KR20180080425A - Composite porous membrane of acetylated alkyl cellulose and polyolefinketone - Google Patents

Composite porous membrane of acetylated alkyl cellulose and polyolefinketone Download PDF

Info

Publication number
KR20180080425A
KR20180080425A KR1020170000910A KR20170000910A KR20180080425A KR 20180080425 A KR20180080425 A KR 20180080425A KR 1020170000910 A KR1020170000910 A KR 1020170000910A KR 20170000910 A KR20170000910 A KR 20170000910A KR 20180080425 A KR20180080425 A KR 20180080425A
Authority
KR
South Korea
Prior art keywords
support layer
cellulose
hollow fiber
fiber membrane
layer
Prior art date
Application number
KR1020170000910A
Other languages
Korean (ko)
Other versions
KR102306426B1 (en
Inventor
모치준
신동호
홍현표
임성한
이정재
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR1020170000910A priority Critical patent/KR102306426B1/en
Publication of KR20180080425A publication Critical patent/KR20180080425A/en
Application granted granted Critical
Publication of KR102306426B1 publication Critical patent/KR102306426B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/364Membrane distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0018Thermally induced processes [TIPS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/72Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of the groups B01D71/46 - B01D71/70 and B01D71/701 - B01D71/702
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/06Specific viscosities of materials involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/081Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/219Specific solvent system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02833Pore size more than 10 and up to 100 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02834Pore size more than 0.1 and up to 1 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Manufacturing & Machinery (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The present invention relates to a composite porous membrane. The composite porous membrane comprises a support layer and a coating layer provided concentrically at an outer circumference of the support layer to encase the support layer, wherein the support layer contains an acetylated alkyl cellulose polymer, and the coating layer contains a polyolefin ketone polymer. The composite porous membrane has high water permeability and high removal rate while maintaining high strength, and thus can be applied to next-generation high-efficiency separation processes such as a separation membrane module for purified water treatment, a separation membrane module for reusable wastewater treatment, a submerged separation membrane module for a bio-membrane reactor, a module for separation of chemical mixtures, a pretreatment separation membrane for seawater desalination, and the like.

Description

아세틸화 알킬 셀룰로스와 폴리올레핀케톤의 복합 중공사막{COMPOSITE POROUS MEMBRANE OF ACETYLATED ALKYL CELLULOSE AND POLYOLEFINKETONE}Technical Field [0001] The present invention relates to a composite hollow fiber membrane comprising an acetylated alkyl cellulose and a polyolefin ketone,

본 발명은 복합 중공사막에 관한 것으로, 더욱 상세하게는 아세틸화 알킬 셀룰로스 고분자를 이용하여 표면 및 단면이 다공성인 중공사막을 만들고, 이 중공사막의 표면에 다시 폴리올레핀케톤 고분자를 코팅하여 단면의 표층과 표면을 치밀하게 변화시킴으로써 수증기의 투과도가 우수하고 염제거율이 우수하여 막 증류 공정에 응용될 수 있는 복합 중공사막에 관한 것이다. The present invention relates to a composite hollow fiber membrane, and more particularly, to a hollow fiber membrane having a surface and cross-sectional porosity using an acetylated alkylcellulose polymer, coating the surface of the hollow fiber membrane with a polyolefin ketone polymer, The present invention relates to a composite hollow fiber membrane capable of being applied to a membrane distillation process, because it has excellent water vapor permeability and excellent salt removal efficiency by densely changing the surface.

막 증류 공정은 다공성 막을 사용하면서 한외여과법과 역삼투압법에 비해 낮은 압력에서 운전되며 증기압 분압차에 의해 분리가 이루어진다. 또한, 상기 막 증류 분리법을 이용하면, 염과 같은 비휘발성 물질을 분리ㆍ제거하는데 있어서 전통적인 증류법이 가지는 비말 동반이 없고 높은 압력으로 운전되는 여과기 또는 분리막을 사용하지 않아도 된다. 이러한 막 증류 분리공정의 장점으로 인하여, 막 증류법을 이용한 담수화(탈염화) 처리공정은 전 세계적으로 음용수 생산에 있어 경쟁력 있는 방법 중의 하나로 부상하고 있다. Membrane distillation process is operated at low pressure compared with ultrafiltration and reverse osmosis process using porous membrane and separation by vapor pressure partial pressure difference. Further, when the above-mentioned membrane distillation separation method is used, it is not necessary to use a filter or separation membrane that operates at high pressure without entrainment of a conventional distillation method in separating and removing nonvolatile substances such as salts. Due to the advantages of this membrane distillation separation process, the desalination process using the membrane distillation process is emerging as one of the competitive methods in the production of drinking water all over the world.

막 증류법은 소수성 고분자 분리막을 이용하는데, 용매나 용질(친수성 물질)의 표면장력이 분리막 표면보다 커서 액체 상태로는 막 기공(membrane pore)을 통과하지 못하고, 상기 분리막 표면에서 반발되며, 분리막의 표면 기공입구에서 분리대상 물질이 증기상으로 상변환되어 기공 안으로 확산, 투과되어 최종적으로 투과측에서 응축, 분리되는 것이다. 이러한 막 증류법은 공급용액이 분리막을 통과하는 공급측과 분리대상 물질이 응축 및 분리되는 투과측으로 구성된 분리막 모듈을 통해 수행된다. 이때, 공급온도, 공급유량 속도, 분리막 재질 등에 따른 물의 투과 속도에 대한 연구가 많이 진행되고 있다. Membrane distillation utilizes a hydrophobic polymer membrane. The membrane or membrane (hydrophilic material) has a surface tension greater than that of the membrane, so that it can not pass through the membrane pore in the liquid state and is repelled on the surface of the membrane. At the pore inlet, the substance to be separated is phase-converted into a vapor phase, diffused and permeated into pores, and finally condensed and separated at the permeation side. This membrane distillation method is carried out through a separation membrane module comprising a feed side through which the feed solution passes through the separation membrane and a permeate side through which the separation material condenses and separates. At this time, studies on the permeation rate of water in accordance with the supply temperature, the supply flow rate, and the membrane material are progressing.

국내 특허 제10-1453803호는 PTFE 중공사를 지지층으로 하여 지지층보다 융점이 낮은 120℃~130℃의 초고분자량 폴리에틸렌과 함께 용융 압출하는 단계; 상기 초고분자량 폴리에틸렌은 중량평균분자량 500만~ 700만인 것을 특징으로 하며, 상기 용융압출하는 단계의 용융압출 시, 용융압출 온도는 130℃~150℃에서 수행하는 것을 특징으로 하는 다층 PTFE 중공형 막증류 분리막의 제조방법을 개시하고 있다. Korean Patent No. 10-1453803 discloses a method for producing a polyethylene terephthalate film, which comprises melt-extruding PTFE hollow fiber as a support layer together with ultra-high molecular weight polyethylene having a melting point lower than that of the support layer, Wherein the ultrahigh molecular weight polyethylene has a weight average molecular weight of 5,000,000 to 7,000,000, and the melt extrusion temperature during the melt extrusion is 130 ° C to 150 ° C. Discloses a method for producing a separator.

그러나 기존의 막증류 분리막의 경우 분리막 기공의 젖음에 의한 제거율 저하의 문제를 해결하기 위해 소수성의 분리막 재질을 사용하고 있으나, 장기간 운전 시 기공의 전단 혹은 후단에서 응축되는 증기에 의해 기공 젖음이 나타나고, 따라서 염화나트륨 등의 제거대상 물질이 분리막을 투과할 뿐만 아니라 수증기의 확산 통로 역할을 하는 기공에 공급 용액이 체류하여 확산 속도가 저감되는 문제가 발생한다. However, in the case of the conventional membrane distillation membrane, a hydrophobic membrane material is used to solve the problem of lowering the removal rate due to the wetting of the membrane pore, but pore wetting occurs due to condensation of steam at the front or rear of the pore during long- Therefore, there arises a problem that not only the substance to be removed such as sodium chloride permeates the separation membrane but also the diffusion rate of the supply solution stays in the pores serving as the diffusion path of the water vapor.

본 발명은 상술한 종래 기술의 문제를 해소하기 위한 것으로, 본 발명의 하나의 목적은 기존의 막 증류법에 적용되는 중공사막이 갖는 기공 젖음의 문제를 해결하여 수증기의 투과도가 우수하고 염제거율이 높은 막 증류법에 적용가능한 복합 중공사막을 제공하는 것이다. SUMMARY OF THE INVENTION It is an object of the present invention to overcome the problems of the prior art described above, and an object of the present invention is to solve the problem of pore wetting of a hollow fiber membrane applied to a conventional membrane distillation method, To provide a composite hollow fiber membrane applicable to a membrane distillation method.

상기 목적을 달성하기 위한 본 발명의 하나의 양상은, According to an aspect of the present invention,

지지층, 및 상기 지지층의 외주면에 동심원 상으로 구비되어 상기 지지층을 둘러싸는 코팅층으로 구성되고, 상기 지지층은 아세틸화 알킬 셀룰로스 고분자를 포함하고, 상기 코팅층은 폴리올레핀케톤 고분자를 포함하는 것을 특징으로 하는 복합 중공사막에 관한 것이다. A support layer, and a coating layer concentrically formed on an outer circumferential surface of the support layer and surrounding the support layer, wherein the support layer comprises an acetylated alkyl cellulose polymer, and the coating layer comprises a polyolefin ketone polymer. It is about the desert.

상기 폴리올레핀케톤 고분자는 하기 화학식 1 또는 화학식 2로 표시되는 것으로, 상기 화학식 1의 폴리올레핀케톤 수지는 고유점도(Intrinsic viscosity)가 4 내지 7이고, 상기 화학식 2의 폴리올레핀케톤 수지는 고유점도가 1 내지 3이며, 프로필렌의 함량은 3~10 mol%이다. The polyolefin ketone resin of the formula (1) has an intrinsic viscosity of 4 to 7, and the polyolefin ketone resin of the formula (2) has an intrinsic viscosity of 1 to 3 , And the content of propylene is 3 to 10 mol%.

[화학식 1][Chemical Formula 1]

Figure pat00001
Figure pat00001

상기 식에서, n은 4,000 내지 13,000의 실수임, Wherein n is a real number from 4,000 to 13,000,

[화학식 2](2)

Figure pat00002
Figure pat00002

상기 식에서, n은 500 내지 2,000의 실수이고, m은 15 내지 200의 실수임. Wherein n is a real number from 500 to 2,000 and m is a real number from 15 to 200. [

본 발명의 복합 중공사막은 상기 기지층과 상기 코팅층 사이에 셀룰로스계 고분자를 포함하는 중간 지지층을 추가로 포함할 수 있다. 상기 지지층은 평균기공이 0.08 ㎛ ~ 0.2 ㎛이고, 상기 중간 지지층은 평균기공이 0.05 ㎛ ~ 0.1 ㎛일 수 있다. The composite hollow fiber membrane of the present invention may further include an intermediate support layer including a cellulose-based polymer between the base layer and the coating layer. The support layer may have an average pore of 0.08 탆 to 0.2 탆, and the intermediate support layer may have an average pore of 0.05 탆 to 0.1 탆.

상기 목적을 달성하기 위한 본 발명의 다른 양상은, According to another aspect of the present invention,

아세틸화 알킬 셀룰로스 고분자와 빈용매를 포함하는 지지층 도프용액을 제막하여 지지층을 형성하는 단계; 및 Forming a support layer by forming a support layer doping solution containing an acetylated alkylcellulose polymer and a poor solvent; And

폴리올레핀케톤 고분자를 포함하는 코팅층 도프용액을 제조하여 상기 아세틸화 알킬 셀룰로스 지지층 둘레에 코팅하여 코팅층을 형성하는 단계를 포함하는 것을 특징으로 하는 복합 중공사막의 제조방법에 관한 것이다. A coating layer doped with a polyolefin ketone polymer and a coating layer formed on the acetylated alkyl cellulose support layer to form a coating layer.

상기 아세틸화 알킬 셀룰로스 지지층은 열유도 상분리법에 의해 중공사막을 제조하고, 상기 폴리올레핀케톤 코팅층은 비용매유도 상분리법에 의해 코팅층을 형성할 수 있다. The acetylated alkylcellulose support layer may be produced by a heat-induced phase separation method, and the polyolefin ketone coating layer may be formed by a non-solvent-derived phase separation method.

본 발명의 방법은 상기 아세틸화 알킬 셀룰로스 지지층 제조 단계와 폴리올레핀케톤 코팅층 형성 단계 사이에 셀룰로스계 고분자로 구성되는 중간 지지층을 형성하는 단계를 추가로 포함할 수 있다. 상기 중간 지지층은 비용매유도 상분리법에 의해 형성할 수 있다. The method of the present invention may further comprise the step of forming an intermediate support layer composed of a cellulose-based polymer between the acetylated alkylcellulose support layer-forming step and the polyolefin ketone coating layer-forming step. The intermediate support layer may be formed by a non-solvent-derived phase separation method.

본 발명에 따른 아세틸화 알킬 셀룰로스와 폴리올레핀케톤의 복합중공사막은 치밀한 표층과 표면의 매우 작은 기공 구조를 갖기 때문에 물의 직접적인 통과는 안 되지만, 폴리올레핀케톤 소재의 특징으로 증가된 물 분자만 선택적으로 통과되고, 지지층을 구성하는 아세틸화 알킬 셀룰로스가 친수성이 높고 구조가 다공성 구조여서, 표층을 투과한 물 분자가 쉽게 이동하여 높은 투과도를 유지할 수 있다. Since the composite hollow fiber membrane of an acetylated alkyl cellulose and a polyolefin ketone according to the present invention has a dense surface layer and a very small pore structure on the surface thereof, water can not be directly passed through. However, the polyolefin ketone material, , The acetylated alkyl cellulose constituting the support layer has a high hydrophilicity and a porous structure, so that water molecules permeating the surface layer can easily migrate and maintain high permeability.

본 발명에 따른 복합 중공사막은 고투수성 및 고염제거율을 가지면서 고강도를 유지하고 있어, 정수처리용 분리막 모듈, 중수처리용 분리막 모듈, 생물막 반응기용 침지형 분리막 모듈, 화학적 혼합물 분리용 모듈, 해수담수화용 전처리 분리막 모듈 등 차세대 고효율 분리공정에 적용하는 것이 가능하다. The composite hollow fiber membrane according to the present invention maintains a high water permeability and high salt removal rate while maintaining a high strength, and can be used as a membrane module for water treatment, a membrane module for heavy water treatment, an immersion membrane module for biofilm reactor, a module for chemical mixture separation, It is possible to apply it to the next generation high efficiency separation process such as the pretreatment separation membrane module.

도 1은 실시예에서 사용된 막 증류장치의 개략모식도이다.
도 2는 본 발명의 실시예 1에서 제조된 복합 중공사막의 단면을 주사전자현미경으로 관찰한 사진이다.
도 3은 본 발명의 실시예 2에서 제조된 복합 중공사막의 단면을 주사전자현미경으로 관찰한 사진이다.
도 4는 비교예 1에서 제조된 복합 중공사막의 단면을 주사전자현미경으로 관찰한 사진이다.
도 5는 비교예2에서 제조된 복합 중공사막의 단면을 주사전자현미경으로 관찰한 사진이다.
1 is a schematic diagram of a membrane distillation apparatus used in an embodiment.
FIG. 2 is a photograph of a section of the composite hollow fiber membrane produced by Example 1 of the present invention by a scanning electron microscope. FIG.
FIG. 3 is a photograph of a cross section of the composite hollow fiber membrane produced in Example 2 of the present invention by scanning electron microscopy. FIG.
4 is a photograph of a cross section of the composite hollow fiber membrane produced in Comparative Example 1 by scanning electron microscope.
5 is a photograph of a cross section of the composite hollow fiber membrane produced in Comparative Example 2 by scanning electron microscopy.

이하에서는 본 발명에 대해서 더욱 상세하게 설명한다. 본 발명을 설명함에 있어서, 공지된 기능 혹은 구성에 대해 구체적인 설명은 본 발명의 요지를 명료하게 하기 위하여 생략될 수 있다.Hereinafter, the present invention will be described in more detail. In describing the present invention, a detailed description of well-known functions or constructions may be omitted for clarity of the present invention.

본 발명의 하나의 양상은 지지층, 및 상기 지지층의 외주면에 동심원 상으로 구비되어 상기 지지층을 둘러싸는 코팅층으로 구성되고, 상기 지지층은 아세틸화 알킬 셀룰로스 고분자를 포함하고, 상기 코팅층은 폴리올레핀케톤 고분자를 포함하는 것을 특징으로 하는 복합 중공사막에 관한 것이다. According to one aspect of the present invention, there is provided a semiconductor device comprising a support layer, and a coating layer concentrically formed on an outer circumferential surface of the support layer and surrounding the support layer, wherein the support layer comprises an acetylated alkyl cellulose polymer and the coating layer comprises a polyolefin ketone polymer The present invention relates to a composite hollow fiber membrane,

상기 아세틸화 알킬 셀룰로스 고분자는 찬수성이 높고 다공성 구조를 갖기 때문에 수투과도가 우수하고 내오염성이 뛰어난 특성이 있으며, 상기 지지층이 아세틸화 알킬 셀룰로스 고분자를 포함함에 따라 지지층의 수투과도 및 내오염성이 향상될 수 있다. 한편, 폴리올레핀케톤층은 치밀하고 작은 기공 구조를 갖기 때문에, 증기화된 물 분자만 선택적으로 통과시켜 막 증류법에 적용되는 중공사막의 기공 젖음 문제를 해결하여 수투과도가 우수하고 염 제거율이 높은 막을 제공할 수 있다.Since the acetylated alkylcellulose polymer has high water-permeability and porous structure, it has excellent water permeability and excellent stain resistance. As the support layer includes the acetylated alkylcellulose polymer, water permeability and stain resistance of the support layer are improved . On the other hand, since the polyolefin ketone layer has a dense and small pore structure, it solves the problem of pore-wetting of the hollow fiber membrane applied to membrane distillation method by selectively passing only vaporized water molecules, thereby providing a membrane with high water permeability and high salt removal rate can do.

상기 아세틸화 알킬 셀룰로오스의 알킬기로는 메틸기, 에틸기, 프로필기, 히드록시기, 히드록시프로필기 등이 될 수 있으며, 상기 지지층은 1종 이상의 상기 아세틸화 알킬 셀룰로스 고분자를 포함할 수 있다. The alkyl group of the acetylated alkyl cellulose may be a methyl group, an ethyl group, a propyl group, a hydroxy group, a hydroxypropyl group or the like, and the support layer may include at least one of the above-mentioned acetylated alkylcellulose polymers.

상기 폴리올레핀케톤 고분자는 하기 화학식 1 또는 화학식 2로 표시되는 것으로, 상기 화학식 1의 폴리올레핀케톤 수지는 고유점도(Intrinsic viscosity)가 4 내지 7이고, 상기 화학식 2의 폴리올레핀케톤 수지는 고유점도가 1 내지 3이며, 프로필렌의 함량은 3~10 mol%이다. The polyolefin ketone resin of the formula (1) has an intrinsic viscosity of 4 to 7, and the polyolefin ketone resin of the formula (2) has an intrinsic viscosity of 1 to 3 , And the content of propylene is 3 to 10 mol%.

Figure pat00003
Figure pat00003

상기 식에서, n은 4,000 내지 13,000의 실수임, Wherein n is a real number from 4,000 to 13,000,

Figure pat00004
Figure pat00004

상기 식에서, n은 500 내지 2,000의 실수이고, m은 15 내지 200의 실수임.Wherein n is a real number from 500 to 2,000 and m is a real number from 15 to 200. [

본 발명의 복합 중공사막에서, 상기 지지층은 열유도 상분리법에 의해 제조되고, 상기 코팅층은 비용매유도 상분리법에 의해 제조될 수 있다. In the composite hollow fiber membrane of the present invention, the support layer is prepared by a heat-induced phase separation method, and the coating layer can be produced by a non-solvent-derived phase separation method.

본 발명의 다른 실시예에서, 본 발명의 복합 중공사막은 상기 기지층과 상기 코팅층 사이에 셀룰로스계 고분자를 포함하는 중간 지지층을 추가로 포함할 수 있다. 상기 중간지지층은 비용매유도 상분리법에 의해 제조될 수 있다. 지지층은 열유도 상분리법에 의해서 만들어지는 구조이기 때문에 비용매유도 상분리법에 의해서 만들어지는 중간지지층 보다 표면의 기공크기가 크고 평활도가 낮아, 중간지지층에 폴리올레핀케톤 코팅층이 코팅될 때 균일하고 안정적인 코팅이 가능하다. In another embodiment of the present invention, the composite hollow fiber membrane of the present invention may further include a middle support layer including a cellulose-based polymer between the base layer and the coating layer. The intermediate support layer may be prepared by a non-solvent-derived phase separation method. Since the support layer is formed by the heat-induced phase separation method, the pore size of the surface is larger than that of the intermediate support layer formed by the non-solvent induction phase separation method and the smoothness is low. Thus, when the polyolefin ketone coating layer is coated on the intermediate support layer, It is possible.

지지층, 중간지지층, 및 코팅층으로 구성되는 복합 중공사막에서 상기 지지층은 평균기공이 0.1 ㎛ ~ 5 ㎛이고, 상기 중간 지지층은 평균기공이 0.03 ㎛ ~ 0.1 ㎛일 수 있다. In the composite hollow fiber membrane composed of the support layer, the intermediate support layer, and the coating layer, the support layer may have an average pore size of 0.1 탆 to 5 탆, and the intermediate support layer may have an average pore size of 0.03 탆 to 0.1 탆.

상기 중간 지지층을 구성하는 셀룰로스계 고분자는 아세틸화 알킬 셀룰로오스, 셀룰로오스 아세테이트, 셀룰로오스 트리아세테이트, 셀룰로오스 프로프리아네이트, 셀룰로오스 부티레이트, 셀룰로오스 아세틸프로피오네이트, 셀룰로오스 디아세테이트, 셀룰로오스 디부티레이트 및 셀룰로오스 트리부티레이트를 포함하는 군으로부터 선택되는 1종 이상을 포함할 수 있다. The cellulose-based polymer constituting the intermediate support layer may be at least one selected from the group consisting of acetylated alkylcellulose, cellulose acetate, cellulose triacetate, cellulose prophylanate, cellulose butyrate, cellulose acetylpropionate, cellulose diacetate, cellulose dibutyrate and cellulose tributyrate And the like.

본 발명의 다른 양상은 복합 중공사막의 제조방법에 관한 것이다. Another aspect of the present invention relates to a method for producing a composite hollow fiber membrane.

본 발명의 방법에서는 아세틸화 알킬 셀룰로스 고분자와 빈용매를 포함하는 지지층 도프용액을 제막하여 지지층을 형성하고, 이어서 폴리올레핀케톤 고분자를 포함하는 코팅층 도프용액을 제조하여 상기 아세틸화 알킬 셀룰로스 지지층 둘레에 코팅하여 폴리올레핀케톤 코팅층을 형성한다. In the method of the present invention, a support layer is formed by forming a support layer doping solution containing an acetylated alkylcellulose polymer and a poor solvent, and then a coating layer doping solution containing a polyolefin ketone polymer is prepared and coated on the acetylated alkyl cellulose support layer To form a polyolefin ketone coating layer.

상기 폴리올레핀케톤 고분자는 하기 화학식 1 또는 화학식 2로 표시되는 것으로, 상기 화학식 1의 폴리올레핀케톤 수지는 고유점도가 4 내지 7이고, 상기 화학식 2의 폴리올레핀케톤 수지는 고유점도가 1 내지 3이며, 프로필렌의 함량은 3~10 mol%인 것을 사용할 수 있다.Wherein the polyolefin ketone resin of Formula 1 has an intrinsic viscosity of 4 to 7 and the polyolefin ketone resin of Formula 2 has an intrinsic viscosity of 1 to 3, A content of 3 to 10 mol% can be used.

[화학식 1][Chemical Formula 1]

Figure pat00005
Figure pat00005

상기 식에서, n은 4,000 내지 13,000의 실수임, Wherein n is a real number from 4,000 to 13,000,

[화학식 2](2)

Figure pat00006
Figure pat00006

상기 식에서, n은 500 내지 2,000의 실수이고, m은 15 내지 200의 실수임.Wherein n is a real number from 500 to 2,000 and m is a real number from 15 to 200. [

본 발명에서는 상기 아세틸화 알킬 셀룰로스 지지층은 열유도 상분리법에 의해 중공사막을 제조하고, 상기 폴리올레핀케톤 코팅층은 비용매유도 상분리법에 의해 코팅층을 형성한다. In the present invention, the acetylated alkyl cellulose backing layer is formed by a heat-induced phase separation method, and the polyolefin ketone coating layer is formed by a non-solvent-derived phase separation method.

아세틸화 알킬 셀룰로스 고분자를 이용하여 열유도 상분리법(TIPS)으로 중공사막을 제조하는 과정은 고온에서 용해된 도프용액을 저온의 매체와 접촉시켜 액체-고체 상분리 및 고화가 발생함으로써 다공성 분리막을 달성하는 방법이며, 폴리올레핀케톤 고분자를 이용하여 비용매유도 상분리법(NIPS)으로 코팅을을 제조하는 과정은 고분자를 용해시킬 수 있는 용매에 고분자를 용해시켜 용매와 비용매가 도프용액 내에서 상호교환이 이루어짐으로써 액체-고체 상분리 및 고화를 유도하여 다공성 분리막을 형성한다. The process of preparing a hollow fiber membrane by a thermally induced phase separation method (TIPS) using an acetylated alkylcellulose polymer involves contacting a dope solution dissolved at a high temperature with a medium at a low temperature to cause liquid-solid phase separation and solidification to achieve a porous separator The process of preparing a coating by non-solvent-induced phase separation (NIPS) using a polyolefin ketone polymer comprises dissolving a polymer in a solvent capable of dissolving the polymer and interchanging the solvent and the non-solvent in the dope solution Liquid-solid phase separation and solidification are induced to form a porous separator.

이와 같이 지지층은 TIPS를 이용하고 코팅층은 NIPS를 이용하여 상분리를 시킴으로써, 고강도, 고투수성의 기공제어가 용이한 중공사막을 제막할 수 있다.By using TIPS for the support layer and phase separation using the NIPS coating layer, it is possible to form a hollow fiber membrane which is easy to control pores with high strength and high water permeability.

본 발명의 일 구현예에 따른 복합 중공사막의 제조방법에 있어서, 지지층을 형성하는 도프용액은 아세틸화 알킬 셀룰로스와 빈용매를 포함한다. 이때 각 성분의 함량비는 아세틸화 알킬 셀룰로스 15~40 중량%와, 빈용매 60~85 중량%로 이루어지는 것이 바람직하다.  In the method for producing a composite hollow fiber membrane according to an embodiment of the present invention, the dope solution forming the support layer includes an acetylated alkyl cellulose and a poor solvent. In this case, the content ratio of each component is preferably 15 to 40% by weight of the acetylated alkyl cellulose and 60 to 85% by weight of the poor solvent.

본 발명의 제조방법에서 빈용매로는 폴리에틸렌글리콜, 폴리비닐알콜, 및 무수말레인산, 계면활성제 등 물에 쉽게 용해되는 친수성 고분자 혹은 유기물로서 단독 혹은 2종 이상 혼합물로서 아세틸화 알킬 셀룰로스 도프용액에 첨가하여 사용할 수 있으며, 바람직하게는 폴리에틸렌글리콜을 사용하는 것이 좋다. As the poor solvent in the production method of the present invention, hydrophilic polymers or organic substances easily soluble in water such as polyethylene glycol, polyvinyl alcohol, maleic anhydride and a surfactant may be added to the acetylated alkyl cellulose dope solution alone or as a mixture of two or more thereof And it is preferable to use polyethylene glycol.

도프용액은 방사되기 전, 용액 속에 남아 있는 기포를 제거하기 위해 감압 등의 방법으로 탈기가 수행될 수 있으며, 탈기된 도프용액은 용액 중에 있을 불순물, 특히 미용해된 고분자나 탄화된 고분자 등을 포함하는 고형의 불순물을 제거하기 위해 금속 메쉬 등을 이용하여 필터링될 수 있으나, 본 발명의 제조방법이 이에 제한되는 것은 아니며, 상기 탈기 및 필터링은 도프용액의 상태를 확인하여 선택적으로 수행될 수 있다.The dope solution may be degassed by decompression or the like in order to remove bubbles remaining in the solution before the dope solution is radiated, and the deaerated dope solution may contain impurities present in the solution, in particular an undissolved polymer or a carbonized polymer However, the manufacturing method of the present invention is not limited thereto, and the degassing and filtering may be selectively performed by checking the state of the dope solution.

본 발명에서 지지층 형성용 도프용액은 130 내지 200℃에서 제조되는 것이 바람직하고, 또한 용액 중에 존재하는 기포를 제거하기 위하여 반드시 탈포공정으로 거쳐야 한다. 일반적으로 130℃ 이하의 온도에서 고화되어 중공사막을 형성하거나, 130℃ 이하인 비용매와의 접촉시 상분리에 의하여 중공사 분리막이 형성된다. 따라서, 아세틸화 알킬 셀룰로스 지지층의 제조를 위해 적어도 130℃ 이상, 바람직하게는 130 내지 180℃의 온도를 유지하는 방사 노즐을 통해 도프용액을 응고액으로 토출시키는 것이 바람직하다. In the present invention, the dope solution for forming the support layer is preferably prepared at 130 to 200 ° C, and must be subjected to a defoaming process in order to remove bubbles present in the solution. Generally, the hollow fiber membrane is solidified at a temperature of 130 ° C or lower, or a hollow fiber membrane is formed by phase separation upon contact with a non-solvent at 130 ° C or lower. Thus, for the production of the acetylated alkyl cellulose backing layer, it is preferable to discharge the dope solution as a coagulating solution through a spinning nozzle maintaining a temperature of at least 130 캜, preferably 130 캜 to 180 캜.

폴리올레핀케톤 코팅층은 예를 들면 액상 코팅법으로 제조될 수 있다. 액상 코팅법에서는 폴리올레핀케톤을 적절한 용매에 용해하여 코팅액을 제조한다. 이 때 제조된 코팅액 내의 공중합체의 농도는 특별히 한정되지 않으며, 예를 들면, 0.5%(w/v) 내지 8%(w/v)일 수 있다. 또한, 상기 코팅액 제조 시에 사용가능한 용매로는 ZnCl2, CaCl2 및 LiCl 로 이루어진 군으로부터 선택되는 1종 이상의 금속염수용액, m-크레졸(m-cresol), 헥사플루오로-2-프로판올 (Hexafluoro-2-propanol, HFIP) 등이 있으나, 반드시 이에 제한되는 것은 아니다. The polyolefin ketone coating layer can be produced by, for example, a liquid coating method. In the liquid coating method, a polyolefin ketone is dissolved in an appropriate solvent to prepare a coating solution. The concentration of the copolymer in the coating liquid prepared at this time is not particularly limited, and may be, for example, 0.5% (w / v) to 8% (w / v). Examples of the solvent that can be used in the preparation of the coating solution include at least one metal salt aqueous solution selected from the group consisting of ZnCl2, CaCl2 and LiCl, m-cresol, hexafluoro-2- propanol, HFIP), but are not limited thereto.

또한, 제조되는 폴리올레핀케톤 코티층의 기공 크기를 조절하기 위하여 별도의 기공조절제가 추가로 사용될 수 있다. 이러한 기공조절제는, 목적하는 기공크기에 적합하도록 공지의 기공 조절제를 선택하여 적당량 첨가하여 사용할 수 있다.  기공 크기를 키우기 위한 기공 조절제로는 여러 분자량의 폴리(에틸렌 글리콜), 폴리(비닐피롤리돈), 폴리(비닐알코올)이 선택적으로 사용될 수 있으며, 기공크기를 줄이기 위한 기공 조절제로는 1,4-다이옥산, 디에틸렌글리콜디메틸에테르 등이 선택적으로 사용될 수 있다. Further, a pore-controlling agent may be additionally used to control the pore size of the polyolefin ketone coating layer to be produced. Such a pore-controlling agent may be selected from known pore-controlling agents so as to be suitable for the desired pore size and added in an appropriate amount. Poly (ethylene glycol), poly (vinylpyrrolidone), and poly (vinyl alcohol) may be selectively used as a pore regulator for increasing the pore size, and pore regulators for reducing the pore size include 1,4 -Dioxane, diethylene glycol dimethyl ether, etc. may be optionally used.

액상 코팅법에서는, 위와 같이 제조된 코팅액을 지지체 상에 코팅한 후, 응고조에서 상분리시킨 후, 세척 및 건조시키는 단계를 거쳐 분리막을 제조할 수 있다. 상기 코팅 방법으로는 딥코팅, 스핀 코팅 또는 스프레이 코팅 등과 같은 통상의 방법을 사용할 수 있다. In the liquid coating method, the coating liquid prepared as described above is coated on a support, followed by phase separation in a coagulation bath, followed by washing and drying, thereby preparing a separation membrane. As the coating method, a usual method such as dip coating, spin coating or spray coating can be used.

폴리올레핀케톤의 상분리 시에는 비용매유도 상분리법을 이용할 수 있고, 이때 비용매로 사용되는 용매는 γ-부티로락톤, 에탄올, 및 염화리튬으로 구성되는 군에서 선택되는 것을 사용할 수 있다.When the polyolefin ketone is phase-separated, the non-solvent-derived phase separation method can be used. In this case, the solvent used as the non-solvent may be selected from the group consisting of? -Butyrolactone, ethanol, and lithium chloride.

다른 실시예에서, 상기 아세틸화 알킬 셀룰로스 지지층 제조단계와 폴리올레핀케톤 코팅층 형성 단계 사이에 셀룰로스계 고분자로 구성되는 중간 지지층을 형성하는 단계를 추가로 포함할 수 있다. 이때 상기 중간 지지층은 비용매유도 상분리법에 의해 형성할 수 있다. In another embodiment, a step of forming an intermediate support layer composed of a cellulose-based polymer may be further included between the step of preparing the acetylated alkyl cellulose support layer and the step of forming the polyolefin ketone coating layer. At this time, the intermediate support layer may be formed by a non-solvent-derived phase separation method.

이와 같이 지지층을 두 개의 층으로 형성하는 경우에는, 지지층 도프용액과 중간 지지층을 구성하는 중간 지지층 도프 용액 및 중공형성제를 3중 노즐을 통해 외부응고조로 동시에 방사하여 지지층 중공사막을 형성할 수 있다. 이때 3중 방사구금의 내부 노즐로는 중공형성제를 토출시키고, 외부 노즐로는 중간지지층을 형성하는 도프용액을 토출시키며, 내부와 외부 사이의 노즐로는 지지층을 형성하는 도프용액을 토출시키게 된다. 이와 같이 3중 방사구금을 통해 지지층과 중간 지지층 도프용액을 동시에 방사함으로써 중공사막를 제막한 후에도 균일한 두께를 지니고 코팅층이 박리가 되지 않는 복합 중공사막을 제조할 수 있게 된다.When the support layer is formed of two layers as described above, the support layer dope solution and the intermediate support layer constituting the intermediate support layer and the hollow formative agent can be simultaneously radiated into the external coagulation bath through the triple nozzle to form the support layer hollow fiber membrane . At this time, the dope solution for discharging the hollow forming agent is discharged as the inner nozzle of the triple spinneret, the dope solution for forming the intermediate supporting layer is discharged as the outer nozzle, and the dope solution for forming the supporting layer is discharged as the nozzle between the inside and the outside . As a result, the composite hollow fiber membrane can be manufactured which has a uniform thickness even after the hollow fiber membrane is formed and the coating layer is not peeled off, by simultaneously spinning the support layer and the intermediate support layer dope solution through the triple spinneret.

폴리올레핀케톤 코팅층을 형성하는 방법은 위에서 설명한 바와 같다. The method of forming the polyolefin ketone coating layer is as described above.

본 발명에서는 응고액으로부터 대기 중으로 이송된 중공사막의 막 내외에 잔존하는 용매를 포함한 유기물을 제거하기 위해 세척과정을 더욱 포함할 수 있다. 세척액으로 물의 사용이 바람직하며, 세척시간은 특별히 한정되지는 않으나, 적어도 1일 이상, 5일 이하가 바람직하다.  In the present invention, a washing process may be further included to remove organic matter including solvent remaining in the membrane of the hollow fiber membrane transferred from the coagulating solution into the atmosphere. The use of water as a washing solution is preferred, and the washing time is not particularly limited, but is preferably at least 1 day and at most 5 days.

전술한 세척 공정 후에 수행되는 건조 조건은 코팅액에 포함된 용매가 충분히 제거될 수 있는 조건으로 수행되는 한, 특별히 제한되지 않고, 예를 들면, 코팅 후에 분리막을 오븐 또는 진공 오븐에 넣고 약 20 내지 80℃에서 약 24시간 동안 건조 공정을 수행함으로써 수행할 수 있다. The drying conditions to be performed after the washing process are not particularly limited as long as the drying process is performed under conditions in which the solvent contained in the coating liquid can be sufficiently removed. For example, after the coating, the separation membrane is placed in an oven or vacuum oven, Lt; 0 > C for about 24 hours.

이하, 본 발명을 실시예를 통해 보다 구체적으로 설명한다. 그러나, 하기 실시예는 본 발명을 설명하기 위한 것일 뿐, 하기 실시예에 의하여 본 발명의 권리범위가 한정되는 것은 아니다. Hereinafter, the present invention will be described more specifically by way of examples. However, the following examples are intended to illustrate the present invention, but the scope of the present invention is not limited by the following examples.

실시예Example

실시예Example 1 One

아세틸화 메틸 셀룰로스(AMC) 25 wt%, 트리에틸렌글리콜 75 wt%를 160℃에서 용해하여 방사구금을 통해 토출하고, 25℃ 물로 구성된 응고욕에서 고화시키는 열유도 상분리 방법으로 지지층 중공사막을 제조하였다. 제조된 지지층 중공사막을 폴리올레핀케톤 10 wt%, 메타크레졸 90 wt%로 구성된 코팅 용액에 디핑 방법으로 코팅한 후, 25℃ 에탄올로 구성된 응고욕에서 고화시켜 비용매유도 상분리법에 의해 폴리올레핀케톤 코팅층을 형성함으로써 아세틸화 메틸 셀를로스와 폴리올레핀케톤의 복합 중공사막을 제조하였다. A support layer hollow fiber membrane was prepared by dissolving 25 wt% of acetylated methyl cellulose (AMC) and 75 wt% of triethylene glycol at 160 캜, spinning through a spinneret, and solidifying in a coagulation bath composed of 25 캜 water . The prepared support layer hollow fiber membrane was coated with a coating solution composed of 10 wt% of polyolefin ketone and 90 wt% of meta cresol by a dipping method and then solidified in a coagulation bath composed of 25 DEG C ethanol to obtain a polyolefin ketone coating layer To prepare a hollow hollow fiber membrane of acetylated methylcellulose and a polyolefin ketone.

실시예Example 2 2

아세틸화 메틸 셀룰로스 25 wt%, 트리에틸렌글리콜 75 wt%를 160℃에서 용해하여 지지층 도프용액을 만들고, 아세틸화 메틸 셀룰로스 10 wt%, 디메틸아세트아마이드 90 wt%를 60℃에서 용해하여 중간지지층 도프용액을 만들었다. 이어서 준비된 아세틸화 메틸 셀룰로스 고분자를 포함한 지지층 도프용액과 중간지지층 도프용액을 3중 방사구금을 통해 토출함과 동시에 25℃ 물로 구성된 응고욕에서 고화시키는 열유도 상분리 방법과 비용매유도 상분리 방법이 조합된 중공사막을 제조하였다. 제조된 중공사막을 폴리올레핀케톤 10 wt%, 메타크레졸 90 wt%로 구성된 용액에 디핑 방법으로 코팅한 후, 25℃ 에탄올로 구성된 응고욕에서 고화시켜 비용매유도 상분립법에 의해 폴리올레핀케톤 코팅층을 형성함으로써 아세틸화 메틸 셀를로스와 폴리올레핀케톤의 복합 중공사막을 제조하였다. 25 wt% of acetylated methyl cellulose and 75 wt% of triethylene glycol were dissolved at 160 캜 to prepare a support layer doped solution, and 10 wt% of acetylated methyl cellulose and 90 wt% of dimethylacetamide were dissolved at 60 캜 to prepare an intermediate support layer dope solution . Subsequently, the supported layer doped solution containing the prepared acetylated methylcellulose polymer and the intermediate supported layer doped solution were discharged through a triple spinneret, and a heat-induced phase separation method solidifying in a coagulation bath composed of water at 25 ° C and a non-solvent derived phase separation method were combined A hollow fiber membrane was prepared. The hollow fiber membrane thus prepared was coated on a solution composed of 10 wt% of polyolefin ketone and 90 wt% of meta-cresol by a dipping method, and then solidified in a coagulation bath composed of 25 DEG C ethanol to form a polyolefin ketone coating layer To prepare a composite hollow fiber membrane of cellulose acetate and polyolefin ketone.

비교예Comparative Example 1 One

아세틸화 메틸 셀룰로스 25 wt%, 트리에틸렌글리콜 75 wt%를 160℃에서 용해하여 방사구금을 통해 토출하고, 25℃ 물로 구성된 응고욕에서 고화시키는 열유도 상분리 방법으로 중공사막을 제조하였다. 25 wt% of acetylated methyl cellulose and 75 wt% of triethylene glycol were dissolved at 160 캜 and discharged through a spinneret, and a hollow fiber membrane was prepared by a heat induction phase separation method of solidifying in a coagulation bath composed of water at 25 캜.

비교예Comparative Example 2  2

아세틸화 메틸 셀룰로스 25 wt%, 트리에틸렌글리콜 75 wt%를 160℃에서 용해하여 지지층 도프용액을 만들고, 아세틸화 메틸 셀룰로스 10 wt%, 디메틸아세트아마이드) 90 wt%를 60℃에서 용해하여 코팅층 도프용액을 만들었다. 준비된 아세틸화 메틸 셀룰로스 고분자를 포함한 지지층 도프용액과 코팅층 도프용액을 3중 방사구금을 통해 토출함과 동시에 25℃ 물로 구성된 응고욕에서 고화시키는 열유도 상분리 방법과 비용매유도 상분리 방법이 조합된 중공사막을 제조하였다. 25 wt% of acetylated methyl cellulose and 75 wt% of triethylene glycol were dissolved at 160 캜 to prepare a base layer doped solution, and 90 wt% of acetylated methyl cellulose and 10 wt% of dimethylacetamide were dissolved at 60 캜 to prepare a coating layer dope solution . A support layer doped with a prepared acetylated methyl cellulose polymer and a coating layer doped with a hollow fiber membrane in combination with a heat induction phase separation method of solidifying in a coagulation bath composed of water at 25 ° C and a non-solvent- .

시험예Test Example 1: 주사전자현미경 분석 1: Scanning electron microscope analysis

상기 실시예 1~2 및 비교예 1~2에서 제조된 복합 중공사막을 주사전자현미경을 이용하여 관찰하였으며, 그 결과를 도 2 내지 도 5 에 나타내었다. The composite hollow fiber membranes prepared in Examples 1 and 2 and Comparative Examples 1 and 2 were observed using a scanning electron microscope. The results are shown in FIGS. 2 to 5.

도 2-3에 나타낸 바와 같이, 실시예 1~2에서 제조된 복합 중공사막의 단면 일부를 주사전자현미경으로 관찰한 결과, 아세틸화 알킬 셀룰로스 지지층의 외주면에 폴리올레핀케톤 코팅층이 잘 형성되어 있음을 알 수 있다. As shown in FIG. 2-3, a cross section of the composite hollow fiber membranes prepared in Examples 1 and 2 was observed with a scanning electron microscope. As a result, it was found that a polyolefin ketone coating layer was well formed on the outer surface of the acetylated alkylcellulose support layer .

시험예Test Example 2: 투과성능 분석 2: Permeation performance analysis

본 발명의 실시예 및 비교예에서 제조된 복합 중공사막 내지 복합 중공사막의 투과성능을 비교하기 위해, 상기 실시예 1 내지 2 및 비교예 1~2에서 제조된 복합 중공사막의 물성을 도 1에 도시된 바와 같은 막증류장치를 이용하여 하기와 같은 투과성능 분석 실험을 실시하였으며, 분석 결과를 하기 표 1에 나타내었다. The properties of the composite hollow fiber membranes prepared in Examples 1 to 2 and Comparative Examples 1 and 2 are shown in FIG. 1 for comparison of the permeation performance of the composite hollow fiber membranes or composite hollow fiber membranes prepared in Examples and Comparative Examples of the present invention The following permeation performance analysis experiments were conducted using the membrane distillation apparatus as shown in Table 1. The results of the analysis are shown in Table 1 below.

1) 시험예 1 - 투과유랑 평가1) Test Example 1 - Permeation evaluation

도 1의 막증류장치의 복합 중공사막을 통해서 60℃, 3.5%의 NaCl 수용액에 대한 수증기의 투과유량을 측정하였다. 구체적으로 제조된 중공사막의 사이에 두고 중공사막의 외부에는 60℃, 3.5% 의 수용액을 두고 중공사막의 가운데 중공부에는 1 l/min의 유량으로 공기를 투과시킨 후 응축기로 공기에 포함된 수증기량을 측정하고, 단위 시간 및 단위 면적당 투과된 수증기량을 평가하여 투과유량을 계산하였다. The permeation flux of water vapor over an aqueous NaCl solution of 3.5% at 60 DEG C was measured through the composite hollow fiber membrane of the membrane distillation apparatus of Fig. Air was passed through the hollow fiber membrane at a flow rate of 1 l / min to the hollow portion of the hollow fiber membrane at a temperature of 60 ° C and 3.5% at the outside of the hollow fiber membrane, and the amount of water vapor And the permeate flow rate was calculated by evaluating the amount of water vapor permeated per unit time and unit area.

2) 2) 시험예Test Example 2 -  2 - 염제거율Salt removal rate 평가 evaluation

염제거율은 아래의 식에 의하여 계산하였다. The salt removal rate was calculated by the following equation.

Figure pat00007
Figure pat00007

상기 식에서, R은 염제거율, Cf는 NaCl 수용액 중 용질의 농도이며, Cp는 투과된 수증기를 응축하여 얻은 투과수중의 용질 농도이다. Where R is the salt removal rate, Cf is the solute concentration in the aqueous NaCl solution, and Cp is the solute concentration in the permeate water obtained by condensing the permeated water vapor.

중공사막
Hollow fiber membrane
수증기 투과량
(g/ft2,d)
Water vapor permeability
(g / ft2, d)
염제거율(%)Salt Removal Rate (%)
비교예1Comparative Example 1 7.497.49 75.43275.432 비교예2Comparative Example 2 12.3612.36 30.22730.227 실시예1Example 1 4.184.18 99.99999.999 실시예2Example 2 6.396.39 99.99999.999

상기 표 1의 결과를 살펴보면, 실시예 1~2에서 제조한 본 발명의 아세틸화된 알킬 셀룰로스와 폴리올레핀케톤의 복합 중공사막이 비교예 1~2에서 제조한 아세틸화된 알킬 셀룰로스 분리막보다 염제거율이 우수함을 확인할 수 있다. The results of Table 1 indicate that the composite hollow fiber membrane of the present invention prepared in Examples 1 and 2 has a salt removal rate higher than that of the acetylated alkyl cellulose membranes prepared in Comparative Examples 1 and 2 It can be confirmed that it is excellent.

본 발명에 따른 복합 중공사막은 수투과도가 우수하고 내오염성이 뛰어나며, 치밀한 기공으로 염제거율이 높은 아세틸 알킬 셀룰로스 고분자를 포함하는 지지층 및 높은 기계적 강도와 내화학성을 갖는 폴리올레핀케톤 고분자를 포함하는 코팅층으로 구성되어, 높은 수투과도를 유지하며, 우수한 염제거율 및 기계적 특성을 나타낼 수 있다. 또한, 본 발명에 따른 상기 중공사막은 해수, 염수, 하수 및 폐수 등은 수처리 공정에 적용될 수 있으며, 특히 담수화 공정에 적용할 수 있는 효과가 있다. The composite hollow fiber membrane according to the present invention is a coating layer comprising a support layer containing an acetyl alkyl cellulose polymer having excellent water permeability and excellent stain resistance, dense pores and a high salt removal rate, and a polyolefin ketone polymer having high mechanical strength and chemical resistance To maintain high water permeability, to exhibit excellent salt removal rate and mechanical properties. In addition, the hollow fiber membrane according to the present invention can be applied to water treatment processes such as seawater, brine, sewage, and wastewater, and is particularly applicable to a desalination process.

이상에서 본 발명에 대해서 구체적으로 설명하였으나, 본 발명은 상술한 실시예들에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다는 것을 이해할 것이다. 따라서 본 발명의 보호범위는 후술하는 특허청구범위뿐만 아니라 특허청구범위와 균등한 범위로 정해져야 할 것이다. While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, will be. Accordingly, the scope of protection of the present invention should be determined not only in the claims of the following claims, but also in the scope of equivalents to the claims.

Claims (17)

지지층, 및 상기 지지층의 외주면에 동심원 상으로 구비되어 상기 지지층을 둘러싸는 코팅층으로 구성되고, 상기 지지층은 아세틸화 알킬 셀룰로스 고분자를 포함하고, 상기 코팅층은 폴리올레핀케톤 고분자를 포함하는 것을 특징으로 하는 복합 중공사막.
A support layer, and a coating layer concentrically formed on an outer circumferential surface of the support layer and surrounding the support layer, wherein the support layer comprises an acetylated alkyl cellulose polymer, and the coating layer comprises a polyolefin ketone polymer. desert.
제1항에 있어서, 상기 폴리올레핀케톤 고분자는 하기 화학식 1 또는 화학식 2로 표시되는 것으로, 상기 화학식 1의 폴리올레핀케톤 수지는 고유점도(Intrinsic viscosity)가 4 내지 7이고, 상기 화학식 2의 폴리올레핀케톤 수지는 고유점도가 1 내지 3이며, 프로필렌의 함량은 3~10 mol%인 것을 특징으로 하는 복합 중공사막.
[화학식 1]
Figure pat00008

상기 식에서, n은 4,000 내지 13,000의 실수임,
[화학식 2]
Figure pat00009

상기 식에서, n은 500 내지 2,000의 실수이고, m은 15 내지 200의 실수임.
The polyolefin ketone resin of claim 1, wherein the polyolefin ketone resin has an intrinsic viscosity of 4 to 7, and the polyolefin ketone resin of formula (2) An intrinsic viscosity of 1 to 3, and a propylene content of 3 to 10 mol%.
[Chemical Formula 1]
Figure pat00008

Wherein n is a real number from 4,000 to 13,000,
(2)
Figure pat00009

Wherein n is a real number from 500 to 2,000 and m is a real number from 15 to 200. [
제1항에 있어서, 상기 지지층은 열유도 상분리법에 의해 제조되고, 상기 코팅층은 비용매유도 상분리법에 의해 제조되는 막임을 특징으로 하는 복합 중공사막.
The composite hollow fiber membrane according to claim 1, wherein the support layer is produced by a heat-induced phase separation method, and the coating layer is a membrane produced by a non-solvent-derived phase separation method.
제1항에 있어서, 상기 복합 중공사막이 상기 기지층과 상기 코팅층 사이에 셀룰로스계 고분자를 포함하는 중간 지지층을 추가로 포함하는 것을 특징으로 하는 복합 중공사막.
The composite hollow fiber membrane according to claim 1, wherein the composite hollow fiber membrane further comprises an intermediate support layer between the base layer and the coating layer, the intermediate support layer comprising a cellulosic polymer.
제4항에 있어서, 상기 지지층은 평균기공이 0.08 ㎛ ~ 0.2 ㎛이고, 상기 중간 지지층은 평균기공이 0.05 ㎛ ~ 0.1 ㎛인 것을 특징으로 하는 복합 중공사막.
5. The composite hollow fiber membrane according to claim 4, wherein the supporting layer has an average pore of 0.08 to 0.2 m and the average supporting pore has an average pore of 0.05 to 0.1 m.
제4항에 있어서, 상기 중간 지지층을 구성하는 셀룰로스계 고분자는 아세틸화 알킬 셀룰로오스, 셀룰로오스 아세테이트, 셀룰로오스 트리아세테이트, 셀룰로오스 프로프리아네이트, 셀룰로오스 부티레이트, 셀룰로오스 아세틸프로피오네이트, 셀룰로오스 디아세테이트, 셀룰로오스 디부티레이트 및 셀룰로오스 트리부티레이트를 포함하는 군으로부터 선택되는 1종 이상의 고분자인 것을 특징으로 하는 복합 중공사막.
[5] The method of claim 4, wherein the cellulose-based polymer constituting the intermediate support layer is selected from the group consisting of acetylated alkylcellulose, cellulose acetate, cellulose triacetate, cellulose propriatalate, cellulose butyrate, cellulose acetylpropionate, cellulose diacetate, Cellulose triflate and cellulose tributyrate. ≪ RTI ID = 0.0 > 11. < / RTI >
제4항에 있어서, 상기 중간 지지층은 비용매유도 상분리법에 의해 제조되는 막임을 특징으로 하는 복합 중공사막.
The composite hollow fiber membrane according to claim 4, wherein the intermediate support layer is a membrane produced by a non-solvent-derived phase separation method.
아세틸화 알킬 셀룰로스 고분자와 빈용매를 포함하는 지지층 도프용액을 제막하여 지지층을 형성하는 단계; 및
폴리올레핀케톤 고분자를 포함하는 코팅층 도프용액을 제조하여 상기 아세틸화 알킬 셀룰로스 지지층 둘레에 코팅하여 코팅층을 형성하는 단계를 포함하는 것을 특징으로 하는 복합 중공사막의 제조방법.
Forming a support layer by forming a support layer doping solution containing an acetylated alkylcellulose polymer and a poor solvent; And
Preparing a coating layer doping solution containing a polyolefin ketone polymer, and coating the coating layer around the acetylated alkyl cellulose supporting layer to form a coating layer.
제8항에 있어서, 상기 폴리올레핀케톤 고분자는 하기 화학식 1 또는 화학식 2로 표시되는 것으로, 상기 화학식 1의 폴리올레핀케톤 수지는 고유점도(Intrinsic viscosity)가 4 내지 7이고, 상기 화학식 2의 폴리올레핀케톤 수지는 고유점도가 1 내지 3이며, 프로필렌의 함량은 3~10 mol%인 것을 특징으로 하는 복합 중공사막의 제조방법.
[화학식 1]
Figure pat00010

상기 식에서, n은 4,000 내지 13,000의 실수임,
[화학식 2]
Figure pat00011

상기 식에서, n은 500 내지 2,000의 실수이고, m은 15 내지 200의 실수임.
The polyolefin ketone resin of Claim 1, wherein the polyolefin ketone resin has an intrinsic viscosity of 4 to 7, and the polyolefin ketone resin of Formula (2) An intrinsic viscosity of 1 to 3, and a propylene content of 3 to 10 mol%.
[Chemical Formula 1]
Figure pat00010

Wherein n is a real number from 4,000 to 13,000,
(2)
Figure pat00011

Wherein n is a real number from 500 to 2,000 and m is a real number from 15 to 200. [
제8항에 있어서, 상기 아세틸화 알킬 셀룰로스 지지층은 열유도 상분리법에 의해 중공사막을 제조하고, 상기 폴리올레핀케톤 코팅층은 비용매유도 상분리법에 의해 코팅층을 형성하는 것을 특징으로 하는 복합 중공사막의 제조방법.
The process for producing a composite hollow fiber membrane according to claim 8, wherein the acetylated alkyl cellulose support layer is formed by a heat induction phase separation method and the polyolefin ketone coating layer is formed by a non-solvent- Way.
제8항에 있어서, 상기 아세틸화 알킬 셀룰로스 지지층 제조단계와 폴리올레핀케톤 코팅층 형성 단계 사이에 셀룰로스계 고분자로 구성되는 중간 지지층을 형성하는 단계를 추가로 포함하는 것을 특징으로 하는 복합 중공사막의 제조방법. The method of claim 8, further comprising forming an intermediate support layer composed of a cellulose-based polymer between the step of preparing the acetylated alkylcellulose support layer and the step of forming the polyolefin ketone coating layer. 제11항에 있어서, 상기 중간 지지층은 비용매유도 상분리법에 의해 형성하는 것을 특징으로 하는 복합 중공사막의 제조방법.
12. The method of claim 11, wherein the intermediate support layer is formed by a non-solvent-derived phase separation method.
제11항에 있어서, 상기 방법이 지지층 도프용액과 중간 지지층을 구성하는 중간 지지층 도프 용액 및 중공형성제를 3중노즐을 통해 외부응고조로 동시에 방사하는 단계를 추가로 포함하는 것을 특징으로 하는 복합 중공사막의 제조방법.
12. The method of claim 11, wherein the method further comprises simultaneously radiating the intermediate support layer dope solution and the hollowing agent constituting the support layer dope solution and the intermediate support layer to an external coagulation bath through a triple nozzle. Method of manufacturing desert.
제8항에 있어서, 상기 빈용매는 폴리에틸렌글리콜, 폴리비닐알콜 또는 및 무수말레산으로 구성되는 군에서 선택된 1 종 이상인 것을 특징으로 하는 복합 중공사막의 제조방법.
The process for producing a composite hollow fiber membrane according to claim 8, wherein the poor solvent is at least one selected from the group consisting of polyethylene glycol, polyvinyl alcohol, and maleic anhydride.
제10항에 있어서, 상기 비용매유도 상분리법에서 비용매로 사용되는 용매는 γ-부티로락톤, 에탄올, 및 염화리튬으로 구성되는 군에서 선택되는 것을 사용하는 것을 특징으로 하는 복합 중공사막의 제조방법.
The method according to claim 10, wherein the solvent used as a non-solvent in the non-solvent-derived phase separation method is selected from the group consisting of? -Butyrolactone, ethanol, and lithium chloride. Way.
제11항에 있어서, 상기 중간 지지층의 비용매유도 상분리에 사용되는 용매는 N,N-디메틸아세트아미드, 또는 1-메틸-2-피롤리돈을 사용하는 것을 특징으로 하는 복합 중공사막의 제조방법.
12. The method for producing a composite hollow fiber membrane according to claim 11, wherein the solvent used for the NMP-induced phase separation of the intermediate support layer is N, N-dimethylacetamide or 1-methyl- .
제8항에 있어서, 상기 방법은 지지층을 형성하는 고분자 도프용액의 온도를 130 내지 180℃의 온도 범위로 하는 것을 특징으로 하는 복합 중공사막의 제조방법. The method according to claim 8, wherein the temperature of the polymer dope solution forming the support layer is in the range of 130 to 180 캜.
KR1020170000910A 2017-01-03 2017-01-03 Composite porous membrane of acetylated alkyl cellulose and polyolefinketone KR102306426B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170000910A KR102306426B1 (en) 2017-01-03 2017-01-03 Composite porous membrane of acetylated alkyl cellulose and polyolefinketone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170000910A KR102306426B1 (en) 2017-01-03 2017-01-03 Composite porous membrane of acetylated alkyl cellulose and polyolefinketone

Publications (2)

Publication Number Publication Date
KR20180080425A true KR20180080425A (en) 2018-07-12
KR102306426B1 KR102306426B1 (en) 2021-09-30

Family

ID=62919839

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170000910A KR102306426B1 (en) 2017-01-03 2017-01-03 Composite porous membrane of acetylated alkyl cellulose and polyolefinketone

Country Status (1)

Country Link
KR (1) KR102306426B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112952295A (en) * 2019-11-26 2021-06-11 北京卫蓝新能源科技有限公司 Polyolefin-cellulose composite diaphragm and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120059755A (en) * 2010-12-01 2012-06-11 엘지전자 주식회사 Method for manufacturing a hollow fiber membrane for water treatment using cellulose resin
KR20130142803A (en) * 2012-06-20 2013-12-30 한국화학연구원 Hollow fiber membrane for forward osmotic use, and method for manufacturing the same
KR20140046638A (en) * 2012-10-09 2014-04-21 주식회사 효성 Method for manufacturing asymmetric hollow fiber membrane and asymmetric hollow fiber membrane manufactured using the same
KR20140051337A (en) * 2011-09-09 2014-04-30 아사히 가세이 셍이 가부시키가이샤 Polyketone porous film
KR20150069422A (en) * 2013-12-13 2015-06-23 한국화학연구원 Cellulosic membrane for water treatment with good anti-fouling property and Method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120059755A (en) * 2010-12-01 2012-06-11 엘지전자 주식회사 Method for manufacturing a hollow fiber membrane for water treatment using cellulose resin
KR20140051337A (en) * 2011-09-09 2014-04-30 아사히 가세이 셍이 가부시키가이샤 Polyketone porous film
KR20130142803A (en) * 2012-06-20 2013-12-30 한국화학연구원 Hollow fiber membrane for forward osmotic use, and method for manufacturing the same
KR20140046638A (en) * 2012-10-09 2014-04-21 주식회사 효성 Method for manufacturing asymmetric hollow fiber membrane and asymmetric hollow fiber membrane manufactured using the same
KR20150069422A (en) * 2013-12-13 2015-06-23 한국화학연구원 Cellulosic membrane for water treatment with good anti-fouling property and Method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112952295A (en) * 2019-11-26 2021-06-11 北京卫蓝新能源科技有限公司 Polyolefin-cellulose composite diaphragm and preparation method thereof

Also Published As

Publication number Publication date
KR102306426B1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
KR101392943B1 (en) Hollow fiber membrane for forward osmotic use, and method for manufacturing the same
KR101985351B1 (en) Composite semipermeable membrane, composite semipermeable membrane element, and method for manufacturing composite semipermeable membrane
US6623639B2 (en) Solvent-resistant microporous polybenzimidazole membranes
KR101432219B1 (en) Reverse osmosis membrane
KR102289642B1 (en) Composite semipermeable membrane
JP6694326B2 (en) Composite membrane
WO2010144057A1 (en) Double selective-layer membranes
Tsai et al. Pervaporation of water/alcohol mixtures through chitosan/cellulose acetate composite hollow‐fiber membranes
KR101448017B1 (en) Forward osmosis membranes and preparation method thereof
Li et al. Engineering design of outer‐selective tribore hollow fiber membranes for forward osmosis and oil‐water separation
Tsai et al. Study of the separation properties of chitosan/polysulfone composite hollow-fiber membranes
KR101161711B1 (en) Method of producing forward osmosis membranes based on acetylated alkyl cellulose
EP1038571A2 (en) Solvent-resistant microporous polybenzimidazole membranes
KR101790174B1 (en) A PVA coated hollow fiber mambrane and a preparation method thereof
KR102302236B1 (en) Hollow fiber type Forward Osmosis filtration membrane and the manufacturing method thereby
JP6273982B2 (en) Hollow fiber membrane, method for producing the same, and module using the same
KR102306426B1 (en) Composite porous membrane of acetylated alkyl cellulose and polyolefinketone
KR102309927B1 (en) Hollow fiber type Forward Osmosis filtration membrane and the manufacturing method thereby
JPWO2013125681A1 (en) Hollow fiber type semipermeable membrane, manufacturing method and module thereof, and water treatment method
KR101894077B1 (en) Polysulfone-based polymeric holleow fiber membrane with good selectivity
KR102139208B1 (en) A preparation method of fouling-resistant hollow fiber membrane and a fouling-resistant hollow fiber membrane prepared by the same
CN110831690A (en) Film-forming solution and method for producing separation membrane using same
US20220088542A1 (en) Composite hollow fiber membrane and composite hollow fiber membrane manufacturing method
KR101984893B1 (en) Composite hollow fiber membrane for production of high-quality biogas, membrane module comprising the same and manufacturing method thereof
KR101414979B1 (en) Forward osmosis membrane containing aramid based hollow fiber as a support and manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant