of the bubble in a hardening body was observed with the microscope. The results are shown in FIGS.
It was confirmed that fine bubbles were uniformly and independently dispersed in the foam-mixed calcium silicate cured product obtained in Example 1.

実施例1で得られた気泡混入珪酸カルシウム硬化体の顕微鏡写真を示す図である。1 is a view showing a micrograph of a foam-containing calcium silicate hardened body obtained in Example 1. FIG. 比較例1で得られた気泡混入珪酸カルシウム硬化体の顕微鏡写真を示す図である。It is a figure which shows the microscope picture of the bubble mixing calcium silicate hardening body obtained by the comparative example 1. FIG.

Claims (4)

(A)比重0.2〜0.8g/cm3
(B)10〜45μmの範囲における細孔の容積が、10〜300μmの範囲における細孔の容積に対して、水銀圧入法で測定して、50vol%以上、
(C)JIS R 2115で測定した通気率が0.5mL・cm/sec・cm2・cmH2O以下
である気泡混入珪酸カルシウム硬化体。
(A) Specific gravity 0.2-0.8 g / cm 3 ,
(B) The volume of the pores in the range of 10 to 45 μm is 50 vol% or more as measured by the mercury intrusion method with respect to the volume of the pores in the range of 10 to 300 μm.
(C) A foamed calcium silicate hardened body having an air permeability measured by JIS R 2115 of 0.5 mL · cm / sec · cm 2 · cmH 2 O or less.
ポリ硫酸第二鉄及び/又はポリ硫酸アルミニウムを含有する請求項1記載の気泡混入珪酸カルシウム硬化体。   The foam-mixed calcium silicate hardened body according to claim 1, comprising ferric sulfate and / or aluminum polysulfate. セメント原料、珪酸質原料、水、気泡、混和剤並びにポリ硫酸第二鉄及び/又はポリ硫酸アルミニウムを含有するスラリーを硬化させて得られ、当該スラリーの粘度が50dPa・s以上である請求項1又は2記載の気泡混入珪酸カルシウム硬化体。   A slurry obtained by curing a slurry containing cement raw material, siliceous raw material, water, bubbles, admixture and polyferric sulfate and / or aluminum polysulfate, and the viscosity of the slurry is 50 dPa · s or more. Or the foam mixing calcium silicate hardening body of 2 description. ポリ硫酸第二鉄及び/又はポリ硫酸アルミニウムを、セメント原料100質量部に対して、鉄イオン及び/又はアルミニウムイオン換算の合計で0.2〜0.75質量部含有する請求項3記載の気泡混入珪酸カルシウム硬化体。   The bubble of Claim 3 which contains 0.2-0.75 mass part of iron ferric ion and / or aluminum ion conversion total with respect to 100 mass parts of cement raw materials with polyferric sulfate and / or aluminum polysulfate. Mixed calcium silicate hardened body.
JP2006255273A 2006-09-21 2006-09-21 Air bubble mixed calcium silicate hardened body Pending JP2008074659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006255273A JP2008074659A (en) 2006-09-21 2006-09-21 Air bubble mixed calcium silicate hardened body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006255273A JP2008074659A (en) 2006-09-21 2006-09-21 Air bubble mixed calcium silicate hardened body

Publications (1)

Publication Number Publication Date
JP2008074659A true JP2008074659A (en) 2008-04-03

Family

ID=39347103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006255273A Pending JP2008074659A (en) 2006-09-21 2006-09-21 Air bubble mixed calcium silicate hardened body

Country Status (1)

Country Link
JP (1) JP2008074659A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016534983A (en) * 2013-09-30 2016-11-10 エフ エム シー コーポレーションFmc Corporation Foam preparation and delivery device
JP2017519635A (en) * 2014-06-05 2017-07-20 サン−ゴバン・プラコ・エスアーエスSaint−Gobain Placo Sas Apparatus and method for making foam
US10631535B2 (en) 2014-06-24 2020-04-28 Fmc Corporation Foam formulations and emulsifiable concentrates
US11632959B2 (en) 2015-12-23 2023-04-25 Fmc Corporation In situ treatment of seed in furrow

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016534983A (en) * 2013-09-30 2016-11-10 エフ エム シー コーポレーションFmc Corporation Foam preparation and delivery device
US10785974B2 (en) 2013-09-30 2020-09-29 Fmc Corporation Foam formulations and apparatus for delivery
US10834921B2 (en) 2013-09-30 2020-11-17 Fmc Corporation Foam formulations and apparatus for delivery
US11330815B2 (en) 2013-09-30 2022-05-17 Fmc Corporation Foam formulations and apparatus for delivery
JP2017519635A (en) * 2014-06-05 2017-07-20 サン−ゴバン・プラコ・エスアーエスSaint−Gobain Placo Sas Apparatus and method for making foam
US10631535B2 (en) 2014-06-24 2020-04-28 Fmc Corporation Foam formulations and emulsifiable concentrates
US11632959B2 (en) 2015-12-23 2023-04-25 Fmc Corporation In situ treatment of seed in furrow

Similar Documents

Publication Publication Date Title
KR102456743B1 (en) Methods to improve mechanical strength and CO2 storage in cementitious products
JP5931317B2 (en) Hydraulic composition and concrete using the hydraulic composition
EP2383238A1 (en) Process for the manufacture of aerated concrete construction materials and construction materials obtained thereof
US20170362123A1 (en) Binder based on a solid mineral compound rich in alkaline-earth metal oxide with phosphate-containing activators
KR100917117B1 (en) Filler for Iron reinforcing rod joint and construction method for filling-up of iron reinforcing rod joint using the same
JP4911580B2 (en) Low specific gravity lightweight foam concrete and method for producing the same
JP5744499B2 (en) Grout cement composition and grout material
JP2002060264A (en) Fiber-reinforced cement formed body and its production process
CN109987912A (en) Zeolite prepares iron tailings dry powder and mortar
CN112209685A (en) Foamed ceramic aerated concrete and preparation method thereof
JP5588142B2 (en) Lightweight cellular concrete
JP5690904B2 (en) Lightweight cellular concrete and method for producing the same
JP2008074659A (en) Air bubble mixed calcium silicate hardened body
JP4894380B2 (en) Method for producing hydraulic composition
CN111302752B (en) Polystyrene particle gypsum block and processing method thereof
KR20040017144A (en) Composition of Lightweight / Foamed Concrete and Method of Making Same
JP5560016B2 (en) Lightweight cellular concrete and method for producing the same
JP2010150072A (en) Filler composition for reinforcement joint, filler for reinforcement joint using the same and method of filling reinforcement joint by using the filler
KR100568933B1 (en) Composition of Lightweight / Foamed Concrete and Method of Making Same
KR102412570B1 (en) Acid-resistant injection mortar composition
RU2371411C1 (en) Mortar
KR102637810B1 (en) lightweight foam concrete composition and method for menufacturing the same
JP2007176743A (en) Mortar or concrete admixture for suppressing neutralization and rust-preventing method for reinforced mortar or concrete
KR20230030107A (en) Eco-friendly high flowable lightweight foam filler
KR101725286B1 (en) Non-cement mortar composition