KR20150069422A - Cellulosic membrane for water treatment with good anti-fouling property and Method thereof - Google Patents

Cellulosic membrane for water treatment with good anti-fouling property and Method thereof Download PDF

Info

Publication number
KR20150069422A
KR20150069422A KR1020130155805A KR20130155805A KR20150069422A KR 20150069422 A KR20150069422 A KR 20150069422A KR 1020130155805 A KR1020130155805 A KR 1020130155805A KR 20130155805 A KR20130155805 A KR 20130155805A KR 20150069422 A KR20150069422 A KR 20150069422A
Authority
KR
South Korea
Prior art keywords
solvent
support layer
forming
coating layer
cellulose
Prior art date
Application number
KR1020130155805A
Other languages
Korean (ko)
Other versions
KR102054838B1 (en
Inventor
김인철
송두현
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020130155805A priority Critical patent/KR102054838B1/en
Publication of KR20150069422A publication Critical patent/KR20150069422A/en
Application granted granted Critical
Publication of KR102054838B1 publication Critical patent/KR102054838B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0016Coagulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0018Thermally induced processes [TIPS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/087Details relating to the spinning process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • B01D71/14Esters of organic acids
    • B01D71/16Cellulose acetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • B01D71/20Esters of inorganic acids, e.g. cellulose nitrate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/219Specific solvent system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/42Details of membrane preparation apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength

Abstract

The present invention relates to a cellulose based separation membrane for treating water, comprising a supporting layer and a coating layer formed on one surface or both surfaces of the supporting layer wherein the supporting layer and the coating layer are integrated, and a manufacturing method thereof where the supporting layer is formed in a thermally induced phase separation method by using a dope solution which is used for forming supporting layers and comprises an acetylated methyl cellulose polymer, a diluent, a wetting agent and a solvent, and the coating layer is formed in a non-solvent-induced phase separation method by using a dope solution which is used for forming a coating layer and comprises an acetylated methyl cellulose polymer, cellulose ether and solvents, poor solvents or mixtures thereof, thereby enabling the inside of porosity on the surface of the supporting layer to be coated, and integrating the coating layer with the supporting layer. The integrated separation membrane has good resistance to contamination and good tensile strength while having small porosity and high permeation flux.

Description

내오염성이 우수한 셀룰로스계 수처리 분리막 및 이의 제조 방법 {Cellulosic membrane for water treatment with good anti-fouling property and Method thereof}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a cellulosic-

본 발명은 지지층 및 지지층의 일면 또는 양면에 형성된 코팅층을 일체형으로 구비한 셀룰로스계 수처리 분리막 및 이의 제조방법에 관한 것이다.
The present invention relates to a cellulosic water treatment separator having a support layer and a coating layer integrally formed on one or both sides of a support layer, and a method for producing the same.

분리막은 수자원 확보 측면에서 매우 유용한 기술로 주목을 받고 있다. 특히, 다공성 분리막의 경우에는 기술적 발전이 많이 이루어졌으며 상용화에도 성공하여 많이 사용되고 있다.Membrane is attracting attention as a very useful technology in terms of securing water resources. Particularly, in the case of a porous separator, technical progress has been made, and commercialization has been successful.

대부분의 분리막 특히 중공사막의 경우, 물리적 특성 (인장강도)을 높이기 위하여 소수성 분리막을 사용하였으나, 막오염에 취약점이 있다. 현재 상용화된 중공사 분리막 중 가장 내오염성이 우수한 소재는 셀룰로스 아세테이트, 폴리에테르술폰, 폴리아크릴로니트릴 등이 있으며, 이 중에서도 가장 친수성이 우수한 셀룰로스 아세테이트가 가장 내오염성이 우수한 것으로 알려져 있다. Most membranes, especially hollow membranes, use hydrophobic membranes to increase their physical properties (tensile strength), but they are vulnerable to membrane contamination. Among the commercially available hollow fiber membranes, cellulose acetate, polyethersulfone, polyacrylonitrile, and the like are the most resistant to contamination. Of these, cellulose acetate having the highest hydrophilicity is known to have the highest stain resistance.

한편, 열유도 상분리법은 상온에서는 서로 섞이지 않는 고분자와 희석제를 가열하여 균일액으로 용융 혼합한 후 성형하고, 적당한 조건에 따라 냉각하여 상분리를 유도한 후 사용하였던 희석제를 추출함으로써, 다공성 구조를 얻는 방법이다. 열유도 상분리법은 분리막 제조시 고분자의 농도를 높일 수 있어서 비용매유도상분리법 보다 기계적 강도가 월등히 향상될 수 있다. 또한, 열유도 상분리법에 의하면 비용매유도 상분리법보다 구조조절이 용이하다.On the other hand, in the heat-induced phase separation method, the polymer and diluent which are not mixed with each other at room temperature are heated and melted and mixed with a homogeneous liquid, and the mixture is cooled under appropriate conditions to induce phase separation. Method. The thermally induced phase separation method can increase the concentration of the polymer in the preparation of the separator, and thus the mechanical strength can be significantly improved as compared with the non-solvent based phase separation method. According to the heat-induced phase separation method, it is easier to control the structure than the non-solvent-induced phase separation method.

비용매유도 상분리법은 고분자 용액이 비용매와 접촉에 의해 용매가 추출되며 상분리를 일으키는 공정으로서, 고분자 용액내의 용매와 비용매의 교환에 의한 고분자의 침전을 이용하는 것이다. 열유도 상분리법과 비교하여 제조공정이 간단하여 평판형 분리막 제조시 일반적으로 많이 이용하는 기술이다. 고분자를 적정 용매에 용해시켜 만든 고분자 용액을 성형한 후 이를 비용매가 들어있는 응고조에 침전시키면, 고분자 용액내의 용매가 추출되며 고분자는 매트릭스를 형성하고 용매는 제거되어 기공을 형성하게 된다.
The non-solvent-derived phase separation method is a process in which a polymer solution extracts a solvent by contacting with a non-solvent and causes phase separation, and uses a precipitation of a polymer by exchanging a solvent and a non-solvent in the polymer solution. Compared with the heat-induced phase separation method, the manufacturing process is simple, and thus it is a technique commonly used in the manufacture of a flat plate type separator. When a polymer solution prepared by dissolving a polymer in an appropriate solvent is formed and precipitated in a coagulation tank containing a non-solvent, the solvent in the polymer solution is extracted, the polymer forms a matrix, and the solvent is removed to form pores.

친수성 소재들은 결정성이 없어서 열유도상분리법을 이용하여 분리막 제조시 기공형성이 어려운 문제가 있다. 따라서, 친수성 소재들은 비용매유도 상분리법을 이용하여 제조되고 있다. 그러나, 비용매유도 상분리법을 이용하여 중공사막을 제조할 경우 물성이 약하고 투과율도 떨어지는 단점이 있다. Since hydrophilic materials have no crystallinity, there is a problem that pore formation is difficult in the production of a separator using a heat induction phase separation method. Thus, hydrophilic materials have been prepared using the non-solvent-derived phase separation method. However, when the hollow fiber membrane is manufactured using the non-solvent-derived phase separation method, the physical properties are poor and the transmittance is also low.

한편, 기계적인 내구성이 우수하면서도 기공제어가 용이한 분리막을 제조하기 위해, 열유도 상분리법과 비용매유도 상분리법을 결합한 새로운 방법들이 제시되고 있다. 이러한 결합법들은 모두 결정성을 갖는 소수성 분리막에 적용되고 있는데, 열유도 상분리법 이용시 큰 기공들이 형성되어 코팅층 코팅이 원활히 이루어지기 때문이다. 반면에, 무정형의 친수성 고분자들은 열유도 상분리법을 이용할 경우 기공 형성이 어려워서 코팅층 코팅이 어려워진다. On the other hand, new methods combining heat-induced phase separation and non-solvent-induced phase separation have been proposed to produce a separator having excellent mechanical durability and easy pore control. All of these bonding methods are applied to crystalline hydrophobic membranes because of the formation of large pores when the thermally induced phase separation method is used to smoothly coat the coating layer. On the other hand, amorphous hydrophilic polymers are difficult to form pores when using the heat-induced phase separation method, which makes coating layer coating difficult.

따라서, 분리막의 물성을 극대화하기 위하여 즉, 인장강도가 높으면서도 기공크기가 작은 특성을 갖는 중공사 분리막은 주로 소수성 분리막을 이용하여 이루어졌으며, 친수성 고분자를 이용한 고강도의 작은 기공을 가지면서도 투과유량이 높은 분리막은 아직까지 제조가 되지 않고 있다.
Therefore, in order to maximize the physical properties of the membrane, a hollow membrane having a high tensile strength and a small pore size is mainly made of a hydrophobic membrane, and has a high strength small pore using a hydrophilic polymer, High separation membranes have not yet been manufactured.

본 발명의 목적은 인장강도가 높으면서도 내오염성이 우수한 셀룰로스계 분리막 및 이의 제조방법을 제공하는 것이다.
An object of the present invention is to provide a cellulose-based separator having high tensile strength and excellent stain resistance and a method for producing the same.

본 발명의 제1 양태는 아세틸화된 메틸 셀룰로스 고분자; 희석제; 습윤제; 및 용매를 함유하는 지지층 형성용 도프용액;; 및 아세틸화된 메틸 셀룰로스 고분자; 셀룰로스 에스테르; 및 용매, 빈용매 또는 이의 혼합물을 함유하는 코팅층 형성용 도프용액;;을 구비한 셀룰로스계 수처리 분리막 제조용 키트를 제공한다.A first aspect of the present invention relates to a method for producing a microcapsule comprising an acetylated methyl cellulose polymer; diluent; Wetting agents; And a solvent; And acetylated methyl cellulose polymers; Cellulose esters; And a dope solution for forming a coating layer containing a solvent, a poor solvent or a mixture thereof; and a kit for preparing a cellulose water treatment separation membrane.

본 발명의 제2 양태는 지지층 및 지지층의 일면 또는 양면에 형성된 코팅층을 일체형으로 구비한 셀룰로스계 수처리 분리막 제조방법에 있어서, 아세틸화된 메틸 셀룰로스 고분자; 희석제; 습윤제; 및 용매를 함유하는 지지층 형성용 도프용액을 사용하여 열유도 상분리법으로 지지층을 형성시키는 제1단계; 및 아세틸화된 메틸 셀룰로스 고분자; 셀룰로스 에스테르; 및 용매, 빈용매 또는 이의 혼합물을 함유하는 코팅층 형성용 도프용액을 사용하여 비용매유도 상분리법으로 상기 지지층 상에 코팅층을 형성시키는 제2단계를 포함하는 것이 특징인 제조방법을 제공한다.In a second aspect of the present invention, there is provided a process for producing a cellulose-based water treatment separation membrane comprising a support layer and a coating layer integrally formed on one or both surfaces of a support layer, diluent; Wetting agents; A first step of forming a support layer by a heat induced phase separation method using a dope solution for forming a support layer containing a solvent; And acetylated methyl cellulose polymers; Cellulose esters; And a second step of forming a coating layer on the support layer by a non-solvent-derived phase separation method using a dope solution for forming a coating layer containing a solvent, a poor solvent or a mixture thereof.

본 발명의 제3 양태는 지지층 및 지지층의 일면 또는 양면에 형성된 코팅층을 일체형으로 구비한 셀룰로스계 수처리 분리막에 있어서, 지지층은 아세틸화된 메틸 셀룰로스 고분자; 희석제; 습윤제; 및 용매를 함유하는 지지층 형성용 도프용액을 이용하여 열유도 상분리법으로 형성된 것이고, 코팅층은 아세틸화된 메틸 셀룰로스 고분자; 셀룰로스 에스테르; 및 용매, 빈용매 또는 이의 혼합물을 함유하는 코팅층 형성용 도프용액을 이용하여 비용매유도 상분리법으로 형성되는 것으로, 지지층의 표면 기공들 내부에도 코팅되어 지지층과 일체형으로 연속적인 코팅층을 형성하는 것이 특징인 수처리 분리막을 제공한다.The third aspect of the present invention is a cellulosic water treatment separator comprising a support layer and a coating layer integrally formed on one or both surfaces of the support layer, wherein the support layer comprises an acetylated methyl cellulose polymer; diluent; Wetting agents; And a heat-induced phase separation method using a dope solution for forming a support layer containing a solvent, wherein the coating layer comprises an acetylated methyl cellulose polymer; Cellulose esters; And a non-solvent-derived phase separation method using a dope solution for forming a coating layer containing a solvent, a poor solvent or a mixture thereof, and is also coated inside the surface pores of the support layer to form a continuous coating layer integral with the support layer In water treatment separator.

본 발명에 따른 셀룰로스계 수처리 분리막 제조용 키트 및 제조방법은 평막에도 적용될 수 있으나, 바람직하게는 중공사막에 적용될 수 있다.
The kit for manufacturing a cellulose-based water treatment membrane according to the present invention and the manufacturing method thereof may be applied to a flat membrane, but may preferably be applied to a hollow fiber membrane.

이하, 본 발명을 자세히 설명한다.
Hereinafter, the present invention will be described in detail.

본 발명에 따른 셀룰로스계 수처리 분리막은 지지체층 및 상기 지지체층 상에 코팅된 활성층을 구비한다. 상기 활성층은 수처리가 이루어지는 층일 수 있다. 이하, 본 발명에서 코팅된 활성층과 코팅층은 혼용하여 사용되고 있다.
The cellulose-based water treatment separation membrane according to the present invention comprises a support layer and an active layer coated on the support layer. The active layer may be a layer in which water treatment is performed. Hereinafter, the coated active layer and the coating layer are used in combination in the present invention.

열유도 상분리법을 이용할 경우, 결정성 고분자 분리막은 강도가 높으면서도 기공이 커지는 현상이 있고, 무정형 고분자 분리막은 강도가 높으면서도 기공이 작아지는 현상이 발생한다. 무정형 고분자를 이용하여, 열유도 상분리법으로 지지층을 형성하고 비용매유도 상분리법으로 코팅을 할 경우 코팅이 이루어지지 않는 경향이 있는데, 이는 열유도 상분리법으로 지지층을 제조할 경우 기공이 너무 작아서 코팅이 이루어지지 않아 각 층이 독립적으로 되며 일체형이 이루어지지 않는다. When the heat-induced phase separation method is used, there is a phenomenon that the crystalline polymer membrane has a high porosity and a large porosity, and the amorphous polymer separator has a high strength and a small porosity. When the support layer is formed by the thermal induction phase separation method using the amorphous polymer and the coating is performed by the non-solvent induction phase separation method, the coating tends not to be performed because the pore is too small when the support layer is produced by the heat induction phase separation method So that each layer is independent and not integrated.

내오염성을 위해 무정형의 친수성 고분자들을 이용하여 분리막 제조시, 열유도 상분리법으로 지지층을 형성할 때 기공크기가 작아 비용매유도 상분리법으로 코팅층 형성이 어려워지는 문제점을 해결하기 위해, 본 발명은 지지층 형성용 도프용액에 습윤제, 바람직하게는 OH 또는 COOH가 2개 이상인 친수성 첨가제를 함유시키는 것이 특징이다. 습윤제 함유 지지층 형성용 도프용액으로 지지층 형성시, 지지층의 기공이 작더라도 코팅층 도프용액이 지지층 표면을 코팅할 수 있게 한다는 것을 발견하였으며, 본 발명은 이에 기초한 것이다. In order to solve the problem of forming a coating layer by the non-solvent-derived phase separation method due to the small pore size when the support layer is formed by the heat induction phase separation method in the production of the separator using amorphous hydrophilic polymers for the stain resistance, It is characterized in that a hydrophilic additive having two or more wetting agents, preferably OH or COOH, is contained in the forming dope solution. It has been found that, even when the support layer is formed of the support layer with the dope solution for forming the wetting agent-containing support layer, the coating layer doping solution can coat the surface of the support layer even if the pores of the support layer are small.

본 발명에 따라 지지층 및 지지층의 일면 또는 양면에 형성된 코팅층을 일체형으로 구비한 셀룰로스계 수처리 분리막은, 지지층은 아세틸화된 메틸 셀룰로스 고분자; 희석제; 습윤제; 및 용매를 함유하는 지지층 형성용 도프용액을 이용하여 열유도 상분리법으로 형성된 것이고, 코팅층은 아세틸화된 메틸 셀룰로스 고분자; 셀룰로스 에스테르; 및 용매, 빈용매 또는 이의 혼합물을 함유하는 코팅층 형성용 도프용액을 이용하여 비용매유도 상분리법으로 형성되는 것으로, 지지층의 표면 기공들 내부에도 코팅되어 지지층과 일체형으로 연속적인 코팅층을 형성한다.
According to the present invention, a cellulose-based water treatment separator comprising a support layer and a coating layer integrally formed on one or both surfaces of the support layer, wherein the support layer comprises an acetylated methyl cellulose polymer; diluent; Wetting agents; And a heat-induced phase separation method using a dope solution for forming a support layer containing a solvent, wherein the coating layer comprises an acetylated methyl cellulose polymer; Cellulose esters; And a non-solvent-derived phase separation method using a dope solution for forming a coating layer containing a solvent, a poor solvent or a mixture thereof, and is also coated inside the surface pores of the support layer to form a continuous coating layer integrally with the support layer.

본 발명에서 사용되는 셀룰로스계 고분자는 하기와 같은 화학식 1의 구조를 갖는 화합물일 수 있다.The cellulose-based polymer used in the present invention may be a compound having a structure represented by the following formula (1).

Figure pat00001
Figure pat00001

상기 식에서 R1, R2 및 R3는 각각 독립적으로 수소 또는 C1 -6 알킬 또는 아실(acyl)이고, n은 2 이상의 정수이다.Wherein R 1 , R 2 and R 3 are each independently hydrogen or C 1 -6 alkyl or acyl, and n is an integer of 2 or more.

바람직하게는, 상기 화학식 1에서 R1, R2 및 R3는 각각 독립적으로 수소, 메틸기, 또는 아세틸기일 수 있다.Preferably, R 1 , R 2 and R 3 in Formula 1 are each independently hydrogen, a methyl group, or an acetyl group.

R1, R2 및 R3가 모두 수소인 경우, 하기 화학식 2와 같은 셀룰로스 구조이다.When R 1 , R 2 and R 3 are all hydrogen, they are cellulose structures as shown in the following formula (2).

Figure pat00002
Figure pat00002

상기와 같은 셀룰로오스 중 -OH기의 치환 정도 및 치환기 종류에 따라서 그 구조가 달라진다.
The structure of the cellulose varies depending on the degree of substitution of the -OH group and the type of the substituent.

본 발명에서 사용되는 아세틸화된 메틸 셀룰로스 고분자의 분자량은 200,000 내지 1,000,000 Mw인 것이 바람직하다. 화학식 1에서 n은 150 내지 750의 정수인 것이 바람직하다. 200,000 이하이면 기계적 강도가 떨어지고 1,000,000 이상이면 점도가 너무 상승하여 중공사로의 성형이 어려운 문제점이 있다.The molecular weight of the acetylated methyl cellulose polymer used in the present invention is preferably 200,000 to 1,000,000 Mw. In the formula (1), n is preferably an integer of 150 to 750. If the weight average molecular weight is less than 200,000, the mechanical strength is lowered. If the molecular weight is 1,000,000 or more, the viscosity becomes too high and molding into a hollow fiber is difficult.

아세틸화된 메틸 셀룰로스 고분자는 셀룰로스 단위 유니트당, 즉 3개의 -OH기당 0.5 내지 2.5 개의 알킬기 및/또는 아실기를 갖는 것이 바람직하다. 보다 바람직하게는 1.0 내지 2.0 개의 알킬기 및/또는 아실기를 갖는 것이 바람직하다. 0.5 이하이면 수용성이 있어서 중공사 성형이 어렵고 2.5 이상이면 소수성이 높아져서 막오염이 많이 일어나는 문제점이 있다.
The acetylated methylcellulose polymer preferably has from 0.5 to 2.5 alkyl and / or acyl groups per cellulose unit, i. E. Three-OH groups. More preferably 1.0 to 2.0 alkyl groups and / or acyl groups. If it is 0.5 or less, it is water-soluble and it is difficult to form a hollow fiber. If it is 2.5 or more, the hydrophobicity is increased and the film is contaminated.

지지층 형성용 도프용액 중 아세틸화된 메틸 셀룰로스 고분자의 사용량은 15 내지 30 중량%인 것이 바람직하다. 15 중량% 미만이면 분리막의 강도가 약해지는 문제가 있고, 30 중량%를 초과하면 점도가 너무 증가하여 분리막의 제조가 어려울 수 있다.
The amount of the acetylated methyl cellulose polymer in the dopant solution for forming the support layer is preferably 15 to 30% by weight. If the amount is less than 15% by weight, the strength of the separation membrane may become weak. If the amount is more than 30% by weight, the viscosity of the separation membrane may be excessively increased.

코팅층 형성용 도프용액 중 아세틸화된 메틸 셀룰로스 고분자의 사용량은 5 내지 15 중량%인 것이 바람직하다. 5 중량% 미만이면 분리막의 강도가 약해지는 문제가 있고, 15 중량%를 초과하면 점도가 너무 증가하여 분리막의 제조가 어려울 수 있다.
The amount of the acetylated methyl cellulose polymer in the dope solution for forming the coating layer is preferably 5 to 15% by weight. If the amount is less than 5% by weight, the strength of the separation membrane may become weak. When the amount exceeds 15% by weight, the viscosity of the separation membrane may be excessively increased.

한편, 고분자를 용해시키는 용매는 용해 정도에 따라 용매, 빈용매 및 비용매로 구분할 수 있다.On the other hand, the solvent for dissolving the polymer can be divided into a solvent, a poor solvent and a non-solvent depending on the degree of dissolution.

“용매”는 약 60℃ 이하의 온도에서 5중량부 이상의 고분자를 녹일 수 있는 용매로, 아세틸화된 메틸 셀룰로스 고분자의 용매로 디메틸아세트아마이드, 디메틸포름아미드, 디메틸술폭사이드 같은 극성용매, 아세톤, 메틸에틸케톤 같은 케톤류, N-메틸피롤리돈(NMP), r-부티로락톤 같은 사이클로케톤류 등을 사용할 수 있다. The "solvent" is a solvent capable of dissolving at least 5 parts by weight of polymer at a temperature of about 60 ° C. or less. As the solvent of the acetylated methyl cellulose polymer, a polar solvent such as dimethylacetamide, dimethylformamide, dimethylsulfoxide, Ketones such as ethyl ketone, and cyclic ketones such as N-methylpyrrolidone (NMP) and r-butyrolactone.

“빈용매”는 고분자를 60℃ 이하의 저온에서는 5중량% 이상 용해시킬 수 없지만, 60℃ 이상 또는 고분자의 융점 이하의 고온 영역에서는 5중량% 이상 용해시킬 수 있는 용매로서, 아세틸화된 메틸 셀룰로스 고분자의 빈용매로 디에틸렌글리콜, 트리에틸렌글리콜 같은 에틸렌글리콜 류, 디메틸프탈레이트 같은 프탈레이트 류 등을 사용할 수 있다.The "poor solvent" can not dissolve the polymer at a low temperature of 60 ° C. or lower at 5 wt% or more, but as a solvent capable of dissolving at least 5 wt% in a high temperature region of 60 ° C. or higher or lower than the melting point of the polymer, acetylated methyl cellulose As a poor solvent for the polymer, ethylene glycol such as diethylene glycol and triethylene glycol, phthalates such as dimethyl phthalate, and the like can be used.

“비용매”는 고분자의 융점 또는 액체의 비점까지 고분자를 용해시키거나 팽윤시키지 못하는 용매로서, 아세틸화된 메틸 셀룰로스 고분자의 비용매로 물, 알콜, 에테르, 헥산 등이 있으며, 바람직하게는 물을 사용할 수 있다.The "non-solvent" is a solvent that does not dissolve or swell the polymer until the melting point of the polymer or the boiling point of the liquid. Water, alcohol, ether, and hexane may be used as the solvent for the acetylated methyl cellulose polymer, Can be used.

상기 비용매는 본 발명에서 응고욕으로 사용될 수 있다.
The non-solvent may be used as a coagulating bath in the present invention.

열유도 상분리법에서 사용되는 희석제는 상온에서는 고분자와 서로 섞이지 않으나 가열하면 균일액으로 용융 혼합가능한 액체이다. 본 발명에서 사용되는 아세틸화된 메틸 셀룰로스 고분자에 대한 희석제는 아세틸화된 메틸 셀룰로스 고분자에 대해 빈용매일 수 있으며, 이의 비제한적인 예로는 디에틸렌글리콜, 트리에틸렌글리콜 같은 에틸렌글리콜 류, 디메틸프탈레이트 같은 프탈레이트 류 등이 있다.The diluent used in the thermally induced phase separation method is a liquid which can not be mixed with the polymer at room temperature but can be melt-mixed as a homogeneous liquid when heated. The diluent for the acetylated methylcellulose polymer used in the present invention can be used as a diluent for the acetylated methylcellulose polymer, and examples thereof include ethylene glycol such as diethylene glycol and triethylene glycol, phthalate such as dimethyl phthalate And so on.

지지층 형성용 도프용액 중 희석제의 사용량은 40 내지 85 중량%인 것이 바람직하다. 40 중량% 미만이면 중공사 성형이 어려운 문제가 있고, 85 중량%를 초과하면 점도가 너무 감소하여 성형이 어려운 문제가 있다.
The amount of the diluent used in the support layer-forming dope solution is preferably 40 to 85% by weight. If the amount is less than 40% by weight, there is a problem that the hollow fiber is difficult to be molded, and when it exceeds 85% by weight, the viscosity is too small to form.

본 발명에서 지지층 형성용 도프용액은 습윤제를 함유하는 것이 특징이다.In the present invention, the dope solution for forming the support layer contains a wetting agent.

습윤제는 고-액 두 상이 접하는 경우, 표면장력을 변화시켜 두 상의 젖음의 특성을 크게 개선하기 위해 쓰이는 물질이다. 본 발명에 사용되는 습윤제는 바람직하게는 OH 또는 COOH가 2개 이상인 친수성 첨가제일 수 있으며, 이의 비제한적인 예로는 글리세린, 프로필렌글리콜 등의 글리콜류, 솔비톨, 자일리톨 등의 당알콜, 구연산, 숙신산, 옥살초산 등의 유기산이 있다. A wetting agent is a material used to significantly improve the properties of wetting of two phases by changing the surface tension when the solid-liquid phase is in contact. The wetting agent used in the present invention may preferably be a hydrophilic additive having two or more OH or COOH groups. Nonlimiting examples of the wetting agent include glycols such as glycerin and propylene glycol, sugar alcohols such as sorbitol and xylitol, citric acid, And organic acids such as acetic acid.

본 발명에서 지지층 형성용 도프용액 중 습윤제의 사용량은 5 내지 20 중량%인 것이 바람직하다. 5 중량% 미만이면 지지층과 코팅층의 접착력이 떨어지는 문제가 있고, 20 중량%를 초과하면 도프용액 제조가 어려운 문제가 있다.In the present invention, the amount of the wetting agent used in the dope solution for forming the support layer is preferably 5 to 20% by weight. If the amount is less than 5% by weight, there is a problem that the adhesive strength between the support layer and the coating layer is lowered, and when it exceeds 20% by weight, there is a problem in that it is difficult to prepare the dope solution.

본 발명의 일구체예에서는, 친수성이 높은 아세틸화된 메틸 셀룰로스 함유 분사액을 이용하여, 열유도 상분리법으로 지지층을, 비용매유도 상분리법으로 코팅층을 형성하되, 습윤제로 OH가 3개인 글리세린을 함유하는 열유도 상분리용 분사액을 사용하여, 기공크기가 작은 지지층 상에도 코팅층을 일체형으로 형성시킬 수 있었다(실시예 1 ~ 3).
In one embodiment of the present invention, a support layer is formed by a thermally induced phase separation method using a acetylated methylcellulose-containing injection liquid having high hydrophilicity, a coating layer is formed by a non-solvent-derived phase separation method, glycerin having three OHs as a wetting agent The coating layer could be integrally formed on the support layer having a small pore size by using the spray for heat-induced phase separation (Examples 1 to 3).

코팅층과 지지층이 동시에 방사되면서 화학적으로 결합시키기 위해, 본 발명에 따른 지지층 형성용 도프용액은 용매를 함유한다. 지지층 형성용 도프용액에 용매 없이 희석제만 사용하면, 지지체의 기공이 커질뿐아니라 지지층과 코팅층간의 일체도도 떨어진다(비교예 1-2 참조).To chemically bond the coating layer and the support layer simultaneously while spinning, the dope solution for forming the support layer according to the present invention contains a solvent. When only the diluent is used in the dope solution for forming the support layer, not only the pores of the support are increased but also the degree of integration between the support layer and the coating layer is low (see Comparative Example 1-2).

본 발명에서 지지층 형성용 도프용액 중 용매의 사용량은 10 내지 30 중량%인 것이 바람직하다. 10중량% 이하이면 접척력이 떨어지고 30중량% 이상이면 중공사 성형이 어려운 문제가 있다.
In the present invention, the amount of the solvent used in the dopant solution for forming the support layer is preferably 10 to 30% by weight. If it is 10% by weight or less, the contact force is decreased. If it is 30% by weight or more, there is a problem that hollow fiber molding is difficult.

또한, 본 발명에서 코팅층 형성용 도프용액은 셀룰로스 에스테르(cellulose esters)를 함유하는 것이 바람직하다. 셀룰로스 에스테르와 아세틸화된 메틸 셀룰로스를 동시에 사용함으로서 내구성이 향상된다. 셀룰로스 에스테르의 비제한적인 예로는 셀룰로스 아세테이트, 셀룰로스 트리아세테이트, 셀룰로스 프로피오네이트, 셀룰로스 아세테이트 부티레이트, 셀룰로스 아세테이트 프로피오네이트, 셀룰로스 나이트레이트, 셀룰로스 설페이트, 이의 혼합물 등이 있다.Further, in the present invention, the dope solution for forming the coating layer preferably contains cellulose esters. Durability is improved by using cellulose ester and acetylated methyl cellulose simultaneously. Non-limiting examples of cellulosic esters include cellulose acetate, cellulose triacetate, cellulose propionate, cellulose acetate butyrate, cellulose acetate propionate, cellulose nitrate, cellulose sulfate, mixtures thereof, and the like.

본 발명에서 코팅층 형성용 도프용액 중 셀룰로스 에스테르의 사용량은 2 내지 10 중량%인 것이 바람직하다. 2 중량% 미만이면 내구성이 떨어지는 문제가 있고, 10 중량%를 초과하면 투과유량이 감소하는 문제가 있다.
In the present invention, the amount of the cellulose ester used in the coating solution for forming the coating layer is preferably 2 to 10% by weight. If the amount is less than 2% by weight, durability tends to deteriorate. If the amount is more than 10% by weight, there is a problem that the permeation flow rate decreases.

본 발명에 따라 지지층 및 지지층의 일면 또는 양면에 형성된 코팅층을 일체형으로 구비한 셀룰로스계 수처리 분리막 제조방법은 본 발명에 따른 지지층 형성용 도프용액을 사용하여 열유도 상분리법으로 지지층을 형성시키는 제1단계; 및 본 발명에 따른 코팅층 형성용 도프용액을 사용하여 비용매유도 상분리법으로 상기 지지층 상에 코팅층을 형성시키는 제2단계를 포함한다. According to the present invention, there is provided a method for manufacturing a cellulose-based water treatment separation membrane having a coating layer integrally formed on one surface or both surfaces of a support layer and a support layer, comprising the steps of: a first step of forming a support layer by a heat induction phase separation method using a dope solution for forming a support layer according to the present invention ; And a second step of forming a coating layer on the support layer by a non-solvent-derived phase separation method using the dope solution for forming a coating layer according to the present invention.

응고욕에는 본 발명에서 사용하는 아세틸화된 메틸 셀룰로스 고분자의 비용매를 사용할 수 있다.As the coagulating bath, a non-solvent of the acetylated methyl cellulose polymer used in the present invention can be used.

분리막 제조시, 노즐과 홀형성제를 사용하여 중공사 형태의 분리막을 제조할 수 있다.In the preparation of the separator, a hollow fiber type separator can be manufactured using a nozzle and a hole forming agent.

본 발명에서 사용가능한 노즐은 홀 형성제 이동 경로, 코팅층용 도프용액 이동 경로 및 지지층용 도프용액 이동 경로를 구비할 수 있다(도 1 참조).The nozzles usable in the present invention may include a hole forming agent migration path, a dope solution migration path for the coating layer, and a dope solution migration path for the support layer (see FIG. 1).

본 발명에 따른 분리막은 외부는 지지층이, 내부는 코팅층이 위치한 것인 중공사 막 형태일 수 있다.The separation membrane according to the present invention may be in the form of a hollow fiber membrane having a support layer on the outside and a coating layer on the inside.

홀형성제는 중공사막의 내부측에 통로를 형성시키기 위해 주입시키는 액체이다. 홀형성제는 비점이 150 ∼ 210 ℃인 고비점의 양용매와 비점이 80 ∼ 290 ℃인 비용매를 혼합하여 사용하는 것이 바람직하다. 홀형성제는 응고액 조성으로 막의 고화를 늦추어 주는 물질로 첨가하면 고화가 늦어지는 만큼 공경이 자라게 되어 공경의 크기를 원하는 만큼 키울 수 있다.The hole forming agent is a liquid to be injected to form a passage on the inner side of the hollow fiber membrane. It is preferable to use a mixture of a high boiling point solvent having a boiling point of 150 to 210 ° C and a non-solvent having a boiling point of 80 to 290 ° C. When the hole forming agent is added as a material to slow down the solidification of the film by the coagulating liquid composition, the pore size increases as the solidification is delayed, and the pore size can be increased as desired.

지지층 형성용 도프용액의 방사 온도는 90 ~ 170 ℃이고, 코팅층 형성용 도프용액의 방사 온도는 10 ~ 100 ℃이고, 응고욕의 온도는 5 ~ 60 ℃ 것이 바람직하다. 홀 형성제의 온도는 20 ~ 100 ℃인 것이 바람직하다.
It is preferable that the spinning temperature of the dope solution for forming the support layer is 90 to 170 캜, the spinning temperature of the dope solution for forming the coating layer is 10 to 100 캜, and the temperature of the coagulating bath is 5 to 60 캜. The temperature of the hole forming agent is preferably 20 to 100 ° C.

본 발명은 노즐을 이용하여 홀 형성제, 코팅층 도프용액, 및 지지층 도프용액을 동시에 방사하여 제1단계 및 제2단계를 동시에 수행하는 것이 바람직하다. 동시에 수행하지 않으면 코팅층과 지지층의 결합이 용이하지 않고 또한 공정도 복잡하여 어려운 점이 있다.
The present invention preferably simultaneously performs the first step and the second step by simultaneously spinning the hole forming agent, the coating layer doping solution, and the supporting layer doping solution using the nozzle. There is a drawback in that the bonding of the coating layer and the support layer is not easy and the process is complicated.

본 발명에 따른 분리막은 친수성 고분자를 활용하여 물성이 매우 우수하면서도 내오염성이 탁월하여 수처리용 공정에 매우 적합하다. 예컨대 정수기, 해수담수화 공정의 전처리 장치, 연수기, 정수처리 장치, 폐수 처리 장치 또는 식품 정제장치 등에 사용할 수 있다. The separation membrane according to the present invention utilizes a hydrophilic polymer and is excellent in physical properties and excellent in stain resistance, and thus is suitable for a water treatment process. For example, a water purifier, a pretreatment device for a seawater desalination process, a water softener, a water treatment device, a wastewater treatment device, or a food purification device.

한편, 본 발명에 따른 분리막은, 분획분자량은 50 ~ 500 (kDa)이고, 인장강도는 6 ~ 13 (MPa)이고, 수투과도는 200 ~ 2000 (L/m2hr)이고, 내오염도는 0.4 ~ 0.8 이고, 일체도는 2.0 ~ 6.0 kgf/cm2일 수 있다.
Meanwhile, the separation membrane according to the present invention has a fraction molecular weight of 50 to 500 (kDa), a tensile strength of 6 to 13 (MPa), a water permeability of 200 to 2000 (L / m 2 hr) To 0.8, and the integral may be 2.0 to 6.0 kgf / cm < 2 >.

본 발명은 셀룰로스계 고분자를 이용하여 열유도 상분리법과 비용매유도 상분리법을 동시에 활용하여 지지층과 코팅층이 일체형인 분리막을 제조함으로서 인장강도가 높으면서도 기공이 작고 투과유량이 높은 특성을 갖는다. 또한 기존의 소수성 소재의 분리막에 비해서 본 발명을 통해서 제조된 분리막의 경우 내오염성이 매우 우수하다.
The present invention provides a separator having an integrated support layer and a coating layer by utilizing heat-induced phase separation and a non-solvent-induced phase separation method using a cellulose-based polymer, and has a high tensile strength and a small pore size and a high permeate flow rate. In addition, the separator prepared according to the present invention has an excellent stain resistance as compared with the conventional hydrophobic separator.

도 1은 본 발명에 따른 중공사 분리막을 제조하기 위한 노즐의 단면도이다.1 is a cross-sectional view of a nozzle for manufacturing a hollow fiber membrane according to the present invention.

이하, 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to examples. However, these examples are for illustrative purposes only, and the scope of the present invention is not limited to these examples.

실시예Example 1:  One: AMCAMC 고분자계Polymer system 중공사Hollow fiber 분리막 제조 Membrane manufacturing

메틸 셀룰로스 (PMA, 삼성정밀화학제품, DS:1.7)를 무수아세트산으로 아세틸화시키고 물에 고형화시켜서, 물에 용해되지 않고 유기용매에 용해되는 특성을 갖는 아세틸화된 메틸 셀룰로스(이하 AMC)를 준비하였다. Acetylated methyl cellulose (hereinafter abbreviated as AMC), which is acetylated with anhydrous acetic acid and solidified in water to have a property of being dissolved in an organic solvent without being dissolved in water, is prepared Respectively.

두가지 상분리법, 즉 지지층 제조를 위한 열유도 상분리법 및 코팅층 제조를 위한 비용매유도 상분리법을 이용하여 동시에 방사하면서 일체형의 중공사 분리막을 제조하였다.Two types of phase separation method, ie, heat - induced phase separation for supporting layer production and nonporous phase separation method for coating layer production, were simultaneously carried out to fabricate a monolithic hollow fiber membrane.

지지층용 도프용액은 AMC 25중량%, 희석제로 triethylene glycol (이하 TEG) 45중량%, 디메틸아세트아마이드 (이하 DMAc) 20중량%, 글리세린 10중량%를 포함하였다.The doping solution for the support layer contained 25% by weight of AMC, 45% by weight of triethylene glycol (TEG) as a diluent, 20% by weight of dimethylacetamide (DMAc) and 10% by weight of glycerin.

코팅층용 도프용액은 AMC 8중량%, CA 4중량%, 용매로 DMAc 78중량%, TEG 10중량%를 포함하였다.The dope solution for the coating layer contained 8% by weight of AMC, 4% by weight of CA, 78% by weight of DMAc as a solvent, and 10% by weight of TEG.

외부응고액은 물을 사용하였고 홀 형성제는 TEG/DMAc (70/30 중량%)를 사용하였다. 지지층용 도프용액의 온도는 140도, 코팅용액의 온도는 50도, 홀 형성제의 온도는 70도를 유지하였다.
Water was used as the external coagulation solution and TEG / DMAc (70/30 wt%) was used as the hole forming agent. The temperature of the dope solution for the support layer was maintained at 140 ° C, the temperature of the coating solution was maintained at 50 ° C, and the temperature of the hole forming agent was maintained at 70 ° C.

실험 1: 중공사막의 물성Experiment 1: Properties of Hollow Fiber Membrane

물성을 평가하기 위하여 인장강도 (MPa), 1kgf/cm2 하에서의 수투과도 (L/m2hr), 분자량이 다른 polyethylene glycol 1000ppm 용액을 이용한 제거율(HPLC 이용)을 활용한 분획분자량(kDa), 내오염성을 평가하기 위하여 bovine serum albumin (BSA) 20ppm 수용액을 이용한 1kgf/cm2 하에서의 6시간 후의 투과도 감소에 따른 상대 투과도 감소비율(-)을 사용하였다. In order to evaluate the physical properties, tensile strength (MPa), water permeability (L / m 2 hr) under 1 kgf / cm 2 , fraction molecular weight (kDa) using the removal rate (using HPLC) To evaluate the stain resistance, the relative permeability reduction ratio (-) with the reduction of permeability after 6 hours at 1 kgf / cm 2 using 20 ppm aqueous solution of bovine serum albumin (BSA) was used.

내오염성 수치는 높을수록 우수한 것이다. 즉 초기 순수투과도 대비 BSA 20ppm 용액으로 6시간 후의 수투과도를 나타낸 것이다. The higher the stain resistance value, the better. That is, the water permeability after 6 hours with 20 ppm of BSA versus initial pure water permeability is shown.

수투과도는 중공사 외부 쪽에 압력을 가하여 측정하였고 코팅층의 지지층과의 일체도 (kgf/cm2)는 중공사 내부에서 외부로 압력을 가하여 견딜 수 있는 압력으로 나타내었다. The water permeability was measured by applying pressure to the outside of the hollow fiber, and the integral (kgf / cm 2 ) of the coating layer with the support layer was expressed as a pressure that could withstand the external pressure from the inside of the hollow fiber.

하기 표 1은 실시예 1에서 제조된 AMC 고분자계 중공사 분리막의 결과를 나타내었다.Table 1 below shows the results of the AMC polymer hollow fiber membrane prepared in Example 1.

Figure pat00003
Figure pat00003

비교예Comparative Example 1:  One: 도프용액의Of the dope solution 조성에 따른 성능 Performance by composition

하기와 같이 지지층용 도프용액의 조성을 변화시킨 것을 제외하고는, 실시예 1과 동일한 방법으로 AMC 고분자계 중공사 분리막을 제조하였다. The AMC polymer hollow fiber membrane was prepared in the same manner as in Example 1, except that the composition of the dope solution for the support layer was changed as described below.

비교예 1-1의 경우, 지지층용 도프용액의 조성은 AMC 25중량%, TEG 55중량%, DMAc 20중량%이었고, 코팅층용 도프용액은 실시예 1과 동일하였다.In the case of Comparative Example 1-1, the composition of the doping solution for the support layer was 25% by weight of AMC, 55% by weight of TEG and 20% by weight of DMAc, and the dope solution for the coating layer was the same as in Example 1.

비교예 1-2의 경우, 지지층용 도프용액의 조성은 AMC 25중량%, TEG 65중량%, 글리세린 10중량%이었고, 코팅층용 도프용액은 실시예 1과 동일하였다.In the case of Comparative Example 1-2, the composition of the doping solution for the support layer was 25% by weight of AMC, 65% by weight of TEG and 10% by weight of glycerin, and the dope solution for the coating layer was the same as in Example 1.

비교예 1-3의 경우, 지지층용 도프용액은 실시예 1과 동일하였고, 코팅층용 도프용액의 조성은 AMC 12중량%, DMAc 78중량%, TEG 10중량%이었다.In the case of Comparative Examples 1-3, the doping solution for the support layer was the same as that of Example 1, and the composition of the coating solution for the coating layer was 12% by weight of AMC, 78% by weight of DMAc and 10% by weight of TEG.

비교예 1에 따라 제조된 AMC 고분자계 중공사 분리막의 물성을 표 2에 나타내었다.The properties of the AMC polymer hollow fiber membrane prepared according to Comparative Example 1 are shown in Table 2.

Figure pat00004
Figure pat00004

비교예 1-1은 지지층 도프용액에서 글리세린 대신 희석제인 TEG를 추가로 더 사용하였다. 지지층과 코팅층 사이의 습윤제로서의 역할을 하는 글리세린을 제거함으로서 지지층과 코팅층의 일체도가 0.4(kgf/cm2)로 감소하였으며, 분획분자량이 5배 증가하였고, 또한 수투과도도 800(L/m2hr)으로 150(L/m2hr) 증가하였다. Comparative Example 1-1 further used TEG as a diluent instead of glycerin in the support layer doping solution. By removing glycerin, which acts as a wetting agent between the support layer and the coating layer, the integral of the support layer and the coating layer was reduced to 0.4 kgf / cm 2 , the molecular weight of the fraction was increased 5 times and the water permeability was 800 L / m 2 hr) to 150 (L / m 2 hr).

비교예 1-2는 지지층 도프용액에서 용매인 DMAc 대신 희석제인 TEG를 추가로 더 사용하였다. 지지층 도프용액에 용매인 DMAc를 사용하지 아니한 경우, 지지층과 코팅층의 일체도가 0.3(kgf/cm2)로 감소하였으며, 분획분자량이 10배 증가하였고, 수투과도도 1300(L/m2hr)으로 13배 증가하였다. In Comparative Example 1-2, TEG, which is a diluent, was used in place of DMAc as a solvent in the support layer doping solution. When the DMAc solution was not used in the support layer doping solution, the integral of the support layer and the coating layer was reduced to 0.3 kgf / cm 2 , the molecular weight of the fraction was increased by 10 times, the water permeability was 1300 (L / m 2 hr) .

비교예 1-3은 코팅층 도프용액에서 CA 대신 AMC를 더 사용하였다. 이 경우도, 지지층과 코팅층의 일체도가 0.4(kgf/cm2)로 감소하였으며, 분획분자량이 500(L/m2hr)으로 증가하였고, 수투과도도 950(L/m2hr)으로 증가하였다. In Comparative Example 1-3, AMC was used in place of CA in the coating layer doping solution. In this case, the integral of the support layer and the coating layer was reduced to 0.4 kgf / cm 2 , the fraction molecular weight increased to 500 L / m 2 hr, and the water permeability increased to 950 L / m 2 hr Respectively.

비교예에서 제조된 분리막의 경우, 일체도가 감소하며 기공의 크기가 증가함으로서 분획분자량 및 수투과도가 현저히 증가하게 되도록 하였다.
In the case of the separator prepared in the comparative example, the integral degree was decreased and the pore size was increased, so that the fraction molecular weight and water permeability were remarkably increased.

실시예Example 2 ~ 3: 지지층 용매 변화 2 ~ 3: Solvent change in support layer

실시예 1과 동일한 방법으로 실험하였으며 지지층 용매로 DMAc 대신 각각 DMF (실시예 2) 및 NMP (실시예 2)를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 AMC 고분자계 중공사 분리막을 제조하였으며, 표 3에 그 결과를 나타내었다.An AMC polymer hollow fiber membrane was prepared in the same manner as in Example 1 except that DMF (Example 2) and NMP (Example 2) were used instead of DMAc as a support layer solvent, respectively. And the results are shown in Table 3.

Figure pat00005
Figure pat00005

실시예 2 내지 3은 용매인 DMAc를 대신하여 다른 양용매인 DMF 혹은 NMP를 사용하였다. 실시예 1과 비교하여 수투과도에서 조금 감소하였으나 분획분자량은 동일하고 일체도는 실시예 1과 비슷하였다. 또한 내오염성은 실시예 1과 비교하여 조금 나아진 값을 보였다.
In Examples 2 to 3, other two-solvent DMF or NMP was used instead of DMAc as a solvent. Although the water permeability was slightly reduced as compared with Example 1, the cutoff molecular weight was the same and the integrity was similar to that of Example 1. [ In addition, the stain resistance showed a slightly improved value as compared with Example 1.

2: 홀 형성제 이동 경로
4: 코팅층용 도프용액 이동 경로
6: 지지층용 도프용액 이동 경로
2: hole forming agent movement path
4: Dope solution movement path for coating layer
6: Dope solution movement path for supporting layer

Claims (18)

아세틸화된 메틸 셀룰로스 고분자; 희석제; 습윤제; 및 용매를 함유하는 지지층 형성용 도프용액; 및
아세틸화된 메틸 셀룰로스 고분자; 셀룰로스 에스테르; 및 용매, 빈용매 또는 이의 혼합물을 함유하는 코팅층 형성용 도프용액;
을 구비한 셀룰로스계 수처리 분리막 제조용 키트.
Acetylated methyl cellulose polymers; diluent; Wetting agents; And a solvent; And
Acetylated methyl cellulose polymers; Cellulose esters; And a dope solution for forming a coating layer containing a solvent, a poor solvent or a mixture thereof;
Wherein the cellulose-based water-treatment separator comprises:
제1항에 있어서, 습윤제는 OH 또는 COOH가 2개 이상인 친수성 첨가제인 것인 키트.The kit according to claim 1, wherein the wetting agent is a hydrophilic additive having two or more OH or COOH. 제1항에 있어서, 습윤제는 글리콜류, 당알콜, 유기산 및 이의 혼합물로 구성된 군에서 선택된 것인 키트.The kit of claim 1, wherein the wetting agent is selected from the group consisting of glycols, sugar alcohols, organic acids, and mixtures thereof. 제1항에 있어서, 셀룰로스 에스테르는 셀룰로스 아세테이트, 셀룰로스 트리아세테이트, 셀룰로스 프로피오네이트, 셀룰로스 아세테이트 부티레이트, 셀룰로스 아세테이트 프로피오네이트, 셀룰로스 나이트레이트, 셀룰로스 설페이트 및 이의 혼합물로 구성된 군에서 선택된 것인 키트.The kit according to claim 1, wherein the cellulose ester is selected from the group consisting of cellulose acetate, cellulose triacetate, cellulose propionate, cellulose acetate butyrate, cellulose acetate propionate, cellulose nitrate, cellulose sulfate and mixtures thereof. 제1항에 있어서, 지지층 형성용 도프용액 중 희석제는 코팅층 형성용 도프용액 중 빈용매와 동일한 것이 특징인 키트.The kit according to claim 1, wherein the diluent in the dope solution for forming the support layer is the same as the poor solvent in the dope solution for forming the coating layer. 제1항에 있어서, 지지층 형성용 도프용액 및 코팅층 형성용 도프용액은 모두 용매로 극성용매를 사용하는 것이 특징인 키트.
The kit according to claim 1, wherein the doping solution for forming the support layer and the doping solution for forming the coating layer both use a polar solvent as a solvent.
지지층 및 지지층의 일면 또는 양면에 형성된 코팅층을 일체형으로 구비한 셀룰로스계 수처리 분리막 제조방법에 있어서,
아세틸화된 메틸 셀룰로스 고분자; 희석제; 습윤제; 및 용매를 함유하는 지지층 형성용 도프용액을 사용하여 열유도 상분리법으로 지지층을 형성시키는 제1단계; 및
아세틸화된 메틸 셀룰로스 고분자; 셀룰로스 에스테르; 및 용매, 빈용매 또는 이의 혼합물을 함유하는 코팅층 형성용 도프용액을 사용하여 비용매유도 상분리법으로 상기 지지층 상에 코팅층을 형성시키는 제2단계를 포함하는 것이 특징인 제조방법.
A method for manufacturing a cellulose-based water treatment separation membrane having a support layer and a coating layer integrally formed on one surface or both surfaces of a support layer,
Acetylated methyl cellulose polymers; diluent; Wetting agents; A first step of forming a support layer by a heat induced phase separation method using a dope solution for forming a support layer containing a solvent; And
Acetylated methyl cellulose polymers; Cellulose esters; And a second step of forming a coating layer on the support layer by a non-solvent-derived phase separation method using a dope solution for forming a coating layer containing a solvent, a poor solvent or a mixture thereof.
제7항에 있어서, 제1항 내지 제6항에 기재된 셀룰로스계 수처리 분리막 제조용 키트를 사용하는 것이 특징인 제조방법.The manufacturing method according to claim 7, wherein the kit for manufacturing a cellulose-based water treatment separation membrane according to any one of claims 1 to 6 is used. 제7항에 있어서, 홀 형성제를 사용하여 중공사 분리막을 제조하는 것이 특징인 제조방법.The manufacturing method according to claim 7, wherein the hollow-fiber separator is manufactured using the hole-forming agent. 제7항에 있어서, 노즐을 이용하여 홀 형성제, 코팅층 도프용액, 및 지지층 도프용액을 동시에 방사하여 제1단계 및 제2단계를 동시에 수행하는 것이 특징인 제조방법.The method according to claim 7, wherein the first step and the second step are carried out simultaneously by spinning the hole forming agent, the coating layer doping solution and the supporting layer doping solution simultaneously using a nozzle. 제7항에 있어서, 지지층 형성용 도프용액의 방사 온도는 90 ~ 170 ℃이고, 코팅층 형성용 도프용액의 방사 온도는 10 ~ 100 ℃이고, 응고욕의 온도는 5 ~ 60 ℃ 것이 특징인 제조방법.The production method according to claim 7, wherein the spinning temperature of the doping solution for forming the support layer is from 90 to 170 캜, the spinning temperature of the coating solution for forming the coating layer is from 10 to 100 캜 and the temperature of the coagulating bath is from 5 to 60 캜 . 제10항에 있어서, 홀 형성제의 온도는 20 ~ 100 ℃인 것이 특징인 제조방법.
The method according to claim 10, wherein the temperature of the hole-forming agent is 20 to 100 ° C.
지지층 및 지지층의 일면 또는 양면에 형성된 코팅층을 일체형으로 구비한 셀룰로스계 수처리 분리막에 있어서,
지지층은 아세틸화된 메틸 셀룰로스 고분자; 희석제; 습윤제; 및 용매를 함유하는 지지층 형성용 도프용액을 이용하여 열유도 상분리법으로 형성된 것이고,
코팅층은 아세틸화된 메틸 셀룰로스 고분자; 셀룰로스 에스테르; 및 용매, 빈용매 또는 이의 혼합물을 함유하는 코팅층 형성용 도프용액을 이용하여 비용매유도 상분리법으로 형성되는 것으로, 지지층의 표면 기공들 내부에도 코팅되어 지지층과 일체형으로 연속적인 코팅층을 형성하는 것이 특징인 수처리 분리막.
In a cellulose-based water treatment separator having a support layer and a coating layer integrally formed on one surface or both surfaces of the support layer,
The support layer comprises an acetylated methyl cellulose polymer; diluent; Wetting agents; And a heat-induced phase separation method using a dope solution for forming a support layer containing a solvent,
The coating layer comprises an acetylated methyl cellulose polymer; Cellulose esters; And a non-solvent-derived phase separation method using a dope solution for forming a coating layer containing a solvent, a poor solvent or a mixture thereof, and is also coated inside the surface pores of the support layer to form a continuous coating layer integral with the support layer Phosphorus treatment membrane.
제13항에 있어서, 중공사 막 형태인 것이 특징인 수처리 분리막.14. The water treatment separator according to claim 13, characterized by being in the form of a hollow fiber membrane. 제13항에 있어서, 제7항 내지 제12항 중 어느 한 항에 기재된 제조방법에 의해 제조된 것이 특징인 수처리 분리막.The water treatment separator according to claim 13, which is produced by the production method according to any one of claims 7 to 12. 제14항에 있어서, 외부는 지지층이, 내부는 코팅층이 위치한 것인 중공사 막 형태의 수처리 분리막.15. The water treatment membrane according to claim 14, wherein the outer layer is a support layer and the inner layer is a coating layer. 제13항에 있어서, 분획분자량은 50 ~ 500 (kDa)인 것이 특징인 수처리 분리막.14. The water treatment separator according to claim 13, wherein the fraction molecular weight is 50 to 500 (kDa). 제13항에 있어서, 인장강도는 6 ~ 13 (MPa) 이고, 수투과도는 200 ~ 2000 (L/m2hr) 이고, 내오염도는 0.4 ~ 0.8 이고, 일체도는 2.0 ~ 6.0 kgf/cm2인 것이 특징인 수처리 분리막.
14. The method of claim 13, wherein the tensile strength is from 6 to 13 MPa, the water permeability is from 200 to 2000 L / m 2 hr, the degree of contamination is from 0.4 to 0.8 and the integrity is from 2.0 to 6.0 kgf / cm 2 .
KR1020130155805A 2013-12-13 2013-12-13 Cellulosic membrane for water treatment with good anti-fouling property and Method thereof KR102054838B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130155805A KR102054838B1 (en) 2013-12-13 2013-12-13 Cellulosic membrane for water treatment with good anti-fouling property and Method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130155805A KR102054838B1 (en) 2013-12-13 2013-12-13 Cellulosic membrane for water treatment with good anti-fouling property and Method thereof

Publications (2)

Publication Number Publication Date
KR20150069422A true KR20150069422A (en) 2015-06-23
KR102054838B1 KR102054838B1 (en) 2020-01-22

Family

ID=53516546

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130155805A KR102054838B1 (en) 2013-12-13 2013-12-13 Cellulosic membrane for water treatment with good anti-fouling property and Method thereof

Country Status (1)

Country Link
KR (1) KR102054838B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105013336A (en) * 2015-06-30 2015-11-04 天津大学 Preparation method of nano silver/poly dopamine composite membrane
CN106310966A (en) * 2016-09-29 2017-01-11 盐城海普润膜科技有限公司 Inner support flat sheet membrane as well as preparation method and application thereof
WO2017119649A1 (en) * 2016-01-04 2017-07-13 주식회사 효성 Acetylated alkyl cellulose separation membrane and method for manufacturing same
KR20180036293A (en) * 2016-09-30 2018-04-09 롯데케미칼 주식회사 Hollow fiber membrane and method for preparing the same
KR20180080425A (en) * 2017-01-03 2018-07-12 주식회사 효성 Composite porous membrane of acetylated alkyl cellulose and polyolefinketone
WO2020130674A1 (en) * 2018-12-20 2020-06-25 롯데케미칼 주식회사 Composition for forming filtration membrane, method for manufacturing filtration membrane by using same, and filtration membrane
US11241659B2 (en) 2017-11-07 2022-02-08 Lg Chem, Ltd. Method for manufacturing gas separation membrane and gas separation membrane manufactured thereby

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101026690B1 (en) * 2010-02-25 2011-04-07 주식회사 디어포스 Highly porous membrane using that and preparing method thereof
KR20120009821A (en) * 2010-07-21 2012-02-02 한국화학연구원 Method of producing porous hollow fiber membranes based on acetylated alkyl cellulose
KR101132731B1 (en) * 2009-12-24 2012-06-21 한국화학연구원 Acetylated methyl cellulose, Membrane for water treatment using that and Preparing method thereof
KR101269574B1 (en) * 2011-02-16 2013-06-05 한국화학연구원 Acetylated alkyl cellulose membrane using thermal induced phase separation and preparing method thereof
KR20130067509A (en) * 2011-12-14 2013-06-25 김백암 Double layer hydrophilic hollow fiber membrane and its manufacturing method combined supported layer by thermally induced phase separation and active layer by non-solvent induced phase separation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101132731B1 (en) * 2009-12-24 2012-06-21 한국화학연구원 Acetylated methyl cellulose, Membrane for water treatment using that and Preparing method thereof
KR101026690B1 (en) * 2010-02-25 2011-04-07 주식회사 디어포스 Highly porous membrane using that and preparing method thereof
KR20120009821A (en) * 2010-07-21 2012-02-02 한국화학연구원 Method of producing porous hollow fiber membranes based on acetylated alkyl cellulose
KR101269574B1 (en) * 2011-02-16 2013-06-05 한국화학연구원 Acetylated alkyl cellulose membrane using thermal induced phase separation and preparing method thereof
KR20130067509A (en) * 2011-12-14 2013-06-25 김백암 Double layer hydrophilic hollow fiber membrane and its manufacturing method combined supported layer by thermally induced phase separation and active layer by non-solvent induced phase separation

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105013336A (en) * 2015-06-30 2015-11-04 天津大学 Preparation method of nano silver/poly dopamine composite membrane
WO2017119649A1 (en) * 2016-01-04 2017-07-13 주식회사 효성 Acetylated alkyl cellulose separation membrane and method for manufacturing same
CN106310966A (en) * 2016-09-29 2017-01-11 盐城海普润膜科技有限公司 Inner support flat sheet membrane as well as preparation method and application thereof
KR20180036293A (en) * 2016-09-30 2018-04-09 롯데케미칼 주식회사 Hollow fiber membrane and method for preparing the same
KR20180080425A (en) * 2017-01-03 2018-07-12 주식회사 효성 Composite porous membrane of acetylated alkyl cellulose and polyolefinketone
US11241659B2 (en) 2017-11-07 2022-02-08 Lg Chem, Ltd. Method for manufacturing gas separation membrane and gas separation membrane manufactured thereby
WO2020130674A1 (en) * 2018-12-20 2020-06-25 롯데케미칼 주식회사 Composition for forming filtration membrane, method for manufacturing filtration membrane by using same, and filtration membrane

Also Published As

Publication number Publication date
KR102054838B1 (en) 2020-01-22

Similar Documents

Publication Publication Date Title
KR102054838B1 (en) Cellulosic membrane for water treatment with good anti-fouling property and Method thereof
KR101132731B1 (en) Acetylated methyl cellulose, Membrane for water treatment using that and Preparing method thereof
KR101392943B1 (en) Hollow fiber membrane for forward osmotic use, and method for manufacturing the same
CN100446845C (en) Polysulfone and polyethy lene base polymer blend membrane, and its preparing and use
KR101269574B1 (en) Acetylated alkyl cellulose membrane using thermal induced phase separation and preparing method thereof
EP3348323A1 (en) Film-forming stock solution for use in non-solvent-induced phase separation methods, and method for producing porous hollow fiber membrane using same
KR101394416B1 (en) Method for Manufacturing Polyvinylidene fluoride Hollow fiber membrane and Hollow fiber membrane
KR101179161B1 (en) Novel polymer resin of Polyvinylidenefluoride type hollow fiber membrane, PVDF hollow fiber membrane with resistant membrane-pollution and Preparing method thereof
KR101530432B1 (en) Polymer composition for preparing acetylated alkyl cellulose membrane and preparation method of acetylated alkyl cellulose membrane using the same
KR101161709B1 (en) Method of producing porous hollow fiber membranes based on acetylated alkyl cellulose
KR20160001142A (en) A preparation method of fouling-resistant hollow fiber membrane and a fouling-resistant hollow fiber membrane prepared by the same
KR20120059755A (en) Method for manufacturing a hollow fiber membrane for water treatment using cellulose resin
KR101161711B1 (en) Method of producing forward osmosis membranes based on acetylated alkyl cellulose
KR20120118408A (en) Membrane, method for manufacturing the same and forward osmosis device including the same
KR102139208B1 (en) A preparation method of fouling-resistant hollow fiber membrane and a fouling-resistant hollow fiber membrane prepared by the same
KR101675455B1 (en) A preparation method of a membrane having improved chlorine resistance and a chlorine resistant membrane prepared by the same
KR101434166B1 (en) Manufacturing method of highly efficient hollow fiber membranes and poor solvent for manufacturing hollow fiber
KR101506334B1 (en) Composite hollow fiber membrane for separation of pentane/nitrogen gas in the expanded polystyrene preparation process and manufacturing method thereof
KR102306426B1 (en) Composite porous membrane of acetylated alkyl cellulose and polyolefinketone
CN111495201A (en) Method for preparing porous material through indirect thermally induced phase separation
KR101370475B1 (en) Manufacturing method of polyimid-based hollow fiber membrane with sponge-like structure
KR102399330B1 (en) Acetylated alkyl cellulose separation membrane and method for preparing the same
JP2022514036A (en) Porous membrane for high pressure filtration
KR101355017B1 (en) Highly efficient hollow fiber membranes and manufacturing method thereof
KR102306425B1 (en) Polymer composition for preparing acetylated alkyl cellulose membrane and preparation method of acetylated alkyl cellulose membrane using the same

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant