KR102018158B1 - 거리 측정 장치, 광 송수신기, 및 이동체 - Google Patents

거리 측정 장치, 광 송수신기, 및 이동체 Download PDF

Info

Publication number
KR102018158B1
KR102018158B1 KR1020170121828A KR20170121828A KR102018158B1 KR 102018158 B1 KR102018158 B1 KR 102018158B1 KR 1020170121828 A KR1020170121828 A KR 1020170121828A KR 20170121828 A KR20170121828 A KR 20170121828A KR 102018158 B1 KR102018158 B1 KR 102018158B1
Authority
KR
South Korea
Prior art keywords
signal
electrical signal
sampling period
photodiode
time
Prior art date
Application number
KR1020170121828A
Other languages
English (en)
Other versions
KR20190033262A (ko
Inventor
신경철
박성주
이재영
천무웅
Original Assignee
주식회사 유진로봇
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 유진로봇 filed Critical 주식회사 유진로봇
Priority to KR1020170121828A priority Critical patent/KR102018158B1/ko
Priority to US15/825,122 priority patent/US10962647B2/en
Priority to PCT/KR2018/007610 priority patent/WO2019039727A1/ko
Priority to EP18187982.6A priority patent/EP3447523A1/en
Priority to EP18187977.6A priority patent/EP3447522A1/en
Priority to US16/136,222 priority patent/US11579298B2/en
Publication of KR20190033262A publication Critical patent/KR20190033262A/ko
Application granted granted Critical
Publication of KR102018158B1 publication Critical patent/KR102018158B1/ko
Priority to US17/183,349 priority patent/US20210199807A1/en
Priority to US17/183,347 priority patent/US20210181347A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J2001/4446Type of detector
    • G01J2001/446Photodiode
    • G01J2001/4466Avalanche

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

본 실시예들은 반사된 광을 수신하여 전기 신호로 변환하며 샘플링 주기 중에서 검출 시간 동안 전기 신호를 출력함으로써, 출력 신호가 소멸되기까지 대기할 필요가 없고, 불규칙적인 신호 처리 시간을 획일화하여 시스템의 동작을 안정화하고, 시스템의 처리 속도를 향상시킬 수 있는 거리 측정 장치, 광 송수신기, 및 이동체를 제공한다.

Description

거리 측정 장치, 광 송수신기, 및 이동체 {Distance Measuring Apparatus, Optical Transceiver, and Moving Object}
본 실시예가 속하는 기술 분야는 비행시간을 산출하여 거리를 측정하는 거리 측정 장치, 광 송수신기, 및 이동체에 관한 것이다.
이 부분에 기술된 내용은 단순히 본 실시예에 대한 배경 정보를 제공할 뿐 종래기술을 구성하는 것은 아니다.
라이다(LIght Detection And Ranging, LIDAR)는 레이저 신호를 쏘고 반사되어 돌아오는 시간을 측정하고, 빛의 속도를 이용하여 반사체의 거리를 측정하는 장치이다. 레이저 신호는 포토 다이오드를 통하여 전기적인 신호로 변경된다.
포토 다이오드에서 출력된 전기적인 신호는 포토 다이오드의 회로 특성에 따라 노이즈를 포함할 뿐만 아니라, 신호의 크기가 다양하고, 신호 출력 시간이 획일화되어 있지 않다.
레이다는 반사된 레이저 신호가 포토 다이오드를 통과한 이후에도 포토 다이오드의 광캐리어가 소멸할 때까지 대기해야 하는 문제가 있다. 도 1에서는 포토 다이오드에서 출력된 전기적인 신호를 예시되어 있다. 도 1에 도시된 바와 같이, 포토 다이오드에서 출력된 전기적인 신호는 신호가 소멸되기까지 상당한 시간이 요구된다. 특히, 출력 신호의 크기가 커질수록 신호가 소멸되기까지 소요되는 시간이 증가하는 문제가 있다.
본 발명의 실시예들은 반사된 광을 수신하여 전기 신호로 변환하며 샘플링 주기 중에서 검출 시간 동안 전기 신호를 출력함으로써, 출력 신호가 소멸되기까지 대기할 필요가 없고, 불규칙적인 신호 처리 시간을 획일화하여 시스템의 동작을 안정화하고, 시스템의 처리 속도를 향상시키는 데 발명의 주된 목적이 있다.
본 발명의 명시되지 않은 또 다른 목적들은 하기의 상세한 설명 및 그 효과로부터 용이하게 추론할 수 있는 범위 내에서 추가적으로 고려될 수 있다.
본 실시예의 일 측면에 의하면, 시작 제어 신호에 의해 대상체로 광을 출사하고 상기 대상체에 반사된 광을 수신하여 전기 신호로 변환하며, 기 설정된 검출 시간 동안 상기 전기 신호를 출력하는 광 송수신기, 상기 전기 신호를 변환하여 정지 제어 신호를 생성하는 신호 판별기, 및 상기 시작 제어 신호 및 상기 정지 제어 신호의 시간차를 기반으로 비행시간을 산출하여 거리를 측정하는 거리 측정기를 포함하는 거리 측정 장치를 제공한다.
본 실시예의 다른 측면에 의하면, 기 설정된 샘플링 주기에 기반하여 대상체로 광을 출사하는 광원, 상기 대상체에 반사된 광을 수신하여 전기 신호로 변환하는 광 다이오드, 및 상기 샘플링 주기 중에서 상기 검출 시간 동안 상기 전기 신호를 출력하는 신호 변환부를 포함하는 광 송수신기를 제공한다.
본 실시예의 또 다른 측면에 의하면, 이동체에 있어서, 상기 이동체 및 대상체 간의 비행시간을 산출하여 상기 대상체까지의 거리를 측정하는 거리 측정 장치, 및 상기 대상체까지의 거리를 기반으로 상기 이동체를 이동하도록 구현된 이동 장치를 포함하며, 상기 거리 측정 장치는, 시작 제어 신호에 의해 대상체로 광을 출사하고 상기 대상체에 반사된 광을 수신하여 전기 신호로 변환하며, 기 설정된 검출 시간 동안 상기 전기 신호를 출력하는 광 송수신기, 상기 전기 신호를 변환하여 정지 제어 신호를 생성하는 신호 판별기, 및 상기 시작 제어 신호 및 상기 정지 제어 신호의 시간차를 기반으로 비행시간을 산출하여 거리를 측정하는 거리 측정기를 포함하는 것을 특징으로 하는 이동체를 제공한다.
이상에서 설명한 바와 같이 본 발명의 실시예들에 의하면, 반사된 광을 수신하여 전기 신호로 변환하며 샘플링 주기 중에서 검출 시간 동안 전기 신호를 출력함으로써, 출력 신호가 소멸되기까지 대기할 필요가 없고, 불규칙적인 신호 처리 시간을 획일화하여 시스템의 동작을 안정화하고, 시스템의 처리 속도를 향상시킬 수 있는 효과가 있다.
여기에서 명시적으로 언급되지 않은 효과라 하더라도, 본 발명의 기술적 특징에 의해 기대되는 이하의 명세서에서 기재된 효과 및 그 잠정적인 효과는 본 발명의 명세서에 기재된 것과 같이 취급된다.
도 1은 포토 다이오드에서 출력된 전기 신호를 예시한 도면이다.
도 2는 본 발명의 일 실시예에 따른 이동체를 예시한 블록도이다.
도 3은 본 발명의 일 실시예에 따른 이동체를 예시한 도면이다.
도 4 및 도 5는 본 발명의 다른 실시예들에 따른 거리 측정 장치를 예시한 블록도이다.
도 6 및 도 7은 본 발명의 다른 실시예들에 따른 광 송수신기를 예시한 블록도이다.
도 8은 본 발명의 다른 실시예들에 따른 광 송수신기를 예시한 회로도이다.
도 9는 본 발명의 다른 실시예들에 따른 광 송수신기가 출력한 신호를 예시한 도면이다.
도 10은 본 발명의 다른 실시예들에 따른 신호 판별기를 예시한 블록도이다.
도 11은 본 발명의 다른 실시예들에 따른 거리 측정 장치가 시간을 측정하는 동작을 설명하기 위한 도면이다.
도 12은 본 발명의 다른 실시예에 따른 거리 측정 장치가 시간을 보정하는 동작을 설명하기 위한 도면이다.
이하, 본 발명을 설명함에 있어서 관련된 공지기능에 대하여 이 분야의 기술자에게 자명한 사항으로서 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하고, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다.
도 2는 본 발명의 일 실시예에 따른 이동체를 예시한 블록도이고, 도 3은 이동체를 예시한 도면이다.
도 2에 도시한 바와 같이, 이동체(1)는 거리 측정 장치(10) 및 이동 장치(20)를 포함한다. 이동체(1)는 도 2에서 예시적으로 도시한 다양한 구성요소들 중에서 일부 구성요소를 생략하거나 다른 구성요소를 추가로 포함할 수 있다. 예컨대, 이동체는 청소부를 추가로 포함할 수 있다.
이동체(1)는 미리 정의된 방식에 따라 특정 위치에서 다른 위치로 이동 가능하도록 설계된 장치를 의미하며, 바퀴, 레일, 보행용 다리 등과 같은 이동 수단을 이용하여, 특정 위치에서 다른 위치로 이동할 수 있다. 이동체(1)는 센서 등을 이용하여 외부의 정보를 수집한 후 수집된 정보에 따라서 이동할 수도 있고, 사용자에 의해 별도의 조작 수단을 이용하여 이동할 수 있다.
이동체(1)의 일례로는 로봇 청소기, 장난감 자동차, 산업용 또는 군사용 목적 등으로 이용 가능한 이동 로봇 등이 있을 수 있으며, 이동체(1)는 바퀴를 이용하여 주행하거나, 하나 이상의 다리를 이용하여 보행하거나, 이들의 조합으로 구현될 수 있다.
로봇 청소기는 청소 공간을 주행하면서 바닥에 쌓인 먼지 등의 이물질을 흡입함으로써 청소 공간을 자동으로 청소하는 장치이다. 일반적인 청소기가 사용자에 의한 외력으로 이동하는 것과 달리, 로봇 청소기는 외부의 정보 또는 미리 정의된 이동 패턴을 이용하여 이동하면서 청소 공간을 청소한다.
로봇 청소기는 미리 정의된 패턴을 이용하여 자동적으로 이동하거나, 또는 감지 센서에 의해 외부의 장애물을 감지한 후, 감지된 바에 따라 이동할 수도 있고, 사용자에 의해 조작되는 원격 제어 장치로부터 전달되는 신호에 따라서 이동 가능할 수도 있다.
감지 센서는 라이다(LIDAR)로 구현될 수 있다. 라이다는 레이저 신호를 쏘고 반사되어 돌아오는 시간을 측정하고, 빛의 속도를 이용하여 반사체의 거리를 측정하는 장치이다. 레이저 신호는 포토 다이오드를 통하여 전기적인 신호로 변경된다.
도 3을 참조하면, 이동체 및 대상체 간의 비행시간을 산출하여 상기 대상체까지의 거리를 측정하는 거리 측정 장치(10)가 본체의 상단부에 위치하고 있으나, 이는 예시일 뿐이며 이에 한정되는 것은 아니고 구현되는 설계에 따라 적합한 위치에서 하나 이상으로 구현될 수 있다. 이동 장치(20)는 대상체까지의 거리를 기반으로 주행 경로를 산출하거나 장애물을 검출하여 상기 이동체를 이동시킨다. 이동 장치(20)는 바퀴, 레일, 보행용 다리 등과 같은 이동 수단으로 구현될 수 있다.
거리 측정 장치(10)는 타임 오브 플라이트(Time of Flight, TOF) 방식으로 동작한다. 타임 오브 플라이트 방식은 레이저가 펄스 또는 구형파 신호를 방출하여 측정 범위 내에 있는 물체들로부터의 반사 펄스 또는 구형파 신호들이 수신기에 도착하는 시간을 측정함으로써, 측정 대상과 거리 측정 장치 사이의 거리를 측정한다.
이하에서는 이동체에 구현되거나 독립적으로 동작하는 거리 측정 장치를 설명하기로 한다.
도 4 및 도 5는 거리 측정 장치를 예시한 블록도이다. 도 4에 도시한 바와 같이, 거리 측정 장치(10)는 광 송수신기(100), 신호 판별기(200), 및 거리 측정기(300)를 포함한다. 거리 측정 장치(10)는 도 4에서 예시적으로 도시한 다양한 구성요소들 중에서 일부 구성요소를 생략하거나 다른 구성요소를 추가로 포함할 수 있다. 예컨대, 거리 측정 장치(10)는 인터페이스(400)를 추가로 포함할 수 있다.
광 송수신기(100)는 레이저 신호를 송신하고 반사된 신호를 수신한다. 광 송수신기(100)는 시작 제어 신호에 의해 대상체로 광을 출사하고 대상체에 반사된 광을 수신하여 전기 신호로 변환한다. 광 송수신기(100)는 기 설정된 검출 시간 동안 전기 신호를 출력한다.
신호 판별기(200)는 전기 신호를 변환하여 정지 제어 신호를 생성한다. 신호 판별기(200)는 상승하고 하강하는 전기 신호에서 정확한 시점을 측정하여 신호를 출력한다. 신호 판별기(200)는 전기 신호를 변환하고 기 설정된 기준 크기를 갖는 시점을 검출하여 정지 제어 신호를 생성한다.
신호 판별기(200)는 입력 신호에서 최대 신호 크기를 갖는 신호 지점을 기 설정된 크기를 갖도록 입력 신호를 변환한다. 예컨대, 신호의 크기가 제로가 되도록 변환한다. 신호 판별기(200)는 최대 크기를 갖는 시점을 제로로 변환하여 문턱치를 비교함으로써, 최대 크기를 갖는 시점으로부터 가까운 시점을 검출할 수 있다.
신호 판별기(200)는 변환된 입력 신호의 크기를 조절한다. 예컨대, 신호 판별기(200)는 복수의 증폭 과정을 거쳐 신호의 기울기가 수직에 가깝도록 변환한다. 기울기가 크기 때문에, 단순히 비교기만으로 회로를 구현하더라도 정확한 시점을 획득할 수 있다.
신호 판별기(200)는 크기가 조절된 입력 신호로부터 기 설정된 기준 크기를 갖는 적어도 하나의 시점을 검출하여 신호를 출력한다. 여기서, 출력 신호는 두 개의 유형일 수 있다. 예컨대, 신호 판별기(200)는 상승 에지 및 하강 에지를 출력할 수 있다. 거리 측정 장치(10)는 상승 에지 및 하강 에지 간의 펄스 폭에 따른 보정 팩터를 적용하여, 비행시간을 보정할 수 있다.
거리 측정기(300)는 타임 오브 플라이트 방식으로 시간 및 거리를 측정한다. 거리 측정기(300)는 시작 제어 신호 및 정지 제어 신호의 시간차를 기반으로 비행시간을 산출하여 거리를 측정한다. 거리 측정기(300)는 빛의 속도를 이용하여 시간으로부터 거리를 산출한다.
도 5를 참조하면, 거리 측정 장치(10)는 하나 이상의 시간 디지털 변환기(310, 312), 하나 이상의 신호 판별기(200, 202), 하나 이상의 광 송수신기(100, 102)를 포함할 수 있다. 거리 측정 장치(10)는 인터페이스(400)를 포함할 수 있다.
거리 측정기(300)는 시간 디지털 변환기(310)를 이용하여 두 시간의 차이를 디지털 값으로 변환한다. 시간 디지털 변환기(310)의 입력 신호는 동일 신호원의 펄스 형태가 될 수도 있고, 다른 신호원의 에지가 될 수도 있다. 예컨대, 거리 측정 장치(10)는 시작 제어 신호의 상승 에지 또는 하강 에지, 정지 제어 신호의 상승 에지 또는 하강 에지를 기준으로 시간차를 산출할 수 있다.
시간 디지털 변환기(310)는 시간 지연 소자 및 플립플롭으로 구성될 수 있다. 시간 지연 소자는 인버터를 이용한 디지털 소자 또는 전류원을 이용한 아날로그 소자로 구현될 수 있다. 시간 디지털 변환기(310)는 위상 편차 방식, 고해상도 클럭을 이용한 방식, 등가 시간 샘플링 방식 등 다양한 방식이 적용될 수 있다.
인터페이스(400)는 다른 장치와 정보를 송수신하는 통신 경로이다. 다른 장치는 인터페이스(400)를 통해 거리 측정 장치(10)에 접속하여 파라미터를 설정할 수 있다. 거리 측정 장치(10)는 인터페이스(400)를 통해 측정한 시간 및 거리를 다른 장치로 전송할 수 있다.
도 6은 본 발명의 다른 실시예들에 따른 거리 측정 장치의 광 송수신기를 예시한 블록도이다.
도 6을 참조하면, 광 송수신기(100)는 광원(110), 송신 광학부(120), 수신 광학부(130), 및 광 다이오드(140)를 포함한다. 광원(110)은 나노 초 단위의 레이저 펄스 신호를 발생시킨다. 송신 광학부(120) 및 수신 광학부(130)는 레이저 신호의 경로이고, 경통 구조로 형성될 수 있다. 광 다이오드(140)는 광자 에너지의 빛이 다이오드를 타격하면 이동전자와 양의 전하 정공이 생겨 전자가 활동하는 원리가 적용될 수 있다. 광 다이오드(140)는 PN 접합 광 다이오드, PIN 광 다이오드, 애벌란시 광 다이오드(Avalanche Photo Diode, APD) 등으로 구현될 수 있다.
광 송수신기(100)는 복수의 거울의 각도를 상이하게 설정하여 수평 방향과 지면 방향의 장애물을 동시에 검출할 수 있다. 광 송수신기(100)는 송신 광학부(120) 및 수신 광학부(130)에 거울을 각각 연결하고, 송신 광학부(120) 및 수신 광학부(130)를 회전시켜 전방향으로 장애물을 검출할 수 있다. 예컨대, 스캔라인은 각각 45도와 60도로 설정될 수 있고, 2개 이상으로 구성될 수도 있다.
광 송수신기(100)는 빛을 전류나 전압으로 변환하는데, 광 다이오드(140)의 출력을 버퍼링하고 스케일링하기 위한 회로가 필요하다. 예컨대, 광 다이오드(140)에 트랜스 임피던스 증폭기(Trans Impedance Amplifier, TIA)가 연결될 수 있다. 트랜스 임피던스 증폭기는 광 다이오드(140)의 전류를 증폭하고 전압으로 변환하여 출력한다. 트랜스 임피던스 증폭기는 R-TIA(Resistive Feedback TIA) 및 C-TIA(Capacitive Feedback TIA)로 구분될 수 있다.
이하에서는 도 7 내지 도 9를 참조하여, 이동체 또는 거리 측정 장치에 구현되거나 독립적으로 동작하는 광 송수신기를 설명하기로 한다.
도 7은 광 송수신기를 예시한 블록도이고, 도 8은 광 송수신기를 예시한 회로도이고, 도 9는 광 송수신기가 출력한 신호를 예시한 도면이다.
도 7에 도시한 바와 같이, 광 송수신기(100)는 광원(110), 광 다이오드(140), 및 신호 변환부(150)를 포함한다. 광 송수신기(100)는 도 7에서 예시적으로 도시한 다양한 구성요소들 중에서 일부 구성요소를 생략하거나 다른 구성요소를 추가로 포함할 수 있다. 예컨대, 신호 변환부(150)에 트랜스 임피던스 증폭기가 연결될 수 있다.
광원(110)은 기 설정된 샘플링 주기에 기반하여 대상체로 광을 출사한다. 샘플링 주기는 거리 측정 장치(10)의 제어부에 의해 설정될 수 있다. 샘플링 주기는 시작 제어 신호에 따라 광 송수신기(100)가 광을 출사하고 반사된 광을 수신하고 광을 전기 신호로 변환하기까지의 시간이다. 광 송수신기(100)는 다음 샘플링 주기에서 이러한 동작들을 반복하여 수행할 수 있다.
광 다이오드(140)는 대상체에 반사된 광을 수신하여 전기 신호로 변환한다. 광 다이오드(140)는 PN 접합 광 다이오드, PIN 광 다이오드, 애벌란시 광 다이오드(Avalanche Photo Diode, APD) 등으로 구현될 수 있다. 도 1에 도시된 바와 같이, 광 다이오드(140)는 광캐리어가 소멸할 때까지 전기 신호를 출력한다. 게다가, 출력 신호의 크기가 커질수록 신호가 소멸되기까지 소요되는 시간이 증가한다.
신호 변환부(150)는 출력 신호의 소멸 시간에 제한되지 않도록, 샘플링 주기 중에서 검출 시간 동안 상기 전기 신호를 출력한다. 도 8을 참조하면, 신호 변환부(150)는 저항(151), 스위치(152), 및 커패시터(153)를 포함할 수 있다.
저항(151)은 광 다이오드(140)에 연결된다. 저항(151)의 일단은 광 다이오드(140)에 연결되고 저항(151)의 타단은 접지에 연결된다. 저항(151)은 광 다이오드(140)의 양극 또는 음극에 연결될 수 있다.
저항 값이 작으면 광이 광 다이오드(140)를 통과하는 시간과 유사한 시간 동안 파형이 0아닌 값을 갖지만 출력 신호의 크기가 작은 문제가 있다. 따라서, 저항(151)에 대해 기 설정된 값보다 큰 값을 갖는 저항을 사용하여 전기 신호의 크기를 증폭시킬 필요가 있다. 이러한 경우 도 1에 도시된 바와 같이 신호의 뒤끌림 현상이 발생하게 된다.
신호의 뒤끌림 현상을 해결하기 위해 스위치(152)를 통하여 전기 신호의 전달 경로를 변경한다. 광 송수신기(100)는 전기 신호의 크기가 감소하는 영역의 일부가 제거된 신호를 출력할 수 있다. 전기 신호의 후단을 제거하더라도, 거리 측정 장치(10)는 거리를 측정할 수 있다. 신호 판별기(200)가 전기 신호의 종료 시점을 검출하지 않고, 전기 신호의 시작 시점 및 최대 크기 시점을 검출하여 상승 에지 및 하강 에지를 출력하기 때문이다.
스위치(152)는 저항(151)에 병렬로 연결되어 전기 신호의 전달 경로를 변경한다. 예컨대, 스위치(152)는 트랜지스터 등으로 구현될 수 있다.
도 9를 참조하면, 스위치(152)는 (i) 샘플링 주기(Ts) 중에서 검출 시간(Td) 동안 전기 신호를 제1 경로로 전달하고, (ii) 샘플링 주기(Ts) 중에서 차단 시간(Tc) 동안 전기 신호를 제2 경로로 전달한다. 제1 경로는 신호가 커패시터(153)를 통해 전달되는 경로이고, 제2 경로는 신호가 스위치(152)를 통해 접지로 전달되는 경로이다.
본 실시예들은 광 다이오드(140)에서 출력된 전기 신호가 뒤끌림 현상에 의해 신호 소멸 시간(T1, T2, T3)이 소요되더라도, 신호가 소멸될 때까지 대기할 필요없이 샘플링 주기에 따라 신호를 처리할 수 있다.
거리 측정 장치(10)는 샘플링 주기를 조절하고, 샘플링 주기에 따라 적절한 검출 시간을 산출하여 설정하고, 스위치(152)의 온오프 동작을 제어한다. 거리 측정 장치(10)의 제어부는 샘플링 주기, 검출 시간, 차단 시간, 출사한 광의 파형, 광원의 온오프 시간 간격, 시작 제어 신호의 펄스 폭, 정지 제어 신호의 펄스 폭, 광 송수신기의 회전 속도, 신호 판별기 및 시간 산출기의 신호 처리 및 대기 시간 등을 참조하여 스위치의 온오프 동작을 제어할 수 있다.
커패시터(153)는 광 다이오드(140) 및 저항(151)이 연결된 지점에 연결되어 전기 신호를 출력한다. 커패시터(153)는 전기 신호의 DC성분을 제거하는 기능을 한다. 커패시터(153)의 후단에는 비반전 증폭기 회로가 연결될 수 있다.
도 10은 본 발명의 다른 실시예들에 따른 신호 판별기를 예시한 블록도이다.
도 10에 도시한 바와 같이, 신호 판별기(200)는 제1 변환부(210), 제2 변환부(220), 및 신호 검출부(230)를 포함한다. 신호 판별기(200)는 도 7에서 예시적으로 도시한 다양한 구성요소들 중에서 일부 구성요소를 생략하거나 다른 구성요소를 추가로 포함할 수 있다.
신호 판별기(200)는 광 다이오드(140) 또는 트랜스 임피던스 증폭기로부터 전기 신호를 수신한다. 수신한 전기 신호, 즉, 입력 신호는 반사된 광에 의해 상승하고 하강하는 형태를 갖는다. 신호 판별기(200)는 입력 신호에 대해 목적하는 시점을 정확하게 측정하여 전기 신호를 출력한다.
입력 신호의 형태에 따라 입력 신호는 전단 시점(Tfront), 설정된 임계치와 만나는 목표 시점(T1, T2), 피크 시점(Tmax)을 갖는다. 신호 판별기(200)는 전단 시점(Tfront) 및 피크 시점(Tmax)에 가장 근접한 시점을 검출하기 위해 2단계 변환 과정을 수행한다.
제1 변환부(210)는 최대 신호 크기를 갖는 신호 지점을 기 설정된 크기를 갖도록 입력 신호를 변환한다. 제1 변환부(210)는 최대 신호 크기를 갖는 신호 지점의 크기가 제로가 되도록 변환한다. 예컨대, 제1 변환부(210)는 입력 신호를 미분하거나 입력 신호를 일정 분율 판별(Constant Fraction Discriminator, CFD)을 이용하여 변환한다. 일정 분율 판별은 원 신호를 지연시킨 신호와 일정 크기 비율만큼 조절한 신호가 같아지는 시점이 최대 크기의 일정 비율이 되는 시점을 찾는 방식이다.
변환한 신호는 전단 시점(Tfront), 설정된 임계치와 만나는 상승 시점(Trising1, Trising2), 설정된 임계치와 만나는 하강 시점(Tfalling1, Tfalling2), 후단 시점(Tend)을 갖는다. 후단 시점(Tend)은 변환 전의 신호의 피크 시점(Tmax)과 동일한 시점이다. 도 9에 도시된 바와 같이, 제1 변환부(210)가 최대 신호 크기를 갖는 신호 지점을 기 설정된 크기를 갖도록 입력 신호의 기울기를 변환하면, 상승 시점(Trising1, Trising2)은 전단 시점(Tfront)에 가까워지고 하강 시점(Tfalling1, Tfalling2)은 후단 시점(Tend)에 가까워진다.
신호를 미분하거나 일정 분율 판별 방식을 신호에 적용하면, 지터가 심하고 최대 신호 진폭과 최소 신호 진폭의 비인 다이나믹 레인지가 좁게 될 수 있다. 미분 방식은 RC회로로 구현되기 때문에, 거리 변화에 따른 신호의 주파수 특성이 변화하여 시간 오차를 발생시킨다. 일정 분율 판별 방식은 신호의 기울기가 다르기 때문에, 비교기의 커패시터의 충전 시간이 다르게 되고 비교기의 응답시간이 달라져서 시간 오차를 발생시킨다. 따라서, 변환한 신호를 다시 변환할 필요가 있다.
제2 변환부(220)는 변환된 입력 신호의 크기를 조절한다. 제2 변환부는 변환된 입력 신호의 크기를 N(상기 N은 자연수)차 증폭시킨다.
제2 변환부(220)가 기울기가 변환된 신호의 크기를 증폭하면, 기울기가 수직에 가까워져서, 상승 시점(Trising1, Trising2)은 전단 시점(Tfront)에 더욱 가까워지고 하강 시점(Tfalling1, Tfalling2)은 후단 시점(Tend)에 더욱 가까워진다.
본 실시예는 2단계 변환 과정으로 인하여, 노이즈가 포함된 신호에 대해 단순히 임계치와 비교하는 회로를 구현하더라도 전단 시점(Tfront) 및 후단 시점(Tend)을 정확하게 획득할 수 있다.
신호 검출부(230)는 크기가 조절된 입력 신호로부터 기 설정된 기준 크기를 갖는 적어도 하나의 시점을 검출하여 출력 신호를 생성한다. 신호 검출부(230)는 크기가 조절된 입력 신호로부터 하나의 임계치를 기준으로 상승 에지 및 하강 에지를 출력한다. 정지 제어 신호는 상승 에지에 매칭하는 펄스이거나 하강 에지에 매칭하는 펄스이거나 상승 에지 및 하강 에지에 모두 매칭하는 펄스일 수 있다.
거리 측정 장치(10)는 상승 에지 및 하강 에지에 따른 펄스 폭을 이용하여 비행시간을 보정한다.
도 11은 본 발명의 다른 실시예들에 따른 거리 측정 장치가 시간을 측정하는 동작을 설명하기 위한 도면이다.
거리 측정기(300)는 시간 디지털 변환기를 이용하여 두 시간의 차이를 디지털 값으로 변환한다. 시간 디지털 변환기의 입력 신호는 동일 신호원의 펄스 형태가 될 수도 있고, 다른 신호원의 에지가 될 수도 있다. 예컨대, 거리 측정 장치(10)는 시작 제어 신호의 상승 에지 또는 하강 에지, 정지 제어 신호의 상승 에지 또는 하강 에지를 기준으로 시간차를 산출할 수 있다.
시간 디지털 변환기는 시간 지연 소자 및 플립플롭으로 구성될 수 있다. 시간 지연 소자는 인버터를 이용한 디지털 소자 또는 전류원을 이용한 아날로그 소자로 구현될 수 있다. 시간 디지털 변환기는 위상 편차 방식, 고해상도 클럭을 이용한 방식, 등가 시간 샘플링 방식 등 다양한 방식이 적용될 수 있다.
도 11을 참조하면, 시간 디지털 변환기는 (i) 보통 카운터(Coarse Counter) 및 정밀 카운터(Fine Counter)가 카운팅한 개수(N1, N2)와 (ii) 보통 카운터의 큰 클록과 정밀 카운터의 작은 클록을 이용하여 시간을 측정한다. 보통 카운터의 큰 클록 및 정밀 카운터의 작은 클록 간의 시간차가 시간 디지털 변환기의 분해능을 결정된다.
시간 디지털 변환기(310)는 큰 클록을 발생시키는 느린 오실레이터(Slow Oscillator) 및 작은 클록을 발생시키는 빠른 오실레이터(Fast Oscillator)를 포함한다. 위상 검출기(Phase Detector)가 큰 클록 및 작은 클록이 동기화된 시점을 검출한다.
기존의 느린 오실레이터 및 빠른 오실레이터는 버퍼의 개수를 조절하여 클록 폭을 조절한다. 기존의 시간 디지털 변환기는 버퍼 자체의 신호 지연 시간으로 인하여, 80 피코 초(ps) 정도의 분해능을 갖는다.
본 실시예는 느린 오실레이터 및 빠른 오실레이터를 동일한 게이트로 조합하고 회로 상에서 게이트들의 위치 및 신호 경로를 변경하여 클록 폭을 조절한다. 본 실시예에 따른 시간 디지털 변환기의 느린 오실레이터 및 빠른 오실레이터는 동일한 게이트를 포함하나 게이트들의 위치 및 신호 경로를 변경함으로써, 시간 디지털 변환기는 10 피코 초(ps) 정도의 분해능을 갖는다.
본 실시예는 상승 에지와 하강 에지를 함께 처리하기 때문에, 느린 오실레이터 또는 빠른 오실레이터를 공유하여 설계할 수 있다.
도 12은 본 발명의 다른 실시예에 따른 거리 측정 장치가 시간을 보정하는 동작을 설명하기 위한 도면이다.
거리 측정 장치(10)가 신호의 기울기를 변환하는 과정에서 RC회로로 구현된 미분 방식을 적용하면, 거리 변화에 따른 신호의 주파수 특성이 변화하여 시간 오차를 발생한다. 신호의 기울기를 변환하는 과정에서 일정 분율 판별 방식을 적용하면, 신호의 기울기가 달라서 비교기의 커패시터의 충전 시간이 다르게 되고 비교기의 응답시간이 달라져서 시간 오차를 발생시킨다. 따라서, 거리 측정 장치(10)는 시간 오차를 보정하는 과정을 수행한다.
거리 측정기(300)는 정지 제어 신호의 펄스 폭을 이용하여 비행시간을 보정한다. 일반적인 광 다이오드의 출력 신호는 펄스 폭의 변화가 심하기 때문에, 펄스 폭 대 워크에러가 1 대 N으로 매칭하여 가까운 영역이 아니면 사용하기 곤란한 문제가 있다. 본 실시예는 신호를 변환하는 과정을 거쳤기 때문에, 펄스 폭 대 워크에러 간의 관계를 간단하게 모델링할 수 있다.
거리 측정기(300)는 워크에러 및 펄스 폭 간의 함수를 모델링하고, 보정 팩터를 미리 측정한다. 펄스폭에 따른 보정 팩터는 도 12에 도시되어 있다. 도 12에 도시된 바와 같이, 거리 측정기(300)는 펄스 폭에 반비례하는 보정 팩터를 적용하여 비행시간을 보정한다. 반사 신호의 세기가 약하여 펄스 폭이 좁아지면 워크에러가 커지므로, 거리 측정기(300)는 보정 팩터를 크게 설정한다. 반사 신호의 세기가 강하여 펄스 폭이 넓어지면 워크에러가 작아지므로, 거리 측정기(300)는 보정 팩터를 작게 설정한다.
최종적인 비행시간에 관한 관계식은 수학식 1과 같이 표현된다.
Figure 112017092284669-pat00001
수학식 1에서 ttof는 보정된 비행시간이고, tfalling는 보정 전의 비행시간이다. 비행시간은 정지 제어 신호 및 시작 제어 신호 간의 시간차이다. 거리 측정 장치는 시작 제어 신호의 상승 에지 또는 하강 에지, 정지 제어 신호의 상승 에지 또는 하강 에지를 기준으로 시간차를 산출할 수 있다. fcomp는 펄스 폭 대 워크에러의 함수이고, tpulse는 신호의 펄스 폭이다. 거리 측정 장치는 정지 제어 신호의 상승 에지 또는 하강 에지를 기준으로 펄스 폭을 산출할 수 있다.
거리 측정 장치, 광 송수신기, 및 신호 판별기에 포함된 구성요소들이 도 4, 도 7, 및 도 10에서는 분리되어 도시되어 있으나, 복수의 구성요소들은 상호 결합되어 적어도 하나의 모듈로 구현될 수 있다. 구성요소들은 장치 내부의 소프트웨어적인 모듈 또는 하드웨어적인 모듈을 연결하는 통신 경로에 연결되어 상호 간에 유기적으로 동작한다. 이러한 구성요소들은 하나 이상의 통신 버스 또는 신호선을 이용하여 통신한다.
거리 측정 장치 및 신호 판별기는 하드웨어, 펌웨어, 소프트웨어 또는 이들의 조합에 의해 로직회로 내에서 구현될 수 있고, 범용 또는 특정 목적 컴퓨터를 이용하여 구현될 수도 있다. 장치는 고정배선형(Hardwired) 기기, 필드 프로그램 가능한 게이트 어레이(Field Programmable Gate Array, FPGA), 주문형 반도체(Application Specific Integrated Circuit, ASIC) 등을 이용하여 구현될 수 있다. 또한, 장치는 하나 이상의 프로세서 및 컨트롤러를 포함한 시스템온칩(System on Chip, SoC)으로 구현될 수 있다.
거리 측정 장치 및 신호 판별기는 하드웨어적 요소가 마련된 컴퓨팅 디바이스에 소프트웨어, 하드웨어, 또는 이들의 조합하는 형태로 탑재될 수 있다. 컴퓨팅 디바이스는 각종 기기 또는 유무선 통신망과 통신을 수행하기 위한 통신 모뎀 등의 통신장치, 프로그램을 실행하기 위한 데이터를 저장하는 메모리, 프로그램을 실행하여 연산 및 명령하기 위한 마이크로프로세서 등을 전부 또는 일부 포함한 다양한 장치를 의미할 수 있다.
본 실시예들에 따른 동작은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능한 매체에 기록될 수 있다. 컴퓨터 판독 가능한 매체는 실행을 위해 프로세서에 명령어를 제공하는 데 참여한 임의의 매체를 나타낸다. 컴퓨터 판독 가능한 매체는 프로그램 명령, 데이터 파일, 데이터 구조 또는 이들의 조합을 포함할 수 있다. 예를 들면, 자기 매체, 광기록 매체, 메모리 등이 있을 수 있다. 컴퓨터 프로그램은 네트워크로 연결된 컴퓨터 시스템 상에 분산되어 분산 방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수도 있다. 본 실시예를 구현하기 위한 기능적인(Functional) 프로그램, 코드, 및 코드 세그먼트들은 본 실시예가 속하는 기술분야의 프로그래머들에 의해 용이하게 추론될 수 있을 것이다.
본 실시예들은 본 실시예의 기술 사상을 설명하기 위한 것이고, 이러한 실시예에 의하여 본 실시예의 기술 사상의 범위가 한정되는 것은 아니다. 본 실시예의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 실시예의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
1: 이동체 10: 거리 측정 장치
20: 이동 장치 100: 광 송수신기
110: 광원 120: 송신 광학부
130: 수신 광학부 140: 광 다이오드
150: 신호 변환부 200: 신호 판별기
210: 제1 변환부 220: 제2 변환부
230: 신호 검출부 300: 거리 측정기
310: 시간 디지털 변환기 400: 인터페이스

Claims (15)

  1. 시작 제어 신호에 의해 대상체로 광을 출사하고 상기 대상체에 반사된 광을 수신하여 전기 신호로 변환하며, 기 설정된 검출 시간 동안 상기 전기 신호를 출력하는 광 송수신기;
    상기 전기 신호를 변환하여 정지 제어 신호를 생성하는 신호 판별기; 및
    상기 시작 제어 신호 및 상기 정지 제어 신호의 시간차를 기반으로 비행시간을 산출하여 거리를 측정하는 거리 측정기를 포함하며,
    상기 광 송수신기는, 기 설정된 샘플링 주기에 기반하여 상기 대상체로 광을 출사하는 광원; 상기 대상체에 반사된 광을 수신하여 전기 신호로 변환하는 광 다이오드; 및 상기 샘플링 주기 중에서 상기 검출 시간 동안 상기 전기 신호를 출력하는 신호 변환부를 포함하며,
    상기 신호 변환부는, 상기 광 다이오드에 일단이 연결되고 접지에 타단이 연결된 저항; 상기 광 다이오드 및 상기 저항이 연결된 지점에 연결되어 상기 전기 신호를 출력하는 커패시터; 및 상기 저항에 병렬로 연결되어 상기 전기 신호의 전달 경로를 변경하는 스위치를 포함하며,
    상기 스위치는, (i) 상기 샘플링 주기 중에서 상기 검출 시간 동안 상기 전기 신호를 제1 경로로 전달하고, (ii) 상기 샘플링 주기 중에서 차단 시간 동안 상기 전기 신호를 제2 경로로 전달하는 것을 특징으로 하는 거리 측정 장치.
  2. 삭제
  3. 삭제
  4. 삭제
  5. 제1항에 있어서,
    상기 거리 측정 장치는 상기 샘플링 주기를 조절하고, 상기 샘플링 주기에 따라 상기 검출 시간을 설정하여, 상기 스위치의 온오프 동작을 제어하는 것을 특징으로 하는 거리 측정 장치.
  6. 제1항에 있어서,
    상기 저항은 기 설정된 값보다 큰 값을 사용하여 상기 전기 신호의 크기를 증폭시키고, 상기 스위치는 상기 전기 신호의 전달 경로를 변경하는 것을 특징으로 하는 거리 측정 장치.
  7. 제1항에 있어서,
    상기 스위치는 트랜지스터인 것을 특징으로 하는 거리 측정 장치.
  8. 제1항에 있어서,
    상기 광 다이오드는 애벌란시 포토 다이오드(Avalanche Photo Diode, APD)인 것을 특징으로 하는 거리 측정 장치.
  9. 기 설정된 샘플링 주기에 기반하여 대상체로 광을 출사하는 광원;
    상기 대상체에 반사된 광을 수신하여 전기 신호로 변환하는 광 다이오드; 및
    상기 샘플링 주기 중에서 검출 시간 동안 상기 전기 신호를 출력하는 신호 변환부를 포함하며,
    상기 신호 변환부는, 상기 광 다이오드에 일단이 연결되고 접지에 타단이 연결된 저항; 상기 광 다이오드 및 상기 저항이 연결된 지점에 연결되어 상기 전기 신호를 출력하는 커패시터; 및 상기 저항에 병렬로 연결되어 상기 전기 신호의 전달 경로를 변경하는 스위치를 포함하며,
    상기 스위치는, (i) 상기 샘플링 주기 중에서 상기 검출 시간 동안 상기 전기 신호를 제1 경로로 전달하고, (ii) 상기 샘플링 주기 중에서 차단 시간 동안 상기 전기 신호를 제2 경로로 전달하는 것을 특징으로 하는 광 송수신기.
  10. 삭제
  11. 삭제
  12. 제9항에 있어서,
    상기 저항은 기 설정된 값보다 큰 값을 사용하여 상기 전기 신호의 크기를 증폭시키고, 상기 스위치는 상기 전기 신호의 전달 경로를 변경하는 것을 특징으로 하는 광 송수신기.
  13. 이동체에 있어서,
    상기 이동체 및 대상체 간의 비행시간을 산출하여 상기 대상체까지의 거리를 측정하는 거리 측정 장치; 및
    상기 대상체까지의 거리를 기반으로 상기 이동체를 이동하도록 구현된 이동 장치를 포함하며,
    상기 거리 측정 장치는,
    시작 제어 신호에 의해 대상체로 광을 출사하고 상기 대상체에 반사된 광을 수신하여 전기 신호로 변환하며, 기 설정된 검출 시간 동안 상기 전기 신호를 출력하는 광 송수신기;
    상기 전기 신호를 변환하여 정지 제어 신호를 생성하는 신호 판별기; 및
    상기 시작 제어 신호 및 상기 정지 제어 신호의 시간차를 기반으로 비행시간을 산출하여 거리를 측정하는 거리 측정기를 포함하며,
    상기 광 송수신기는, 기 설정된 샘플링 주기에 기반하여 상기 대상체로 광을 출사하는 광원; 상기 대상체에 반사된 광을 수신하여 전기 신호로 변환하는 광 다이오드; 및 상기 샘플링 주기 중에서 상기 검출 시간 동안 상기 전기 신호를 출력하는 신호 변환부를 포함하며,
    상기 신호 변환부는, 상기 광 다이오드에 일단이 연결되고 접지에 타단이 연결된 저항; 상기 광 다이오드 및 상기 저항이 연결된 지점에 연결되어 상기 전기 신호를 출력하는 커패시터; 및 상기 저항에 병렬로 연결되어 상기 전기 신호의 전달 경로를 변경하는 스위치를 포함하며,
    상기 스위치는, (i) 상기 샘플링 주기 중에서 상기 검출 시간 동안 상기 전기 신호를 제1 경로로 전달하고, (ii) 상기 샘플링 주기 중에서 차단 시간 동안 상기 전기 신호를 제2 경로로 전달하는 것을 특징으로 하는 것을 특징으로 하는 이동체.
  14. 삭제
  15. 삭제
KR1020170121828A 2016-11-30 2017-09-21 거리 측정 장치, 광 송수신기, 및 이동체 KR102018158B1 (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020170121828A KR102018158B1 (ko) 2017-09-21 2017-09-21 거리 측정 장치, 광 송수신기, 및 이동체
US15/825,122 US10962647B2 (en) 2016-11-30 2017-11-29 Lidar apparatus based on time of flight and moving object
PCT/KR2018/007610 WO2019039727A1 (ko) 2017-08-21 2018-07-05 거리 측정 장치 및 이동체
EP18187982.6A EP3447523A1 (en) 2017-08-21 2018-08-08 Distance measuring apparatus, time to digital converter, and moving object
EP18187977.6A EP3447522A1 (en) 2017-08-21 2018-08-08 Distance measuring apparatus, signal discriminator, and moving object
US16/136,222 US11579298B2 (en) 2017-09-20 2018-09-19 Hybrid sensor and compact Lidar sensor
US17/183,349 US20210199807A1 (en) 2016-11-30 2021-02-24 Lidar apparatus based on time of flight and moving object
US17/183,347 US20210181347A1 (en) 2016-11-30 2021-02-24 Lidar apparatus based on time of flight and moving object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170121828A KR102018158B1 (ko) 2017-09-21 2017-09-21 거리 측정 장치, 광 송수신기, 및 이동체

Publications (2)

Publication Number Publication Date
KR20190033262A KR20190033262A (ko) 2019-03-29
KR102018158B1 true KR102018158B1 (ko) 2019-09-04

Family

ID=65899060

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170121828A KR102018158B1 (ko) 2016-11-30 2017-09-21 거리 측정 장치, 광 송수신기, 및 이동체

Country Status (1)

Country Link
KR (1) KR102018158B1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010257553A (ja) * 2009-04-28 2010-11-11 Pioneer Electronic Corp レーザ駆動装置及び情報記録装置
US20180149753A1 (en) * 2016-11-30 2018-05-31 Yujin Robot Co., Ltd. Ridar apparatus based on time of flight and moving object

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970048600A (ko) * 1995-12-19 1997-07-29 전성원 차량의 거리측정을 위한 레이저 다이오드 트리거신호 변환장치
KR970048621A (ko) * 1995-12-29 1997-07-29 김주용 레이저를 이용한 거리 측정장치
KR19990069210A (ko) * 1998-02-05 1999-09-06 이-렌 라이 레이저 거리 측정 능력을 증가시키는 방법
KR100796313B1 (ko) * 2006-04-21 2008-01-21 재단법인서울대학교산학협력재단 광선로 계측기 및 광선로 계측 방법
FR2997198A1 (fr) * 2012-10-18 2014-04-25 Thales Sa Telemetrie longue portee de petite cible

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010257553A (ja) * 2009-04-28 2010-11-11 Pioneer Electronic Corp レーザ駆動装置及び情報記録装置
US20180149753A1 (en) * 2016-11-30 2018-05-31 Yujin Robot Co., Ltd. Ridar apparatus based on time of flight and moving object

Also Published As

Publication number Publication date
KR20190033262A (ko) 2019-03-29

Similar Documents

Publication Publication Date Title
CN107085218B (zh) 确定返回光脉冲的返回时间的方法以及spl扫描仪
US11125863B2 (en) Correction device, correction method, and distance measuring device
US10302747B2 (en) Distance measuring apparatus, electronic device, method for measuring distance, and recording medium
JP6700575B2 (ja) 回路装置、光検出器、物体検出装置、センシング装置、移動体装置、光検出方法、及び物体検出方法
JP6780699B2 (ja) 測距装置および測距方法
US10670397B2 (en) Distance measuring device and method of measuring distance by using the same
US11874399B2 (en) 3D scanning LIDAR sensor
JP6700586B2 (ja) 回路装置、光検出器、物体検出装置、センシング装置、移動体装置、信号検出方法及び物体検出方法
KR102240518B1 (ko) 자체 교정을 수행하는 3차원 스캐닝 라이다 센서
Palojarvi et al. Pulsed time-of-flight laser radar module with millimeter-level accuracy using full custom receiver and TDC ASICs
KR102035019B1 (ko) 거리 측정 장치, 시간 디지털 변환기, 및 이동체
Kurtti et al. Laser radar receiver channel with timing detector based on front end unipolar-to-bipolar pulse shaping
EP3447522A1 (en) Distance measuring apparatus, signal discriminator, and moving object
EP3570065B1 (en) 3d scanning lidar sensor
KR101981038B1 (ko) 거리 측정 장치, 신호 판별기, 및 이동체
KR102645092B1 (ko) 거리 측정 장치 및 그 방법
KR102018158B1 (ko) 거리 측정 장치, 광 송수신기, 및 이동체
KR102076478B1 (ko) 이동성 거울을 이용한 광 송수신기, 3차원 거리 측정 장치, 및 이동체
US11415682B1 (en) Lidar receiver system with ambient-light compensation and threshold adjustment
CN110850427B (zh) 可用于激光雷达的放大电路、激光雷达、控制方法
Kurtti et al. Pulse width time walk compensation method for a pulsed time-of-flight laser rangefinder
Kurtti et al. CMOS receiver for a pulsed TOF laser rangefinder utilizing the time domain walk compensation scheme
Chen et al. Constant fraction discriminator for fast high-precision pulsed TOF laser rangefinder

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant