KR20190004174A - 투명 전극 구조물의 형성 방법 - Google Patents

투명 전극 구조물의 형성 방법 Download PDF

Info

Publication number
KR20190004174A
KR20190004174A KR1020170084441A KR20170084441A KR20190004174A KR 20190004174 A KR20190004174 A KR 20190004174A KR 1020170084441 A KR1020170084441 A KR 1020170084441A KR 20170084441 A KR20170084441 A KR 20170084441A KR 20190004174 A KR20190004174 A KR 20190004174A
Authority
KR
South Korea
Prior art keywords
core
flexible substrate
cell
forming
pattern
Prior art date
Application number
KR1020170084441A
Other languages
English (en)
Other versions
KR101958094B1 (ko
Inventor
이헌
최학종
허대홍
박재민
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020170084441A priority Critical patent/KR101958094B1/ko
Publication of KR20190004174A publication Critical patent/KR20190004174A/ko
Application granted granted Critical
Publication of KR101958094B1 publication Critical patent/KR101958094B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/023Alloys based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper

Abstract

투명 전극 구조물은, 플렉서블 기판 및 상기 플렉서블 기판 상에 형성되고, 코어 및 상기 코어를 둘러싸는 셀을 갖는 코어셀 구조를 갖는 코어셀 라인들이 서로 교차함으로써 메쉬 형상으로 배열된 코어셀 메쉬 전극을 포함한다. 이로써, 광투과성 및 전기 전도성이 개선될 수 있다.

Description

투명 전극 구조물 및 이의 형성 방법{TRANSPARENT ELECTRODE STRUCTURE AND METHOD OF FORMING THE SAME}
본 발명은 투명 전극 구조물 및 이의 형성 방법에 관한 것이다. 보다 상세하게는 본 발명은 광학적으로 광투과성 및 플렉서블한 특성을 가질 수 있는 투명 전극 구조물 및 상기 투명 전극 구조물의 형성 방법에 관한 것이다.
투명 전극은 상대적으로 높은 광투과도(85%이상)와 낮은 비저항(1x10-3 Ω·cm)을 동시에 갖는 전극을 총칭하는 것으로, 광투과도 및 면저항의 크기에 따라 다양한 광전 소자에 핵심 전극 재료로 사용된다. 상기 투명 전극을 이루는 전극 재료로서 다양한 물질이 연구되고 있다.
예를 들면, 인듐주석산화물(Indium Tin Oxide; ITO)은 90% 이상의 높은 투과도와 낮은 면저항을 갖는 가장 상용화된 투명전극의 소재로서 사용되고 있다. 상기 ITO로 이루어진 투명 전극은, 태양전지, 터치스크린, 디스플레이, 레이져 다이오드, LED 등 다양한 투명 전자소자에 적용되고 있다.
하지만, ITO 기반 투명전극의 경우, ITO 소재의 핵심 원소 중 하나인 인듐이 전략광물소재로 특정 국가에 생산이 편중되어 생산단가 변동성이 크다는 점 및 산화물 투명전극이 갖는 높은 취성이 문제점으로 지적되고 있다.
이를 해결하기 위해 Ag nanowires(NWs), Carbon nanotube(CNT), graphene, metal nanomesh 등 다양한 종류의 물질이 차세대 투명전극을 이루는 소재로서 연구가 진행되고 있으며, 상당부분 진척된 연구결과가 보고되고 있다. 그러나 이러한 차세대 투명전극의 경우에도 신축성을 갖는 소자에 적용시 인장에 의한 균열 등이 발생하여 실제 신축성을 갖는 소자에 적용할 때 한계가 발생한다.
따라서 실생활에 소자 적용에 최적화된 우수한 광학적, 전기적 특성과 뛰어난 내구성을 갖는 투명전극에 대한 기술 개발이 요구되고 있다.
본 발명의 일 목적은 우수한 광학적, 전기적 특성과 뛰어난 내구성을 갖는 투명 전극 구조물을 제공하는 것이다.
본 발명의 다른 목적은 우수한 광학적, 전기적 특성과 뛰어난 내구성을 갖는 투명 전극 구조물의 형성 방법을 제공하는 것이다.
본 발명의 일 실시예에 따른 투명 전극 구조물은, 플렉서블 기판 및 상기 플렉서블 기판 상에 형성되고, 코어 및 상기 코어를 둘러싸는 셀을 갖는 코어셀 구조를 갖는 코어셀 라인들이 서로 교차함으로써 메쉬 형상으로 배열된 코어셀 메쉬 전극을 포함한다.
본 발명의 일 실시예에 있어서, 상기 코어는 제1 금속으로 이루어지고, 상기 셀은 귀금속 원소을 포함하는 제2 금속으로 이루어질 수 있다. 여기서, 상기 제1 금속은, 니켈, 구리, 티타늄, 알루미늄 또는 이들의 합금을 포함할 수 있다.
본 발명의 일 실시예에 있어서, 상기 플렉서블 기판은 상부에 형성된 3차원 패턴을 포함할 수 있다.
본 발명의 일 실시예에 있어서, 상기 코어셀 메쉬 전극은, 상기 플렉서블 기판의 상부 내에 매립될 수 있다.
본 발명의 일 실시예에 따른 투명 전극 구조물의 형성 방법에 있어서, 플렉서블 기판을 준비한다. 상기 플렉서블 기판의 상부에, 코어 및 상기 코어를 둘러싸는 셀을 갖는 코어셀 구조를 갖는 코어셀 라인들이 서로 교차함으로써 메쉬 형상으로 배열된 코어셀 메쉬 전극을 형성한다.
본 발명의 일 실시예에 있어서, 상기 코어셀 메쉬 전극은, 전도성 기판 상에 제1 금속으로 이루어진 메쉬 형상의 코어 금속 패턴을 형성한 후, 상기 예비 금속 패턴에 대하여 무전해 도금 공정을 수행하여, 상기 예비 금속 패턴의 외부 표면을 제2 금속으로 치환함으로써 셀 구조를 갖는 셀 금속 패턴을 형성하고, 상기 코어 금속 패턴 및 셀 금속 패턴을 갖는 코어셀 금속 패턴을 전사 공정을 통하여 상기 플렉서블 기판 상부에 전사함으로써 형성될 수 있다.
본 발명의 일 실시예에 있어서, 상기 전사 공정은 핫 엠보싱 공정을 수행함으로써, 상기 코어셀 금속 패턴을 상기 플렉서블 기판 내부에 삽입할 수 있다.
여기서, 상기 핫 엠보싱 공정은 상기 플렉서블 기판을 이루는 물질의 유리 전이 온도보다 높은 온도에서 수행될 수 있다.
본 발명의 일 실시예에 있어서, 상기 전도성 기판 상에 코어 금속 패턴을 형성하기 위하여, 베이스 상에 3차원 전도성 패턴을 형성하고, 상기 3차원 전도성 패턴 상에 리프트 오프층을 형성한다. 이후, 상기 리프트 오프층 상에 상기 3차원 전도성 패턴을 부분적으로 노출시키는 메쉬 패턴을 형성한 후, 상기 3차원 전도성 패턴의 노출된 부분에 전기 도금 공정을 통하여 상기 코어 금속 패턴을 형성한다.
본 발명의 실시예들에 따르면, 플렉서블 기판 상에 코어셀 메쉬 전극을 형성하고 이를 3차원 기판 상에 형성함으로써, 저가의 금속소재를 이용하여 안정적으로 동작할 수 있는 금속 투명전극을 3차원 광기능성 기판 상에 형성할 수 있다.
나아가, 3차원 기판 상에 형성된 투명 전극 구조물은 x축, y축 뿐만 아니라 z축에 대하여 변형률이 개선되어 신축 및 굽힘 특성에 대한 개선된 저항력을 가진다. 또한, 코어셀 메쉬 전극이 코어셀 구조를 가짐에 따라, 셀을 이루는 귀금속을 이용하여 코어를 이루는 제1 금속의 산화를 방지함으로써, 저가의 금속소재를 이용한 금속 투명 전극의 우수한 전기적 특성을 오랫동안 유지할 수 있다.
특히, 3차원 광기능성 구조가 형성된 3차원 형상을 갖는 플렉서블 기판이 간단한 공정으로 형성될 수 있다.
도 1a 및 도 1b는 본 발명의 일 실시예에 따른 투명 전극 구조물을 설명하기 위한 사진들이다.
도 2는 도 1의 코어셀 메쉬 전극을 설명하기 위한 단면 사진들이다.
도 3은 본 발명의 일 실시예에 따른 투명 전극 구조물의 광기능성을 설명하기 위한 사시도이다.
도 4는 본 발명의 일 실시예에 따른 투명 전극 구조물의 형성 방법을 설명하기 위한 사시도들이다.
도 5는 3차원 평면 상에 코어 금속 패턴을 형성하기 위한 공정들을 설명하기 위한 사시도들이다.
도 6은 코어셀 메쉬 라인들을 플렉서블 기판 상에 전사하는 전사 공정을 설명하기 위한 사시도들이다.
도 7은 마이크로 콘 형태를 갖는 전도성 기판 상에 형성된 코어셀 메쉬 투명전극의 실시예에 대한 사진이다.
이하, 첨부한 도면을 참조하여 본 발명의 실시예들에 대해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 첨부된 도면에 있어서, 대상물들의 크기와 양은 본 발명의 명확성을 기하기 위하여 실제보다 확대 또는 축소하여 도시한 것이다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "구비하다" 등의 용어는 명세서 상에 기재된 특징, 단계, 기능, 구성요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 다른 특징들이나 단계, 기능, 구성요소 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
한편, 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
투명 전극 구조물
도 1a 및 도 1b는 본 발명의 일 실시예에 따른 투명 전극 구조물을 설명하기 위한 사진들이다. 도 2는 도 1의 코어셀 메쉬 전극을 설명하기 위한 단면 사진들이다.
도 1a, 도 1b 및 도 2를 참조하면, 본 발명의 일 실시예에 따른 투명 전극 구조물(100)은, 플렉서블 기판(110) 및 코어셀 메쉬 전극(120)을 포함한다. 상기 코어셀 메쉬 전극(120)이 유연성을 갖는 플렉서블 기판(110) 상에 형성됨으로써, 상기 투명 전극 구조물(100)은, 유연성을 가질 뿐만 아니라, 신축성을 갖는 특성을 가질 수 있다. 이로써, 상기 투명 전극 구조물(100)은 유연성을 갖는 광전 소자에 적용될 수 있다.
상기 플렉서블 기판(110)은 폴리이미드, 또는 폴리에틸렌테레팔레이트(Polyethylene terephthalate; PET)와 같은 고분자 물질로 이루어질 수 있다. 나아가, 상기 플렉서블 기판(110)은 광투과성을 가질 수 있도록 조절된 두께를 가질 수 있다. 따라서, 상기 플렉서블 기판(110)을 포함하는 투명 전극 구조물(100)은 신축 및 굽힘 특성에 대하여 우수한 저항력을 가질 수 있다.
상기 코어셀 메쉬 전극(120)은, 상기 플렉서블 기판(110) 상에 형성된다. 상기 코어셀 메쉬 전극(120)은 상호 교차되는 코어셀 라인들을 구비함으로써, 상기 코어셀 라인들(120) 사이에는 플렉서블 기판(110)의 상면의 일부가 노출될 수 있다. 상기 플렉서블 기판(110)의 상면이 노출된 노출부가 구비됨으로써, 광투과성이 개선될 수 있다. 또한, 상기 코어셀 라인들(120)이 상호 교차하도록 구비됨으로써, 상기 코어셀 메쉬 전극(120)은 상대적으로 우수한 전기 전도성을 확보할 수 있다. 결과적으로 상기 코어셀 메쉬 전극(120)은 우수한 광투과성 및 전기전도성을 가질 수 있다. 여기서, 코어셀 라인들은 코어셀 메쉬 전극과 동일한 참조번호로 기술된다.
한편, 상기 코어셀 메쉬 전극(120)은 제1 금속으로 형성된 코어 금속 패턴(121) 및 상기 코어 금속 패턴(121)을 감싸도록 구비되며 제2 금속으로 형성된 셀 금속 패턴(123)을 포함한다.
여기서 제1 금속은 니켈, 구리, 티타늄, 알루미늄 또는 이들의 합금을 포함할 수 있다.
한편, 상기 제2 금속은 금, 백금 또는 은을 포함할 수 있다. 따라서, 상기 셀 금속 패턴(123)이 귀금속으로 이루어짐에 따라, 상기 코어셀 메쉬 전극(120)이 개선된 내산화성을 가질 수 있다. 결과적으로 코어셀 메쉬 전극(120)이 우수한 전기적 안정성 및 사이클 특성을 가질 수 있다.
도 3은 본 발명의 일 실시예에 따른 투명 전극 구조물을 설명하기 위한 사시도이다.
도 3을 참조하면, 상기 플렉서블 기판(110)은 상부에 형성된 3차원 패턴을 포함할 수 있다. 이로써, 상기 3차원 패턴의 상부 표면 상에 코어셀 메쉬 전극(120)이 형성됨에 따라, 상기 투명 전극 구조물(100)이 다양한 광기능성을 가질 수 있다. 예를 들면, 상기 플렉서블 기판(110)은 상부에 형성된 3차원 패턴을 가짐에 따라, 상기 3차원 패턴의 형상에 따라 회절 특성, 산란 특성 또는 반사 특성을 조절할 수 있다. 이로써, 상기 투명 전극 구조물(110)은 광기능성 특성을 가질 수 있다.
본 발멸의 일 실시예에 있어서, 상기 코어셀 메쉬 전극(120)은, 상기 플렉서블 기판(110)의 상부 내에 매립될 수 있다. 이로써, 상기 코어셀 메쉬 전극(120)이 외부의 습기, 열 또는 기계적 충격으로부터 보호될 수 있다. 따라서, 상기 투명 전극 구조물(100)이 개선된 내구성을 확보할 수 있다.
투명 전극 구조물의 형성 방법
도 4는 본 발명의 일 실시예에 따른 투명 전극 구조물의 형성 방법을 설명하기 위한 사시도들이다.
도 4를 참조하면, 본 발명의 일 실시예에 따른 투명 전극 구조물의 형성 방법에 따르면, 먼저 플렉서블 기판(110)을 준비한다. 이후, 상기 플렉서블 기판(110)의 상부 내부에, 코어 및 상기 코어를 둘러싸는 셀을 갖는 코어셀 구조를 갖는 코어셀 라인들이 서로 교차함으로써 메쉬 형상으로 배열된 코어셀 메쉬 전극(120)을 형성한다.
상기 코어셀 메쉬 전극(120)은 아래와 같은 공정들을 통하여 형성될 수 있다.
먼저, 전도성 기판(20) 상에 희생층(미도시)를 형성한다. 이후, 메쉬 형상을 갖는 몰드(10)를 이용하여 상기 희생층 상에 다이렉트 프린팅 공정을 수행함으로써 메쉬 형상의 템플레이트를 형성한다. 상기 메쉬 형상의 템플레이트는 실리콘 산화물 등을 이용하여 형성될 수 있으며, 이외에도 희생층에 포함된 레지스트를 이용하여 형성될 수 있다. 이로써, 상기 템플레이트는 상기 희생층 상에 잔여하는 물질을 최소화할 수 있는 패턴 형상으로 직접 형성될 수 있다. 이 후 식각 공정이 추가적으로 수행되어, 전도성 기판(20)의 메쉬 형태의 영역을 선택적으로 노출시킨다.
이후, 상기 전도성 기판(25)의 노출 영역 상에 코어 금속 패턴(121)을 형성한다. 상기 코어 금속 패턴(121)은 상기 전도성 기판(25)을 이용하는 전기 도금 공정을 통하여 형성될 수 있다.
이어서, 상기 희생층 패턴(25)을 리프트 오프 공정을 통하여 제거한 후, 무전해 도금 공정이 수행된다. 이로써, 코어 금속 패턴(121)의 외각 표면을 이루는 제1 금속을 제2 금속으로 치환시킨다. 결과적으로, 상기 코어 금속 패턴(121)을 전체적으로 감싸는 셀 금속 패턴(123)이 형성됨으로써, 코어 금속 패턴(121) 및 셀 금속 패턴(123)을 포함하는 코어셀 메쉬 라인들이 형성된다.
이후, 상기 코어셀 메쉬 라인들은 상기 플렉서블 기판(110) 상에 정렬시킨 후, 전사 공정을 통하여 상기 플렉서블 기판(110) 내부에 코어셀 메쉬 라인을 전사시킨다. 이로써, 상기 플렉서블 기판(110) 내부에 코어셀 메쉬 전극(120)을 형성한다. 예를 들면, 상기 전사 공정은 열압착 공정을 포함할 수 있다.
도 5는 3차원 평면 상에 코어 금속 패턴을 형성하기 위한 공정들을 설명하기 위한 사시도들이다. 도 6은 코어셀 메쉬 라인들을 플렉서블 기판 내부에 전사하는 전사 공정을 설명하기 위한 사시도들이다.
도 5 및 도 6을 참조하면, 본 발명의 일 실시예에 따른 투명 전극 구조물의 형성 방법에 따르면, 먼저 3차원 전도성 패턴이 형성된 플렉서블 기판을 준비한다. 이후, 상기 플렉서블 기판의 내부에, 코어 및 상기 코어를 둘러싸는 셀을 갖는 코어셀 구조를 갖는 코어셀 라인들이 서로 교차함으로써 메쉬 형상으로 배열된 코어셀 메쉬 전극을 형성한다.
전도성 기판(20) 상에 코어 금속 패턴(121)을 형성하는 공정은 아래와 같다.
먼저, 베이스(2) 상에 3차원 전도성 패턴(20)을 형성한다. 상기 베이스(2)는 예를 들면, 유리 기판을 들 수 있다. 이어서, 3차원 전도성 패턴(20)은 인듐 주석 산화물, 아연 산화물 등을 이용하여 형성된다.
전도성 기판(20) 상에 희생층(25)를 형성한다. 이후, 메쉬 형상을 갖는 몰드(10)를 이용하여 상기 희생층 상에 다이렉트 프린팅 공정을 수행함으로써 메쉬 형상의 템플레이트를 형성한다. 상기 메쉬 형상의 템플레이트는 실리콘 산화물 등을 이용하여 형성될 수 있으며, 이외에도 희생층에 포함된 레지스트를 이용하여 형성될 수 있다. 이로써, 상기 템플레이트는 상기 희생층 상에 잔여하는 물질을 최소화할 수 있는 패턴 형상으로 직접 형성될 수 있다. 이 후 식각 공정이 추가적으로 수행되어, 전도성 기판(20)의 메쉬 형태의 영역을 선택적으로 노출시킨다.
이후, 상기 3차원 전도성 패턴의 노출된 부분에 전기 도금 공정을 통하여 상기 코어 금속 패턴(121)을 형성한다.
이어서, 무전해 도금 공정을 통하여 상기 코어 금속 패턴을 둘러싸는 셀 금속 패턴을 형성함으로써, 코어 금속 패턴 및 셀 금속 패턴을 포함하는 코어셀 메쉬 라인들(120)을 형성한다.
도 6을 참조하면, 코어셀 메쉬 라인들(120)을 플렉서블 기판(110) 상이 전사함으로써 플렉서블 기판(110) 내부에 코어셀 메쉬 전극(120)이 형성된 투명 전극 구조물(100)이 제조한다.
상기 전사 공정은 핫 엠보싱 공정을 포함할 수 있다. 즉, 상기 핫 엠보싱 공정은 상기 플렉서블 기판(110)을 이루는 물질의 유리 전이 온도보다 높은 온도에서 수행된다. 이로써, 상기 플렉서블 기판(110)의 상부 표면이 3차원 형상을 가질 수 있다.
또한, 상기 핫 엠보싱 공정에서의 온도 및 압력을 조절함으로써, 상기 코어셀 금속 전극(120)을 상기 플렉서블 기판(110) 내부에 삽입될 수 있다.
2 : 베이스 10: 몰드
14: 마스크층 15 : 메쉬 패턴
20: 전도성 기판 25: 희생층 패턴
100 : 투명 전극 구조물 110: 플렉서블 기판
120: 코어셀 메쉬 전극 121 : 코어 금속 패턴
123: 셀 금속 패턴

Claims (11)

  1. 플렉서블 기판; 및
    상기 플렉서블 기판 상에 형성되고, 코어 및 상기 코어를 둘러싸는 셀을 갖는 코어셀 구조를 갖는 코어셀 라인들이 서로 교차함으로써 메쉬 형상으로 배열된 코어셀 메쉬 전극을 포함하는 투명 전극 구조물.
  2. 제1항에 있어서, 상기 코어는 제1 금속으로 이루어지고, 상기 셀은 귀금속 원소을 포함하는 제2 금속으로 이루어진 것을 특징으로 하는 투명 전극 구조물.
  3. 제2항에 있어서, 상기 제1 금속은 니켈, 구리, 티타늄, 알루미늄 또는 이들의 합금을 포함하는 것을 특징으로 하는 투명 전극 구조물.
  4. 제1항에 있어서, 상기 플렉서블 기판은 상부에 형성된 광학 기능성 3차원 패턴을 포함하는 것을 특징으로 하는 투명 전극 구조물.
  5. 제1항에 있어서, 상기 코어셀 메쉬 전극은, 상기 플렉서블 기판의 상부 내에 매립된 것을 특징으로 하는 투명 전극 구조물.
  6. 플렉서블 기판을 준비하는 단계; 및
    상기 플렉서블 기판의 상부에, 코어 및 상기 코어를 둘러싸는 셀을 갖는 코어셀 구조를 갖는 코어셀 라인들이 서로 교차함으로써 메쉬 형상으로 배열된 코어셀 메쉬 전극을 형성하는 단계를 포함하는 투명 전극 구조물의 형성 방법.
  7. 제6항에 있어서, 상기 코어셀 메쉬 전극을 형성하는 단계는,
    전도성 기판 상에 제1 금속으로 이루어진 메쉬 형상의 코어 금속 패턴을 형성하는 단계;
    상기 예비 금속 패턴에 대하여 무전해 도금 공정을 수행하여, 상기 예비 금속 패턴의 외부 표면을 제2 금속으로 치환함으로써 셀 구조를 갖는 셀 금속 패턴을 형성하는 단계;
    상기 코어 금속 패턴 및 셀 금속 패턴을 갖는 코어셀 금속 패턴을 전사 공정을 통하여 상기 플렉서블 기판 상부에 전사하는 것을 특징으로 하는 것을 특징으로 하는 투명 전극 구조물의 형성 방법.
  8. 제7항에 있어서, 상기 전사 공정은 핫 엠보싱 공정 또는 나노 및 마이크로 패터닝 공정을 수행함으로써, 상기 코어셀 금속 패턴을 상기 플렉서블 기판 내부에 삽입하는 것을 특징으로 하는 투명 전극 구조물의 형성 방법.
  9. 제8항에 있어서, 상기 핫 엠보싱 공정은 상기 플렉서블 기판을 이루는 물질의 유리 전이 온도보다 높은 온도에서 수행되는 것을 특징으로 하는 투명 전극 구조물의 형성 방법.
  10. 제8항에 있어서, 상기 나노 및 마이크로 패터닝 공정은 상기 플렉서블 기판을 이루는 물질 및 경화성 레진을 이용하여 수행되는 것을 특징으로 하는 투명 전극 구조물의 형성 방법.
  11. 제7항에 있어서, 상기 전도성 기판 상에 코어 금속 패턴을 형성하는 단계는,
    베이스 상에 3차원 전도성 패턴을 형성하는 단계;
    상기 3차원 전도성 패턴 상에 리프트 오프층을 형성하는 단계;
    상기 리프트 오프층 상에 상기 3차원 전도성 패턴을 부분적으로 노출시키는 메쉬 패턴을 형성하는 단계; 및
    상기 3차원 전도성 패턴의 노출된 부분에 전기 도금 공정을 통하여 상기 코어 금속 패턴을 형성하는 단계를 포함하는 것을 특징으로 하는 투명 전극 구조물의 형성 방법.
KR1020170084441A 2017-07-03 2017-07-03 투명 전극 구조물의 형성 방법 KR101958094B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170084441A KR101958094B1 (ko) 2017-07-03 2017-07-03 투명 전극 구조물의 형성 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170084441A KR101958094B1 (ko) 2017-07-03 2017-07-03 투명 전극 구조물의 형성 방법

Publications (2)

Publication Number Publication Date
KR20190004174A true KR20190004174A (ko) 2019-01-11
KR101958094B1 KR101958094B1 (ko) 2019-07-04

Family

ID=65028130

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170084441A KR101958094B1 (ko) 2017-07-03 2017-07-03 투명 전극 구조물의 형성 방법

Country Status (1)

Country Link
KR (1) KR101958094B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220157011A (ko) * 2021-05-20 2022-11-29 재단법인 구미전자정보기술원 빠른 열적 응답 특성을 가지는 초박막형 플렉서블 투명 히터 및 그 제조 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070065080A (ko) * 2005-12-19 2007-06-22 삼성전자주식회사 3차원 구조의 발광소자 및 그의 제조방법
KR20140064069A (ko) * 2012-11-19 2014-05-28 엔젯 주식회사 고점도 전도성 나노 잉크 조성물로 이루어진 전극선을 포함하는 투명전극 및 이를 이용한 터치센서, 투명히터 및 전자파 차폐제
KR20150014857A (ko) * 2013-07-30 2015-02-09 주식회사 엘지화학 열 융착 전사를 이용한 유연 매립형 전극 필름의 제조 방법
KR20170064319A (ko) * 2015-12-01 2017-06-09 율촌화학 주식회사 메쉬 구조를 갖는 전극 패턴 및 이의 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070065080A (ko) * 2005-12-19 2007-06-22 삼성전자주식회사 3차원 구조의 발광소자 및 그의 제조방법
KR20140064069A (ko) * 2012-11-19 2014-05-28 엔젯 주식회사 고점도 전도성 나노 잉크 조성물로 이루어진 전극선을 포함하는 투명전극 및 이를 이용한 터치센서, 투명히터 및 전자파 차폐제
KR20150014857A (ko) * 2013-07-30 2015-02-09 주식회사 엘지화학 열 융착 전사를 이용한 유연 매립형 전극 필름의 제조 방법
KR20170064319A (ko) * 2015-12-01 2017-06-09 율촌화학 주식회사 메쉬 구조를 갖는 전극 패턴 및 이의 제조 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220157011A (ko) * 2021-05-20 2022-11-29 재단법인 구미전자정보기술원 빠른 열적 응답 특성을 가지는 초박막형 플렉서블 투명 히터 및 그 제조 방법

Also Published As

Publication number Publication date
KR101958094B1 (ko) 2019-07-04

Similar Documents

Publication Publication Date Title
Lin et al. Facile and efficient patterning method for silver nanowires and its application to stretchable electroluminescent displays
Kim et al. Roll-to-roll slot-die coating of 400 mm wide, flexible, transparent Ag nanowire films for flexible touch screen panels
Liu et al. Large‐area all‐textile pressure sensors for monitoring human motion and physiological signals
Im et al. Flexible transparent conducting hybrid film using a surface-embedded copper nanowire network: A highly oxidation-resistant copper nanowire electrode for flexible optoelectronics
Yin et al. Highly sensitive and transparent strain sensors with an ordered array structure of AgNWs for wearable motion and health monitoring
Yun et al. Hybrid‐filler stretchable conductive composites: from fabrication to application
Ding et al. One-step fabrication of stretchable copper nanowire conductors by a fast photonic sintering technique and its application in wearable devices
Li et al. Fabrication of flexible transparent electrode with enhanced conductivity from hierarchical metal grids
Zhang et al. Stretchable transparent electrodes with solution-processed regular metal mesh for an electroluminescent light-emitting film
Kim et al. Highly stretchable and mechanically stable transparent electrode based on composite of silver nanowires and polyurethane–urea
Xu et al. Printable and recyclable conductive ink based on a liquid metal with excellent surface wettability for flexible electronics
Song et al. Photoenhanced patterning of metal nanowire networks for fabrication of ultraflexible transparent devices
Sohn et al. Silver nanowire networks: Mechano-electric properties and applications
Wang et al. Quasi in situ polymerization to fabricate copper nanowire-based stretchable conductor and its applications
TWI613572B (zh) 電極構件及包含其之觸控面板
Guo et al. Enhancing the scratch resistance by introducing chemical bonding in highly stretchable and transparent electrodes
Kim et al. Silver nanowire networks embedded in urethane acrylate for flexible capacitive touch sensor
Jiang et al. Hyaline and stretchable haptic interfaces based on serpentine-shaped silver nanofiber networks
Kim et al. Biaxial stretchability and transparency of Ag nanowire 2D mass-spring networks prepared by floating compression
Nair et al. Direct writing of silver nanowire-based ink for flexible transparent capacitive touch pad
JP5974147B1 (ja) 配線体アセンブリ、導体層付き構造体、及びタッチセンサ
EP2929544A1 (en) Electrically conductive articles
Araki et al. Stretchable and transparent electrodes based on patterned silver nanowires by laser-induced forward transfer for non-contacted printing techniques
CN105493015B (zh) 电容触摸屏
Huang et al. Patterning of metal nanowire networks: methods and applications

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant