KR20190032938A - 거리 측정 장치, 시간 디지털 변환기, 및 이동체 - Google Patents

거리 측정 장치, 시간 디지털 변환기, 및 이동체 Download PDF

Info

Publication number
KR20190032938A
KR20190032938A KR1020170121401A KR20170121401A KR20190032938A KR 20190032938 A KR20190032938 A KR 20190032938A KR 1020170121401 A KR1020170121401 A KR 1020170121401A KR 20170121401 A KR20170121401 A KR 20170121401A KR 20190032938 A KR20190032938 A KR 20190032938A
Authority
KR
South Korea
Prior art keywords
clock
oscillator
signal
time
slow
Prior art date
Application number
KR1020170121401A
Other languages
English (en)
Other versions
KR102035019B1 (ko
Inventor
신경철
박성주
이재영
천무웅
Original Assignee
주식회사 유진로봇
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 유진로봇 filed Critical 주식회사 유진로봇
Priority to KR1020170121401A priority Critical patent/KR102035019B1/ko
Priority to US15/825,122 priority patent/US10962647B2/en
Priority to PCT/KR2018/007610 priority patent/WO2019039727A1/ko
Priority to EP18187977.6A priority patent/EP3447522A1/en
Priority to EP18187982.6A priority patent/EP3447523A1/en
Priority to US16/136,222 priority patent/US11579298B2/en
Publication of KR20190032938A publication Critical patent/KR20190032938A/ko
Application granted granted Critical
Publication of KR102035019B1 publication Critical patent/KR102035019B1/ko
Priority to US17/183,347 priority patent/US20210181347A1/en
Priority to US17/183,349 priority patent/US20210199807A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F10/00Apparatus for measuring unknown time intervals by electric means
    • G04F10/005Time-to-digital converters [TDC]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/01Details
    • H03K3/017Adjustment of width or dutycycle of pulses

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

본 실시예들은 복수의 오실레이터들에 포함된 논리소자의 위치를 조절하여 복수의 오실레이터들의 클럭 폭을 조절함으로써, 시간 분해능을 향상시킬 수 있는 거리 측정 장치, 시간 디지털 변환기, 및 이동체를 제공한다.

Description

거리 측정 장치, 시간 디지털 변환기, 및 이동체 {Distance Measuring Apparatus, Time to Digital Converter, and Moving Object}
본 실시예가 속하는 기술 분야는 비행시간을 산출하여 거리를 측정하는 거리 측정 장치, 시간 디지털 변환기, 및 이동체에 관한 것이다.
이 부분에 기술된 내용은 단순히 본 실시예에 대한 배경 정보를 제공할 뿐 종래기술을 구성하는 것은 아니다.
라이다(LIght Detection And Ranging, LIDAR)는 레이저 신호를 쏘고 반사되어 돌아오는 비행시간(Time of Flight, TOF)을 측정하고, 빛의 속도를 이용하여 반사체의 거리를 측정하는 장치이다.
비행시간을 측정하는 방식으로는 위상 편차(Phase Shifting) 방식, 등가시간 샘플링(Equivalent Time Sampling) 방식, 고해상도의 클럭을 이용한 직접 측정 방식, 및 복수의 지연 소자를 이용하는 시간 측정 방식 등이 있다.
위상 편차 방식은 송신부에서 사인파를 지속적으로 송신하고 수신부에서 위상 편차를 이용하여 비행시간을 측정한다. 이러한 방식은 사인파의 주기에 따라 샘플링율이 제한되는 문제가 있고, 크로스토크에 의해 잘못된 비행시간을 산출하는 문제가 있다.
등가시간 샘플링 방식은 오실로스코프에 적용된 방식으로 시간차를 두고 신호를 반복적으로 읽어 전체 신호를 재구성하는 방식이다. 이러한 방식은 샘플링율이 낮기 때문에 고속으로 이동하는 장애물을 감지하거나 이동체에 사용하는 데 제한된다.
고해상도의 클럭을 이용한 직접 측정 방식은 수 GHz로 동작하는 클럭을 이용하여 비행시간을 측정한다. 이러한 방식은 물리적으로 클럭 속도를 충분히 상승시킬 수 없기 때문에 시간 분해능을 향상시키는 데 한계가 있다.
복수의 지연 소자를 이용하는 시간 측정 방식은 시간 디지털 변환기(Time to Digital Converter, TDC)를 이용하여 시간차를 산출한다. 도 1a에서는 기존의 시간 디지털 변환기가 도시되어 있고, 도 1a에서는 기존의 시간 디지털 변환기의 신호가 예시되어 있다.
도 1a에서 버퍼는 수 십 내지 수 백 피코초(ps)의 시간 지연을 갖는다. 정지 신호를 이용하여 플립플롭을 동작시키면, 시간 지연은 도 1b에서 1의 값을 갖는 플립플롭의 개수와 동일하게 된다. 즉, 지연 시간의 합계는 비행시간과 동일한 값을 갖는다. 이러한 방식은 버퍼를 통한 시간 지연에 의존적이고, FPGA 특성상 선형적인 시간 분해능을 가질 수 없는 문제가 있다. 게다가 대량의 지연 라인을 FPGA에 순차적으로 위치시켜야 하므로, FPGA에서 구현하기 위한 공간 및 소자의 개수가 제한되는 문제가 있다.
본 발명의 실시예들은 복수의 오실레이터들에 포함된 논리소자의 위치를 변경하여 복수의 오실레이터들의 클럭 폭을 조절함으로써, 시간 디지털 변환기의 시간 분해능을 향상시키는 데 발명의 주된 목적이 있다.
본 발명의 실시예들은 외부의 클럭 발생기로부터 수신한 기준 클럭의 개수 및 내부의 오실레이터에서 발생한 내부 클럭의 개수의 비율을 이용하여 비행시간을 보정함으로써, 정확한 비행시간을 산출하는 데 발명의 다른 목적이 있다.
본 발명의 명시되지 않은 또 다른 목적들은 하기의 상세한 설명 및 그 효과로부터 용이하게 추론할 수 있는 범위 내에서 추가적으로 고려될 수 있다.
본 실시예의 일 측면에 의하면, 시작 제어 신호에 의해 대상체로 광을 출사하고 상기 대상체에 반사된 광을 수신하여 전기 신호로 변환하는 광 송수신기, 상기 전기 신호를 변환하여 정지 제어 신호를 생성하는 신호 판별기, 및 상기 시작 제어 신호 및 상기 정지 제어 신호의 시간차에 기반하여, 오실레이터에 포함된 논리소자의 위치를 조절한 시간 디지털 변환기를 이용하여 비행시간을 산출하여 거리를 측정하는 거리 측정기를 포함하는 거리 측정 장치를 제공한다.
본 실시예의 다른 측면에 의하면, 제1 클럭을 발생시키는 느린 오실레이터, 상기 제1 클럭보다 작은 제2 클럭을 발생시키는 빠른 오실레이터, 상기 느린 오실레이터의 상기 제1 클럭을 카운팅하는 보통 카운터, 상기 빠른 오실레이터의 상기 제2 클럭을 카운팅하는 정밀 카운터, 및 상기 제1 클럭 및 상기 제2 클럭이 동기화된 시점을 검출하는 위상 검출기를 포함하는 시간 디지털 변환기를 제공한다.
본 실시예의 또 다른 측면에 의하면, 이동체에 있어서, 상기 이동체 및 대상체 간의 비행시간을 산출하여 상기 대상체까지의 거리를 측정하는 거리 측정 장치, 및 상기 대상체까지의 거리를 기반으로 상기 이동체를 이동하도록 구현된 이동 장치를 포함하며, 상기 거리 측정 장치는, 시작 제어 신호에 의해 대상체로 광을 출사하고 상기 대상체에 반사된 광을 수신하여 전기 신호로 변환하는 광 송수신기, 상기 전기 신호를 변환하여 정지 제어 신호를 생성하는 신호 판별기, 및 상기 시작 제어 신호 및 상기 정지 제어 신호의 시간차에 기반하여, 오실레이터에 포함된 논리소자의 위치를 조절한 시간 디지털 변환기를 이용하여 비행시간을 산출하여 거리를 측정하는 거리 측정기를 포함하는 것을 특징으로 하는 이동체를 제공한다.
이상에서 설명한 바와 같이 본 발명의 실시예들에 의하면, 복수의 오실레이터들에 포함된 논리소자의 위치를 조절하여 복수의 오실레이터들의 클럭 폭을 조절함으로써, 시간 디지털 변환기의 시간 분해능을 향상시킬 수 있는 효과가 있다.
본 발명의 실시예들에 의하면, 외부의 클럭 발생기로부터 수신한 기준 클럭의 개수 및 내부의 오실레이터에서 발생한 내부 클럭의 개수의 비율을 이용하여 비행시간을 보정함으로써, 정확한 비행시간을 산출할 수 있는 효과가 있다.
여기에서 명시적으로 언급되지 않은 효과라 하더라도, 본 발명의 기술적 특징에 의해 기대되는 이하의 명세서에서 기재된 효과 및 그 잠정적인 효과는 본 발명의 명세서에 기재된 것과 같이 취급된다.
도 1a는 기존의 시간 디지털 변환기를 예시한 회로도이고, 도 1b는 기존의 시간 디지털 변환기의 신호를 예시한 도면이다.
도 2는 본 발명의 일 실시예에 따른 이동체를 예시한 블록도이다.
도 3은 본 발명의 일 실시예에 따른 이동체를 예시한 도면이다.
도 4 및 도 5는 본 발명의 다른 실시예들에 따른 거리 측정 장치를 예시한 블록도이다.
도 6은 본 발명의 다른 실시예들에 따른 거리 측정 장치의 광 송수신기를 예시한 블록도이다.
도 7은 본 발명의 다른 실시예에 따른 신호 판별기를 예시한 블록도이다.
도 8은 본 발명의 다른 실시예에 따른 시간 디지털 변환기가 시간을 측정하는 동작을 설명하기 위한 도면이다.
도 9는 본 발명의 다른 실시예에 따른 시간 디지털 변환기를 예시한 블록도이다.
도 10은 본 발명의 다른 실시예에 따른 시간 디지털 변환기의 링 오실레이터를 예시한 블록도이다.
도 11은 본 발명의 다른 실시예에 따른 시간 디지털 변환기를 예시한 블록도이다.
도 12는 본 발명의 다른 실시예에 따른 시간 디지털 변환기를 FPGA에서 예시적 구현한 것이다.
도 13은 본 발명의 다른 실시예에 따른 거리 측정 장치를 예시한 블록도이다.
도 14는 본 발명의 다른 실시예에 따른 거리 측정 장치가 시간을 보정하는 동작을 설명하기 위한 도면이다.
이하, 본 발명을 설명함에 있어서 관련된 공지기능에 대하여 이 분야의 기술자에게 자명한 사항으로서 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하고, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다.
도 2는 본 발명의 일 실시예에 따른 이동체를 예시한 블록도이고, 도 3은 이동체를 예시한 도면이다.
도 2에 도시한 바와 같이, 이동체(1)는 거리 측정 장치(10) 및 이동 장치(20)를 포함한다. 이동체(1)는 도 2에서 예시적으로 도시한 다양한 구성요소들 중에서 일부 구성요소를 생략하거나 다른 구성요소를 추가로 포함할 수 있다. 예컨대, 이동체는 청소부를 추가로 포함할 수 있다.
이동체(1)는 미리 정의된 방식에 따라 특정 위치에서 다른 위치로 이동 가능하도록 설계된 장치를 의미하며, 바퀴, 레일, 보행용 다리 등과 같은 이동 수단을 이용하여, 특정 위치에서 다른 위치로 이동할 수 있다. 이동체(1)는 센서 등을 이용하여 외부의 정보를 수집한 후 수집된 정보에 따라서 이동할 수도 있고, 사용자에 의해 별도의 조작 수단을 이용하여 이동할 수 있다.
이동체(1)의 일례로는 로봇 청소기, 장난감 자동차, 산업용 또는 군사용 목적 등으로 이용 가능한 이동 로봇 등이 있을 수 있으며, 이동체(1)는 바퀴를 이용하여 주행하거나, 하나 이상의 다리를 이용하여 보행하거나, 이들의 조합으로 구현될 수 있다.
로봇 청소기는 청소 공간을 주행하면서 바닥에 쌓인 먼지 등의 이물질을 흡입함으로써 청소 공간을 자동으로 청소하는 장치이다. 일반적인 청소기가 사용자에 의한 외력으로 이동하는 것과 달리, 로봇 청소기는 외부의 정보 또는 미리 정의된 이동 패턴을 이용하여 이동하면서 청소 공간을 청소한다.
로봇 청소기는 미리 정의된 패턴을 이용하여 자동적으로 이동하거나, 또는 감지 센서에 의해 외부의 장애물을 감지한 후, 감지된 바에 따라 이동할 수도 있고, 사용자에 의해 조작되는 원격 제어 장치로부터 전달되는 신호에 따라서 이동 가능할 수도 있다.
감지 센서는 라이다(LIDAR)로 구현될 수 있다. 라이다는 레이저 신호를 쏘고 반사되어 돌아오는 시간을 측정하고, 빛의 속도를 이용하여 반사체의 거리를 측정하는 장치이다. 레이저 신호는 포토 다이오드를 통하여 전기적인 신호로 변경된다.
도 3을 참조하면, 이동체 및 대상체 간의 비행시간을 산출하여 상기 대상체까지의 거리를 측정하는 거리 측정 장치(10)가 본체의 상단부에 위치하고 있으나, 이는 예시일 뿐이며 이에 한정되는 것은 아니고 구현되는 설계에 따라 적합한 위치에서 하나 이상으로 구현될 수 있다. 이동 장치(20)는 대상체까지의 거리를 기반으로 주행 경로를 산출하거나 장애물을 검출하여 상기 이동체를 이동시킨다. 이동 장치(20)는 바퀴, 레일, 보행용 다리 등과 같은 이동 수단으로 구현될 수 있다.
거리 측정 장치(10)는 타임 오브 플라이트(Time of Flight, TOF) 방식으로 동작한다. 타임 오브 플라이트 방식은 레이저가 펄스 또는 구형파 신호를 방출하여 측정 범위 내에 있는 물체들로부터의 반사 펄스 또는 구형파 신호들이 수신기에 도착하는 시간을 측정함으로써, 측정 대상과 거리 측정 장치 사이의 거리를 측정한다.
이하에서는 이동체에 구현되거나 독립적으로 동작하는 거리 측정 장치를 설명하기로 한다.
도 4 및 도 5는 거리 측정 장치를 예시한 블록도이다. 도 4에 도시한 바와 같이, 거리 측정 장치(10)는 광 송수신기(100), 신호 판별기(200), 및 거리 측정기(300)를 포함한다. 거리 측정 장치(10)는 도 4에서 예시적으로 도시한 다양한 구성요소들 중에서 일부 구성요소를 생략하거나 다른 구성요소를 추가로 포함할 수 있다. 예컨대, 거리 측정 장치(10)는 인터페이스(400)를 추가로 포함할 수 있다.
광 송수신기(100)는 레이저 신호를 송신하고 반사된 신호를 수신한다. 광 송수신기(100)는 시작 제어 신호에 의해 대상체로 광을 출사하고 대상체에 반사된 광을 수신하여 전기 신호로 변환한다.
신호 판별기(200)는 전기 신호를 변환하여 정지 제어 신호를 생성한다. 신호 판별기(200)는 상승하고 하강하는 전기 신호에서 정확한 시점을 측정하여 신호를 출력한다. 신호 판별기(200)는 전기 신호를 변환하고 기 설정된 기준 크기를 갖는 시점을 검출하여 정지 제어 신호를 생성한다.
신호 판별기(200)는 입력 신호에서 최대 신호 크기를 갖는 신호 지점을 기 설정된 크기를 갖도록 입력 신호를 변환한다. 예컨대, 신호의 크기가 제로가 되도록 변환한다. 신호 판별기(200)는 최대 크기를 갖는 시점을 제로로 변환하여 문턱치를 비교함으로써, 최대 크기를 갖는 시점으로부터 가까운 시점을 검출할 수 있다.
신호 판별기(200)는 변환된 입력 신호의 크기를 조절한다. 예컨대, 신호 판별기(200)는 복수의 증폭 과정을 거쳐 신호의 기울기가 수직에 가깝도록 변환한다. 기울기가 크기 때문에, 단순히 비교기만으로 회로를 구현하더라도 정확한 시점을 획득할 수 있다.
신호 판별기(200)는 크기가 조절된 입력 신호로부터 기 설정된 기준 크기를 갖는 적어도 하나의 시점을 검출하여 신호를 출력한다. 여기서, 출력 신호는 두 개의 유형일 수 있다. 예컨대, 신호 판별기(200)는 상승 에지 및 하강 에지를 출력할 수 있다. 거리 측정 장치(10)는 상승 에지 및 하강 에지 간의 펄스 폭에 따른 보정 팩터를 적용하여, 비행시간을 보정할 수 있다.
거리 측정기(300)는 타임 오브 플라이트 방식으로 시간 및 거리를 측정한다. 거리 측정기(300)는 시작 제어 신호 및 정지 제어 신호의 시간차를 기반으로 비행시간을 산출하여 거리를 측정한다. 거리 측정기(300)는 빛의 속도를 이용하여 시간으로부터 거리를 산출한다.
도 5를 참조하면, 거리 측정 장치(10)는 하나 이상의 시간 디지털 변환기(310, 312), 하나 이상의 신호 판별기(200, 202), 하나 이상의 광 송수신기(100, 102)를 포함할 수 있다. 거리 측정 장치(10)는 인터페이스(400)를 포함할 수 있다.
거리 측정기(300)는 시간 디지털 변환기(310)를 이용하여 두 시간의 차이를 디지털 값으로 변환한다. 시간 디지털 변환기(310)의 입력 신호는 동일 신호원의 펄스 형태가 될 수도 있고, 다른 신호원의 에지가 될 수도 있다. 예컨대, 거리 측정 장치(10)는 시작 제어 신호의 상승 에지 또는 하강 에지, 정지 제어 신호의 상승 에지 또는 하강 에지를 기준으로 시간차를 산출할 수 있다.
시간 디지털 변환기(310)는 시간 지연 소자 및 플립플롭으로 구성될 수 있다. 시간 지연 소자는 인버터를 이용한 디지털 소자 또는 전류원을 이용한 아날로그 소자로 구현될 수 있다. 시간 디지털 변환기(310)는 위상 편차 방식, 고해상도 클럭을 이용한 방식, 등가 시간 샘플링 방식 등 다양한 방식이 적용될 수 있다.
인터페이스(400)는 다른 장치와 정보를 송수신하는 통신 경로이다. 다른 장치는 인터페이스(400)를 통해 거리 측정 장치(10)에 접속하여 파라미터를 설정할 수 있다. 거리 측정 장치(10)는 인터페이스(400)를 통해 측정한 시간 및 거리를 다른 장치로 전송할 수 있다.
도 6은 본 발명의 다른 실시예들에 따른 거리 측정 장치의 광 송수신기를 예시한 블록도이다.
도 6을 참조하면, 광 송수신기(100)는 광원(110), 송신 광학부(120), 수신 광학부(130), 및 광 다이오드(140)를 포함한다. 광원(110)은 나노 초 단위의 레이저 펄스 신호를 발생시킨다. 송신 광학부(120) 및 수신 광학부(130)는 레이저 신호의 경로이고, 경통 구조로 형성될 수 있다. 광 다이오드(140)는 광자 에너지의 빛이 다이오드를 타격하면 이동전자와 양의 전하 정공이 생겨 전자가 활동하는 원리가 적용될 수 있다. 광 다이오드(140)는 PN 접합 광 다이오드, PIN 광 다이오드, 애벌란시 광 다이오드(Avalanche Photo Diode, APD) 등으로 구현될 수 있다.
광 송수신기(100)는 복수의 거울의 각도를 상이하게 설정하여 수평 방향과 지면 방향의 장애물을 동시에 검출할 수 있다. 광 송수신기(100)는 송신 광학부(120) 및 수신 광학부(130)에 거울을 각각 연결하고, 송신 광학부(120) 및 수신 광학부(130)를 회전시켜 전방향으로 장애물을 검출할 수 있다. 예컨대, 스캔라인은 각각 45도와 60도로 설정될 수 있고, 2개 이상으로 구성될 수도 있다.
광 송수신기(100)는 빛을 전류나 전압으로 변환하는데, 광 다이오드(140)의 출력을 버퍼링하고 스케일링하기 위한 회로가 필요하다. 예컨대, 광 다이오드(140)에 트랜스 임피던스 증폭기(Trans Impedance Amplifier, TIA)가 연결될 수 있다. 트랜스 임피던스 증폭기는 광 다이오드(140)의 전류를 증폭하고 전압으로 변환하여 출력한다. 트랜스 임피던스 증폭기는 R-TIA(Resistive Feedback TIA) 및 C-TIA(Capacitive Feedback TIA) 등으로 구현될 수 있다.
도 7은 본 발명의 다른 실시예들에 따른 신호 판별기를 예시한 블록도이다.
도 7에 도시한 바와 같이, 신호 판별기(200)는 제1 변환부(210), 제2 변환부(220), 및 신호 검출부(230)를 포함한다. 신호 판별기(200)는 도 7에서 예시적으로 도시한 다양한 구성요소들 중에서 일부 구성요소를 생략하거나 다른 구성요소를 추가로 포함할 수 있다.
신호 판별기(200)는 광 다이오드(140) 또는 트랜스 임피던스 증폭기로부터 전기 신호를 수신한다. 수신한 전기 신호, 즉, 입력 신호는 반사된 광에 의해 상승하고 하강하는 형태를 갖는다. 신호 판별기(200)는 입력 신호에 대해 목적하는 시점을 정확하게 측정하여 전기 신호를 출력한다.
입력 신호의 형태에 따라 입력 신호는 전단 시점(Tfront), 설정된 임계치와 만나는 목표 시점(T1, T2), 피크 시점(Tmax)을 갖는다. 신호 판별기(200)는 전단 시점(Tfront) 및 피크 시점(Tmax)에 가장 근접한 시점을 검출하기 위해 2단계 변환 과정을 수행한다.
제1 변환부(210)는 최대 신호 크기를 갖는 신호 지점을 기 설정된 크기를 갖도록 입력 신호를 변환한다. 제1 변환부(210)는 최대 신호 크기를 갖는 신호 지점의 크기가 제로가 되도록 변환한다. 예컨대, 제1 변환부(210)는 입력 신호를 미분하거나 입력 신호를 일정 분율 판별(Constant Fraction Discriminator, CFD)을 이용하여 변환한다. 일정 분율 판별은 원 신호를 지연시킨 신호와 일정 크기 비율만큼 조절한 신호가 같아지는 시점이 최대 크기의 일정 비율이 되는 시점을 찾는 방식이다.
변환한 신호는 전단 시점(Tfront), 설정된 임계치와 만나는 상승 시점(Trising1, Trising2), 설정된 임계치와 만나는 하강 시점(Tfalling1, Tfalling2), 후단 시점(Tend)을 갖는다. 후단 시점(Tend)은 변환 전의 신호의 피크 시점(Tmax)과 동일한 시점이다. 도 9에 도시된 바와 같이, 제1 변환부(210)가 최대 신호 크기를 갖는 신호 지점을 기 설정된 크기를 갖도록 입력 신호의 기울기를 변환하면, 상승 시점(Trising1, Trising2)은 전단 시점(Tfront)에 가까워지고 하강 시점(Tfalling1, Tfalling2)은 후단 시점(Tend)에 가까워진다.
신호를 미분하거나 일정 분율 판별 방식을 신호에 적용하면, 지터가 심하고 최대 신호 진폭과 최소 신호 진폭의 비인 다이나믹 레인지가 좁게 될 수 있다. 미분 방식은 RC회로로 구현되기 때문에, 거리 변화에 따른 신호의 주파수 특성이 변화하여 시간 오차를 발생시킨다. 일정 분율 판별 방식은 신호의 기울기가 다르기 때문에, 비교기의 커패시터의 충전 시간이 다르게 되고 비교기의 응답시간이 달라져서 시간 오차를 발생시킨다. 따라서, 변환한 신호를 다시 변환할 필요가 있다.
제2 변환부(220)는 변환된 입력 신호의 크기를 조절한다. 제2 변환부는 변환된 입력 신호의 크기를 N(상기 N은 자연수)차 증폭시킨다.
제2 변환부(220)가 기울기가 변환된 신호의 크기를 증폭하면, 기울기가 수직에 가까워져서, 상승 시점(Trising1, Trising2)은 전단 시점(Tfront)에 더욱 가까워지고 하강 시점(Tfalling1, Tfalling2)은 후단 시점(Tend)에 더욱 가까워진다.
본 실시예는 2단계 변환 과정으로 인하여, 노이즈가 포함된 신호에 대해 단순히 임계치와 비교하는 회로를 구현하더라도 전단 시점(Tfront) 및 후단 시점(Tend)을 정확하게 획득할 수 있다.
신호 검출부(230)는 크기가 조절된 입력 신호로부터 기 설정된 기준 크기를 갖는 적어도 하나의 시점을 검출하여 출력 신호를 생성한다. 신호 검출부(230)는 크기가 조절된 입력 신호로부터 하나의 임계치를 기준으로 상승 에지 및 하강 에지를 출력한다. 정지 제어 신호는 상승 에지에 매칭하는 펄스이거나 하강 에지에 매칭하는 펄스이거나 상승 에지 및 하강 에지에 모두 매칭하는 펄스일 수 있다.
거리 측정 장치(10)는 상승 에지 및 하강 에지에 따른 펄스 폭을 이용하여 비행시간을 보정한다.
이하에서는 도 8 내지 도 12를 참조하며, 시간 디지털 변환기를 설명하기로 한다.
도 8은 시간 디지털 변환기가 시간을 측정하는 동작을 설명하기 위한 도면이고, 도 9는 시간 디지털 변환기를 예시한 블록도이고, 도 10은 시간 디지털 변환기의 링 오실레이터를 예시한 블록도이다.
거리 측정기(300)는 시간 디지털 변환기를 이용하여 두 시간의 차이를 디지털 값으로 변환한다.
시간 디지털 변환기는 시간 정보를 디지털 코드로 변환하는 장치이다. 시간 디지털 변환기는 두 입력 신호 사이의 시간 차이에 대응하는 디지털 코드를 생성한다.
시간 디지털 변환기의 입력 신호는 동일 신호원의 펄스 형태가 될 수도 있고, 다른 신호원의 에지가 될 수도 있다. 예컨대, 거리 측정 장치(10)는 시작 제어 신호의 상승 에지 또는 하강 에지, 정지 제어 신호의 상승 에지 또는 하강 에지를 기준으로 시간차를 산출할 수 있다.
도 8을 참조하면, 시간 디지털 변환기는 (i) 보통 카운터(Coarse Counter) 및 정밀 카운터(Fine Counter)가 카운팅한 개수(N1, N2)와 (ii) 보통 카운터의 큰 클럭과 정밀 카운터의 작은 클럭을 이용하여 시간을 측정한다. 보통 카운터의 큰 클럭 및 정밀 카운터의 작은 클럭 간의 시간차가 시간 디지털 변환기의 시간 분해능을 결정한다.
도 9를 참조하면, 시간 디지털 변환기는 느린 오실레이터(510), 빠른 오실레이터(520), 보통 카운터(530), 정밀 카운터(540), 및 위상 검출기(550)를 포함한다.
느린 오실레이터(510)는 시작 제어 신호에 의해 제1 클럭을 발생시킨다. 빠른 오실레이터(520)는 정지 제어 신호에 의해 제1 클럭보다 작은 제2 클럭을 발생시킨다. 즉, 느린 오실레이터(510)는 큰 클럭을 발생시키고, 빠른 오실레이터(520)는 작은 클럭을 발생시킨다.
보통 카운터(530)는 느린 오실레이터(510)에 연결되어 느린 오실레이터(510)의 제1 클럭을 카운팅한다. 정밀 카운터(540)는 빠른 오실레이터(520)에 연결되어 빠른 오실레이터(520)의 제2 클럭을 카운팅한다.
위상 검출기(550)는 느린 오실레이터(510) 및 빠른 오실레이터(520)에 연결되고, 보통 카운터(530) 및 정밀 카운터(540)에 연결되어, 제1 클럭 및 제2 클럭이 동기화된 시점을 검출한다.
느린 오실레이터(510) 및 빠른 오실레이터(520)는 링 오실레이터(Ring Oscillator)로 구현될 수 있다. 링 오실레이터는 인버터 및/또는 버퍼를 루프순환 형태로 직렬 연결시킨 발진기이다. 느린 오실레이터(510) 및 빠른 오실레이터(520)는 시간 지연 소자 및 버퍼로 구성될 수 있다. 시간 지연 소자는 인버터를 이용한 디지털 소자 또는 전류원을 이용한 아날로그 소자 등으로 구현될 수 있다.
도 10에서는 세 개의 인버터가 순차적으로 연결된 링 오실레이터가 예시되어 있으나 이는 예시일 뿐이며 이에 한정되는 것은 아니고 구현되는 설계에 따라 적합한 논리소자들의 조합이 사용될 수 있다.
기존의 느린 오실레이터 및 빠른 오실레이터는 버퍼의 개수를 조절하여 클럭 폭을 조절한다. 기존의 시간 디지털 변환기는 버퍼 자체의 신호 지연 시간으로 인하여, 80 피코 초(ps) 정도의 분해능을 갖는다.
본 실시예들은 회로 상에서 느린 오실레이터(510)의 논리소자들의 위치 및 신호 경로를 변경하여 느린 오실레이터(510)의 클럭 폭을 조절할 수 있다. 빠른 오실레이터(520)의 논리소자들의 위치 및 신호 경로를 변경하여 빠른 오실레이터(520)의 클럭 폭을 조절할 수 있다. 즉, 느린 오실레이터(510)를 더 빠르게 동작하도록 변경하고, 빠른 오실레이터(520)를 더 느리게 변경할 수 있다. FPGA 툴의 수동 게이트 위치(Manual Gate Location) 조절 기능을 이용하여 직접적으로 각 게이트의 위치 및 라우팅 경로를 조절할 수 있다. 느린 오실레이터(510) 및 빠른 오실레이터(520)는 동일한 논리소자들로 조합될 수 있다.
본 실시예는 느린 오실레이터 및 빠른 오실레이터를 회로 상에서 게이트들의 위치 및 신호의 라우팅 경로를 변경함으로써, 느린 오실레이터의 클럭 폭 및 빠른 오실레이터의 클럭 폭의 차이, 즉, 시간 분해능을 향상시킬 수 있다. 본 실시예에 따른 시간 디지털 변환기는 10 피코 초(ps) 정도의 분해능을 갖는다.
도 11은 두 개의 정지 제어 신호에 기반한 시간 디지털 변환기를 예시한 블록도이고, 도 12는 시간 디지털 변환기를 FPGA에서 예시적 구현한 것이다.
신호 판별기(200)는 제1 신호 및 제2 신호를 출력할 수 있다. 예컨대, 제1 신호는 상승 에지에 따른 정지 제어 신호이고, 제2 신호는 하강 에지에 따른 정지 제어 신호일 수 있다.
도 11을 참조하면, 시간 디지털 변환기는 시작 제어 신호 및 제1 신호에 기반하여 제1 시간차를 산출한다. 시간 디지털 변환기는 시작 제어 신호 및 제2 신호에 기반하여 제2 시간차를 산출한다. 본 실시예는 상승 에지와 하강 에지를 함께 처리하기 때문에, 느린 오실레이터 또는 빠른 오실레이터를 공유하여 설계할 수 있다. 즉, 회로 상에서 느린 오실레이터를 공유하거나 빠른 오실레이터를 공유하여 제1 시간차 및 제2 시간차를 산출할 수 있다. 위상 검출기(552, 554)는 공유된 느린 오실레이터 또는 공유된 빠른 오실레이터로부터 기 설정된 거리보다 가깝게 위치함으로써, 시간 분해능을 향상시킬 수 있다.
도 12에서는 느린 오실레이터를 공유한 시간 디지털 변환기가 예시되어 있으며, 상승 에지 및 하강 에지를 처리하기 위하여 FPGA 블록에 3 개의 링 오실레이터들, 2 개의 위상 검출기들, 및 4 개의 카운터들을 구성하는 게이트들을 연결하여 배치한 예가 도시되어 있다.
도 13은 본 발명의 다른 실시예에 따른 거리 측정 장치를 예시한 블록도이다.
FPGA의 온도 및 인가 전압에 따라 각 게이트의 시간 지연은 차이가 발생하게 된다. 온도 및 인가 전압으로 인하여 링 오실레이터의 주파수가 변경되고, 분해능에 미세한 편차가 발생한다. 이러한 편차는 비행시간의 오차를 유발한다.
비행시간의 오차를 모니터링하고 보정하기 위하여, 거리 측정기는 외부의 클럭 발생기(30)로부터 수신한 기준 클럭을 카운팅하고, 내부의 오실레이터에서 발생한 내부 클럭을 카운팅하는 기준 클럭 카운터(320)를 포함한다.
클럭 발생기(30)는 고정밀 크리스탈 발진기로 구현될 수 있다. 고정밀 크리스탈 발진기는 생성한 클럭을 기준 클럭 카운터(320)로 전달한다. 기준 클럭 카운터(320)는 매 x 회 클럭 입력이 들어오면, 링 오실레이터를 통하여 산출된 클럭의 개수를 내부 버퍼에 저장한다. 거리 측정 장치(10)는 주기적으로 저장된 클록의 개수를 읽고 비행시간을 보정한다. 비행시간을 보정하는 알고리즘은 다음과 같다.
Figure pat00001
거리 측정기는 기준 클럭의 개수 및 내부 클럭의 개수의 비율을 이용하여 비행시간을 보정한다. ticks_per_x_crystal_clock은 실시간으로 계산되며, 구현 제품의 출하 직전에 수행되는 캘리브레이션 단계에서 저장된다. 저장된 기준 클럭의 개수 및 내부 클럭의 개수의 비율을 이용하여 비행시간을 보정하는 것은 수학식 1과 같이 표현된다.
Figure pat00002
보정 팩터 α는 ticks_per_x_crystal_clock_runtime를 ticks_per_x_crystal_clock_stored_during_calibration_process으로 나눈 값이다.
도 13을 참조하면, 거리 측정 장치(10)는 복수의 시간 디지털 변환기(310, 312)를 포함하며, 기준 클럭 카운터(320)는 복수의 시간 디지털 변환기(310, 312) 사이에 위치한다. 기준 클럭을 발생시키는 클럭 발생기(30)는 이동체(1)에 포함될 수 있다. 기준 클럭 카운터(320)가 시간 디지털 변환기와 접촉하거나 기 설정된 거리 내에 위치하기 때문에, 시간 디지털 변환기에 사용되는 오실레이터와 거의 같은 온도 및 전압 특정을 갖게 된다. 내부 클럭도 온도 및 전압에 따라 변한다. 본 실시예는 내부 클럭을 분주해서 사용하지 않기 때문에 높은 정확도를 유지할 수 있는 효과가 있다.
도 14는 본 발명의 다른 실시예에 따른 거리 측정 장치가 시간을 보정하는 동작을 설명하기 위한 도면이다.
거리 측정 장치(10)가 신호의 기울기를 변환하는 과정에서 RC회로로 구현된 미분 방식을 적용하면, 거리 변화에 따른 신호의 주파수 특성이 변화하여 시간 오차를 발생한다. 신호의 기울기를 변환하는 과정에서 일정 분율 판별 방식을 적용하면, 신호의 기울기가 달라서 비교기의 커패시터의 충전 시간이 다르게 되고 비교기의 응답시간이 달라져서 시간 오차를 발생시킨다. 따라서, 거리 측정 장치(10)는 시간 오차를 보정하는 과정을 수행한다.
거리 측정기(300)는 정지 제어 신호의 펄스 폭을 이용하여 비행시간을 보정한다. 일반적인 광 다이오드의 출력 신호는 펄스 폭의 변화가 심하기 때문에, 펄스 폭 대 워크에러가 1 대 N으로 매칭하여 가까운 영역이 아니면 사용하기 곤란한 문제가 있다. 본 실시예는 신호를 변환하는 과정을 거쳤기 때문에, 펄스 폭 대 워크에러 간의 관계를 간단하게 모델링할 수 있다.
거리 측정기(300)는 워크에러 및 펄스 폭 간의 함수를 모델링하고, 보정 팩터를 미리 측정한다. 펄스폭에 따른 보정 팩터는 도 14에 도시되어 있다. 도 14에 도시된 바와 같이, 거리 측정기(300)는 펄스 폭에 반비례하는 보정 팩터를 적용하여 비행시간을 보정한다. 반사 신호의 세기가 약하여 펄스 폭이 좁아지면 워크에러가 커지므로, 거리 측정기(300)는 보정 팩터를 크게 설정한다. 반사 신호의 세기가 강하여 펄스 폭이 넓어지면 워크에러가 작아지므로, 거리 측정기(300)는 보정 팩터를 작게 설정한다.
비행시간에 관한 관계식은 수학식 2와 같이 표현된다.
Figure pat00003
수학식 2에서 ttof는 보정된 비행시간이고, tfalling는 보정 전의 비행시간이다. 비행시간은 정지 제어 신호 및 시작 제어 신호 간의 시간차이다. 거리 측정 장치는 시작 제어 신호의 상승 에지 또는 하강 에지, 정지 제어 신호의 상승 에지 또는 하강 에지를 기준으로 시간차를 산출할 수 있다. fcomp는 펄스 폭 대 워크에러의 함수이고, tpulse는 신호의 펄스 폭이다. 거리 측정 장치는 정지 제어 신호의 상승 에지 또는 하강 에지를 기준으로 펄스 폭을 산출할 수 있다.
거리 측정 장치 및 신호 판별기에 포함된 구성요소들이 도 4 및 도 7에서는 분리되어 도시되어 있으나, 복수의 구성요소들은 상호 결합되어 적어도 하나의 모듈로 구현될 수 있다. 구성요소들은 장치 내부의 소프트웨어적인 모듈 또는 하드웨어적인 모듈을 연결하는 통신 경로에 연결되어 상호 간에 유기적으로 동작한다. 이러한 구성요소들은 하나 이상의 통신 버스 또는 신호선을 이용하여 통신한다.
거리 측정 장치 및 신호 판별기는 하드웨어, 펌웨어, 소프트웨어 또는 이들의 조합에 의해 로직회로 내에서 구현될 수 있고, 범용 또는 특정 목적 컴퓨터를 이용하여 구현될 수도 있다. 장치는 고정배선형(Hardwired) 기기, 필드 프로그램 가능한 게이트 어레이(Field Programmable Gate Array, FPGA), 주문형 반도체(Application Specific Integrated Circuit, ASIC) 등을 이용하여 구현될 수 있다. 또한, 장치는 하나 이상의 프로세서 및 컨트롤러를 포함한 시스템온칩(System on Chip, SoC)으로 구현될 수 있다.
거리 측정 장치 및 신호 판별기는 하드웨어적 요소가 마련된 컴퓨팅 디바이스에 소프트웨어, 하드웨어, 또는 이들의 조합하는 형태로 탑재될 수 있다. 컴퓨팅 디바이스는 각종 기기 또는 유무선 통신망과 통신을 수행하기 위한 통신 모뎀 등의 통신장치, 프로그램을 실행하기 위한 데이터를 저장하는 메모리, 프로그램을 실행하여 연산 및 명령하기 위한 마이크로프로세서 등을 전부 또는 일부 포함한 다양한 장치를 의미할 수 있다.
본 실시예들에 따른 동작은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능한 매체에 기록될 수 있다. 컴퓨터 판독 가능한 매체는 실행을 위해 프로세서에 명령어를 제공하는 데 참여한 임의의 매체를 나타낸다. 컴퓨터 판독 가능한 매체는 프로그램 명령, 데이터 파일, 데이터 구조 또는 이들의 조합을 포함할 수 있다. 예를 들면, 자기 매체, 광기록 매체, 메모리 등이 있을 수 있다. 컴퓨터 프로그램은 네트워크로 연결된 컴퓨터 시스템 상에 분산되어 분산 방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수도 있다. 본 실시예를 구현하기 위한 기능적인(Functional) 프로그램, 코드, 및 코드 세그먼트들은 본 실시예가 속하는 기술분야의 프로그래머들에 의해 용이하게 추론될 수 있을 것이다.
본 실시예들은 본 실시예의 기술 사상을 설명하기 위한 것이고, 이러한 실시예에 의하여 본 실시예의 기술 사상의 범위가 한정되는 것은 아니다. 본 실시예의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 실시예의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
1: 이동체 10: 거리 측정 장치
20: 이동 장치 30: 클럭 발생기
100: 광 송수신기 110: 광원
120: 송신 광학부 130: 수신 광학부
140: 광 다이오드 200: 신호 판별기
210: 제1 변환부 220: 제2 변환부
230: 신호 검출부 300: 거리 측정기
310: 시간 디지털 변환기 320: 기준 클럭 카운터
400: 인터페이스 510: 느린 오실레이터
520: 빠른 오실레이터 530: 보통 카운터
540: 정밀 카운터 550: 위상 검출기

Claims (15)

  1. 시작 제어 신호에 의해 대상체로 광을 출사하고 상기 대상체에 반사된 광을 수신하여 전기 신호로 변환하는 광 송수신기;
    상기 전기 신호를 변환하여 정지 제어 신호를 생성하는 신호 판별기; 및
    상기 시작 제어 신호 및 상기 정지 제어 신호의 시간차에 기반하여, 오실레이터에 포함된 논리소자의 위치를 조절한 시간 디지털 변환기를 이용하여 비행시간을 산출하여 거리를 측정하는 거리 측정기
    를 포함하는 거리 측정 장치.
  2. 제1항에 있어서,
    상기 시간 디지털 변환기는,
    제1 클럭을 발생시키는 느린 오실레이터;
    상기 제1 클럭보다 작은 제2 클럭을 발생시키는 빠른 오실레이터;
    상기 느린 오실레이터의 상기 제1 클럭을 카운팅하는 보통 카운터;
    상기 빠른 오실레이터의 상기 제2 클럭을 카운팅하는 정밀 카운터; 및
    상기 제1 클럭 및 상기 제2 클럭이 동기화된 시점을 검출하는 위상 검출기
    를 포함하는 거리 측정 장치.
  3. 제2항에 있어서,
    상기 느린 오실레이터 및 상기 빠른 오실레이터는 동일한 논리소자들로 조합되는 것을 특징으로 하는 거리 측정 장치.
  4. 제2항에 있어서,
    회로 상에서 상기 느린 오실레이터의 논리소자들의 위치 및 신호 경로를 변경하여 상기 느린 오실레이터의 클럭 폭을 조절하고, 상기 빠른 오실레이터의 논리소자들의 위치 및 신호 경로를 변경하여 상기 빠른 오실레이터의 클럭 폭을 조절하여, 상기 느린 오실레이터의 클럭 폭 및 상기 빠른 오실레이터의 클럭 폭의 차이를 조절하는 것을 특징으로 하는 거리 측정 장치.
  5. 제2항에 있어서,
    상기 신호 판별기는 제1 신호 및 제2 신호를 출력하며,
    상기 시간 디지털 변환기는 상기 제1 신호에 기반한 제1 시간차를 산출하고 상기 제2 신호에 기반한 제2 시간차를 산출하며, 회로 상에서 상기 느린 오실레이터를 공유하거나 상기 빠른 오실레이터를 공유하여 상기 제1 시간차 및 상기 제2 시간차를 산출하는 것을 특징으로 하는 거리 측정 장치.
  6. 제5항에 있어서,
    상기 위상 검출기는 상기 공유된 느린 오실레이터 또는 상기 공유된 빠른 오실레이터로부터 기 설정된 거리보다 가깝게 위치된 것을 특징으로 하는 거리 측정 장치.
  7. 제1항에 있어서,
    상기 거리 측정기는 외부의 클럭 발생기로부터 수신한 기준 클럭을 카운팅하고, 내부의 오실레이터에서 발생한 내부 클럭을 카운팅하는 기준 클럭 카운터를 포함하며,
    상기 거리 측정기는 상기 기준 클럭의 개수 및 상기 내부 클럭의 개수의 비율을 이용하여 상기 비행시간을 보정하는 것을 특징을 하는 거리 측정 장치.
  8. 제7항에 있어서,
    상기 거리 측정기는 복수의 시간 디지털 변환기를 포함하며,
    상기 기준 클럭 카운터는 상기 복수의 시간 디지털 변환기 사이에 위치하는 것을 특징을 하는 거리 측정 장치.
  9. 제1 클럭을 발생시키는 느린 오실레이터;
    상기 제1 클럭보다 작은 제2 클럭을 발생시키는 빠른 오실레이터;
    상기 느린 오실레이터의 상기 제1 클럭을 카운팅하는 보통 카운터;
    상기 빠른 오실레이터의 상기 제2 클럭을 카운팅하는 정밀 카운터; 및
    상기 제1 클럭 및 상기 제2 클럭이 동기화된 시점을 검출하는 위상 검출기
    를 포함하는 시간 디지털 변환기.
  10. 제9항에 있어서,
    회로 상에서 상기 느린 오실레이터의 논리소자들의 위치 및 신호 경로를 변경하여 상기 느린 오실레이터의 클럭 폭을 조절하고, 상기 빠른 오실레이터의 논리소자들의 위치 및 신호 경로를 변경하여 상기 빠른 오실레이터의 클럭 폭을 조절하여, 상기 느린 오실레이터의 클럭 폭 및 상기 빠른 오실레이터의 클럭 폭의 차이를 조절하는 것을 특징으로 하는 시간 디지털 변환기.
  11. 제9항에 있어서,
    상기 시간 디지털 변환기는 제1 신호에 기반한 제1 시간차를 산출하고 제2 신호에 기반한 제2 시간차를 산출하며, 회로 상에서 상기 느린 오실레이터를 공유하거나 상기 빠른 오실레이터를 공유하여 상기 제1 시간차 및 상기 제2 시간차를 산출하는 것을 특징으로 하는 시간 디지털 변환기.
  12. 제9항에 있어서,
    상기 위상 검출기는 상기 공유된 느린 오실레이터 또는 상기 공유된 빠른 오실레이터로부터 기 설정된 거리보다 가깝게 위치된 것을 특징으로 하는 시간 디지털 변환기.
  13. 이동체에 있어서,
    상기 이동체 및 대상체 간의 비행시간을 산출하여 상기 대상체까지의 거리를 측정하는 거리 측정 장치; 및
    상기 대상체까지의 거리를 기반으로 상기 이동체를 이동하도록 구현된 이동 장치를 포함하며,
    상기 거리 측정 장치는,
    시작 제어 신호에 의해 대상체로 광을 출사하고 상기 대상체에 반사된 광을 수신하여 전기 신호로 변환하는 광 송수신기;
    상기 전기 신호를 변환하여 정지 제어 신호를 생성하는 신호 판별기; 및
    상기 시작 제어 신호 및 상기 정지 제어 신호의 시간차에 기반하여, 오실레이터에 포함된 논리소자의 위치를 조절한 시간 디지털 변환기를 이용하여 비행시간을 산출하여 거리를 측정하는 거리 측정기
    를 포함하는 것을 특징으로 하는 이동체.
  14. 제13항에 있어서,
    상기 시간 디지털 변환기는,
    제1 클럭을 발생시키는 느린 오실레이터;
    상기 제1 클럭보다 작은 제2 클럭을 발생시키는 빠른 오실레이터;
    상기 느린 오실레이터의 상기 제1 클럭을 카운팅하는 보통 카운터;
    상기 빠른 오실레이터의 상기 제2 클럭을 카운팅하는 정밀 카운터; 및
    상기 제1 클럭 및 상기 제2 클럭이 동기화된 시점을 검출하는 위상 검출기
    를 포함하는 이동체.
  15. 제13항에 있어서,
    상기 이동체는 기준 클럭을 발생시키는 클럭 발생기를 포함하며,
    상기 거리 측정기는 상기 클럭 발생기로부터 수신한 상기 기준 클럭을 카운팅하고, 내부의 오실레이터에서 발생한 내부 클럭을 카운팅하는 기준 클럭 카운터를 포함하며,
    상기 거리 측정기는 상기 기준 클럭의 개수 및 상기 내부 클럭의 개수의 비율을 이용하여 상기 비행시간을 보정하는 것을 특징을 하는 거리 측정 장치.
KR1020170121401A 2016-11-30 2017-09-20 거리 측정 장치, 시간 디지털 변환기, 및 이동체 KR102035019B1 (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020170121401A KR102035019B1 (ko) 2017-09-20 2017-09-20 거리 측정 장치, 시간 디지털 변환기, 및 이동체
US15/825,122 US10962647B2 (en) 2016-11-30 2017-11-29 Lidar apparatus based on time of flight and moving object
PCT/KR2018/007610 WO2019039727A1 (ko) 2017-08-21 2018-07-05 거리 측정 장치 및 이동체
EP18187977.6A EP3447522A1 (en) 2017-08-21 2018-08-08 Distance measuring apparatus, signal discriminator, and moving object
EP18187982.6A EP3447523A1 (en) 2017-08-21 2018-08-08 Distance measuring apparatus, time to digital converter, and moving object
US16/136,222 US11579298B2 (en) 2017-09-20 2018-09-19 Hybrid sensor and compact Lidar sensor
US17/183,347 US20210181347A1 (en) 2016-11-30 2021-02-24 Lidar apparatus based on time of flight and moving object
US17/183,349 US20210199807A1 (en) 2016-11-30 2021-02-24 Lidar apparatus based on time of flight and moving object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170121401A KR102035019B1 (ko) 2017-09-20 2017-09-20 거리 측정 장치, 시간 디지털 변환기, 및 이동체

Publications (2)

Publication Number Publication Date
KR20190032938A true KR20190032938A (ko) 2019-03-28
KR102035019B1 KR102035019B1 (ko) 2019-10-22

Family

ID=65908134

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170121401A KR102035019B1 (ko) 2016-11-30 2017-09-20 거리 측정 장치, 시간 디지털 변환기, 및 이동체

Country Status (1)

Country Link
KR (1) KR102035019B1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110069009A (zh) * 2019-05-17 2019-07-30 湖北京邦科技有限公司 多通道时间数字转换器和光电探测装置
KR20200133131A (ko) * 2019-05-17 2020-11-26 이화여자대학교 산학협력단 시간 디지털 변환기 및 이를 포함하는 거리 측정 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990069210A (ko) * 1998-02-05 1999-09-06 이-렌 라이 레이저 거리 측정 능력을 증가시키는 방법
KR20070061090A (ko) * 2005-12-08 2007-06-13 한국전자통신연구원 카오스 초광대역 무선 통신 방식을 이용한 거리 측정 장치및 그 방법
KR20120028813A (ko) * 2011-09-06 2012-03-23 연세대학교 산학협력단 시간-디지털 변환기를 이용한 거리 측정 레이더
KR20140056248A (ko) * 2011-07-15 2014-05-09 소프트키네틱 센서스 엔브이 거리 정보를 제공하는 방법 및 타임 오브 플라이트 카메라

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990069210A (ko) * 1998-02-05 1999-09-06 이-렌 라이 레이저 거리 측정 능력을 증가시키는 방법
KR20070061090A (ko) * 2005-12-08 2007-06-13 한국전자통신연구원 카오스 초광대역 무선 통신 방식을 이용한 거리 측정 장치및 그 방법
KR20140056248A (ko) * 2011-07-15 2014-05-09 소프트키네틱 센서스 엔브이 거리 정보를 제공하는 방법 및 타임 오브 플라이트 카메라
KR20120028813A (ko) * 2011-09-06 2012-03-23 연세대학교 산학협력단 시간-디지털 변환기를 이용한 거리 측정 레이더

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110069009A (zh) * 2019-05-17 2019-07-30 湖北京邦科技有限公司 多通道时间数字转换器和光电探测装置
KR20200133131A (ko) * 2019-05-17 2020-11-26 이화여자대학교 산학협력단 시간 디지털 변환기 및 이를 포함하는 거리 측정 장치
CN110069009B (zh) * 2019-05-17 2024-04-19 湖北锐光科技有限公司 多通道时间数字转换器和光电探测装置

Also Published As

Publication number Publication date
KR102035019B1 (ko) 2019-10-22

Similar Documents

Publication Publication Date Title
JP6766815B2 (ja) 補正装置、補正方法および測距装置
Nissinen et al. Integrated receiver including both receiver channel and TDC for a pulsed time-of-flight laser rangefinder with cm-level accuracy
AU2007276473B2 (en) Optical distance measuring method and corresponding optical distance measurement device
CN110809722B (zh) 用于光学距离测量的系统和方法
Kurtti et al. An integrated laser radar receiver channel utilizing a time-domain walk error compensation scheme
US11874399B2 (en) 3D scanning LIDAR sensor
US20190063915A1 (en) Distance meter comprising spad arrangement for consideration of multiple targets
Palojarvi et al. Pulsed time-of-flight laser radar module with millimeter-level accuracy using full custom receiver and TDC ASICs
Chen et al. Accuracy improvement of imaging lidar based on time-correlated single-photon counting using three laser beams
EP3447523A1 (en) Distance measuring apparatus, time to digital converter, and moving object
KR102035019B1 (ko) 거리 측정 장치, 시간 디지털 변환기, 및 이동체
EP3570065B1 (en) 3d scanning lidar sensor
KR102240518B1 (ko) 자체 교정을 수행하는 3차원 스캐닝 라이다 센서
Xiao et al. A continuous wavelet transform-based modulus maxima approach for the walk error compensation of pulsed time-of-flight laser rangefinders
WO2019039728A1 (ko) 초소형 3차원 스캐닝 라이다 센서
Kurtti et al. Laser radar receiver channel with timing detector based on front end unipolar-to-bipolar pulse shaping
Pehkonen et al. Receiver channel with resonance-based timing detection for a laser range finder
KR102076478B1 (ko) 이동성 거울을 이용한 광 송수신기, 3차원 거리 측정 장치, 및 이동체
KR101981038B1 (ko) 거리 측정 장치, 신호 판별기, 및 이동체
Li et al. DTOF image LiDAR with stray light suppression and equivalent sampling technology
KR102018158B1 (ko) 거리 측정 장치, 광 송수신기, 및 이동체
EP3789793B1 (en) An optical proximity sensor and corresponding method of operation
Lee et al. Advanced compact 3D lidar using a high speed fiber coupled pulsed laser diode and a high accuracy timing discrimination readout circuit
Kostamovaara et al. On the minimization of timing walk in industrial pulsed time-of-flight laser radars
Zhou et al. Improvement on timing accuracy of lidar for remote sensing

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant