JP4894380B2 - Method for producing hydraulic composition - Google Patents

Method for producing hydraulic composition Download PDF

Info

Publication number
JP4894380B2
JP4894380B2 JP2006193552A JP2006193552A JP4894380B2 JP 4894380 B2 JP4894380 B2 JP 4894380B2 JP 2006193552 A JP2006193552 A JP 2006193552A JP 2006193552 A JP2006193552 A JP 2006193552A JP 4894380 B2 JP4894380 B2 JP 4894380B2
Authority
JP
Japan
Prior art keywords
mass
blast furnace
parts
furnace slag
slag powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006193552A
Other languages
Japanese (ja)
Other versions
JP2008019135A (en
Inventor
浩司 蒔田
貴代美 林山
則彦 澤邊
克彦 真崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2006193552A priority Critical patent/JP4894380B2/en
Publication of JP2008019135A publication Critical patent/JP2008019135A/en
Application granted granted Critical
Publication of JP4894380B2 publication Critical patent/JP4894380B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00215Mortar or concrete mixtures defined by their oxide composition
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/60Flooring materials
    • C04B2111/62Self-levelling compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Description

本発明は、一般建築物の主に床下地調整に使用できるセメント組成物として用いることができる、アルミナセメントとポルトランドセメントと石膏とを含む水硬性成分と高炉スラグ粉を用いた圧縮強度の優れるセメント系水硬性組成物、及びその製造方法に関する。   INDUSTRIAL APPLICABILITY The present invention can be used as a cement composition which can be used mainly for floor foundation adjustment of general buildings, a cement having excellent compressive strength using a hydraulic component including alumina cement, Portland cement and gypsum and blast furnace slag powder. The present invention relates to a hydraulic system composition and a method for producing the same.

一般建築物の床下地調整としてセメント系水硬性組成物が用いられている。
セメント系水硬性組成物として、特許文献1にアルミナセメント、ポルトランドセメント、石膏、高炉スラグ粉からなる水硬性成分と、リチウム塩とホウ酸化合物よりなる凝結調整剤と、減水剤と、増粘剤とからなる組成物が開示されている。
特許文献2には、アルミナセメント、ポルトランドセメント、石膏、高炉スラグ粉からなる水硬性成分と、減水剤と、増粘剤とからなる組成物が開示されている。
特許文献3には、カルシウムアルミネート、ポリアクリル酸類、及びホウ酸類を含有してなるセメント組成物が開示されている。
A cement-based hydraulic composition is used as a floor foundation for general buildings.
As a cement-based hydraulic composition, Patent Document 1 discloses a hydraulic component composed of alumina cement, Portland cement, gypsum, blast furnace slag powder, a coagulation regulator composed of a lithium salt and a boric acid compound, a water reducing agent, and a thickener. A composition comprising:
Patent Document 2 discloses a composition comprising a hydraulic component made of alumina cement, Portland cement, gypsum, and blast furnace slag powder, a water reducing agent, and a thickening agent.
Patent Document 3 discloses a cement composition containing calcium aluminate, polyacrylic acids, and boric acids.

特開2000−211961号JP 2000-211961 A 特開2000−302519号JP 2000-302519 A 特開平6−157097号JP-A-6-1557097

セメント系水硬性組成物は、水と混練して得られた生モルタルとして、建築用左官工事仕上げ工法を主体として広く普及している。
セメント系水硬性組成物は、アルミナセメントとポルトランドセメントなどの水硬性成分と高炉スラグ粉、減水剤及び/又は増粘剤などの添加剤とを配合して製造され、良好な作業性と、平滑な仕上面を有し、早期に硬化することが必須の要件である。
しかし高炉スラグ粉を水硬性組成物の一成分として用いる場合、用いる高炉スラグ粉又は用いる高炉スラグ粉のロット間で、水と配合して得られるスラリーの硬化体の強度にばらつきが認められ、優れた強度を有する製品や安定した製品を得ることが求められている。
Cement-based hydraulic compositions are widely used as raw mortars obtained by kneading with water, mainly for plastering work for construction.
The cement-based hydraulic composition is manufactured by blending hydraulic components such as alumina cement and Portland cement with additives such as blast furnace slag powder, water reducing agent and / or thickener, and has good workability and smoothness. It is an essential requirement to have a smooth finish and cure early.
However, when blast furnace slag powder is used as a component of the hydraulic composition, there is a variation in the strength of the cured body of the slurry obtained by mixing with water between the lots of blast furnace slag powder used or the blast furnace slag powder used. There is a need to obtain products with high strength and stable products.

本発明は、高炉スラグ粉を含み、アルミナセメントとポルトランドセメントとを水硬性成分として含むセメント系水硬性組成物において、優れた圧縮強度が安定して得られる水硬性組成物、及びこの製造方法を提案することを目的とした。   The present invention is a cement-based hydraulic composition containing blast furnace slag powder and containing alumina cement and Portland cement as hydraulic components, and a hydraulic composition capable of stably obtaining excellent compressive strength, and a method for producing the same. The purpose was to propose.

本発明の第一は、アルミナセメント、ポルトランドセメント及び石膏とを含む水硬性成分と、高炉スラグ粉と、減水剤及び/又は増粘剤とを含むことを特徴とする水硬性組成物であり、
高炉スラグ粉は、高炉スラグ粉100質量%中に含まれる酸化マグネシウム(MgO)量が、5.5〜7.5質量%の範囲を用いることを特徴とする水硬性組成物を提供することである。
The first of the present invention is a hydraulic composition comprising a hydraulic component containing alumina cement, Portland cement and gypsum, blast furnace slag powder, a water reducing agent and / or a thickening agent,
By providing a hydraulic composition characterized in that the amount of magnesium oxide (MgO) contained in 100% by mass of blast furnace slag powder is 5.5 to 7.5% by mass. is there.

本発明の第ニは、アルミナセメント、ポルトランドセメント及び石膏とを含む水硬性成分と、高炉スラグ粉と、減水剤及び/又は増粘剤とを含む水硬性組成物の製造方法であり、
高炉スラグ粉に含まれる酸化マグネシウム(MgO)量を測定し、
高炉スラグ粉100質量%中に含まれる酸化マグネシウム量が、5.5〜7.5質量%の範囲を満たす高炉スラグ粉を用い、
アルミナセメント、ポルトランドセメント及び石膏とを含む水硬性成分と、高炉スラグ粉と、減水剤及び増粘剤から選ばれる成分とを混合することを特徴とする水硬性組成物の製造方法を提供することである。
The second of the present invention is a method for producing a hydraulic composition comprising a hydraulic component containing alumina cement, Portland cement and gypsum, blast furnace slag powder, a water reducing agent and / or a thickening agent,
Measure the amount of magnesium oxide (MgO) contained in blast furnace slag powder,
Using blast furnace slag powder satisfying the range of 5.5 to 7.5 mass% of magnesium oxide contained in 100 mass% of blast furnace slag powder,
To provide a method for producing a hydraulic composition, comprising mixing a hydraulic component containing alumina cement, Portland cement and gypsum, a blast furnace slag powder, and a component selected from a water reducing agent and a thickening agent. It is.

本発明の第一の水硬性組成物及び 本発明の第二の水硬性組成物の製造方法の好ましい態様を以下に示す。好ましい態様は複数組み合わせることができる。
1)水硬性成分は、アルミナセメント20〜70質量部、ポルトランドセメント0〜70質量部(0質量部を除く)及び石膏5〜50質量部(アルミナセメント、ポルトランドセメント及び石膏の質量の和は、100質量部とする。)の水硬性成分を用いること。
2)高炉スラグ粉は、水硬性成分100質量部に対し、高炉スラグ粉が30〜350質量部を含むこと物。
3)水硬性組成物は、無機成分から選ばれる成分を含むこと。
4)水硬性組成物は、凝結調整剤及び消泡剤から選ばれる成分を含むこと。
5)水硬性組成物は、さらに細骨材を含むこと。特に水硬性組成物は、水硬性成分100質量部に対し、細骨材を60〜500質量部含むこと。
6)水硬性組成物は、さらに凝結調整剤を含むこと。特に水硬性組成物は、水硬性成分100質量部に対し、凝結調整剤0.05〜5質量部を含むこと。
7)水硬性成分100質量部に対して、減水剤0.01〜2質量部及び/又は増粘剤0.05〜1質量部含むこと。
8)水硬性組成物は、さらに消泡剤を含むこと。特に水硬性組成物は、水硬性成分100質量部に対し、消泡剤2質量部以下を含むこと。
The preferable aspect of the manufacturing method of the 1st hydraulic composition of this invention and the 2nd hydraulic composition of this invention is shown below. A plurality of preferred embodiments can be combined.
1) The hydraulic component is 20 to 70 parts by mass of alumina cement, 0 to 70 parts by mass of Portland cement (excluding 0 parts by mass), and 5 to 50 parts by mass of gypsum (alumina cement, Portland cement and gypsum) 100 parts by mass)) is used.
2) Blast furnace slag powder contains 30 to 350 parts by mass of blast furnace slag powder with respect to 100 parts by mass of the hydraulic component.
3) The hydraulic composition contains a component selected from inorganic components.
4) The hydraulic composition contains a component selected from a setting modifier and an antifoaming agent.
5) The hydraulic composition further contains fine aggregate. Especially hydraulic composition contains 60-500 mass parts of fine aggregates with respect to 100 mass parts of hydraulic components.
6) The hydraulic composition further contains a setting modifier. In particular, the hydraulic composition contains 0.05 to 5 parts by mass of a setting modifier with respect to 100 parts by mass of the hydraulic component.
7) To contain 0.01 to 2 parts by weight of a water reducing agent and / or 0.05 to 1 part by weight of a thickener with respect to 100 parts by weight of the hydraulic component.
8) The hydraulic composition further contains an antifoaming agent. In particular, the hydraulic composition contains 2 parts by mass or less of an antifoaming agent with respect to 100 parts by mass of the hydraulic component.

本発明において高炉スラグ粉に含まれる酸化マグネシウム(MgO)量とは、JIS・R5202「ポルトランドセメントの化学分析方法」に記載の方法を適用して求める値である。(但し、測定に用いる高炉スラグ粉の質量を100質量%とする。)   In the present invention, the amount of magnesium oxide (MgO) contained in the blast furnace slag powder is a value obtained by applying the method described in JIS R5202 “Method for chemical analysis of Portland cement”. (However, the mass of the blast furnace slag powder used for the measurement is 100% by mass.)

本発明の水硬性組成物は、圧縮強度の優れた水硬性組成物硬化体を得ることができる。   The hydraulic composition of the present invention can provide a cured hydraulic composition having excellent compressive strength.

本発明の水硬性組成物の製造方法は、高炉スラグ粉を含み、アルミナセメントとポルトランドセメントと石膏を含む水硬性成分を用いる水硬性組成物を製造する上で、高炉スラグ粉に含まれる酸化マグネシウム量を測定する工程を加え、特定の高炉スラグ粉を用いることにより、圧縮強度の優れる硬化体が得られる組成物を安定して製造することができ、規格外の製品の製造を無くすことができ廃棄物の削減に寄与できる。   The method for producing a hydraulic composition of the present invention includes a blast furnace slag powder and magnesium oxide contained in the blast furnace slag powder in producing a hydraulic composition using a hydraulic component including alumina cement, Portland cement, and gypsum. By using a specific blast furnace slag powder by adding a process to measure the amount, it is possible to stably produce a composition that can obtain a cured product with excellent compressive strength, and eliminate the production of non-standard products. Contributes to waste reduction.

本発明の水硬性組成物は、アルミナセメント、ポルトランドセメント及び石膏とを含む水硬性成分と、高炉スラグ粉と、減水剤及び/又は増粘剤とを含むことを特徴とする水硬性組成物であり、
高炉スラグ粉は、高炉スラグ粉100質量%中に含まれる酸化マグネシウム(MgO)量が、5.5〜7.5質量%の範囲、好ましくは5.7〜7.2%の範囲、さらに好ましくは6.0〜7.0%の範囲、より好ましくは6.1〜6.8%の範囲、特に好ましくは6.2〜6.6%の範囲を用いることにより、水硬性組成物より得られるモルタルより圧縮強度に優れる硬化体を得ることができる。
The hydraulic composition of the present invention is a hydraulic composition comprising a hydraulic component containing alumina cement, Portland cement and gypsum, blast furnace slag powder, a water reducing agent and / or a thickening agent. Yes,
In the blast furnace slag powder, the amount of magnesium oxide (MgO) contained in 100% by mass of the blast furnace slag powder is in the range of 5.5 to 7.5% by mass, preferably in the range of 5.7 to 7.2%, and more preferably. Is obtained from the hydraulic composition by using a range of 6.0 to 7.0%, more preferably a range of 6.1 to 6.8%, particularly preferably a range of 6.2 to 6.6%. A cured product having better compressive strength than the mortar obtained can be obtained.

高炉スラグ粉は、上記範囲外の高炉スラグと上記範囲内の高炉スラグとを配合或いは混合して、又は上記範囲より大きな高炉スラグと上記範囲より小さな高炉スラグを配合或いは混合して、上記範囲内の高炉スラグに調整して用いることができ、高炉スラグは2種以上配合或いは混合することができる。   The blast furnace slag powder is blended or mixed with blast furnace slag outside the above range and blast furnace slag within the above range, or blended or mixed with blast furnace slag larger than the above range and blast furnace slag smaller than the above range, and within the above range. The blast furnace slag can be adjusted and used, and two or more kinds of blast furnace slag can be blended or mixed.

高炉スラグ粉は、JIS・A−6206に規定されるブレーン比表面積3000cm/g以上のものを用いることができる。
高炉スラグ粉は、本発明の特性を損なわなければ、公知の高炉スラグ粉を用いることができ、好ましくは平均粒子径が7〜15μm、さらに8〜14μm、特に9〜13μmの範囲を用い、またJIS・A−6206に規定されるブレーン比表面積が3000cm/g以上、このましくは3000〜7000cm/g、さらに3800〜6500cm/g、特に4100〜6000cm/gの範囲を用いることが、本発明の特性を損なわないために好ましい。
高炉スラグ粉は、乾燥収縮による硬化体の耐クラック性を高めるだけでなく、アルミナセメントの硬化体強度を向上させる効果も有している。
As the blast furnace slag powder, those having a brain specific surface area of 3000 cm 2 / g or more as defined in JIS A-6206 can be used.
As the blast furnace slag powder, known blast furnace slag powder can be used as long as the characteristics of the present invention are not impaired. Blaine specific surface area defined in JIS · a-6206 is 3000 cm 2 / g or more, preferably 3000~7000cm 2 / g, further 3800~6500cm 2 / g, especially, a range of 4100~6000cm 2 / g Is preferable in order not to impair the characteristics of the present invention.
The blast furnace slag powder not only increases the crack resistance of the hardened body due to drying shrinkage, but also has an effect of improving the strength of the hardened body of alumina cement.

水硬性組成物において、高炉スラグの添加量は、水硬性成分100質量部に対し、好ましくは40〜300質量部、より好ましくは50〜250質量部、さらに好ましくは60〜200質量部、特に好ましくは70〜160質量部とするのが好ましく、少なすぎると収縮が大きくなり、多すぎると強度低下を招くことがある場合があり好ましくない。   In the hydraulic composition, the amount of blast furnace slag added is preferably 40 to 300 parts by mass, more preferably 50 to 250 parts by mass, still more preferably 60 to 200 parts by mass, particularly preferably 100 parts by mass of the hydraulic component. Is preferably 70 to 160 parts by mass. If the amount is too small, the shrinkage increases, and if it is too large, the strength may be lowered.

アルミナセメントとしては、鉱物組成の異なるものが数種知られ市販されているが、何れも主成分はモノカルシウムアルミネート(CA)であるが、強度および着色性の面からは、CA成分が多く且つCAF等の少量成分が少ないアルミナセメントが好ましく、市販品はその種類によらず使用することができる。 Several types of alumina cements with different mineral compositions are known and commercially available, but the main component is monocalcium aluminate (CA), but there are many CA components in terms of strength and colorability. and minor components is small alumina cement is preferred, such as C 4 AF, commercially available products can be used regardless of its type.

ポルトランドセメントは、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、白色ポルトランドセメントなどのポルトランドセメント、高炉セメント、フライアッシュセメント、シリカセメントなどの混合セメントなどを用いるができる。   As the Portland cement, portland cement such as ordinary Portland cement, early-strength Portland cement, ultra-high-strength Portland cement, white Portland cement, mixed cement such as blast furnace cement, fly ash cement, and silica cement can be used.

石膏は、無水、半水等の各石膏がその種を問わず1種又は2種以上の混合物として使用できる。石膏は、硬化後の寸法安定性保持成分として働くものである。
石膏のブレーン比表面積は、2000〜15000cm/g、特に3000〜8000cm/gのものを用いることが好ましい。
As for gypsum, each gypsum such as anhydrous and semi-water can be used as one kind or a mixture of two or more kinds regardless of the kind. Gypsum works as a dimensional stability retention component after curing.
The plaster specific surface area of gypsum is preferably 2000 to 15000 cm 2 / g, particularly 3000 to 8000 cm 2 / g.

水硬性成分は、アルミナセメント20〜70質量部、ポルトランドセメント0〜70質量部(0質量部を除く)及び石膏5〜50質量部(アルミナセメント、ポルトランドセメント及び石膏の質量の和は、100質量部とする。)の水硬性成分を用いることが好ましい。
特に水硬性成分は、アルミナセメント30〜70質量部、ポルトランドセメント0〜45質量部(0質量部を除く)及び石膏15〜50質量部(アルミナセメント、ポルトランドセメント及び石膏の質量の和は、100質量部とする。)からなる組成、さらに好ましくはアルミナセメント30〜60質量部、ポルトランドセメント15〜45質量部及び石膏15〜40質量部(アルミナセメント、ポルトランドセメント及び石膏の質量の和は、100質量%とする。)からなる組成、より好ましくはアルミナセメント35〜60質量部、ポルトランドセメント20〜45質量部及び石膏20〜35質量部(アルミナセメント、ポルトランドセメント及び石膏の質量の和は、100質量部とする。)、特に好ましくはアルミナセメント35〜50質量部、ポルトランドセメント25〜42質量部及び石膏23〜27質量部(アルミナセメント、ポルトランドセメント及び石膏の質量の和は、100質量部とする。)からなる組成を用いることにより、急硬性で、低収縮性又は低膨張性で硬化中の体積変化の少ない硬化物を得られやすいために好ましい。
The hydraulic component is 20 to 70 parts by mass of alumina cement, 0 to 70 parts by mass of Portland cement (excluding 0 parts by mass) and 5 to 50 parts by mass of gypsum (the sum of the masses of alumina cement, Portland cement and gypsum is 100 parts by mass. It is preferable to use a hydraulic component.
Particularly, the hydraulic component is 30 to 70 parts by mass of alumina cement, 0 to 45 parts by mass of Portland cement (excluding 0 parts by mass) and 15 to 50 parts by mass of gypsum (the sum of the masses of alumina cement, Portland cement and gypsum is 100 The composition consisting of 30 parts by weight of alumina cement, 15 to 45 parts by weight of Portland cement, and 15 to 40 parts by weight of gypsum (alumina cement, Portland cement and gypsum is 100 parts by weight). The composition consisting of 35 to 60 parts by mass of alumina cement, 20 to 45 parts by mass of Portland cement and 20 to 35 parts by mass of gypsum (alumina cement, Portland cement and gypsum is 100% by mass). Mass parts.), Particularly preferably alumina cement 35-5 By using a composition consisting of part by mass, 25 to 42 parts by mass of Portland cement and 23 to 27 parts by mass of gypsum (the sum of the mass of alumina cement, Portland cement and gypsum is 100 parts by mass), This is preferable because it is easy to obtain a cured product with low shrinkage or low expansion and little volume change during curing.

本発明の水硬性組成物は、必要に応じて無機粉を本発明の特性を損なわない範囲で含むことができる。
無機粉としては、高炉スラグ粉を除くシリカフューム、シリカダスト、フライアッシュなどを用いることができる。
水硬性組成物において、無機粉と高炉スラグの配合量と合わせて、水硬性成分100質量部に対して、30〜350質量部、好ましくは40〜300質量部、より好ましくは50〜250質量部、さらに好ましくは60〜200質量部、特に好ましくは70〜160質量部を含むことが好ましい。
The hydraulic composition of the present invention can contain an inorganic powder as long as it does not impair the characteristics of the present invention.
As the inorganic powder, silica fume, silica dust, fly ash and the like excluding blast furnace slag powder can be used.
In a hydraulic composition, it combines with the compounding quantity of inorganic powder and blast furnace slag, 30-350 mass parts with respect to 100 mass parts of hydraulic components, Preferably it is 40-300 mass parts, More preferably, it is 50-250 mass parts. More preferably, it contains 60 to 200 parts by mass, particularly preferably 70 to 160 parts by mass.

細骨材としては、粒径2mm以下の骨材、好ましくは粒径0.075〜1.5mmの骨材、さらに好ましくは粒径0.1〜1mmの骨材、特に好ましくは0.15〜0.6mmの骨材を主成分としている。
細骨材としては、珪砂、川砂、海砂、山砂、砕砂などの砂、アルミナクリンカー、シリカ粉、粘土鉱物、廃FCC触媒、石灰石などの無機質材などを用いることができる。
特に細骨材としては、珪砂、川砂、海砂、山砂、砕砂などの砂、石英粉末、アルミナクリンカーなどが好ましく用いることが出来る。
細骨材の粒径は、JIS Z−8801で規定される呼び寸法の異なる数個のふるいを用いて測定する。
本発明の水硬性組成物において、必要に応じて細骨材を本発明の特性を損なわない範囲で含むことができ、細骨材は、水硬性成分100質量部に対し60〜500質量部、好ましくは100〜450質量部、さらに好ましくは120〜400質量部、より好ましくは140〜375質量部、特に好ましくは160〜350質量部含むことが好ましい。
As the fine aggregate, an aggregate having a particle size of 2 mm or less, preferably an aggregate having a particle size of 0.075 to 1.5 mm, more preferably an aggregate having a particle size of 0.1 to 1 mm, particularly preferably 0.15 to 0.15. The main component is 0.6 mm aggregate.
As the fine aggregate, silica sand, river sand, sea sand, mountain sand, crushed sand and other sand, alumina clinker, silica powder, clay mineral, waste FCC catalyst, limestone and other inorganic materials can be used.
In particular, as fine aggregate, quartz sand, river sand, sea sand, mountain sand, crushed sand and other sand, quartz powder, alumina clinker and the like can be preferably used.
The particle size of the fine aggregate is measured using several sieves having different nominal dimensions as defined in JIS Z-8801.
In the hydraulic composition of the present invention, a fine aggregate can be included in a range that does not impair the characteristics of the present invention, if necessary, and the fine aggregate is 60 to 500 parts by mass with respect to 100 parts by mass of the hydraulic component, Preferably it is 100 to 450 parts by mass, more preferably 120 to 400 parts by mass, more preferably 140 to 375 parts by mass, particularly preferably 160 to 350 parts by mass.

水硬性組成物は、必要に応じて本発明の特性を損なわない範囲で消泡剤、凝結促進剤や凝結遅延剤などの凝結調整剤、エマルジョン(粉体状を含む)などを少なくとも1成分含むことができる。   The hydraulic composition contains at least one component of an antifoaming agent, a setting regulator such as a setting accelerator and a setting retarder, and an emulsion (including powder form) as long as the characteristics of the present invention are not impaired. be able to.

増粘剤は、セルロース系、蛋白質系、ラテックス系、および水溶性ポリマー系など市販又は公知の増粘剤を用いることが出来、特にセルロース系などを用いることが出来る。
増粘剤の添加量は、本発明の特性を損なわない範囲で添加することができ、水硬性成分100質量部に対して0.05〜1質量部、さらに0.1〜0.7質量部、特に0.2〜0.5質量部含むことが好ましい。増粘剤の添加量が多くなると、流動性の低下を招く恐れがあり好ましくない。
増粘剤及び消泡剤を併用して用いることは、骨材分離及びブリージング水発生の抑制、気泡発生の抑制、硬化体表面の改善に好ましい効果を与え、硬化体の表面仕上り精度を向上させるために好ましい。
As the thickener, commercially available or known thickeners such as cellulose-based, protein-based, latex-based, and water-soluble polymer-based ones can be used, and in particular, cellulose-based ones can be used.
The addition amount of the thickener can be added within a range not impairing the characteristics of the present invention, and is 0.05 to 1 part by mass, and further 0.1 to 0.7 part by mass with respect to 100 parts by mass of the hydraulic component. In particular, it is preferable to include 0.2 to 0.5 parts by mass. If the amount of the thickener added is increased, the fluidity may be lowered, which is not preferable.
The combined use of a thickener and an antifoaming agent has a favorable effect on the suppression of aggregate separation and generation of breathing water, suppression of bubble generation, and improvement of the surface of the cured body, and improves the surface finish accuracy of the cured body. Therefore, it is preferable.

減水剤(流動化剤)は、ナフタレン系、メラミン系、ポリカルボン酸系など市販又は公知のものを用いることが出来、併用する増粘剤との最適な組合わせとなるのは、ポリカルボン酸系が好ましい。
減水剤の添加量は、本発明の特性を損なわない範囲で添加することができ、水硬性成分100質量部に対して0.01〜3質量部、さらに0.05〜2.0質量部、特に0.1〜1.5質量部が好ましい。
As the water reducing agent (fluidizing agent), commercially available or known ones such as naphthalene-based, melamine-based, and polycarboxylic acid-based ones can be used, and the optimal combination with the thickener used in combination is polycarboxylic acid A system is preferred.
The addition amount of the water reducing agent can be added within a range that does not impair the characteristics of the present invention, and is 0.01 to 3 parts by mass, more preferably 0.05 to 2.0 parts by mass, 0.1-1.5 mass parts is especially preferable.

消泡剤は、シリコン系、アルコール系、ポリエーテル系、鉱油系などの合成物質又は植物由来の天然物質など、市販又は公知のものを用いることが出来、これらは単独で又は2種以上を混合して使用することができる。
消泡剤の添加量は、本発明の特性を損なわない範囲で添加することができ、水硬性成分100質量部に対して、2質量部以下、さらに1.5質量部以下、特に1.0質量部以下が好ましい。消泡剤の添加量は、上記より多く添加する場合、消泡効果の向上がみとめられない場合がある。
As the defoaming agent, commercially available or known materials such as synthetic materials such as silicon-based, alcohol-based, polyether-based, mineral oil-based, or plant-derived natural materials can be used, and these can be used alone or in combination of two or more. Can be used.
The addition amount of the antifoaming agent can be added within a range that does not impair the characteristics of the present invention, and is 2 parts by mass or less, more preferably 1.5 parts by mass or less, particularly 1.0 The mass part or less is preferable. When the defoaming agent is added in a larger amount than the above, the defoaming effect may not be improved.

凝結調整剤は、凝結促進を行う成分である凝結促進剤、凝結遅延を行う成分である凝結遅延剤などを、各々単独で、又は双方を併用して、本発明の特性を損なわない範囲で用いることが出来、特に凝結促進剤と凝結遅延剤とを併用して用いることが凝結速度を調整しやすく好ましい。
水硬性組成物において、凝結調整剤は、水硬性成分100質量部に対して、好ましくは5質量部以下、さらに好ましくは0.05〜5質量部、より好ましくは0.1〜2質量部の範囲で添加することができる。
As the setting modifier, a setting accelerator that is a component that accelerates the setting, a setting retarder that is a component that delays the setting, and the like are used singly or in combination, as long as the characteristics of the present invention are not impaired. In particular, it is preferable to use a setting accelerator and a setting retarder in combination because the setting speed is easily adjusted.
In the hydraulic composition, the setting modifier is preferably 5 parts by mass or less, more preferably 0.05 to 5 parts by mass, and more preferably 0.1 to 2 parts by mass with respect to 100 parts by mass of the hydraulic component. It can be added in a range.

凝結促進剤としては、公知の凝結促進剤を用いることが出来る。凝結促進剤の一例として、炭酸リチウム、塩化リチウム、硫酸リチウム、硝酸リチウム、水酸化リチウム、酢酸リチウム、酒石酸リチウム、リンゴ酸リチウム、クエン酸リチウムなどの有機酸などの、無機リチウム塩や有機リチウム塩などのリチウム塩を用いることが出来る。特に炭酸リチウムは、効果、入手容易性、価格の面から好ましい。
固形の凝結促進剤を用いる場合は、特性を妨げない粒径を用いることが好ましく、粒径は50μm以下にするのが好ましい。
A known setting accelerator can be used as the setting accelerator. Examples of setting accelerators include inorganic and organic lithium salts such as lithium carbonate, lithium chloride, lithium sulfate, lithium nitrate, lithium hydroxide, lithium acetate, lithium tartrate, lithium malate, lithium citrate, and other organic acids. Lithium salt such as can be used. In particular, lithium carbonate is preferable from the viewpoints of effects, availability, and cost.
When a solid setting accelerator is used, it is preferable to use a particle size that does not hinder the properties, and the particle size is preferably 50 μm or less.

凝結遅延剤としては、公知の凝結遅延剤を用いることが出来る。凝結遅延剤の一例として、硫酸ナトリウム、重炭酸ナトリウム、酒石酸ナトリウム、リンゴ酸ナトリウム、クエン酸ナトリウム、グルコン酸ナトリウムなど有機酸などの、無機ナトリウム塩や有機ナトリウム塩などのナトリウム塩などを用いることが出来る。特に重炭酸ナトリウムや酒石酸ナトリウムは、効果、入手容易性、価格の面から好ましい。   As the setting retarder, a known setting retarder can be used. As an example of a set retarder, it is possible to use sodium salts such as inorganic sodium salts and organic sodium salts such as sodium sulfate, sodium bicarbonate, sodium tartrate, sodium malate, sodium citrate, sodium gluconate, and other organic acids. I can do it. In particular, sodium bicarbonate and sodium tartrate are preferable from the viewpoints of effect, availability, and price.

凝結調整剤としてリチウム塩とナトリウム塩を用いる場合、リチウム塩とナトリウム塩の合量が、水硬性成分100質量部に対して0.1〜5質量部、さらに0.2〜2質量部、特に0.4〜1.0質量部の範囲で添加することが好ましい。   When a lithium salt and a sodium salt are used as the setting modifier, the total amount of the lithium salt and the sodium salt is 0.1 to 5 parts by weight, more preferably 0.2 to 2 parts by weight, particularly 100 parts by weight of the hydraulic component. It is preferable to add in the range of 0.4 to 1.0 part by mass.

本発明の水硬性組成物の製造方法の一例を示す。
(製造例1)
1)高炉スラグ粉に含まれる酸化マグネシウム(MgO)量を測定し、
2)高炉スラグ粉100質量%中に含まれる酸化マグネシウム量が、5.5〜7.5質量%の範囲を満たす高炉スラグ粉を用い(満たさない場合は製造に使用しない。)、
3)アルミナセメントと、ポルトランドセメントと、石膏と、高炉スラグ粉と、減水剤及び/又は増粘剤と、必要に応じて細骨材、無機粉、消泡剤、凝結促進剤や凝結遅延剤などの凝結調整剤などの成分を、配合することにより、又は配合して攪拌機や混合機を用いて、混合攪拌することにより製造することができる。
An example of the manufacturing method of the hydraulic composition of this invention is shown.
(Production Example 1)
1) Measure the amount of magnesium oxide (MgO) contained in blast furnace slag powder,
2) Blast furnace slag powder satisfying the range of 5.5 to 7.5 mass% of magnesium oxide contained in 100 mass% of blast furnace slag powder is used (if not satisfied, it is not used for production).
3) Alumina cement, Portland cement, gypsum, blast furnace slag powder, water reducing agent and / or thickener, fine aggregate, inorganic powder, antifoaming agent, setting accelerator and setting retarder as required It can manufacture by mix | blending components, such as a coagulation regulator, etc., or mix | blending and stirring using a stirrer and a mixer.

本発明の水硬性組成物の製造方法において、高炉スラグ粉100質量%中に含まれる酸化マグネシウム(MgO)量が、5.5〜7.5質量%の範囲、好ましくは5.7〜7.2%の範囲、さらに好ましくは6.0〜7.0%の範囲、より好ましくは6.1〜6.8%の範囲、特に好ましくは6.2〜6.6%の範囲を満たさない高炉スラグ粉(高炉スラグ粉のロット)は、別の高炉スラグ粉(別の高炉スラグ粉のロット)と混合し均質化して、高炉スラグ粉100質量%中に含まれる酸化マグネシウム(MgO)量が、上記の範囲を満たすようにすることで、本発明に利用することができ、安定した製品を製造でき、規格外品の製造量を減らすことができ、廃棄物量の削減に寄与することができる。   In the method for producing a hydraulic composition of the present invention, the amount of magnesium oxide (MgO) contained in 100% by mass of blast furnace slag powder is in the range of 5.5 to 7.5% by mass, preferably 5.7 to 7. A blast furnace that does not satisfy the range of 2%, more preferably 6.0 to 7.0%, more preferably 6.1 to 6.8%, particularly preferably 6.2 to 6.6%. Slag powder (lot of blast furnace slag powder) is mixed with another blast furnace slag powder (another lot of blast furnace slag powder) and homogenized, and the amount of magnesium oxide (MgO) contained in 100% by mass of blast furnace slag powder is By satisfying the above range, it can be used in the present invention, a stable product can be manufactured, the production amount of non-standard products can be reduced, and the amount of waste can be reduced.

本発明の水硬性組成物及び、本発明の水硬性組成物の製造方法より製造された水硬性組成物と、水とを含む配合物(モルタル)を製造し、さらにそのモルタルを硬化させて平滑な硬化体を得ることができる。   The hydraulic composition of the present invention, the hydraulic composition produced by the method for producing the hydraulic composition of the present invention, and a blend (mortar) containing water are produced, and the mortar is further cured to be smooth. A cured product can be obtained.

本発明の水硬性組成物及び、本発明の水硬性組成物の製造方法より製造された水硬性組成物は、所定量の水を配合し混練することによりモルタルを得ることが出来る。例えば、自己流動性のセルフレベリング材として用いる場合、水は水硬性組成物100質量部に対し、20〜30質量部、さらに22〜28質量部、特に24〜26質量部配合して、スラリーを得ることができる。   The hydraulic composition produced by the hydraulic composition of the present invention and the method for producing the hydraulic composition of the present invention can obtain a mortar by blending and kneading a predetermined amount of water. For example, when used as a self-flowing self-leveling material, water is mixed in an amount of 20 to 30 parts by weight, more preferably 22 to 28 parts by weight, particularly 24 to 26 parts by weight with respect to 100 parts by weight of the hydraulic composition. Obtainable.

本発明の水硬性組成物及び、本発明の水硬性組成物の製造方法より製造された水硬性組成物は、一般建築物の主に床下地調整に使用されるセメントモルタル組成物として用いることができる。
本発明のセメントモルタル組成物は、コンクリートの表面仕上げ材として広く使用することができ、一般の建築用左官材料、例えばPータイル貼、長尺シート、じゅうたん、ウレタン等の合成樹脂塗り床下地の施工にも使用することができる。
The hydraulic composition of the present invention and the hydraulic composition produced by the method of producing the hydraulic composition of the present invention can be used as a cement mortar composition mainly used for floor foundation adjustment of general buildings. it can.
The cement mortar composition of the present invention can be widely used as a surface finishing material for concrete, and is used for general plastering materials such as P-tile, long sheets, carpets, urethane, etc. Can also be used.

本発明の水硬性組成物及び水硬性組成物の製造方法より製造された水硬性組成物と、水とを含む配合物又は混練物を硬化させてセメントモルタル硬化体を得ることができる。このモルタル硬化体は、例えばPータイル貼、長尺シート、じゅうたん、カーペット、フローリング、畳敷き、ウレタン等の合成樹脂塗り床下地などの新築や補修工事に用いることができる。   A cement mortar hardened body can be obtained by curing a hydraulic composition produced by the hydraulic composition and hydraulic composition production method of the present invention and a blend or kneaded product containing water. This mortar hardened body can be used for new construction or repair work of, for example, P-tile sticking, long sheets, carpets, carpets, flooring, tatami mats, synthetic resin coated floors such as urethane.

本発明の水硬性組成物及び、本発明の水硬性組成物の製造方法より製造された水硬性組成物は、公知の方法でセルフレベリング材として施工することが出来る。例えば施工の一例として、特開2001−040862号公報などに開示されている。   The hydraulic composition manufactured from the hydraulic composition of the present invention and the method of manufacturing the hydraulic composition of the present invention can be applied as a self-leveling material by a known method. For example, it is disclosed by Unexamined-Japanese-Patent No. 2001-040862 etc. as an example of construction.

本発明の水硬性組成物及び、本発明の水硬性組成物の製造方法より製造された水硬性組成物は、一般建築物の主に廊下、床下、ベランダなどの下地調整に使用されるセルフレベリング材として用いることもできる。
本発明のセルフレベリング材は、コンクリートの表面仕上げ材として広く使用することができ、一般の建築用左官材料、例えばPータイル貼、長尺シート、じゅうたん、ウレタン等の合成樹脂塗り床下地の施工にも使用することができる。
The hydraulic composition produced by the hydraulic composition of the present invention and the method of producing the hydraulic composition of the present invention is used for the adjustment of foundations such as corridors, under floors, and verandas of general buildings. It can also be used as a material.
The self-leveling material of the present invention can be widely used as a surface finishing material for concrete, and it can be used for construction of general plastering materials such as P-tile, long sheets, carpets, urethane, etc. Can also be used.

本発明の水硬性組成物及び水硬性組成物の製造方法より製造された硬性組成物と、水とを含む配合物又は混練物(スラリー)を硬化させてセルフレベリング材硬化体を得ることもできる。このセルフレベリング材硬化体は、例えばPータイル貼、長尺シート、じゅうたん、カーペット、フローリング、畳敷き、ウレタン等の合成樹脂塗り床下地などの新築や補修工事に用いることができる。   A hardened composition produced by the hydraulic composition and the method for producing a hydraulic composition of the present invention and a mixture or kneaded product (slurry) containing water can be cured to obtain a cured body of a self-leveling material. . The cured body of the self-leveling material can be used for new construction or repair work of, for example, P-tile sticking, long sheets, carpets, carpets, flooring, tatami mats, synthetic resin coated floors such as urethane.

以下、本発明を実施例に基づき、さらに詳細に説明する。但し、本発明は下記実施例により制限されるものでない。   Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited by the following examples.

(1)ブレーン比表面積の評価法:JIS・R−5201に規定されているブレーン空気透過装置を使用して測定する。 (1) Evaluation method of Blaine specific surface area: Measured by using a Blaine air permeation device specified in JIS R-5201.

(5)機械的特性の評価
JIS・R−5201に示される4×4×16cmの型枠にモルタルスラリー(20℃に調整)を型詰めして、温度20℃、湿度65%で24時間気中養生した後、脱型し、さらに同条件の気中にて所定期間(27日)追加養生して成型体を得る。成型体は、JIS・R−5201記載の方法に従い測定する。
(5) Evaluation of mechanical properties Mortar slurry (adjusted to 20 ° C.) is packed in a 4 × 4 × 16 cm mold shown in JIS R-5201, and the atmosphere is kept at a temperature of 20 ° C. and a humidity of 65% for 24 hours. After moderate curing, it is demolded and further cured for a predetermined period (27 days) in the air under the same conditions to obtain a molded body. The molded body is measured according to the method described in JIS / R-5201.

(5)使用材料:以下の材料を使用した。
1)水硬性成分
・アルミナセメント:ブレーン比表面積3300cm/g、モノカルシウムアルミネート含有量45質量%。
・ポルトランドセメント:早強セメント、ブレーン比表面積4500cm/g。
・石膏:II型無水石膏、ブレーン比表面積4300cm/g。
2)細骨材
・珪砂:6号珪砂(市販品)。
3)凝結調整剤
・凝結調整剤A:・炭酸リチウム、重炭酸ナトリウム及び酒石酸ナトリウムを混合したもの。
・凝結調整剤B:リン酸系のナトリウムとグルコン酸ナトリウムを混合したもの。
・凝結調整剤C:炭酸リチウムとクエン酸ナトリウムを混合したもの。
4)混和剤
・減水剤:ポリカルボン酸系減水剤(市販品)。
・増粘剤:メチルセルロース系増粘剤(市販品)。
・消泡剤:ポリエーテル系消泡剤(市販品)。
(5) Materials used: The following materials were used.
1) Hydraulic component / alumina cement: Blaine specific surface area 3300 cm 2 / g, monocalcium aluminate content 45% by mass.
Portland cement: early-strength cement, Blaine specific surface area 4500 cm 2 / g.
Gypsum: type II anhydrous gypsum, Blaine specific surface area 4300 cm 2 / g.
2) Fine aggregate / silica sand: No. 6 silica sand (commercially available).
3) Setting agent / setting agent A: A mixture of lithium carbonate, sodium bicarbonate and sodium tartrate.
-Setting controller B: A mixture of sodium phosphate and sodium gluconate.
-Setting adjuster C: A mixture of lithium carbonate and sodium citrate.
4) Admixture / water reducing agent: polycarboxylic acid water reducing agent (commercially available).
-Thickener: Methylcellulose thickener (commercially available).
-Antifoaming agent: Polyether type antifoaming agent (commercially available product).

(高炉スラグ粉)
高炉スラグ粉は、表1に示すものを用いた。
(Blast furnace slag powder)
The blast furnace slag powder shown in Table 1 was used.

(実施例1)
アルミナセメント、ポルトランドセメント及び石膏の水硬性成分と、表1に示す高炉スラグ粉(SG−1)と、細骨材と、減水剤と、増粘剤と、凝結調整剤と、消泡剤とを表2に示す割合で配合し(総量:1.5kg)、混合し、水硬性組成物(a)を調整した。さらに水390gを加えてケミスタラーを用いて3分間混練して、スラリーを得た。水硬性組成物及びスラリーの調整は、20℃で行った。スラリーを硬化させ、硬化物の圧縮強度を測定し、結果を表5に示す。
Example 1
Hydraulic components of alumina cement, Portland cement and gypsum, blast furnace slag powder (SG-1) shown in Table 1, fine aggregate, water reducing agent, thickener, setting modifier, antifoaming agent, Were mixed at a ratio shown in Table 2 (total amount: 1.5 kg) and mixed to prepare a hydraulic composition (a). Further, 390 g of water was added and kneaded for 3 minutes using a chemistor to obtain a slurry. The hydraulic composition and the slurry were adjusted at 20 ° C. The slurry was cured, and the compression strength of the cured product was measured. The results are shown in Table 5.

(実施例2)
高炉スラグ粉を表1に示す高炉スラグ粉(SG−2)を用いた以外は、実施例1と同様にして、水硬性組成物及びスラリーの調整を行い、スラリーを硬化させ、硬化物の圧縮強度を測定し、結果を表5に示す。
(Example 2)
Except that the blast furnace slag powder (SG-2) shown in Table 1 was used as the blast furnace slag powder, the hydraulic composition and the slurry were adjusted in the same manner as in Example 1, the slurry was cured, and the cured product was compressed. The strength was measured and the results are shown in Table 5.

(比較例1)
高炉スラグ粉を表1に示す高炉スラグ粉(SG−3)を用いた以外は、実施例1と同様にして、水硬性組成物及びスラリーの調整を行い、スラリーを硬化させ、硬化物の圧縮強度を測定し、結果を表5に示す。
(Comparative Example 1)
Except that the blast furnace slag powder (SG-3) shown in Table 1 was used as the blast furnace slag powder, the hydraulic composition and the slurry were adjusted in the same manner as in Example 1, the slurry was cured, and the cured product was compressed. The strength was measured and the results are shown in Table 5.

(比較例2)
高炉スラグ粉を表1に示す高炉スラグ粉(SG−4)を用いた以外は、実施例1と同様にして、水硬性組成物及びスラリーの調整を行い、スラリーを硬化させ、硬化物の圧縮強度を測定し、結果を表5に示す。
(Comparative Example 2)
Except that the blast furnace slag powder (SG-4) shown in Table 1 was used as the blast furnace slag powder, the hydraulic composition and the slurry were adjusted in the same manner as in Example 1, the slurry was cured, and the cured product was compressed. The strength was measured and the results are shown in Table 5.

(実施例3)
アルミナセメント、ポルトランドセメント及び石膏の水硬性成分と、表1に示す高炉スラグ粉(SG−1)と、細骨材と、減水剤と、増粘剤と、凝結調整剤と、消泡剤とを表3に示す割合で配合し(総量:1.5kg)、混合し、水硬性組成物()を調整した。さらに水360gを加えてケミスタラーを用いて3分間混練して、スラリーを得た。水硬性組成物及びスラリーの調整は、20℃で行った。スラリーを硬化させ、硬化物の圧縮強度を測定し、結果を表5に示す。
(Example 3)
Hydraulic components of alumina cement, Portland cement and gypsum, blast furnace slag powder (SG-1) shown in Table 1, fine aggregate, water reducing agent, thickener, setting modifier, antifoaming agent, Were mixed at a ratio shown in Table 3 (total amount: 1.5 kg) and mixed to prepare a hydraulic composition ( b ). Further, 360 g of water was added and kneaded for 3 minutes using a chemistor to obtain a slurry. The hydraulic composition and the slurry were adjusted at 20 ° C. The slurry was cured, and the compression strength of the cured product was measured. The results are shown in Table 5.

(実施例4)
高炉スラグ粉を表1に示す高炉スラグ粉(SG−2)を用いた以外は、実施例3と同様にして、水硬性組成物及びスラリーの調整を行い、スラリーを硬化させ、硬化物の圧縮強度を測定し、結果を表5に示す。
Example 4
Except that the blast furnace slag powder (SG-2) shown in Table 1 was used as the blast furnace slag powder, the hydraulic composition and the slurry were adjusted in the same manner as in Example 3, the slurry was cured, and the cured product was compressed. The strength was measured and the results are shown in Table 5.

(比較例3)
高炉スラグ粉を表1に示す高炉スラグ粉(SG−3)を用いた以外は、実施例3と同様にして、水硬性組成物及びスラリーの調整を行い、スラリーを硬化させ、硬化物の圧縮強度を測定し、結果を表5に示す。
(Comparative Example 3)
Except that the blast furnace slag powder (SG-3) shown in Table 1 was used as the blast furnace slag powder, the hydraulic composition and the slurry were adjusted in the same manner as in Example 3, the slurry was cured, and the cured product was compressed. The strength was measured and the results are shown in Table 5.

(比較例4)
高炉スラグ粉を表1に示す高炉スラグ粉(SG−4)を用いた以外は、実施例3と同様にして、水硬性組成物及びスラリーの調整を行い、スラリーを硬化させ、硬化物の圧縮強度を測定し、結果を表5に示す。
(Comparative Example 4)
Except that the blast furnace slag powder (SG-4) shown in Table 1 was used as the blast furnace slag powder, the hydraulic composition and the slurry were adjusted in the same manner as in Example 3, the slurry was cured, and the cured product was compressed. The strength was measured and the results are shown in Table 5.

参考例1
アルミナセメント、ポルトランドセメント及び石膏の水硬性成分と、表1に示す高炉スラグ粉(SG−1)と、細骨材と、減水剤と、増粘剤と、凝結調整剤と、消泡剤とを表4に示す割合で配合し(総量:1.5kg)、混合し、水硬性組成物()を調整した。さらに水390gを加えてケミスタラーを用いて3分間混練して、スラリーを得た。水硬性組成物及びスラリーの調整は、20℃で行った。スラリーを硬化させ、硬化物の圧縮強度を測定し、結果を表5に示す。
( Reference Example 1 )
Hydraulic components of alumina cement, Portland cement and gypsum, blast furnace slag powder (SG-1) shown in Table 1, fine aggregate, water reducing agent, thickener, setting modifier, antifoaming agent, Were mixed at a ratio shown in Table 4 (total amount: 1.5 kg) and mixed to prepare a hydraulic composition ( c ). Further, 390 g of water was added and kneaded for 3 minutes using a chemistor to obtain a slurry. The hydraulic composition and the slurry were adjusted at 20 ° C. The slurry was cured, and the compression strength of the cured product was measured. The results are shown in Table 5.

参考例2
高炉スラグ粉を表1に示す高炉スラグ粉(SG−2)を用いた以外は、参考例1と同様にして、水硬性組成物及びスラリーの調整を行い、スラリーを硬化させ、硬化物の圧縮強度を測定し、結果を表5に示す。
( Reference Example 2 )
Except that the blast furnace slag powder (SG-2) shown in Table 1 was used, the hydraulic composition and the slurry were adjusted in the same manner as in Reference Example 1 , the slurry was cured, and the cured product was compressed. The strength was measured and the results are shown in Table 5.

参考例3
高炉スラグ粉を表1に示す高炉スラグ粉(SG−4)を用いた以外は、参考例1と同様にして、水硬性組成物及びスラリーの調整を行い、スラリーを硬化させ、硬化物の圧縮強度を測定し、結果を表5に示す。
( Reference Example 3 )
Except that the blast furnace slag powder (SG-4) shown in Table 1 was used as the blast furnace slag powder, the hydraulic composition and the slurry were adjusted in the same manner as in Reference Example 1 , the slurry was cured, and the cured product was compressed. The strength was measured and the results are shown in Table 5.

Figure 0004894380
Figure 0004894380

Figure 0004894380
Figure 0004894380

Figure 0004894380
Figure 0004894380

Figure 0004894380
Figure 0004894380

Figure 0004894380
Figure 0004894380

実施例1〜6より、本発明の高炉スラグを用いることにより、アルミナセメント、ポルトランドセメント及び石膏の配合割合を広範囲に変化させた水硬性成分を用いた場合でも、圧縮強度の優れる硬化体を得ることができる。
表2及び表3の水硬性成分、特に表3の水硬性成分と、本発明の高炉スラグを用いることにより、圧縮強度の優れる硬化体を得ることができる。

From Examples 1 to 6, by using the blast furnace slag of the present invention, a cured product having excellent compressive strength is obtained even when a hydraulic component in which the blending ratio of alumina cement, Portland cement and gypsum is changed in a wide range is used. be able to.
By using the hydraulic components shown in Tables 2 and 3 and particularly the hydraulic components shown in Table 3 and the blast furnace slag of the present invention, a cured product having excellent compressive strength can be obtained.

Claims (4)

アルミナセメント、ポルトランドセメント及び石膏とを含む水硬性成分と、細骨材と、高炉スラグ粉と、減水剤と、凝結調整剤及び増粘剤とを含む水硬性組成物の製造方法であり、
前記水硬性成分は、アルミナセメント35〜60質量部、ポルトランドセメント20〜45質量部及び石膏20〜35質量部(アルミナセメント、ポルトランドセメント及び石膏の質量の和は、100質量部とする。)であり、
前記水硬性成分100質量部に対し、細骨材160〜350質量部であり、
前記細骨材は、珪砂、川砂、海砂、山砂又は砕砂よりなる群から選ばれた少なくとも1種以上であり、
前記凝結調整剤は、炭酸リチウム、塩化リチウム、硫酸リチウム、硝酸リチウム、水酸化リチウム、酢酸リチウム、クエン酸リチウム、硫酸ナトリウム、重炭酸ナトリウム、酒石酸ナトリウム、リンゴ酸ナトリウム、クエン酸ナトリウム、リン酸ナトリウム及びグルコン酸ナトリウムよりなる群から選ばれた少なくとも1種以上であり、
前記水硬性成分100質量部に対し、高炉スラグ粉70〜160質量部であり、
高炉スラグ粉に含まれる酸化マグネシウム(MgO)量を測定し、
高炉スラグ粉100質量%中に含まれる酸化マグネシウム量が、6.2〜6.6質量%の範囲を満たす高炉スラグ粉を用い、
アルミナセメント、ポルトランドセメント及び石膏とを含む水硬性成分と、細骨材と、高炉スラグ粉と、減水剤と、凝結調整剤及び増粘剤から選ばれる成分とを混合することを特徴とする水硬性組成物の製造方法。
A hydraulic composition containing an alumina cement, Portland cement and gypsum, a fine aggregate, a blast furnace slag powder, a water reducing agent, a setting regulator and a thickener, and a method for producing a hydraulic composition,
The hydraulic component is 35-60 parts by mass of alumina cement, 20-45 parts by mass of Portland cement and 20-35 parts by mass of gypsum (the sum of the masses of alumina cement, Portland cement and gypsum is 100 parts by mass). Yes,
160 to 350 parts by mass of fine aggregate with respect to 100 parts by mass of the hydraulic component,
The fine aggregate is at least one selected from the group consisting of quartz sand, river sand, sea sand, mountain sand or crushed sand,
The setting modifier is lithium carbonate, lithium chloride, lithium sulfate, lithium nitrate, lithium hydroxide, lithium acetate, lithium citrate, sodium sulfate, sodium bicarbonate, sodium tartrate, sodium malate, sodium citrate, sodium phosphate And at least one selected from the group consisting of sodium gluconate,
The blast furnace slag powder is 70 to 160 parts by mass with respect to 100 parts by mass of the hydraulic component.
Measure the amount of magnesium oxide (MgO) contained in blast furnace slag powder,
Blast furnace slag powder satisfying the range of 6.2 to 6.6 % by mass of magnesium oxide contained in 100% by mass of blast furnace slag powder,
Water characterized by mixing a hydraulic component containing alumina cement, Portland cement and gypsum, fine aggregate, blast furnace slag powder, water reducing agent, and a component selected from a setting modifier and a thickener. A method for producing a hard composition.
前記水硬性成分100質量部に対し、減水剤0.01〜3質量部であることを特徴とする請求項1に記載の水硬性組成物の製造方法。It is 0.01-3 mass parts of water reducing agents with respect to 100 mass parts of said hydraulic components, The manufacturing method of the hydraulic composition of Claim 1 characterized by the above-mentioned. 前記水硬性成分100質量部に対し、凝結調整剤0.05〜5質量部であることを特徴とする請求項1又は請求項2に記載の水硬性組成物の製造方法。The method for producing a hydraulic composition according to claim 1, wherein the setting amount is 0.05 to 5 parts by mass with respect to 100 parts by mass of the hydraulic component. 前記高炉スラグ粉100質量%中に含まれる酸化マグネシウム(MgO)量が、6.2〜6.6質量%の範囲を満たさない高炉スラグ粉(高炉スラグ粉のロット)は、別の高炉スラグ粉(別の高炉スラグ粉のロット)と混合し均質化して、高炉スラグ粉100質量%中に含まれる酸化マグネシウム(MgO)量が、前記範囲を満たすようにすることを特徴とする請求項1〜3のいずれか1項に記載の水硬性組成物の製造方法。Blast furnace slag powder (lot of blast furnace slag powder) in which the amount of magnesium oxide (MgO) contained in 100 mass% of the blast furnace slag powder does not satisfy the range of 6.2 to 6.6 mass% is another blast furnace slag powder. (Mixed with another lot of blast furnace slag powder) and homogenized so that the amount of magnesium oxide (MgO) contained in 100% by mass of the blast furnace slag powder satisfies the above range. 4. The method for producing a hydraulic composition according to any one of 3 above.
JP2006193552A 2006-07-14 2006-07-14 Method for producing hydraulic composition Active JP4894380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006193552A JP4894380B2 (en) 2006-07-14 2006-07-14 Method for producing hydraulic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006193552A JP4894380B2 (en) 2006-07-14 2006-07-14 Method for producing hydraulic composition

Publications (2)

Publication Number Publication Date
JP2008019135A JP2008019135A (en) 2008-01-31
JP4894380B2 true JP4894380B2 (en) 2012-03-14

Family

ID=39075396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006193552A Active JP4894380B2 (en) 2006-07-14 2006-07-14 Method for producing hydraulic composition

Country Status (1)

Country Link
JP (1) JP4894380B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104261706A (en) * 2014-09-28 2015-01-07 广西云燕特种水泥建材有限公司 Method for producing green ecological cement resistant to seawater corrosion by using construction wastes
CN104261706B (en) * 2014-09-28 2017-01-04 广西云燕特种水泥建材有限公司 The method producing the green ecological cement of anti-seawater corrosion with building waste

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5120122B2 (en) * 2008-03-05 2013-01-16 宇部興産株式会社 Construction method of waterproof floor structure
JP4840384B2 (en) * 2008-03-14 2011-12-21 宇部興産株式会社 Hydraulic composition, hydraulic mortar and concrete floor structure
JP5093499B2 (en) * 2008-03-19 2012-12-12 宇部興産株式会社 Concrete floor structure and construction method thereof
JP2010019018A (en) * 2008-07-11 2010-01-28 Ube Ind Ltd Concrete floor structure and its construction method
JP2010019009A (en) * 2008-07-11 2010-01-28 Ube Ind Ltd Concrete floor structure and its construction method
JP5776239B2 (en) * 2011-03-17 2015-09-09 宇部興産株式会社 Self-leveling material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3697921B2 (en) * 1999-01-26 2005-09-21 宇部興産株式会社 Self-flowing hydraulic composition
JP3728975B2 (en) * 1999-04-20 2005-12-21 宇部興産株式会社 Self-flowing hydraulic composition
JP4352751B2 (en) * 2003-04-30 2009-10-28 宇部興産株式会社 Self-flowing hydraulic composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104261706A (en) * 2014-09-28 2015-01-07 广西云燕特种水泥建材有限公司 Method for producing green ecological cement resistant to seawater corrosion by using construction wastes
CN104261706B (en) * 2014-09-28 2017-01-04 广西云燕特种水泥建材有限公司 The method producing the green ecological cement of anti-seawater corrosion with building waste

Also Published As

Publication number Publication date
JP2008019135A (en) 2008-01-31

Similar Documents

Publication Publication Date Title
US10355278B2 (en) Binder based on a solid mineral compound rich in alkaline-earth metal oxide with phosphate-containing activators
US8545620B2 (en) Cement accelerator
US9828292B2 (en) Binder composition for improved mortars and coatings
JP4894380B2 (en) Method for producing hydraulic composition
JP2008127250A (en) Self-flowable hydraulic composition
US20110178209A1 (en) Manufacturing hydraulic cement aggregates for use in insulating and heat reflecting products
JP2009227481A (en) Hydraulic composition
JP2006045025A (en) Self-flowing hydraulic composition
JP2018002524A (en) Early-strength admixture for secondary product and early-strength concrete for secondary product
JP5298677B2 (en) Hydraulic composition
JP2008030985A (en) Self-flowable hydraulic composition and its manufacturing method
JP2009227544A (en) Hydraulic composition, hydraulic mortar and hardened body
JP4816449B2 (en) Self-flowing hydraulic composition
RU2376260C2 (en) Method of construction materials manufacture based on magnesium oxychloride cement
JP7034573B2 (en) Fast-curing polymer cement composition and fast-curing polymer cement mortar
JP2009215136A (en) Hydraulic composition
JP4752290B2 (en) Method for producing self-flowing hydraulic composition
JP4788574B2 (en) Hydraulic composition
JP2008074659A (en) Air bubble mixed calcium silicate hardened body
JP4285186B2 (en) Alumina cement-based hydraulic composition with excellent storage
JP2012140274A (en) Strength-increasing agent for polymer cement composition, and high-strength polymer cement composition
JP7083637B2 (en) Concrete and its manufacturing method
JP2007254196A (en) Hydraulic composition
JP5987378B2 (en) mortar
KR20170044402A (en) High sulfate resistant inorganic binders, cement paste, mortar and concrete composite with crack self-healing function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111212

R150 Certificate of patent or registration of utility model

Ref document number: 4894380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250