KR20180085839A - Triple cooling system for rapid freezing chamber, freezing chamber and refrigerating chamber - Google Patents

Triple cooling system for rapid freezing chamber, freezing chamber and refrigerating chamber Download PDF

Info

Publication number
KR20180085839A
KR20180085839A KR1020170008990A KR20170008990A KR20180085839A KR 20180085839 A KR20180085839 A KR 20180085839A KR 1020170008990 A KR1020170008990 A KR 1020170008990A KR 20170008990 A KR20170008990 A KR 20170008990A KR 20180085839 A KR20180085839 A KR 20180085839A
Authority
KR
South Korea
Prior art keywords
refrigerant
chamber
evaporator
temperature
freezing
Prior art date
Application number
KR1020170008990A
Other languages
Korean (ko)
Other versions
KR101891993B1 (en
Inventor
박진섭
박상면
Original Assignee
주식회사 신진에너텍
박진섭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 신진에너텍, 박진섭 filed Critical 주식회사 신진에너텍
Priority to KR1020170008990A priority Critical patent/KR101891993B1/en
Priority to US16/479,163 priority patent/US20200116395A1/en
Priority to PCT/KR2018/000716 priority patent/WO2018135826A1/en
Priority to CN201880018733.4A priority patent/CN110662932B/en
Publication of KR20180085839A publication Critical patent/KR20180085839A/en
Application granted granted Critical
Publication of KR101891993B1 publication Critical patent/KR101891993B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/003
    • F25B41/062
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/02Compression machines, plants or systems, with several condenser circuits arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • F25D11/022Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures with two or more evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/006Thermal coupling structure or interface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/12Removing frost by hot-fluid circulating system separate from the refrigerant system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/072Intercoolers therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2507Flow-diverting valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/11Sensor to detect if defrost is necessary
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/30Quick freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature
    • F25D2700/122Sensors measuring the inside temperature of freezer compartments

Abstract

~The present invention relates to a cooling system for a rapid freezing chamber (-40 to -30°C), a freezing chamber (-20 to -15°C), and a refrigerating chamber (0 to 5°C) by using a multi-stage compressor. More specifically, the present invention relates to a cooling system in which refrigerant is compressed in two stages by using a multi-stage compressor with a low stage and a high stage, and then the temperature of the rapid freezing chamber is controlled to be kept within a range of -40°C to -30°C by injecting liquid refrigerant discharged from a condenser into the rapid freezing chamber through an electronic valve so as to vaporize it. Thereafter, the temperature of the freezing chamber is controlled to be kept within a range of -20°C to -15°C by spraying gas refrigerant recovered from the rapid freezing chamber through an electronic valve of the freeing chamber and injecting and vaporizing the liquid refrigerant discharged from the condenser, and the temperature of the refrigerating chamber is controlled to be kept within a range of 0°C to 5°C by spraying gas refrigerant recovered from the freezing chamber through an electronic valve of the refrigerating chamber and injecting and vaporizing the liquid refrigerant discharged from the condenser.

Description

급냉실 냉동실 냉장실의 3단계 냉각 시스템 {Triple cooling system for rapid freezing chamber, freezing chamber and refrigerating chamber}Technical Field [0001] The present invention relates to a three-stage cooling system for a refrigerator,

본 발명은 다단 압축기를 사용하여 -40~-30℃의 급냉실, -20~-15℃의 냉동실 및 0~5℃의 냉장실 등을 냉각시키는 시스템에 관한 것이다. 더욱 상세하게는 저단과 고단의 2단계 압축기를 사용하여 냉매를 2단 압축시킨 후 응축기에서 배출된 냉매액을 전자변을 통해 급냉실에 우선 주입 기화시켜 급냉실의 온도를 -40~-30℃로 급냉시키고, 급냉실에서 회수된 냉매 가스를 냉동실 전자변을 통해 분사하고 응축기로부터 배출된 냉매액을 주입 기화시킴으로써 냉동실의 온도를 -20~-15℃로 냉동시키고, 냉동실에서 회수된 냉매 가스를 냉장실 전자변을 통해 분사하고 응축기로부터 배출된 냉매액을 주입 기화시킴으로써 냉장실의 온도를 0~5℃로 냉장시키는 3단계 냉각 시스템에 관한 것이다.
The present invention relates to a system for cooling a quench chamber of -40 to -30 占 폚, a freezer of -20 to -15 占 폚, and a refrigerator of 0 to 5 占 폚 using a multi-stage compressor. The refrigerant discharged from the condenser is first injected into the quenching chamber through the electronic valve to adjust the temperature of the quenching chamber to -40 to -30 ° C The refrigerant gas recovered in the quenching chamber is injected into the refrigerator compartment by injecting the refrigerant gas recovered in the quench chamber through the electronic compartment of the freezer compartment and injecting the refrigerant discharged from the condenser into the refrigerator compartment to cool the refrigerating compartment to a temperature of -20 to -15 ° C., And cooling the temperature of the refrigerating compartment to 0 to 5 ° C by injecting the refrigerant discharged from the condenser into the refrigerating compartment.

냉각 시스템은 냉매를 순환시키면서 부하에서 열 교환을 통해 정해진 공간을 냉각시키는 장치이다. 본 발명의 3단계 냉각 시스템 역시 냉매의 압축, 응축, 팽창, 증발의 4단계 냉각 공정을 순차적으로 반복하면서 증발기에서 기화열을 부하에서 흡수함으로써 부하를 냉각시키는 시스템이다.
The cooling system is a device that cools a predetermined space through heat exchange in a load while circulating the refrigerant. The three-stage cooling system of the present invention is also a system for cooling the load by absorbing the heat of vaporization from the evaporator while sequentially repeating the four-stage cooling process of compressing, condensing, expanding and evaporating the refrigerant.

압축기는 응축기 내에서 증기 상태의 냉매가 쉽게 응축되도록 증기 상태의 냉매의 압력을 증가시키는 장치이다. 이러한 압축기 작용에 의해 냉매는 응축과 증발 과정을 반복하면서 열을 전달하게 되는 것이다. 통상 압축기의 형태는 실린더 내에서 상하로 움직이는 피스톤을 통해 증기를 압축시키는 형태이다. 압축기에서 압축된 증기 상태의 냉매는 응축기에서 외부 응축 매체로 열을 전달시키고 응축된 액을 수액기를 통해 증발기에서 필요한 냉매액을 공급하게 된다. 따라서 수액기는 응축된 액을 보관하면서 증발기에 냉매액을 일정하게 공급하는 역할을 하게 된다.
The compressor is a device that increases the pressure of the refrigerant in the vapor state so that the refrigerant in the vapor state easily condenses in the condenser. By this action of the compressor, the refrigerant transfers heat while repeating the condensation and evaporation process. Generally, the compressor is a type in which steam is compressed through a piston moving up and down in a cylinder. The refrigerant in the compressed state in the compressor transfers heat from the condenser to the external condensing medium, and supplies the condensed liquid to the evaporator through the receiver. Therefore, the receiver plays a role of supplying the refrigerant liquid to the evaporator while keeping the condensed liquid constantly.

증발기에서 응축된 냉매를 -30℃ 이하의 저온에서 증발시키려면 증발 압력이 매우 낮게 되어 1단계의 압축기로는 증발 압력에서 응축 압력까지 냉매를 압축하는 것은 현실적으로 어렵게 된다. 이때 압축기를 다수 사용하여 2단 또는 3단의 단계적 압축을 행하게 되면 응축 압력까지 압력을 높이고 증발 압력까지 압력을 낮추는 것이 가능하게 된다.
In order to evaporate the refrigerant condensed in the evaporator at a low temperature of -30 ° C or lower, the evaporation pressure becomes very low, and as a first stage compressor, it becomes practically difficult to compress the refrigerant from the evaporation pressure to the condensation pressure. At this time, if a two or three stage stepwise compression is performed by using a large number of compressors, it becomes possible to increase the pressure to the condensing pressure and lower the pressure to the evaporation pressure.

이러한 다단 압축의 공정을 2단 압축 경우를 통해 살펴보면 1단 압축기에서 증기 상태의 냉매를 중간 압력까지 압축시킨 후 압축된 냉매를 중간 냉각기(Inter-cooler)에 주입하여 중간 압력에 상응하는 포화 온도로 냉각시킨 후 냉각된 냉매를 다시 2단 압축기에 흡입 압축시켜 고온 고압의 증기 상태 냉매를 생성시켜 응축기로 이송시키는 것이다.
In the case of the two-stage compression process, the refrigerant in the vapor state is compressed to the intermediate pressure in the first-stage compressor, and the compressed refrigerant is injected into the intercooler to obtain the saturated temperature corresponding to the intermediate pressure After cooling, the cooled refrigerant is again sucked into a two-stage compressor to generate a high-temperature, high-pressure vapor-state refrigerant and transfer it to the condenser.

급냉 동결실과 냉동 보관실 내부에 유니트쿨러를 설치하여 복분자 등의 냉동 제품을 급냉 및 냉동 보관하는 장치는 본 발명자에 의해 대한민국 공개특허 제10-2006-5303호 '복분자 급냉 및 냉동 보관 장치'를 통해 개시된 바 있다.
An apparatus for rapidly cooling and freezing frozen products such as bokbunja by installing a unit cooler in a quench-freezing chamber and a freezing chamber is disclosed in Korean Patent Laid-Open No. 10-2006-5303 entitled " There is a bar.

상기 특허문헌에 개시된 기술 사항을 살펴보면 '급냉 동결실과 냉동 보관실 내부에 유니트쿨러를 설치하여 복분자를 급냉 및 냉동 보관하는 장치에 관한 것으로, 더욱 상세하게는 냉매를 다수의 압축기의 일부 또는 전부를 이용하여 압축시킨 후, 공랭식 응축기에서 응축시키고 고압 수액기를 통과시킨 후, 판형 중간 냉각기에서 냉각시키고 냉매 일부는 압축기로 재순환시킨 후, 냉동 보관실용 유니트쿨러와 급냉 동결실용 유니트쿨러에서 냉매를 증발시켜 급냉 동결실의 온도를 -40∼-20℃로 급냉시키고, 냉동 보관실의 온도를 -15∼5℃로 냉동시킨 후, 증발된 냉매를 액 분리기에서 회수하여 상기 압축기로 순환시키는 복분자 급냉 및 냉동 보관 장치'가 개시되어 있는 것이다.
The present invention relates to an apparatus for rapidly cooling and freezing brambles by installing a unit cooler in a quiescent freezing chamber and a freezing chamber. More particularly, the present invention relates to a device for cooling and freezing brambles using a part or all of a plurality of compressors The refrigerant is condensed in an air-cooled condenser, passed through a high-pressure receiver, cooled in a plate-type intercooler, and a part of the refrigerant is recirculated to a compressor. Then, the refrigerant is evaporated in a unit cooler for a freezing storage room and a unit cooler for a quench- Quenching the temperature of the refrigerator to -40 to -20 ° C, freezing the temperature of the refrigerator to -15 to 5 ° C, recovering the evaporated refrigerant in the liquid separator, and circulating the refrigerant to the compressor ' .

상기 특허문헌에서는 -40~-20℃의 급냉 동결실과 -15~5℃의 냉동 보관실을 급냉 냉동시키는 냉각 시스템이 개시되어 있다. 그러나 상기 특허문헌에서는 -40℃ 내외의 급냉 동결실을 냉각시키기 위한 다단계 압축 공정과 이에 따른 냉매의 순환만을 개시하고 있을 뿐, 본 발명과 같이 -40~-30℃의 급냉실, -20~-15℃의 냉동실 및 0~5℃의 냉장실 등을 순차적으로 냉각시키는 3단계 냉각 시스템에 대해서는 개시하지 않았으며 냉매의 열 전달 흡수 방출 등의 열 효율을 극대화시킬 수 있는 냉매의 공급 순환 회수 공정에 대해서도 전혀 개시하지 않았다.
In this patent document, a cooling system for rapidly cooling and freezing a quench-freezing chamber of -40 to -20 ° C and a freezing chamber of -15 to 5 ° C is disclosed. However, in the patent document, only a multi-stage compression process for cooling a quench-freezing room of about -40 ° C and a circulation of the refrigerant are only started, and the quenching chamber of -40 to -30 ° C, The three-stage cooling system in which the freezing chamber of 15 ° C and the refrigerating chamber of 0 to 5 ° C are successively cooled is not disclosed and the circulation recovery process of the refrigerant which can maximize the heat efficiency such as heat transfer, It did not start at all.

이에 본 발명자들은 본 발명자의 이전 특허발명의 -40~-20℃의 급냉 동결실과 -15~5℃의 냉동 보관실을 -40~-30℃의 급냉실, -20~-15℃의 냉동실 및 0~5℃의 냉장실로 세분화시킨 후 이에 따른 최적의 냉매 공급 순환 회수 시스템을 개발하기 위해 지속적으로 노력하여 왔다.
Thus, the inventors of the present invention have found that a quench storage room of -40 to -20 ° C and a freezing storage room of -15 to 5 ° C of the present invention of the present inventor are cooled in a quench room of -40 to -30 ° C, To 5 ° C and then to develop an optimum refrigerant supply circulation recovery system.

이에 따라 저단과 고단의 2단계 압축기를 사용하여 냉매를 2단 압축 응축시켜 배출된 냉매액을 전자변을 통해 급냉실에 우선 주입시킨 후 급냉실 팽창변을 통해 -40℃ 이하의 초저온에서 급냉실 증발기에서 기화시킴으로써 급냉실의 온도를 -40~-30℃로 급냉시키고, 급냉실에서 회수된 냉매 가스를 전자변을 통해 분사하고 응축기로부터 배출된 냉매액을 전자변을 통해 냉동실 증발기에 주입 기화시킴으로써 냉동실의 온도를 -20~-15℃로 냉동시키고, 냉동실에서 회수된 냉매 가스를 전자변을 통해 분사하고 응축기로부터 배출된 냉매액을 전자변을 통해 냉장실 증발기에 주입 기화시킴으로써 냉장실의 온도를 0~5℃로 냉장시키는 3단계 냉각 시스템을 개발함으로써 본 발명을 완성하게 된 것이다.
Therefore, the refrigerant is compressed and condensed in a two-stage compressor using low-stage and high-stage compressors, and then the discharged refrigerant liquid is first injected into the quenching chamber through the electromagnetic valve. The refrigerant is then passed through the quenching chamber at a cryogenic temperature of- The temperature of the quench chamber is rapidly quenched to -40 to -30 ° C by vaporization, the recovered refrigerant gas in the quench chamber is injected through an electromagnetic valve, and the refrigerant discharged from the condenser is injected into the freezer evaporator through an electromagnetic valve to heat the freezer chamber Refrigerating the refrigerated gas recovered in the freezing chamber through the electromagnetic valve and injecting the refrigerant discharged from the condenser into the evaporator through the electronic valve to refrigerate the refrigerating chamber at a temperature of 0 to 5 ° C Step cooling system, thereby completing the present invention.

본 발명이 해결하고자 하는 과제는 종래의 -40~-20℃의 급냉 동결실과 -15~5℃의 냉동 보관실을 -40~-30℃의 급냉실, -20~-15℃의 냉동실 및 0~5℃의 냉장실로 세분화시킨 후 이에 따른 최적의 냉매 공급 순환 회수 시스템을 개발코자 한 것이다.
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to provide a quench-freezing chamber of -40 to -20 占 폚 and a freezing chamber of -15 to 5 占 폚 at a temperature of -40 to -30 占 폚, 5 ° C refrigerating chamber, and to develop an optimal refrigerant supply circulation recovery system accordingly.

이에 따라 저단과 고단의 2단계 압축기를 사용하여 냉매를 2단 압축 응축시켜 배출된 냉매액을 전자변을 통해 급냉실 증발기에 우선 주입시킨 후 급냉실 팽창변을 통해 -40℃ 이하의 초저온에서 급냉실 증발기에서 기화시킴으로써 급냉실의 온도를 -40~-30℃로 급냉시키고, 급냉실에서 회수된 냉매 가스를 전자변을 통해 분사하고 응축기로부터 배출된 냉매액을 전자변을 통해 냉동실 증발기에 주입 기화시킴으로써 냉동실의 온도를 -20~-15℃로 냉동시키고, 냉동실에서 회수된 냉매 가스를 전자변을 통해 분사하고 응축기로부터 배출된 냉매액을 전자변을 통해 냉장실 증발기에 주입 기화시킴으로써 냉장실의 온도를 0~5℃로 냉장시키는 3단계 냉각 시스템을 개발코자 한 것이다.
Therefore, the refrigerant is compressed and condensed in two stages by using a low-stage and high-stage two-stage compressor, and the discharged refrigerant liquid is first injected into the evaporator of the quenching chamber through the electronic valve. The refrigerant is evaporated at an ultra- The temperature of the quench chamber is rapidly quenched to -40 to -30 占 폚, the recovered refrigerant gas in the quench chamber is injected through the electromagnetic valve, and the refrigerant discharged from the condenser is injected into the freezer chamber evaporator through the electromagnetic valve, Is cooled to -20 to -15 DEG C, the refrigerant gas recovered in the freezing chamber is injected through the electromagnetic valve, and the refrigerant discharged from the condenser is injected into the evaporator through the electromagnetic valve to cool the refrigerating chamber to 0-5 DEG C We wanted to develop a three-stage cooling system.

본 발명의 목적은 다단 압축기를 사용한 -40~-30℃의 급냉실, -20~-15℃의 냉동실 및 0~5℃의 냉장실의 3단계 냉각 시스템에 있어서, 상기 3단계 냉각은 ⅰ) 저단과 고단의 2단계 압축기를 사용하여 냉매를 2단 압축, 응축시켜 배출된 저온의 냉매액을 전자변(S3)을 통해 급냉실에 우선 주입시킨 후 급냉실 팽창변을 통해 -40℃ 이하의 초저온에서 급냉실 증발기에서 기화시킴으로써 급냉실의 온도를 -40~-30℃로 급냉시키는 단계; ⅱ) 급냉실에서 회수된 냉매 가스를 전자변(V1)을 폐쇄시킨 후 전자변(R1)을 통해 분사하고 냉동실의 온도가 -20℃가 되도록 응축기로부터 배출된 저온의 냉매액을 전자변(S2) 및 팽창변을 통해 냉동실 증발기에 주입시켜 냉동실 증발기에서 기화시킴으로써 냉동실의 온도를 -20~-15℃로 냉동시키는 단계; 및 ⅲ) 냉동실에서 회수된 냉매 가스를 전자변(V2)을 폐쇄시킨 후 전자변(R2)을 통해 분사하고 냉장실의 온도가 0℃가 되도록 응축기로부터 배출된 저온의 냉매액을 전자변(S1) 및 팽창변을 통해 냉장실에 주입시켜 냉장실 증발기에서 기화시킴으로써 냉장실의 온도를 0~5℃로 냉장시키는 단계;로 이루어진 3단계 냉각임을 특징으로 하는 냉각 시스템을 제공하는 것이다.
The object of the present invention is to provide a three-stage cooling system comprising a quenching chamber of -40 to -30 占 폚 using a multistage compressor, a freezer chamber of -20 to -15 占 폚 and a refrigerating chamber of 0 to 5 占 폚, And a high-stage two-stage compressor, the refrigerant discharged from the low-temperature refrigerant is first injected into the quenching chamber through the valve S3 and then quenched at an ultra-low temperature of -40 ° C or below through the quenching chamber Quenching the temperature of the quench chamber to -40 to -30 占 폚 by vaporizing it in a gas evaporator; Ii) The refrigerant gas recovered in the quench chamber is injected through the electromagnetic valve R1 after closing the electromagnetic valve V1, and the refrigerant liquid at low temperature discharged from the condenser is cooled to a temperature of -20 ° C. Cooling the freezing chamber to a temperature of -20 to -15 ° C by vaporizing it in the freezing chamber evaporator by injecting it into the freezing chamber evaporator through the freezing chamber evaporator; And iii) the refrigerant gas recovered in the freezing chamber is injected through the electromagnetic valve R2 after closing the valve V2, and the low-temperature refrigerant discharged from the condenser is discharged from the condenser through the valve S1 and the expansion valve And cooling the temperature of the refrigerating compartment to 0 to 5 ° C by vaporizing the refrigerating compartment through a refrigerating compartment evaporator.

이때 상기 냉각 시스템은 ⅰ) 저단 압축기에서 증기 상태의 냉매를 중간 압력까지 압축시킨 후 압축된 냉매를 중간 냉각기(Inter-cooler)에 주입하여 중간 압력에 상응하는 포화 온도로 냉각시킨 후 냉각된 냉매를 다시 고단 압축기에 흡입 압축시켜 고온 고압의 증기 상태 냉매를 생성시키는 2단계 압축기; ⅱ) 압축기에서 생성된 고온 고압의 증기상 냉매를 액상의 냉매액으로 응축시키는 응축기; ⅲ) 응축기로부터 배출된 냉매액을 전자변, 팽창변으로 공급받아 기화 증발시켜 급냉시키는 급냉실 증발기; ⅳ) 응축기로부터 배출된 냉매액과 급냉실에서 회수된 냉매 가스를 공급받아 기화 증발시키는 냉동실 증발기; 및 ⅴ) 응축기로부터 배출된 냉매액과 냉동실에서 회수된 가스를 공급받아 기화 증발시키는 냉장실 증발기;로 이루어져 있음을 특징으로 한다.
Wherein the cooling system comprises: i) compressing the refrigerant in a vapor state to an intermediate pressure in a low-stage compressor, then injecting the compressed refrigerant into an intercooler, cooling the refrigerant to a saturation temperature corresponding to the intermediate pressure, A two-stage compressor for generating high-temperature, high-pressure vapor-state refrigerant by sucking and compressing the high-pressure compressor; Ii) a condenser for condensing the vapor-phase refrigerant of high temperature and high pressure produced in the compressor into a liquid refrigerant liquid; Iii) a quench chamber evaporator which is supplied with the refrigerant discharged from the condenser as an electromagnetic valve and an expansion valve, and vaporizes and evaporates to quench; Iv) a freezing compartment evaporator for evaporating the refrigerant discharged from the condenser and the refrigerant gas recovered in the quenching chamber to evaporate; And v) a refrigerating chamber evaporator which is supplied with the refrigerant discharged from the condenser and the gas recovered from the freezing chamber to evaporate and evaporate.

또한 상기 냉각 시스템 내의 3단계 냉각은 ⅰ) 2단 압축 응축시켜 배출된 저온의 냉매액을 전자변(a, b)을 통과시킨 후 급냉실 팽창변(1)으로 냉매액을 팽창시켜 -25℃까지 급냉시키고 다시 급냉실 팽창변(2)으로 초저온 상태에서 냉매액을 팽창시켜 -40℃ 이하로 급냉실 증발기에서 기화시킴으로써 급냉실의 온도를 -40~-30℃로 급냉시키는 단계; ⅱ) 급냉실에서 회수된 냉매 가스를 냉동실 냉매 가스 공급 전자변(7)을 통해 분사하고 냉동실의 온도가 -20℃가 되도록 응축기로부터 배출된 저온의 냉매액을 전자변(c, d)을 통해 냉동실 팽창변(4)으로 냉매액을 팽창시켜 냉동실 증발기에 주입시켜 냉동실 증발기에서 기화시킴으로써 냉동실의 온도를 -20~-15℃로 냉동시키는 단계; 및 ⅲ) 냉동실에서 회수된 냉매 가스를 냉장실 냉매 가스 공급 전자변(8)을 통해 분사하고 냉장실의 온도가 0℃가 되도록 응축기로부터 배출된 저온의 냉매액을 전자변(e, f)을 통해 냉장실 팽창변(6)으로 냉매액을 팽창시켜 냉장실 증발기에 주입시켜 냉장실 증발기에서 기화시킴으로써 냉장실의 온도를 0~5℃로 냉장시키는 단계; 로 이루어진 3단계 냉각임을 특징으로 한다.
Also, the three-stage cooling in the cooling system is performed by: i) passing the low-temperature refrigerant discharged through the two-stage compression and condensation through the electronic valves (a and b), then expanding the refrigerant liquid into the quenching chamber expansion- Cooling the quench chamber to the quenching temperature (-40 to -30 占 폚) by expanding the refrigerant at the ultra-low temperature state to the quenching temperature (2) of the quenching chamber and vaporizing the quench in the quenching room evaporator at -40 占 폚 or lower; (Ii) The refrigerant gas recovered in the quench chamber is injected through the freezing chamber refrigerant gas supply electromagnetic valve (7), and the low temperature refrigerant liquid discharged from the condenser is cooled to the freezing chamber expansion side Expanding the refrigerant liquid into the freezing compartment evaporator (4) and injecting the refrigerant into the freezing compartment evaporator, and evaporating the refrigerant in the freezing compartment evaporator, thereby freezing the temperature of the freezing compartment to -20 to -15 ° C; And iii) injecting the refrigerant gas recovered in the freezer compartment through the refrigerant gas supply electronic side (8) of the refrigerator compartment and supplying the low-temperature refrigerant discharged from the condenser to the refrigerating compartment expansion valve 6) to cool the refrigerating compartment to a temperature of 0 to 5 DEG C by introducing the refrigerant into the evaporator of the refrigerating compartment and vaporizing the refrigerant in the evaporating compartment; And a second cooling step of cooling the third cooling step.

한편 상기 단계 ⅱ)에서 급냉실에서 회수된 냉매 가스의 온도가 -20℃보다 높아지면 전자변(c)과 냉동실 냉매액 분사 수동 밸브(3)를 개방하여 냉매액을 냉동실에 분사시키고, 상기 단계 ⅲ)에서 냉동실에서 회수된 냉매 가스의 온도가 0℃보다 높아지면 전자변(e)과 냉장실 냉매액 분사 수동 밸브(5)를 개방하여 냉매액을 냉장실에 분사시킴을 특징으로 한다.
Meanwhile, when the temperature of the refrigerant gas recovered in the quenching chamber is higher than -20 ° C in the step (ii), the refrigerant liquid is injected into the freezing chamber by opening the electromagnetic valve (c) and the freezing chamber refrigerant liquid injection valve 3, ), When the temperature of the refrigerant gas recovered in the freezing chamber becomes higher than 0 ° C, the electronic valve (e) and the refrigerant chamber liquid injection valve 5 are opened to inject the refrigerant liquid into the refrigerating chamber.

한편 상기 냉각 시스템은 제어판을 중심으로 급냉실, 냉동실, 냉장실의 증발기 외부에 생성된 성에를 제거하기 위한 성에 제거 운전을 수행하기 위해 급냉실, 냉동실, 냉장실의 증발기의 작동을 일시 정지시키고 증발기 주변에 설치된 브라인 공급관에 30~40℃의 브라인을 공급시켜 증발기 외부에 생성된 성에를 녹여 제거할 수 있는 제상 장치를 더욱 포함함을 특징으로 한다.
Meanwhile, the cooling system pauses the operation of the evaporator of the quenching chamber, the freezing chamber, and the refrigerating chamber to perform the defrosting operation for removing the generated gas outside the evaporator of the rapid cooling chamber, the freezing chamber, and the refrigerating chamber, And a defrosting device capable of melting brine generated outside the evaporator by supplying a brine at 30 to 40 ° C to the brine supply pipe installed therein.

본 발명의 효과는 종래의 -40~-20℃의 급냉 동결실과 -15~5℃의 냉동 보관실을 -40~-30℃의 급냉실, -20~-15℃의 냉동실 및 0~5℃의 냉장실로 세분화시킨 후 이에 따른 최적의 냉매 공급 순환 회수 시스템을 제공하는 것이다.
The effect of the present invention can be attained by placing the conventional quench-freezing chamber of -40 to -20 ° C and the freezing chamber of -15 to 5 ° C in a quenching chamber of -40 to -30 ° C, a freezing chamber of -20 to -15 ° C, And a refrigerant circulation recovery system according to the present invention.

또한 본 발명의 효과는 저단과 고단의 2단계 압축기를 사용하여 냉매를 2단 압축 응축시켜 배출된 냉매액을 전자변을 통해 급냉실 증발기에 우선 주입시킨 후 급냉실 팽창변을 통해 -40℃ 이하의 초저온에서 급냉실 증발기에서 기화시킴으로써 급냉실의 온도를 -40~-30℃로 급냉시키고, 급냉실에서 회수된 냉매 가스를 전자변을 통해 분사하고 응축기로부터 배출된 냉매액을 전자변을 통해 냉동실 증발기에 주입 기화시킴으로써 냉동실의 온도를 -20~-15℃로 냉동시키고, 냉동실에서 회수된 냉매 가스를 전자변을 통해 분사하고 응축기로부터 배출된 냉매액을 전자변을 통해 냉장실 증발기에 주입 기화시킴으로써 냉장실의 온도를 0~5℃로 냉장시키는 3단계 냉각 시스템을 제공하는 것이다.
Further, the effect of the present invention is that the refrigerant is compressed and condensed in two stages by using a low-stage and high-stage two-stage compressor, and the discharged refrigerant liquid is first injected into the evaporator of the quench room through the electromagnetic valve, The temperature of the quench chamber is quenched to -40 to -30 占 폚 by vaporizing in the quench chamber evaporator, the refrigerant gas recovered in the quench chamber is injected through the electromagnetic valve, the refrigerant discharged from the condenser is injected into the freezer evaporator through the electromagnetic valve The temperature of the freezing compartment is frozen to -20 to -15 ° C, the refrigerant gas recovered in the freezing compartment is injected through the electromagnetic valve, and the refrigerant discharged from the condenser is injected into the evaporator through the electronic compartment, Lt; 0 > C.

도 1은 본 발명의 다단 압축기를 사용한 급냉실 냉동실 냉장실의 냉각 시스템의 전체 구성의 개략도이다.
도 2는 본 발명의 다단 압축기를 사용한 급냉실 냉동실 냉장실의 냉각 시스템 내의 다단 압축을 설명하기 위한 개략도이다.
도 2에 나타난 바와 같이 본 발명에서는 저단 압축기에서 증기 상태의 냉매를 중간 압력까지 압축시킨 후 압축된 냉매를 중간 냉각기에 주입하여 중간 압력에 상응하는 포화 온도로 냉각시킨 후 냉각된 냉매를 다시 고단 압축기에 흡입 압축시켜 고온 고압의 증기 상태 냉매를 생성시키는 2단계 압축기를 사용한다.
도 3은 본 발명의 다단 압축기를 사용한 급냉실 냉동실 냉장실의 냉각 시스템 내의 급냉실 냉동실 냉장실의 냉매 공급 순환 회수 경로를 나타내는 개략도이다.
도 3에 나타난 바와 같이 본 발명의 3단계 냉각은 급냉실의 경우 2단 압축 응축시켜 배출된 저온의 냉매액을 전자변(a, b)을 통과시킨 후 급냉실 팽창변(1)으로 냉매액을 팽창시켜 -25℃까지 급냉시키고 다시 급냉실 팽창변(2)으로 초저온 상태에서 냉매액을 팽창시켜 -40℃ 이하로 급냉실 증발기에서 기화시킴으로써 급냉실의 온도를 -40~-30℃로 급냉시킨다.
또한 냉동실의 경우 급냉실에서 회수된 냉매 가스를 냉동실 냉매 가스 공급 전자변(7)을 통해 분사하고 응축기로부터 배출된 저온의 냉매액을 전자변(c, d)을 통해 냉동실 팽창변(4)으로 냉매액을 팽창시켜 냉동실 증발기에 주입시켜 냉동실 증발기에서 기화시킴으로써 냉동실의 온도를 -20~-15℃로 냉동시킨다.
한편 냉장실의 경우 냉동실에서 회수된 냉매 가스를 냉장실 냉매 가스 공급 전자변(8)을 통해 분사하고 응축기로부터 배출된 저온의 냉매액을 전자변(e, f)을 통해 냉장실 팽창변(6)으로 냉매액을 팽창시켜 냉장실 증발기에 주입시켜 냉장실 증발기에서 기화시킴으로써 냉장실의 온도를 0~5℃로 냉장시킨다.
도 4는 본 발명의 급냉실 유니트쿨러(증발기), 냉동실 유니트쿨러(증발기) 및 냉장실 유니트쿨러(증발기)의 냉매 공급 순환 회수 경로를 나타내는 모식도이다. 액관(공통)을 통해 응축기로부터 배출된 저온의 냉매액이 급냉실, 냉동실, 냉장실에 순차적으로 공급된다. 한편 급냉실에서 회수된 냉매 가스는 전자변(V1)을 폐쇄시킨 후 냉동실로 주입되고 냉동실에서 회수된 냉매 가스는 전자변(V2)을 폐쇄시킨 후 냉장실로 주입된다. 이때 사용되는 밸브는 통상 전자변이나 필요에 따라 수동 제어 밸브를 사용하는 경우도 있다.
도 5a는 본 발명의 다단 압축기를 사용한 급냉실 냉동실 냉장실의 냉각 시스템의 정상 운전시 제어판 기능과 제상장치 기능을 나타낸 것이다. 냉각 시스템 내의 성에 감지 센서 등 각종 센서를 통해 증발기 외부에 성에 발생 여부를 감지하고 성에가 발생하지 않은 경우 정상 운전을 통해 증발기를 정상 작동시켜 급냉실 냉동실 냉장실을 냉각시킨다.
도 5b는 본 발명의 다단 압축기를 사용한 급냉실 냉동실 냉장실의 냉각 시스템의 성에 제거 운전시 제어판 기능과 제상장치 기능을 나타낸 것이다. 냉각 시스템 내의 성에 감지 센서 등 각종 센서를 통해 증발기 외부에 성에 발생 여부를 감지하고 성에가 발생한 경우 증발기 작동을 일시 중단시키고 인라인 히터 작동에 의해 브라인을 가온시킨 후 브라인을 순환 작동시켜 증발기 외부의 성에를 녹여 제거하는 것이다.
1 is a schematic view of the overall configuration of a cooling system of a quench room refrigerator compartment using a multi-stage compressor of the present invention.
Fig. 2 is a schematic view for explaining multi-stage compression in a cooling system of a refrigeration room of a quench-freezer freezer compartment using the multi-stage compressor of the present invention.
As shown in FIG. 2, in the present invention, the refrigerant in the vapor state is compressed to the intermediate pressure in the low-stage compressor, the compressed refrigerant is injected into the intermediate cooler, cooled to the saturation temperature corresponding to the intermediate pressure, To generate a high-temperature, high-pressure vapor-state refrigerant.
3 is a schematic view showing a refrigerant supply circulation recovery path in a quenching room freezing room refrigerating chamber in a cooling system of a quenching room freezing room refrigerating chamber using the multi-stage compressor of the present invention.
As shown in FIG. 3, in the case of the quenching chamber of the present invention, the refrigerant in the quench chamber is subjected to two-stage compression condensation to pass the discharged low-temperature refrigerant through the electromagnetic valves a and b, The temperature of the quench chamber is rapidly cooled to -40 to -30 ° C by evaporating the refrigerant in the quench chamber to a temperature of -25 ° C and expanding the refrigerant to the quench temperature of the quench room (2) at a very low temperature.
In the case of the freezer compartment, the refrigerant gas recovered in the quench chamber is injected through the refrigerant gas supply valve 7 of the freezer compartment, and the low-temperature refrigerant discharged from the condenser is discharged to the freezing compartment expansion valve 4 through the electromagnetic valves c and d And then the refrigerant is evaporated in the freezer evaporator, and the temperature of the freezer is frozen to -20 to -15 ° C.
On the other hand, in the case of the refrigerating compartment, the refrigerant gas recovered in the freezing compartment is injected through the refrigerator compartment refrigerant gas supply side electronic valve 8 and the low-temperature refrigerant liquid discharged from the condenser is expanded through the electronic valves e and f to the refrigerating compartment expansion valve 6 And the mixture is injected into the evaporator of the refrigerator compartment and is vaporized in the evaporator of the refrigerator compartment to cool the temperature of the refrigerator compartment to 0 to 5 ° C.
FIG. 4 is a schematic view showing a circulation recovery path for refrigerant supply of a quench chamber unit cooler (evaporator), a freezer compartment unit cooler (evaporator), and a refrigerator compartment unit cooler (evaporator) according to the present invention. The low-temperature refrigerant liquid discharged from the condenser through the liquid pipe (common) is sequentially supplied to the quenching chamber, the freezing chamber, and the refrigerating chamber. On the other hand, the refrigerant gas recovered in the quench chamber is injected into the freezing chamber after closing the electromagnetic valve V1, and the refrigerant gas recovered in the freezing chamber is injected into the refrigerating chamber after closing the electromagnetic valve V2. The valve used at this time is usually an electronic valve or a manual control valve may be used if necessary.
FIG. 5A shows a control panel function and a defrosting device function during normal operation of the cooling system of the refrigeration room of the rapid cooling room freezing room using the multi-stage compressor of the present invention. It detects whether the outside of the evaporator is blown out through various sensors such as a temperature sensing sensor in the cooling system, and operates the evaporator normally through normal operation to cool the refrigerator room.
FIG. 5B shows a control panel function and a defrosting device function in the defrosting operation of the cooling system of the refrigerator of the rapid cooling room freezing room using the multi-stage compressor of the present invention. The system detects the occurrence of gauging on the outside of the evaporator through various sensors such as the gauging sensor in the cooling system, suspends the operation of the evaporator in case of sexual intercourse, warms the brine by the operation of the inline heater and circulates the brine, It is dissolved and removed.

본 발명은 다단 압축기를 사용한 -40~-30℃의 급냉실, -20~-15℃의 냉동실 및 0~5℃의 냉장실의 3단계 냉각 시스템에 있어서, 상기 3단계 냉각은 ⅰ) 저단과 고단의 2단계 압축기를 사용하여 냉매를 2단 압축, 응축시켜 배출된 저온의 냉매액을 전자변(S3)을 통해 급냉실에 우선 주입시킨 후 급냉실 팽창변을 통해 -40℃ 이하의 초저온에서 급냉실 증발기에서 기화시킴으로써 급냉실의 온도를 -40~-30℃로 급냉시키는 단계; ⅱ) 급냉실에서 회수된 냉매 가스를 전자변(V1)을 폐쇄시킨 후 전자변(R1)을 통해 분사하고 냉동실의 온도가 -20℃가 되도록 응축기로부터 배출된 저온의 냉매액을 전자변(S2) 및 팽창변을 통해 냉동실 증발기에 주입시켜 냉동실 증발기에서 기화시킴으로써 냉동실의 온도를 -20~-15℃로 냉동시키는 단계; 및 ⅲ) 냉동실에서 회수된 냉매 가스를 전자변(V2)을 폐쇄시킨 후 전자변(R2)을 통해 분사하고 냉장실의 온도가 0℃가 되도록 응축기로부터 배출된 저온의 냉매액을 전자변(S1) 및 팽창변을 통해 냉장실에 주입시켜 냉장실 증발기에서 기화시킴으로써 냉장실의 온도를 0~5℃로 냉장시키는 단계;로 이루어진 3단계 냉각임을 특징으로 하는 냉각 시스템에 관한 것이다.
The present invention relates to a three-stage cooling system comprising a quenching chamber of -40 to -30 占 폚 using a multistage compressor, a freezing chamber of -20 to -15 占 폚 and a refrigerating chamber of 0 to 5 占 폚, The refrigerant is compressed and condensed in two stages by using a two-stage compressor, and the discharged low-temperature refrigerant liquid is first injected into the quench chamber through the valve S3. Then, the quench chamber evaporator Thereby rapidly quenching the temperature of the quench chamber to -40 to -30 占 폚; Ii) The refrigerant gas recovered in the quench chamber is injected through the electromagnetic valve R1 after closing the electromagnetic valve V1, and the refrigerant liquid at low temperature discharged from the condenser is cooled to a temperature of -20 ° C. Cooling the freezing chamber to a temperature of -20 to -15 ° C by vaporizing it in the freezing chamber evaporator by injecting it into the freezing chamber evaporator through the freezing chamber evaporator; And iii) the refrigerant gas recovered in the freezing chamber is injected through the electromagnetic valve R2 after closing the valve V2, and the low-temperature refrigerant discharged from the condenser is discharged from the condenser through the valve S1 and the expansion valve And cooling the temperature of the refrigerating compartment to 0 to 5 DEG C by vaporizing the refrigerating compartment through a refrigerating compartment evaporator.

또한 본 발명의 냉각 시스템은 ⅰ) 저단 압축기에서 증기 상태의 냉매를 중간 압력까지 압축시킨 후 압축된 냉매를 중간 냉각기(Inter-cooler)에 주입하여 중간 압력에 상응하는 포화 온도로 냉각시킨 후 냉각된 냉매를 다시 고단 압축기에 흡입 압축시켜 고온 고압의 증기 상태 냉매를 생성시키는 2단계 압축기; ⅱ) 압축기에서 생성된 고온 고압의 증기상 냉매를 액상의 냉매액으로 응축시키는 응축기; ⅲ) 응축기로부터 배출된 냉매액을 전자변, 팽창변으로 공급받아 기화 증발시켜 급냉시키는 급냉실 증발기; ⅳ) 응축기로부터 배출된 냉매액과 급냉실에서 회수된 냉매 가스를 공급받아 기화 증발시키는 냉동실 증발기; 및 ⅴ) 응축기로부터 배출된 냉매액과 냉동실에서 회수된 가스를 공급받아 기화 증발시키는 냉장실 증발기;로 이루어져 있다.
Further, the cooling system of the present invention comprises the steps of: i) compressing a refrigerant in a vapor state to an intermediate pressure in a low-stage compressor, then injecting the compressed refrigerant into an intercooler, cooling the refrigerant to a saturation temperature corresponding to an intermediate pressure, A two-stage compressor for sucking and compressing the refrigerant into the high-stage compressor to generate high-temperature, high-pressure vapor-state refrigerant; Ii) a condenser for condensing the vapor-phase refrigerant of high temperature and high pressure produced in the compressor into a liquid refrigerant liquid; Iii) a quench chamber evaporator which is supplied with the refrigerant discharged from the condenser as an electromagnetic valve and an expansion valve, and vaporizes and evaporates to quench; Iv) a freezing compartment evaporator for evaporating the refrigerant discharged from the condenser and the refrigerant gas recovered in the quenching chamber to evaporate; And v) a refrigerating chamber evaporator which is supplied with the refrigerant discharged from the condenser and the gas recovered from the freezing chamber to vaporize and evaporate.

이하 본 발명을 첨부한 도면을 통해 더욱 상세히 설명한다.
Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

도 1은 본 발명의 다단 압축기를 사용한 급냉실 냉동실 냉장실의 냉각 시스템의 전체 구성의 개략도이다.
1 is a schematic view of the overall configuration of a cooling system of a quench room refrigerator compartment using a multi-stage compressor of the present invention.

도 1에 나타난 바와 같이 본 발명에 사용되는 압축기는 응축기 내에서 증기 상태의 냉매가 쉽게 응축되도록 증기 상태의 냉매의 압력을 증가시키는 장치이다. 본 발명의 경우 저단 고단의 2단계 압축기를 사용한다. 이렇게 압축된 증기 상태의 냉매는 응축기에서 외부 응축 매체로 열을 전달시키고 응축된 액을 수액기를 통해 증발기에서 필요한 냉매액을 공급하게 된다. 따라서 수액기는 응축된 액을 보관하면서 증발기에 냉매액을 일정하게 공급하는 역할을 하게 된다.
As shown in FIG. 1, the compressor used in the present invention is a device for increasing the pressure of the refrigerant in the vapor state so that the refrigerant in the vapor state can be easily condensed in the condenser. In the case of the present invention, a two-stage low-stage compressor is used. The refrigerant in the condensed vapor state transfers heat from the condenser to the external condensing medium, and supplies the condensed liquid to the evaporator through the receiver. Therefore, the receiver plays a role of supplying the refrigerant liquid to the evaporator while keeping the condensed liquid constantly.

수액기를 통과한 냉매액은 급냉실, 냉동실, 냉장실에 공급되고 급냉실 증발기, 냉동실 증발기, 냉장실 증발기에서 주위의 열을 흡수하여 증발시켜 주위를 냉각시킨 후 회수된 증기상의 냉매가 기액 분리기를 통해 액상의 냉매를 제거시킨 후 압축기로 회수되어 순환 사이클을 반복하게 된다.
The refrigerant liquid that has passed through the receiver is supplied to the quench chamber, the freezer compartment, and the refrigerating compartment, absorbs the ambient heat in the quench room evaporator, the freezer compartment evaporator and the refrigerating compartment evaporator to evaporate and cool the surroundings, The refrigerant is recovered by the compressor, and the circulation cycle is repeated.

도 2는 본 발명의 다단 압축기를 사용한 급냉실 냉동실 냉장실의 냉각 시스템 내의 다단 압축을 설명하기 위한 개략도이다.
Fig. 2 is a schematic view for explaining multi-stage compression in a cooling system of a refrigeration room of a quench-freezer freezer compartment using the multi-stage compressor of the present invention.

도 2에 나타난 바와 같이 본 발명에서는 저단 압축기에서 증기 상태의 냉매를 중간 압력까지 압축시킨 후 압축된 냉매를 중간 냉각기에 주입하여 중간 압력에 상응하는 포화 온도로 냉각시킨 후 냉각된 냉매를 다시 고단 압축기에 흡입 압축시켜 고온 고압의 증기 상태 냉매를 생성시키는 2단계 압축기를 사용한다.
As shown in FIG. 2, in the present invention, the refrigerant in the vapor state is compressed to the intermediate pressure in the low-stage compressor, the compressed refrigerant is injected into the intermediate cooler, cooled to the saturation temperature corresponding to the intermediate pressure, To generate a high-temperature, high-pressure vapor-state refrigerant.

또한 본 발명의 냉각 시스템은 도 2에 나타난 바와 같이 저단 압축기에서 증기 상태의 냉매를 중간 압력까지 압축시킨 후 압축된 냉매를 중간 냉각기에 주입하여 중간 압력에 상응하는 포화 온도로 냉각시킨 후 냉각된 냉매를 다시 고단 압축기에 흡입 압축시켜 고온 고압의 증기 상태 냉매를 생성시키는 2단계 압축기; 압축기에서 생성된 고온 고압의 증기상 냉매를 액상의 냉매액으로 응축시키는 응축기; 응축기로부터 배출된 냉매액을 전자변, 팽창변으로 공급받아 기화 증발시켜 급냉시키는 급냉실 증발기; 응축기로부터 배출된 냉매액과 급냉실에서 회수된 냉매 가스를 공급받아 기화 증발시키는 냉동실 증발기; 및 응축기로부터 배출된 냉매액과 냉동실에서 회수된 가스를 공급받아 기화 증발시키는 냉장실 증발기;로 구성되어 있다.
2, the cooling system of the present invention compresses a refrigerant in a vapor state to an intermediate pressure in a low-stage compressor, and then injects the compressed refrigerant into an intermediate cooler to cool the refrigerant to a saturation temperature corresponding to an intermediate pressure, A second-stage compressor for sucking and compressing the high-pressure refrigerant into the high-stage compressor to generate high-temperature, high-pressure vapor-state refrigerant; A condenser for condensing high-temperature and high-pressure vapor-phase refrigerant generated in the compressor into a liquid refrigerant; A quench room evaporator which is supplied with the refrigerant discharged from the condenser as an electromagnetic valve and an expansion valve and evaporates and evaporates to quench; A freezer compartment evaporator that receives the refrigerant liquid discharged from the condenser and the refrigerant gas recovered from the quench chamber and evaporates and evaporates; And a refrigerating chamber evaporator for supplying the refrigerant discharged from the condenser and the gas recovered in the freezing chamber to vaporize and evaporate.

도 3은 본 발명의 다단 압축기를 사용한 급냉실 냉동실 냉장실의 냉각 시스템 내의 급냉실 냉동실 냉장실의 냉매 공급 순환 회수 경로를 나타내는 개략도이다.
3 is a schematic view showing a refrigerant supply circulation recovery path in a quenching room freezing room refrigerating chamber in a cooling system of a quenching room freezing room refrigerating chamber using the multi-stage compressor of the present invention.

도 3에 나타난 바와 같이 본 발명의 3단계 냉각은 급냉실의 경우 2단 압축 응축시켜 배출된 저온의 냉매액을 전자변(a, b)을 통과시킨 후 급냉실 팽창변(1)으로 냉매액을 팽창시켜 -25℃까지 급냉시키고 다시 급냉실 팽창변(2)으로 초저온 상태에서 냉매액을 팽창시켜 -40℃ 이하로 급냉실 증발기에서 기화시킴으로써 급냉실의 온도를 -40~-30℃로 급냉시킨다.
As shown in FIG. 3, in the case of the quenching chamber of the present invention, the refrigerant in the quench chamber is subjected to two-stage compression condensation to pass the discharged low-temperature refrigerant through the electromagnetic valves a and b, The temperature of the quench chamber is rapidly cooled to -40 to -30 ° C by evaporating the refrigerant in the quench chamber to a temperature of -25 ° C and expanding the refrigerant to the quench temperature of the quench room (2) at a very low temperature.

또한 냉동실의 경우 급냉실에서 회수된 냉매 가스를 냉동실 냉매 가스 공급 전자변(7)을 통해 분사하고 응축기로부터 배출된 저온의 냉매액을 전자변(c, d)을 통해 냉동실 팽창변(4)으로 냉매액을 팽창시켜 냉동실 증발기에 주입시켜 냉동실 증발기에서 기화시킴으로써 냉동실의 온도를 -20~-15℃로 냉동시킨다.
In the case of the freezer compartment, the refrigerant gas recovered in the quench chamber is injected through the refrigerant gas supply valve 7 of the freezer compartment, and the low-temperature refrigerant discharged from the condenser is discharged to the freezing compartment expansion valve 4 through the electromagnetic valves c and d And then the refrigerant is evaporated in the freezer evaporator, and the temperature of the freezer is frozen to -20 to -15 ° C.

한편 냉장실의 경우 냉동실에서 회수된 냉매 가스를 냉장실 냉매 가스 공급 전자변(8)을 통해 분사하고 응축기로부터 배출된 저온의 냉매액을 전자변(e, f)을 통해 냉장실 팽창변(6)으로 냉매액을 팽창시켜 냉장실 증발기에 주입시켜 냉장실 증발기에서 기화시킴으로써 냉장실의 온도를 0~5℃로 냉장시킨다.
On the other hand, in the case of the refrigerating compartment, the refrigerant gas recovered in the freezing compartment is injected through the refrigerator compartment refrigerant gas supply side electronic valve 8 and the low-temperature refrigerant liquid discharged from the condenser is expanded through the electronic valves e and f to the refrigerating compartment expansion valve 6 And the mixture is injected into the evaporator of the refrigerator compartment and is vaporized in the evaporator of the refrigerator compartment to cool the temperature of the refrigerator compartment to 0 to 5 ° C.

한편 상기 냉동실 냉각 단계에서 급냉실에서 회수된 냉매 가스의 온도가 -20℃보다 높아지면 전자변(c)과 냉동실 냉매액 분사 수동 밸브(3)를 개방하여 냉매액을 냉동실에 분사시켜 냉동실의 냉각을 시행한다.
On the other hand, when the temperature of the refrigerant gas recovered in the quenching chamber is higher than -20 ° C in the freezing chamber cooling step, the electromagnetic valve (c) and the freezing chamber refrigerant liquid injection valve 3 are opened to inject the refrigerant liquid into the freezing chamber, .

또한 상기 냉장실 냉각 단계에서 냉동실에서 회수된 냉매 가스의 온도가 0℃보다 높아지면 전자변(e)과 냉장실 냉매액 분사 수동 밸브(5)를 개방하여 냉매액을 냉장실에 분사시켜 냉장실의 냉각을 시행한다.
When the temperature of the refrigerant gas recovered in the freezing compartment is higher than 0 ° C in the refrigerating compartment cooling step, the refrigerating compartment is cooled by discharging the refrigerant liquid to the refrigerating compartment by opening the electronic valve (e) .

도 4는 본 발명의 급냉실 유니트쿨러(증발기), 냉동실 유니트쿨러(증발기) 및 냉장실 유니트쿨러(증발기)의 냉매 공급 순환 회수 경로를 나타내는 모식도이다.
FIG. 4 is a schematic view showing a circulation recovery path for refrigerant supply of a quench chamber unit cooler (evaporator), a freezer compartment unit cooler (evaporator), and a refrigerator compartment unit cooler (evaporator) according to the present invention.

도 4에 나타난 바와 같이 액관(공통)을 통해 응축기로부터 배출된 저온의 냉매액이 급냉실, 냉동실, 냉장실에 순차적으로 공급된다. 한편 급냉실에서 회수된 냉매 가스는 전자변(V1)을 폐쇄시킨 후 냉동실로 주입되고 냉동실에서 회수된 냉매 가스는 전자변(V2)을 폐쇄시킨 후 냉장실로 주입된다. 이때 사용되는 밸브는 통상 전자변이나 필요에 따라 수동 제어 밸브를 사용하는 경우도 있다.
As shown in FIG. 4, the low-temperature refrigerant liquid discharged from the condenser through the liquid pipe (common) is sequentially supplied to the quenching chamber, the freezing chamber, and the refrigerating chamber. On the other hand, the refrigerant gas recovered in the quench chamber is injected into the freezing chamber after closing the electromagnetic valve V1, and the refrigerant gas recovered in the freezing chamber is injected into the refrigerating chamber after closing the electromagnetic valve V2. The valve used at this time is usually an electronic valve or a manual control valve may be used if necessary.

도 5a는 본 발명의 다단 압축기를 사용한 급냉실 냉동실 냉장실의 냉각 시스템의 정상 운전시 제어판 기능과 제상장치 기능을 나타낸 것이다.
FIG. 5A shows a control panel function and a defrosting device function during normal operation of the cooling system of the refrigeration room of the rapid cooling room freezing room using the multi-stage compressor of the present invention.

냉각 시스템 내의 성에 감지 센서 등 각종 센서를 통해 증발기 외부에 성에 발생 여부를 감지하고 성에가 발생하지 않은 경우 정상 운전을 통해 증발기를 정상 작동시켜 급냉실 냉동실 냉장실을 냉각시킨다.
It detects whether the outside of the evaporator is blown out through various sensors such as a temperature sensing sensor in the cooling system, and operates the evaporator normally through normal operation to cool the refrigerator room.

도 5b는 본 발명의 다단 압축기를 사용한 급냉실 냉동실 냉장실의 냉각 시스템의 성에 제거 운전시 제어판 기능과 제상장치 기능을 나타낸 것이다.
FIG. 5B shows a control panel function and a defrosting device function in the defrosting operation of the cooling system of the refrigerator of the rapid cooling room freezing room using the multi-stage compressor of the present invention.

냉각 시스템 내의 성에 감지 센서 등 각종 센서를 통해 증발기 외부에 성에 발생 여부를 감지하고 성에가 발생한 경우 증발기 작동을 일시 중단시키고 인라인 히터 작동에 의해 브라인을 가온시킨 후 브라인을 순환 작동시켜 증발기 외부의 성에를 녹여 제거하는 것이다.
The system detects the occurrence of gauging on the outside of the evaporator through various sensors such as the gauging sensor in the cooling system, suspends the operation of the evaporator in case of sexual intercourse, warms the brine by the operation of the inline heater and circulates the brine, It is dissolved and removed.

본 발명의 다단 압축기를 사용한 급냉실 냉동실 냉장실의 냉각 시스템에 적용할 수 있는 제상 장치는 본 발명자들의 국내 특허등록 제10-1469459호 '복합 열원을 이용한 히트펌프 냉난방 시스템 및 그의 제어 방법'에 개시된 제상 장치를 적절하게 변형하여 사용할 수 있다.
The defrosting device applicable to the cooling system of the refrigerator room of the refrigerator according to the present invention includes a defrosting device disclosed in Korean Patent Registration No. 10-1469459 entitled " Heat Pump Heating / Appropriate modifications of the device can be used.

따라서 본 발명의 제상장치는 공기, 지하수, 인라인 히터 열을 통해 브라인을 가온시킨 후 증발기 주변에 설치된 브라인 공급관에 30~40℃의 브라인을 공급시켜 증발기 외부에 생성된 성에를 녹여 제거할 수 있는 제상 장치이다. 또한 이때 증발기 외부에 생성된 성에를 제거하기 위한 성에 제거 운전을 수행하기 위해 급냉실, 냉동실, 냉장실의 증발기의 작동을 일시 정지시킨다.
Therefore, the defrost apparatus of the present invention is capable of defrosting defrosting which can dissolve the generated gas outside the evaporator by supplying brine at 30 ~ 40 ° C to the brine supply pipe installed around the evaporator after heating the brine through the air, ground water and in- Device. At this time, the operation of the evaporator of the refrigerator room, the freezer compartment, and the refrigerating compartment is temporarily stopped to perform the defrosting operation to remove the generated gas outside the evaporator.

a, b : 급냉실 냉매액 공급 전자변
c, d : 냉동실 냉매액 공급 전자변
e, f : 냉장실 냉매액 공급 전자변
1 : -25℃까지 냉각을 위한 급냉실 팽창변
2 : -40℃까지 냉각을 위한 급냉실 팽창변
3 : 냉동실 냉매액 분사 수동 밸브
4 : 냉동실 팽창변
5 : 냉장실 냉매액 분사 수동 밸브
6 : 냉장실 팽창변
7 : 냉동실 냉매가스 공급 전자변
8 : 냉장실 냉매가스 공급 전자변
9, 10, 11, 12 : 차단 전자변
S1 : 냉장실 냉매액 공급 전자변
S2 : 냉동실 냉매액 공급 전자변
S3 : 급냉실 냉매액 공급 전자변
V1 : 냉매 가스 회수 전자변
V2 : 냉매 가스 회수 전자변
R1 : 냉동실 냉매 가스 공급 전자변
R2 : 냉장실 냉매 가스 공급 전자변
a, b: quench room refrigerant liquid supply electronic side
c, d: freezing room refrigerant supply electronic
e, f: Refrigerant liquid refrigerant supply
1: quench room for cooling to -25 ° C
2: quench room for cooling to -40 ° C
3: Freezer coolant liquid injection valve
4: freezing compartment expansion
5: Refrigerant liquid dispensing manual valve
6: Refrigeration compartment expansion
7: Refrigerant gas supply electronic freezer
8: Refrigerator refrigerant gas supply electronic valve
9, 10, 11, 12: Blocking electrons
S1: Refrigerant liquid refrigerant supply valve
S2: Freezing room refrigerant supply electronic
S3: The quench room refrigerant supply electronic valve
V1: refrigerant gas recovery electronic valve
V2: Refrigerant gas recovery electronic valve
R1: Freezer refrigerant gas supply electronic valve
R2: Refrigerant gas supply valve

Claims (5)

다단 압축기를 사용한 -40~-30℃의 급냉실, -20~-15℃의 냉동실 및 0~5℃의 냉장실의 3단계 냉각 시스템에 있어서,
상기 3단계 냉각은
ⅰ) 저단과 고단의 2단계 압축기를 사용하여 냉매를 2단 압축, 응축시켜 배출된 저온의 냉매액을 전자변(S3)을 통해 급냉실에 우선 주입시킨 후 급냉실 팽창변을 통해 -40℃ 이하의 초저온에서 급냉실 증발기에서 기화시킴으로써 급냉실의 온도를 -40~-30℃로 급냉시키는 단계;
ⅱ) 급냉실에서 회수된 냉매 가스를 전자변(V1)을 폐쇄시킨 후 전자변(R1)을 통해 분사하고 냉동실의 온도가 -20℃가 되도록 응축기로부터 배출된 저온의 냉매액을 전자변(S2) 및 팽창변을 통해 냉동실 증발기에 주입시켜 냉동실 증발기에서 기화시킴으로써 냉동실의 온도를 -20~-15℃로 냉동시키는 단계; 및
ⅲ) 냉동실에서 회수된 냉매 가스를 전자변(V2)을 폐쇄시킨 후 전자변(R2)을 통해 분사하고 냉장실의 온도가 0℃가 되도록 응축기로부터 배출된 저온의 냉매액을 전자변(S1) 및 팽창변을 통해 냉장실에 주입시켜 냉장실 증발기에서 기화시킴으로써 냉장실의 온도를 0~5℃로 냉장시키는 단계;
로 이루어진 3단계 냉각임을 특징으로 하는 냉각 시스템.
In a three-stage cooling system comprising a quench chamber at -40 to -30 占 폚 using a multistage compressor, a freezer at -20 to -15 占 폚 and a freezer at 0 to 5 占 폚,
The three-
(I) The refrigerant is compressed and condensed in two stages using a low-stage and high-stage two-stage compressor, and the discharged low-temperature refrigerant is first injected into the quenching chamber through the valve S3. Quenching the temperature of the quenching chamber to -40 to -30 占 폚 by vaporizing in a quenching chamber evaporator at an ultra-low temperature;
Ii) The refrigerant gas recovered in the quench chamber is injected through the electromagnetic valve R1 after closing the electromagnetic valve V1, and the refrigerant liquid at low temperature discharged from the condenser is cooled to a temperature of -20 ° C. Cooling the freezing chamber to a temperature of -20 to -15 ° C by vaporizing it in the freezing chamber evaporator by injecting it into the freezing chamber evaporator through the freezing chamber evaporator; And
Iii) The refrigerant gas recovered in the freezer compartment is closed through the valve (V2) and then injected through the valve (R2), and the refrigerant at low temperature discharged from the condenser is discharged through the valve (S1) Cooling the temperature of the refrigerating compartment to 0 to 5 캜 by injecting the refrigerating compartment into the refrigerating compartment and vaporizing the refrigerant in the refrigerating compartment evaporator;
Wherein the cooling system is a three-stage cooling system.
제 1항에 있어서, 상기 냉각 시스템은
ⅰ) 저단 압축기에서 증기 상태의 냉매를 중간 압력까지 압축시킨 후 압축된 냉매를 중간 냉각기(Inter-cooler)에 주입하여 중간 압력에 상응하는 포화 온도로 냉각시킨 후 냉각된 냉매를 다시 고단 압축기에 흡입 압축시켜 고온 고압의 증기 상태 냉매를 생성시키는 2단계 압축기;
ⅱ) 압축기에서 생성된 고온 고압의 증기상 냉매를 액상의 냉매액으로 응축시키는 응축기;
ⅲ) 응축기로부터 배출된 냉매액을 전자변, 팽창변으로 공급받아 기화 증발시켜 급냉시키는 급냉실 증발기;
ⅳ) 응축기로부터 배출된 냉매액과 급냉실에서 회수된 냉매 가스를 공급받아 기화 증발시키는 냉동실 증발기; 및
ⅴ) 응축기로부터 배출된 냉매액과 냉동실에서 회수된 가스를 공급받아 기화 증발시키는 냉장실 증발기;
로 이루어져 있음을 특징으로 하는 냉각 시스템.
The system of claim 1, wherein the cooling system
I) After compressing the refrigerant in the vapor state to the intermediate pressure in the lower stage compressor, the compressed refrigerant is injected into the intercooler, cooled to the saturation temperature corresponding to the intermediate pressure, and then the cooled refrigerant is again sucked into the high- A two-stage compressor for generating a high-temperature, high-pressure vapor-state refrigerant by compression;
Ii) a condenser for condensing the vapor-phase refrigerant of high temperature and high pressure produced in the compressor into a liquid refrigerant liquid;
Iii) a quench chamber evaporator which is supplied with the refrigerant discharged from the condenser as an electromagnetic valve and an expansion valve, and vaporizes and evaporates to quench;
Iv) a freezing compartment evaporator for evaporating the refrigerant discharged from the condenser and the refrigerant gas recovered in the quenching chamber to evaporate; And
(V) a refrigerating chamber evaporator which is supplied with the refrigerant discharged from the condenser and the gas recovered from the freezing chamber to vaporize and evaporate;
≪ / RTI >
제 1항 또는 제 2항에 있어서, 상기 냉각 시스템 내의 3단계 냉각은
ⅰ) 2단 압축 응축시켜 배출된 저온의 냉매액을 전자변(a, b)을 통과시킨 후 급냉실 팽창변(1)으로 냉매액을 팽창시켜 -25℃까지 급냉시키고 다시 급냉실 팽창변(2)으로 초저온 상태에서 냉매액을 팽창시켜 -40℃ 이하로 급냉실 증발기에서 기화시킴으로써 급냉실의 온도를 -40~-30℃로 급냉시키는 단계;
ⅱ) 급냉실에서 회수된 냉매 가스를 냉동실 냉매 가스 공급 전자변(7)을 통해 분사하고 냉동실의 온도가 -20℃가 되도록 응축기로부터 배출된 저온의 냉매액을 전자변(c, d)을 통해 냉동실 팽창변(4)으로 냉매액을 팽창시켜 냉동실 증발기에 주입시켜 냉동실 증발기에서 기화시킴으로써 냉동실의 온도를 -20~-15℃로 냉동시키는 단계; 및
ⅲ) 냉동실에서 회수된 냉매 가스를 냉장실 냉매 가스 공급 전자변(8)을 통해 분사하고 냉장실의 온도가 0℃가 되도록 응축기로부터 배출된 저온의 냉매액을 전자변(e, f)을 통해 냉장실 팽창변(6)으로 냉매액을 팽창시켜 냉장실 증발기에 주입시켜 냉장실 증발기에서 기화시킴으로써 냉장실의 온도를 0~5℃로 냉장시키는 단계;
로 이루어진 3단계 냉각임을 특징으로 하는 냉각 시스템.
3. The method of claim 1 or 2, wherein the three-stage cooling in the cooling system
(1), the refrigerant liquid is expanded to a temperature of -25 ° C., and the refrigerant liquid is again cooled to the expansion room side (2) of the quenching chamber. Rapidly cooling the quench chamber to -40 to -30 占 폚 by expanding the refrigerant at a very low temperature and vaporizing it in a quenching chamber evaporator at -40 占 폚 or lower;
(Ii) The refrigerant gas recovered in the quench chamber is injected through the freezing chamber refrigerant gas supply electromagnetic valve (7), and the low temperature refrigerant liquid discharged from the condenser is cooled to the freezing chamber expansion side Expanding the refrigerant liquid into the freezing compartment evaporator (4) and injecting the refrigerant into the freezing compartment evaporator, and evaporating the refrigerant in the freezing compartment evaporator, thereby freezing the temperature of the freezing compartment to -20 to -15 ° C; And
Iii) the refrigerant gas recovered in the freezing chamber is injected through the refrigerator compartment refrigerant gas supply electronic side 8 and the low temperature refrigerant liquid discharged from the condenser is supplied to the refrigerating compartment expansion valve 6 Expanding the refrigerant liquid into the evaporator of the refrigerator compartment and evaporating the refrigerant in the evaporator of the refrigerator compartment to cool the temperature of the refrigerator compartment to 0 to 5 ° C;
Wherein the cooling system is a three-stage cooling system.
제 3항에 있어서, 상기 단계 ⅱ)에서 급냉실에서 회수된 냉매 가스의 온도가 -20℃보다 높아지면 전자변(c)과 냉동실 냉매액 분사 수동 밸브(3)를 개방하여 냉매액을 냉동실에 분사시키고, 상기 단계 ⅲ)에서 냉동실에서 회수된 냉매 가스의 온도가 0℃보다 높아지면 전자변(e)과 냉장실 냉매액 분사 수동 밸브(5)를 개방하여 냉매액을 냉장실에 분사시킴을 특징으로 하는 냉각 시스템.
4. The method according to claim 3, wherein when the temperature of the refrigerant gas recovered in the quenching chamber is higher than -20 DEG C in step (ii), the refrigerant liquid is injected into the freezing chamber by opening the electromagnetic valve (c) (E) and the refrigerant chamber liquid injection valve (5) are opened when the temperature of the refrigerant gas recovered in the freezing chamber is higher than 0 ° C in step (iii), and the refrigerant liquid is injected into the refrigerating chamber system.
제 1항에 있어서, 상기 냉각 시스템은 제어판을 중심으로 급냉실, 냉동실, 냉장실의 증발기 외부에 생성된 성에를 제거하기 위한 성에 제거 운전을 수행하기 위해 급냉실, 냉동실, 냉장실의 증발기의 작동을 일시 정지시키고 증발기 주변에 설치된 브라인 공급관에 30~40℃의 브라인을 공급시켜 증발기 외부에 생성된 성에를 녹여 제거할 수 있는 제상 장치를 더욱 포함함을 특징으로 하는 냉각 시스템.The refrigeration system as claimed in claim 1, wherein the cooling system comprises a control panel for controlling the operation of the evaporator of the refrigeration chamber, the freezer compartment, and the refrigerating compartment in order to perform a defrosting operation for removing the generated gas outside the evaporator of the rapid cooling chamber, And a defrosting device capable of dissolving the generated gas outside the evaporator by supplying a brine at 30 to 40 DEG C to the brine supply pipe installed in the vicinity of the evaporator.
KR1020170008990A 2017-01-19 2017-01-19 Triple cooling system for rapid freezing chamber, freezing chamber and refrigerating chamber KR101891993B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020170008990A KR101891993B1 (en) 2017-01-19 2017-01-19 Triple cooling system for rapid freezing chamber, freezing chamber and refrigerating chamber
US16/479,163 US20200116395A1 (en) 2017-01-19 2018-01-16 3 stage cooling and defrosting system using quick-freezing chamber, freezing chamber, and refrigerating chamber
PCT/KR2018/000716 WO2018135826A1 (en) 2017-01-19 2018-01-16 System for cooling and defrosting quick-freezing chamber, freezing chamber, and refrigerating chamber in three stages
CN201880018733.4A CN110662932B (en) 2017-01-19 2018-01-16 3-stage cooling and defrost system using quick freezing chamber, freezing chamber and refrigerating chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170008990A KR101891993B1 (en) 2017-01-19 2017-01-19 Triple cooling system for rapid freezing chamber, freezing chamber and refrigerating chamber

Publications (2)

Publication Number Publication Date
KR20180085839A true KR20180085839A (en) 2018-07-30
KR101891993B1 KR101891993B1 (en) 2018-08-28

Family

ID=62908419

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170008990A KR101891993B1 (en) 2017-01-19 2017-01-19 Triple cooling system for rapid freezing chamber, freezing chamber and refrigerating chamber

Country Status (4)

Country Link
US (1) US20200116395A1 (en)
KR (1) KR101891993B1 (en)
CN (1) CN110662932B (en)
WO (1) WO2018135826A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102382796B1 (en) * 2020-11-06 2022-04-04 박진섭 Brine indirect cooling system for freezing chamber and refrigerating chamber

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110173945A (en) * 2019-05-07 2019-08-27 湖北美的电冰箱有限公司 Refrigeration equipment
CN110173953A (en) * 2019-05-07 2019-08-27 湖北美的电冰箱有限公司 Refrigeration equipment and its defrosting control method
CN111981648A (en) * 2020-08-25 2020-11-24 Tcl空调器(中山)有限公司 Heating control method and device for air conditioner, air conditioner and readable storage medium
CN112503840A (en) * 2021-01-04 2021-03-16 重庆西名制冷设备有限公司 Automatic defrosting device for frozen warehouse
CN113983712B (en) * 2021-10-22 2023-05-02 珠海格力节能环保制冷技术研究中心有限公司 Unit operation control method and device, two-stage unit and refrigeration equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000033193A (en) * 1998-11-20 2000-06-15 구자홍 Refrigerator with super freezer
KR100651179B1 (en) * 2005-12-16 2006-11-30 박진섭 Rapid freezing and refrigerating storage apparatus of Rubus coreanus
KR100796283B1 (en) * 2007-09-28 2008-01-21 주식회사삼원기연 Energy saving style refrigeration equipment that use waste heat of discharge gas

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4850197A (en) * 1988-10-21 1989-07-25 Thermo King Corporation Method and apparatus for operating a refrigeration system
JP2639142B2 (en) * 1989-12-01 1997-08-06 富士電機株式会社 Defrosting method for cold air circulation type open showcase
JPH11257822A (en) * 1998-03-16 1999-09-24 Matsushita Refrig Co Ltd Refrigerator
JP3437764B2 (en) * 1998-06-29 2003-08-18 株式会社東芝 Refrigerator control method
EP1275913A3 (en) * 2001-06-26 2003-08-13 Mitsubishi Heavy Industries, Ltd. Multiform gas heat pump type air conditioning system
US6981385B2 (en) * 2001-08-22 2006-01-03 Delaware Capital Formation, Inc. Refrigeration system
WO2006022829A1 (en) * 2004-08-09 2006-03-02 Carrier Corporation Co2 refrigeration circuit with sub-cooling of the liquid refrigerant against the receiver flash gas and method for operating the same
JP2007170758A (en) * 2005-12-22 2007-07-05 Sanden Corp Refrigerating device
JP2007255864A (en) * 2006-03-27 2007-10-04 Mitsubishi Electric Corp Two-stage compression type refrigerating device
KR100808180B1 (en) * 2006-11-09 2008-02-29 엘지전자 주식회사 Apparatus for refrigeration cycle and refrigerator
CN201449106U (en) * 2009-03-25 2010-05-05 凌建军 Waste heat-utilizing integrated sterilizing refrigerator capable of increasing condensing temperature in winter and reducing condensing temperature in summer
KR100948584B1 (en) * 2009-12-28 2010-03-18 주식회사삼원기연 Energy saving style refrigeration equipment that use waste heat of discharge gas
TW201418648A (en) * 2012-11-14 2014-05-16 hui-jun Chen Heat-driven defrosting device using natural circulation
CN203274406U (en) * 2012-11-27 2013-11-06 江苏省苏食肉品有限公司 Cold storage refrigeration system in cold chain
KR101469459B1 (en) * 2014-07-01 2014-12-08 주식회사 신진에너텍 Heat pump system using complex heat sources and its controlling process
CN204460903U (en) * 2014-08-19 2015-07-08 上海杰瑞空气设备有限公司 A kind of New-style refrigeration house ammonia compressor energy recovery defrosting system
CN104296454A (en) * 2014-10-15 2015-01-21 合肥华凌股份有限公司 Refrigerator
CN204494786U (en) * 2014-12-29 2015-07-22 克莱门特捷联制冷设备(上海)有限公司 For the production of the multi-staged air source heat pump of high-temperature-hot-water
KR101694603B1 (en) * 2015-01-12 2017-01-09 엘지전자 주식회사 Air conditioner
CN205580057U (en) * 2016-03-28 2016-09-14 重庆耐德能源装备集成有限公司 Freezer and refrigerating system thereof
CN107289705B (en) * 2016-03-30 2024-02-09 苏州圣荣元电子科技有限公司 Low-temperature refrigerator
CN105865121B (en) * 2016-03-31 2018-07-13 青岛海尔特种电冰箱有限公司 Refrigerating device
CN205641303U (en) * 2016-05-10 2016-10-12 广东美的制冷设备有限公司 Air conditioner refrigerator all -in -one and multistage refrigerating system thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000033193A (en) * 1998-11-20 2000-06-15 구자홍 Refrigerator with super freezer
KR100651179B1 (en) * 2005-12-16 2006-11-30 박진섭 Rapid freezing and refrigerating storage apparatus of Rubus coreanus
KR100796283B1 (en) * 2007-09-28 2008-01-21 주식회사삼원기연 Energy saving style refrigeration equipment that use waste heat of discharge gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102382796B1 (en) * 2020-11-06 2022-04-04 박진섭 Brine indirect cooling system for freezing chamber and refrigerating chamber

Also Published As

Publication number Publication date
WO2018135826A1 (en) 2018-07-26
CN110662932A (en) 2020-01-07
US20200116395A1 (en) 2020-04-16
CN110662932B (en) 2021-09-03
KR101891993B1 (en) 2018-08-28

Similar Documents

Publication Publication Date Title
KR101891993B1 (en) Triple cooling system for rapid freezing chamber, freezing chamber and refrigerating chamber
JP3604973B2 (en) Cascade type refrigeration equipment
US20090193817A1 (en) Method for refrigerating a thermal load
KR20160091107A (en) Cooling Cycle Apparatus for Refrigerator
CN104613662A (en) Refrigerator
KR101649193B1 (en) Cascade refrigeration cycle system
WO2022087491A1 (en) Heating and refrigeration system
KR101796565B1 (en) Refrigerating, freezing and quick freezing storage apparatus
KR102382796B1 (en) Brine indirect cooling system for freezing chamber and refrigerating chamber
JP3484131B2 (en) Freezer refrigerator
JP2004163084A (en) Vapor compression type refrigerator
US11656004B2 (en) Cooling system with flexible evaporating temperature
KR20130094020A (en) Refrigerator mounted with quick freezing room
KR102341074B1 (en) Cryocooler
KR20180056854A (en) High-capacity rapid-cooling cryogenic freezer capable of controlling the suction temperature of the compressor
KR101370940B1 (en) Multi Stage Refrigerating System And Operating Method Thereof
KR0182726B1 (en) Defrosting apparatus for independent refrigerating type refrigerator
KR19990080338A (en) Refrigerator
KR101385173B1 (en) Cooling apparatus for refrigeration car
KR102019925B1 (en) Refrigeration system for high efficiency
KR100333479B1 (en) Cryogenic refrigerator and refrigerant used therein
KR100442500B1 (en) Refrigerating cycle system
KR102411307B1 (en) A dual refrigeration device for low-temperature storage of pharmaceuticals.
JP3281973B2 (en) Frozen car
KR100693188B1 (en) Ultra-freezing refrigerator

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant