KR20180067725A - 곡선형 캐뉼라 수술 시스템 - Google Patents
곡선형 캐뉼라 수술 시스템 Download PDFInfo
- Publication number
- KR20180067725A KR20180067725A KR1020187016418A KR20187016418A KR20180067725A KR 20180067725 A KR20180067725 A KR 20180067725A KR 1020187016418 A KR1020187016418 A KR 1020187016418A KR 20187016418 A KR20187016418 A KR 20187016418A KR 20180067725 A KR20180067725 A KR 20180067725A
- Authority
- KR
- South Korea
- Prior art keywords
- cannula
- instrument
- shaft
- surgical
- curved
- Prior art date
Links
- 241001631457 Cannula Species 0.000 abstract description 67
- 230000007246 mechanism Effects 0.000 description 133
- 230000033001 locomotion Effects 0.000 description 44
- 238000001356 surgical procedure Methods 0.000 description 40
- 238000010586 diagram Methods 0.000 description 38
- 229920003259 poly(silylenemethylene) Polymers 0.000 description 31
- 238000003780 insertion Methods 0.000 description 28
- 230000037431 insertion Effects 0.000 description 28
- 239000012636 effector Substances 0.000 description 27
- 210000002105 tongue Anatomy 0.000 description 23
- 239000000463 material Substances 0.000 description 21
- 238000000034 method Methods 0.000 description 20
- 238000013461 design Methods 0.000 description 19
- 238000012546 transfer Methods 0.000 description 19
- 210000000707 wrist Anatomy 0.000 description 18
- 238000002432 robotic surgery Methods 0.000 description 15
- 230000000153 supplemental effect Effects 0.000 description 14
- 238000005452 bending Methods 0.000 description 13
- 229910001220 stainless steel Inorganic materials 0.000 description 13
- 230000005540 biological transmission Effects 0.000 description 11
- 239000012530 fluid Substances 0.000 description 11
- 239000010935 stainless steel Substances 0.000 description 11
- 238000013459 approach Methods 0.000 description 9
- 210000003195 fascia Anatomy 0.000 description 9
- 230000001419 dependent effect Effects 0.000 description 8
- 238000011010 flushing procedure Methods 0.000 description 8
- 239000004812 Fluorinated ethylene propylene Substances 0.000 description 7
- 238000001514 detection method Methods 0.000 description 7
- 229920009441 perflouroethylene propylene Polymers 0.000 description 7
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 7
- 239000004810 polytetrafluoroethylene Substances 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 238000004140 cleaning Methods 0.000 description 6
- -1 ether ketone Chemical class 0.000 description 6
- 239000000835 fiber Substances 0.000 description 6
- 238000002324 minimally invasive surgery Methods 0.000 description 6
- 210000003813 thumb Anatomy 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 229920001296 polysiloxane Polymers 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 230000006641 stabilisation Effects 0.000 description 5
- 238000011105 stabilization Methods 0.000 description 5
- 210000001124 body fluid Anatomy 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 208000014674 injury Diseases 0.000 description 4
- 238000003032 molecular docking Methods 0.000 description 4
- 239000013307 optical fiber Substances 0.000 description 4
- 230000010412 perfusion Effects 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 230000008733 trauma Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000001154 acute effect Effects 0.000 description 3
- 210000003484 anatomy Anatomy 0.000 description 3
- 238000007664 blowing Methods 0.000 description 3
- 239000010839 body fluid Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 239000010963 304 stainless steel Substances 0.000 description 2
- 230000005355 Hall effect Effects 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 229910000589 SAE 304 stainless steel Inorganic materials 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000003618 dip coating Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000013013 elastic material Substances 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 210000000232 gallbladder Anatomy 0.000 description 2
- 210000004247 hand Anatomy 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 238000002357 laparoscopic surgery Methods 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 210000002435 tendon Anatomy 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 230000000451 tissue damage Effects 0.000 description 2
- 231100000827 tissue damage Toxicity 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910000619 316 stainless steel Inorganic materials 0.000 description 1
- 241000839029 Notus Species 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229920004738 ULTEM® Polymers 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 210000000080 chela (arthropods) Anatomy 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 229920001746 electroactive polymer Polymers 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 210000005224 forefinger Anatomy 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000012977 invasive surgical procedure Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002991 molded plastic Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910001000 nickel titanium Inorganic materials 0.000 description 1
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 229920000090 poly(aryl ether) Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000013643 reference control Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3417—Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
- A61B17/3421—Cannulas
- A61B17/3423—Access ports, e.g. toroid shape introducers for instruments or hands
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00147—Holding or positioning arrangements
- A61B1/00149—Holding or positioning arrangements using articulated arms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/313—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for introducing through surgical openings, e.g. laparoscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/28—Surgical forceps
- A61B17/29—Forceps for use in minimally invasive surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3417—Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
- A61B17/3421—Cannulas
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3417—Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
- A61B17/3421—Cannulas
- A61B17/3431—Cannulas being collapsible, e.g. made of thin flexible material
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3417—Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
- A61B17/3421—Cannulas
- A61B17/3439—Cannulas with means for changing the inner diameter of the cannula, e.g. expandable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3462—Trocars; Puncturing needles with means for changing the diameter or the orientation of the entrance port of the cannula, e.g. for use with different-sized instruments, reduction ports, adapter seals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3474—Insufflating needles, e.g. Veress needles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3498—Valves therefor, e.g. flapper valves, slide valves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B34/37—Master-slave robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/71—Manipulators operated by drive cable mechanisms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/73—Manipulators for magnetic surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/76—Manipulators having means for providing feel, e.g. force or tactile feedback
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B50/00—Containers, covers, furniture or holders specially adapted for surgical or diagnostic appliances or instruments, e.g. sterile covers
- A61B50/10—Furniture specially adapted for surgical or diagnostic appliances or instruments
- A61B50/13—Trolleys, e.g. carts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/90—Identification means for patients or instruments, e.g. tags
- A61B90/92—Identification means for patients or instruments, e.g. tags coded with colour
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/0021—Catheters; Hollow probes characterised by the form of the tubing
- A61M25/0041—Catheters; Hollow probes characterised by the form of the tubing pre-formed, e.g. specially adapted to fit with the anatomy of body channels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/0105—Steering means as part of the catheter or advancing means; Markers for positioning
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00477—Coupling
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00526—Methods of manufacturing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00831—Material properties
- A61B2017/0084—Material properties low friction
- A61B2017/00845—Material properties low friction of moving parts with respect to each other
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/28—Surgical forceps
- A61B17/29—Forceps for use in minimally invasive surgery
- A61B2017/2901—Details of shaft
- A61B2017/2904—Details of shaft curved, but rigid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/28—Surgical forceps
- A61B17/29—Forceps for use in minimally invasive surgery
- A61B2017/2901—Details of shaft
- A61B2017/2905—Details of shaft flexible
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/28—Surgical forceps
- A61B17/29—Forceps for use in minimally invasive surgery
- A61B2017/2926—Details of heads or jaws
- A61B2017/2927—Details of heads or jaws the angular position of the head being adjustable with respect to the shaft
- A61B2017/2929—Details of heads or jaws the angular position of the head being adjustable with respect to the shaft with a head rotatable about the longitudinal axis of the shaft
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/28—Surgical forceps
- A61B17/29—Forceps for use in minimally invasive surgery
- A61B2017/2926—Details of heads or jaws
- A61B2017/2932—Transmission of forces to jaw members
- A61B2017/2933—Transmission of forces to jaw members camming or guiding means
- A61B2017/2936—Pins in guiding slots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3417—Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
- A61B2017/3419—Sealing means between cannula and body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3417—Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
- A61B17/3421—Cannulas
- A61B17/3423—Access ports, e.g. toroid shape introducers for instruments or hands
- A61B2017/3429—Access ports, e.g. toroid shape introducers for instruments or hands having a unitary compressible body, e.g. made of silicone or foam
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3417—Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
- A61B17/3421—Cannulas
- A61B17/3439—Cannulas with means for changing the inner diameter of the cannula, e.g. expandable
- A61B2017/3441—Cannulas with means for changing the inner diameter of the cannula, e.g. expandable with distal sealing means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3417—Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
- A61B17/3421—Cannulas
- A61B2017/3445—Cannulas used as instrument channel for multiple instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3417—Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
- A61B17/3421—Cannulas
- A61B2017/3445—Cannulas used as instrument channel for multiple instruments
- A61B2017/3447—Linked multiple cannulas
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3417—Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
- A61B2017/3454—Details of tips
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3462—Trocars; Puncturing needles with means for changing the diameter or the orientation of the entrance port of the cannula, e.g. for use with different-sized instruments, reduction ports, adapter seals
- A61B2017/3466—Trocars; Puncturing needles with means for changing the diameter or the orientation of the entrance port of the cannula, e.g. for use with different-sized instruments, reduction ports, adapter seals for simultaneous sealing of multiple instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B2034/301—Surgical robots for introducing or steering flexible instruments inserted into the body, e.g. catheters or endoscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B2034/305—Details of wrist mechanisms at distal ends of robotic arms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/50—Supports for surgical instruments, e.g. articulated arms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/90—Identification means for patients or instruments, e.g. tags
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S901/00—Robots
- Y10S901/30—End effector
- Y10S901/41—Tool
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Robotics (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Radiology & Medical Imaging (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Pulmonology (AREA)
- Anesthesiology (AREA)
- Hematology (AREA)
- Ophthalmology & Optometry (AREA)
- Manipulator (AREA)
- Surgical Instruments (AREA)
Abstract
환자 몸의 동일한 개구를 통해서 연장된 강성 곡선형 캐뉼라들(416a)을 갖도록 로봇 수술 시스템이 구성된다. 곡선형 캐뉼라들을 통해서 피동적 가요성 샤프트(506)를 가진 수술 기구(500)가 연장된다. 캐뉼라들은 수술 기구가 수술 부위를 향해 보내지도록 배향된다. 단일 개구 안에서 곡선형 캐뉼라들을 지지하는 다양한 입구(1402) 특징부가 개시된다. 단일 개구에 삽입하고 로봇 조작기에 장착하는 동안 캐뉼라들을 지지하는 캐뉼라 지지 고정부가 개시된다. 의사가 직관적인 제어를 체험할 수 있도록 하는 방식으로 곡선형 캐뉼라들과 이들의 관련된 기구들을 움직이는 원격조종 제어 시스템이 개시된다.
Description
관련 출원의 참조
본 출원은 임시 미국 특허출원 제61/245,171(2009년 9월 23일 제출)("곡선형 캐뉼라"를 개시)의 우선권을 주장하는 미국 특허출원 제12/618,549(2009년 11월 13일 제출)[대리인 사건번호 ISRG 02390/US]("곡선형 캐뉼라"를 개시)의 일부 계속으로서, 두 출원은 본원에 참고자료로 포함된다.
본 출원은 다음 출원과 관련될 수 있다: 미국 특허출원 제12/618,598호(2009년 11월 13일 제출)[대리인 사건번호 ISRG 02392/US]("곡선형 캐뉼라 수술 시스템 제어"를 개시), 미국 특허출원 제12/618,608호(2009년 11월 13일 제출)[대리인 사건번호 ISRG02393/US]("곡선형 캐뉼라 기구"를 개시), 미국 특허출원 제12/618,621호(2009년 11월 13일 제출)[대리인 사건번호 ISRG 02394/US]("수술 입구 특징부"를 개시), 및 미국 특허출원 제12/618,631호(2009년 11월 13일 제출)[대리인 사건번호 ISRG 02395/US]("캐뉼라 장착 고정부"를 개시), 이들은 모두 본원에 참고자료로 포함된다.
기술분야
본 발명의 양태들은 최소 침습 수술, 더 구체적으로는 최소 침습 로봇 수술 시스템, 좀더 구체적으로는 환자의 몸으로 들어가는 단일 진입 지점을 통해 작업하는 최소 침습 로봇 수술 시스템에 관한 것이다.
최소 침습 수술의 이점은 잘 알려져 있으며, 이들은 종래의 개방절개술과 비교해서 환자 외상의 감소, 혈액 손실의 감소, 및 빠른 회복 시간을 포함한다. 또한, 캘리포니아 서니베일의 Intuitive Surgical, Inc.에 의해 제조되는 da Vinci® 수술 시스템과 같은 로봇 수술 시스템(예를 들어, 텔레프리젠스를 제공하는 원격조종 로봇 시스템)의 사용이 알려져 있다. 이러한 로봇 수술 시스템은 수동 최소 침습 수술과 비교했을 때 의사로 하여금 직관적인 제어와 높아진 정밀성 하에 작업하는 것을 가능하게 할 수 있다.
환자의 외상을 더욱 줄이고, 로봇 수술 시스템의 이익을 유지하기 위해, 의사들은 피부의 단일 절개부를 통해 환자의 상태를 조사하거나 치료하기 위한 수술 과정을 수행하기 시작했다. 일부 예에서, 이러한 "단일 입구 접근" 수술들은 수동 기기, 또는 기존의 수술 로봇 시스템을 사용하여 수행되었다. 따라서, 기존의 장비 및 방법을 사용하는 것에 비해서 의사로 하여금 더 효과적으로 단일 입구 접근 수술을 수행할 수 있도록 하는 개선된 장비 및 방법이 바람직하다. 또한, 다중 절개부(다중-입구) 수술에서 전형적으로 사용되는 기존의 로봇 수술 시스템을 이러한 단일 입구 접근 수술을 수행할 수 있도록 쉽게 변형할 수 있게 하는 것이 바람직하다.
한 양태에서, 수술 시스템은 로봇 조작기, 곡선형 캐뉼라, 및 곡선형 캐뉼라를 통해 연장되는 피동적 가요성 샤프트를 가진 기구를 포함한다. 로봇 조작기는 환자의 몸으로 들어가는 개구에 위치된 원격 동작 중심 주변에서 곡선형 캐뉼라를 움직여서 곡선형 캐뉼라가 수술 부위에서 수술 기구를 위한 삼각형 공간을 제공하도록 한다. 한 실시양태에서, 내시경과 원단부가 상이한 각도로 수술 부위를 향해 배향된 2개의 이러한 곡선형 캐뉼라가 사용되어 효과적인 기구 삼각형 공간이 달성되며, 이것은 의사로 하여금 수술 부위를 보면서 효과적으로 작업할 수 있게 한다.
다른 양태에서, 곡선형 캐뉼라는 직선 구획과 인접한 곡선 구획을 포함한다. 로봇 조작기 장착 브래킷이 직선 구획에 연결된다. 제 2 직선 구획이 곡선 구획의 반대쪽 단부에 연결될 수 있으며, 이로써 캐뉼라의 원단부로부터 수술 부위를 향해 연장되는 피동적 가요성 수술 기구의 정렬을 용이케 할 수 있다.
다른 양태에서, 수술 기구는 피동적 가요성 샤프트와 샤프트의 원단부에 연결된 수술 단부 작동기를 포함한다. 가요성 샤프트는 곡선형 캐뉼라를 통해 연장되며, 가요성 샤프트의 원위 구획이 곡선형 캐뉼라의 원단부를 지나 캔틸레버식으로 연장된다. 가요성 샤프트의 원위 구획은 수술 부위에서 효과적인 수술 행위를 제공할 만큼 충분히 강성이지만, 그것은 또한 곡선형 캐뉼라를 통해 삽입되거나 빼내질 수 있을 만큼 충분히 가요성이기도 하다. 일부 양태에서, 기구 샤프트의 원위 구획의 강성은 수술 과정 동안 캐뉼라의 곡선 구획에 남는 샤프트 구획의 강성보다 크다.
다른 양태에서, 수술 입구 특징부는 그것의 상면과 하면 사이에 채널을 포함하는 단일 바디이다. 채널은 대향하여 각을 이루고 있어 원하는 각도로 곡선형 캐뉼라의 직선 구획을 보유할 수 있다. 단일체는 곡선형 캐뉼라가 일반적으로 채널 내에 위치된 원격 동작 중심 주변에서 움직일 수 있을 만큼 충분히 가요성이다. 일부 양태에서, 입구 특징부는 또한 내시경 캐뉼라용 채널 및/또는 하나 이상의 보조 채널을 포함한다. 채널은 다양한 밀봉부를 포함할 수 있다.
다른 양태에서, 상부의 깔대기 부분과 하부의 혀를 포함하는 제 2 입구 특징부가 개시된다. 곡선형 캐뉼라와 같은 수술 기구용 채널은 깔대기 부분과 혀가 이어진 허리 구획에 한정된다. 한 양태에서, 이 제 2 입구 특징부는 기구가 비교적 작은(급한) 각도로 환자의 몸으로 들어가야 하는 수술에서 사용되는데, 이 입구 특징부는 기구와 환자의 몸 사이의, 또는 반대의 불필요한 응력을 방지하는데 도움이 되기 때문이다.
다른 양태에서, 캐뉼라 장착 고정부들이 개시된다. 이들 고정부는 캐뉼라의 삽입 및 관련된 로봇 조작기와의 도킹에서 캐뉼라를 지지한다. 한 양태에서, 고정부는 내시경 캐뉼라와 곡선형 기구 캐뉼라를 보유하는 암을 포함한다. 다른 양태에서, 고정부는 내시경과 곡선형 캐뉼라의 원단부를 보유하는 캡으로서 구성된다. 캡은 끝이 뾰족한 형태로서 환자로 들어가는 개구로의 삽입을 용이케 할 수 있다.
다른 양태에서, 곡선형 캐뉼라를 구비한 로봇 수술 시스템을 위한 제어 시스템이 개시된다. 제어 시스템은 곡선형 캐뉼라와 관련된 운동학적 데이터를 이용한다. 의사에게 직관적인 제어 경험을 제공하기 위해, 제어 시스템은, 기구가 일반적으로 캐뉼라의 곡선 구획의 원단부에 접선인 곡선형 캐뉼라의 원단부로부터 연장되는 직선 축을 따라 위치된 것처럼, 로봇 조작기로 하여금 주 조작기에서의 의사의 입력에 응하여 곡선형 캐뉼라와 그것의 기구를 움직이도록 명령한다.
도 1a는 로봇 수술 시스템의 환자측 카트의 정면 상방도이다.
도 1b는 로봇 수술 시스템의 의사 콘솔의 정면 상방도이다.
도 1c는 로봇 수술 시스템의 비전 카트의 정면 상방도이다.
도 2a는 기구 암의 측면 상방도이다.
도 2b는 기구가 장착된 조작기의 투시도이다.
도 2c는 카메라 암이 장착된 부분의 측면 상방도이다.
도 3은 수술 부위에 도달하도록 체벽을 통해 삽입된 다중 캐뉼라들과 관련된 기구들의 도식도이다.
도 4a는 곡선형 캐뉼라와 피동적 가요성 수술 기구의 조합을 지지하고 움직이는 환자측 로봇 조작기 부분의 도식도이다.
도 4b는 도 4a의 도면에 더하여, 제 2 곡선형 캐뉼라와 피동적 가요성 수술 기구 조합을 지지하고 움직이는 제 2 환자측 로봇 조작기를 도시하는 도식도이다.
도 4c는 도 4b의 도면에 더하여, 내시경을 지지하는 내시경 카메라 조작기를 도시하는 도식도이다.
도 5는 가요성 기구의 도식도이다.
도 6a는 당김/당김 기구 디자인의 도식도이다.
도 6b는 밈/당김 기구 디자인의 도식도이다.
도 7a는 힘 전달 메커니즘의 하방도이다.
도 7b는 당김/당김 기구 디자인에 사용된 힘 전달 메커니즘의 평면도이다.
도 7c는 밈/당김 기구 디자인에 사용된 힘 전달 메커니즘의 평면도이다.
도 7d는 밈/당김 기구 디자인에 사용된 또 다른 힘 전달 메커니즘의 투시도이다.
도 8a는 기구 샤프트의 일부분의 컷어웨이 투시도이다.
도 8b는 또 다른 기구 샤프트 디자인의 도식적 단면 투시도이다.
도 8c는 또 다른 기구 샤프트의 일부분의 컷어웨이 투시도이다.
도 8d는 또 다른 기구 샤프트 디자인의 도식적 투시도이다.
도 9a는 가요성 샤프트 기구의 원단부의 분해조립 투시도이다.
도 9b는 도 9a에 묘사된 실시형태의 단면도이다.
도 9c는 당김/당김 타입 단부 작동기의 도식도이다.
도 9d는 또 다른 가요성 샤프트 기구의 원단부의 분해조립 투시도이다.
도 9e는 밈/당김 타입 단부 작동기의 도식도이다.
도 9f는 기구 샤프트 단부 캡의 도식적 투시도이다.
도 10은 곡선형 캐뉼라의 도식도이다.
도 10a는 정렬한 열쇠 특징부의 도식도이다.
도 10b는 캐뉼라 단부 간격 검출 시스템의 도식도이다.
도 11a 및 11b는 캐뉼라 배향을 예시한다.
도 11c는 곡선형 캐뉼라를 배치할 수 있는 예시적인 위치에 조작기를 구비한 로봇 수술 시스템의 평면도이다.
도 12a, 12b 및 12c는 다양한 캐뉼라 구성형태를 통해 그로부터 연장되어 이어진 기구 샤프트를 도시하는 도식도이다.
도 13은 또 다른 곡선형 캐뉼라와 가요성 기구의 조합을 예시하는 도식도이다.
도 14a는 입구 특징부의 도식적 평면도이다.
도 14b는 입구 특징부의 도식적 투시도이다.
도 15a는 14a의 절단선에서 취해진 도식적 단면도이다.
도 15b는 도 15a에 묘사된 밀봉부를 자세히 도시한다.
도 15c는 14a의 또 다른 절단선에서 취해진 도식적 단면도이다.
도 15d는 입구 특징부의 전기전도층을 예시하는 도식적 단면도이다.
도 15e는 또 다른 밀봉부를 자세히 도시한다.
도 16a는 다양한 피부 및 근막 절개부의 도식도이다.
도 16b는 다른 입구 특징부의 도식적 투시 단면도이다.
도 17a 및 17b는 또 다른 입구 특징부의 도식도이다.
도 18a 및 18b는 또 다른 입구 특징부의 도식도이다.
도 19a는 캐뉼라 삽입/안정화 고정부의 투시도이다.
도 19b는 캐뉼라 삽입/안정화 고정부의 다른 투시도이다.
도 19c는 캐뉼라 안정화 고정부의 도식적 투시도이다.
도 20a-20d는 캐뉼라를 삽입하는 다른 방식을 예시하는 도식도이다.
도 21은 곡선형 캐뉼라 및 다양한 기준 축들의 도식도이다.
도 22는 곡선형 캐뉼라 및 관련된 광섬유 변형응력 센서를 가진 가요성 기구의 원단부의 도식도이다.
도 23은 제어 시스템 구축구조의 도식도이다.
도 1b는 로봇 수술 시스템의 의사 콘솔의 정면 상방도이다.
도 1c는 로봇 수술 시스템의 비전 카트의 정면 상방도이다.
도 2a는 기구 암의 측면 상방도이다.
도 2b는 기구가 장착된 조작기의 투시도이다.
도 2c는 카메라 암이 장착된 부분의 측면 상방도이다.
도 3은 수술 부위에 도달하도록 체벽을 통해 삽입된 다중 캐뉼라들과 관련된 기구들의 도식도이다.
도 4a는 곡선형 캐뉼라와 피동적 가요성 수술 기구의 조합을 지지하고 움직이는 환자측 로봇 조작기 부분의 도식도이다.
도 4b는 도 4a의 도면에 더하여, 제 2 곡선형 캐뉼라와 피동적 가요성 수술 기구 조합을 지지하고 움직이는 제 2 환자측 로봇 조작기를 도시하는 도식도이다.
도 4c는 도 4b의 도면에 더하여, 내시경을 지지하는 내시경 카메라 조작기를 도시하는 도식도이다.
도 5는 가요성 기구의 도식도이다.
도 6a는 당김/당김 기구 디자인의 도식도이다.
도 6b는 밈/당김 기구 디자인의 도식도이다.
도 7a는 힘 전달 메커니즘의 하방도이다.
도 7b는 당김/당김 기구 디자인에 사용된 힘 전달 메커니즘의 평면도이다.
도 7c는 밈/당김 기구 디자인에 사용된 힘 전달 메커니즘의 평면도이다.
도 7d는 밈/당김 기구 디자인에 사용된 또 다른 힘 전달 메커니즘의 투시도이다.
도 8a는 기구 샤프트의 일부분의 컷어웨이 투시도이다.
도 8b는 또 다른 기구 샤프트 디자인의 도식적 단면 투시도이다.
도 8c는 또 다른 기구 샤프트의 일부분의 컷어웨이 투시도이다.
도 8d는 또 다른 기구 샤프트 디자인의 도식적 투시도이다.
도 9a는 가요성 샤프트 기구의 원단부의 분해조립 투시도이다.
도 9b는 도 9a에 묘사된 실시형태의 단면도이다.
도 9c는 당김/당김 타입 단부 작동기의 도식도이다.
도 9d는 또 다른 가요성 샤프트 기구의 원단부의 분해조립 투시도이다.
도 9e는 밈/당김 타입 단부 작동기의 도식도이다.
도 9f는 기구 샤프트 단부 캡의 도식적 투시도이다.
도 10은 곡선형 캐뉼라의 도식도이다.
도 10a는 정렬한 열쇠 특징부의 도식도이다.
도 10b는 캐뉼라 단부 간격 검출 시스템의 도식도이다.
도 11a 및 11b는 캐뉼라 배향을 예시한다.
도 11c는 곡선형 캐뉼라를 배치할 수 있는 예시적인 위치에 조작기를 구비한 로봇 수술 시스템의 평면도이다.
도 12a, 12b 및 12c는 다양한 캐뉼라 구성형태를 통해 그로부터 연장되어 이어진 기구 샤프트를 도시하는 도식도이다.
도 13은 또 다른 곡선형 캐뉼라와 가요성 기구의 조합을 예시하는 도식도이다.
도 14a는 입구 특징부의 도식적 평면도이다.
도 14b는 입구 특징부의 도식적 투시도이다.
도 15a는 14a의 절단선에서 취해진 도식적 단면도이다.
도 15b는 도 15a에 묘사된 밀봉부를 자세히 도시한다.
도 15c는 14a의 또 다른 절단선에서 취해진 도식적 단면도이다.
도 15d는 입구 특징부의 전기전도층을 예시하는 도식적 단면도이다.
도 15e는 또 다른 밀봉부를 자세히 도시한다.
도 16a는 다양한 피부 및 근막 절개부의 도식도이다.
도 16b는 다른 입구 특징부의 도식적 투시 단면도이다.
도 17a 및 17b는 또 다른 입구 특징부의 도식도이다.
도 18a 및 18b는 또 다른 입구 특징부의 도식도이다.
도 19a는 캐뉼라 삽입/안정화 고정부의 투시도이다.
도 19b는 캐뉼라 삽입/안정화 고정부의 다른 투시도이다.
도 19c는 캐뉼라 안정화 고정부의 도식적 투시도이다.
도 20a-20d는 캐뉼라를 삽입하는 다른 방식을 예시하는 도식도이다.
도 21은 곡선형 캐뉼라 및 다양한 기준 축들의 도식도이다.
도 22는 곡선형 캐뉼라 및 관련된 광섬유 변형응력 센서를 가진 가요성 기구의 원단부의 도식도이다.
도 23은 제어 시스템 구축구조의 도식도이다.
본 발명의 양태 및 구체예들을 예시하는 본 설명 및 첨부한 도면들은 보호된 발명을 한정하는 청구항을 제한하는 것으로서 해석되지 않아야 한다. 다양한 기계적, 조성적, 구조적, 전기적 및 작동적 변화가 본 설명 및 청구항들의 정신 및 범위를 벗어나지 않고 이루어질 수 있다. 일부 예에서, 잘 알려진 회로, 구조 및 기술들은 본 발명을 명료히 하기 위해서 상세히 나타내거나 설명되지 않았다. 둘 이상의 도면에서 같은 번호는 동일한 또는 유사한 요소를 표시한다.
또한, 본 명세서의 용어는 본 발명을 제한하는 의도가 아니다. 예를 들어, "밑", "아래", "하부", "위", "상부", "부근", "원위" 등과 같은 공간적인 상대적 용어들은 도면에 예시된 한 요소 또는 특징부의 다른 요소 또는 특징부와의 관계를 설명하기 위해서 사용될 수 있다. 이러한 공간적인 상대적 용어들은 도면에 도시된 위치 및 배향에 더하여 사용중인 또는 작동중인 장치의 상이한 위치(즉, 장소) 및 배향(즉, 회전가능한 배치)을 포괄하도록 의도된다. 예를 들어, 도면의 장치가 반전된다면, 다른 요소 또는 특징부의 "아래" 또는 "밑"이라고 설명된 요소가 다른 요소 또는 특징부의 "위" 또는 "바로 위"가 된다. 따라서, 예시적인 용어 "아래"는 위와 아래의 위치와 배향을 둘 다 포괄할 수 있다. 장치는 다른 식으로 배향될 수 있고(90도 회전되거나, 또는 다른 배향으로), 본원에서 사용된 공간적으로 상대적 설명은 그에 따라서 해석된다. 마찬가지로, 다양한 축을 따른 이동 및 축 주위에서의 움직임에 대한 설명도 역시 다양한 특별한 장치 위치 및 배향을 포함한다. 또한, 단수형 "한" 및 "그"는 문맥상 다른 의미가 아니라면 복수 형태도 포함하도록 의도된다. 그리고, 용어 "포함한다", "포함하는", "포함한다" 등은 언급된 특징부, 단계, 작업, 요소 및/또는 구성요소의 존재를 명시하지만, 하나 이상의 다른 특징부, 단계, 작업, 요소, 구성요소 및/또는 군의 존재 또는 부가를 배제하지 않는다. 짝을 이루어 설명된 구성요소들은 전기적으로 또는 기계적으로 직접 연결될 수 있거나, 또는 이들은 하나 이상의 중간 구성요소를 통해 간접적으로 연결될 수 있다.
한 구체예를 참조하여 상세히 설명된 요소들 및 이들의 관련된 양태들은 실제로는 언제나 이들이 구체적으로 도시되거나 설명되지 않은 다른 구체예들에도 포함될 수 있다. 예를 들어, 어떤 요소가 한 구체예와 관련해서는 상세히 설명되지만, 제 2 구체예와 관련해서는 설명되지 않은 경우에도, 이 요소는 제 2 구체예에 포함되는 것으로 청구될 수 있다.
기계적 구조 또는 구성요소와 관련하여 용어 "가요성"은 광범하게 해석되어야 한다. 본질적으로 이 용어는 구조나 구성요소가 반복적으로 휘어지고, 손상 없이 원래 모양으로 회복될 수 있다는 의미이다. 많은 "강직성" 물체는 재료 특성으로 인하여 약간의 고유한 탄성인 "휨성"을 가지는데, 이러한 물체는 본원에서 사용된 것과 같은 용어인 "가요성"으로 간주되지 않는다. 가요성 기계 구조는 무한 자유도(DOF)를 가질 수 있다. 이러한 구조의 예는 폐쇄된 휘어질 수 있는 튜브(예를 들어, NITINOL, 폴리머, 연고무 등으로 제조된), 나선 코일 스프링 등을 포함하며, 이들은 여러 간단한 곡선 및 복합 곡선으로 휘어질 수 있고, 유의한 단면 변형은 주로 없는 편이다. 다른 가요성 기계 구조는 뱀 모양 배열의 "척추"와 유사한 일련의 근접 이격된 구성요소들을 사용함으로써 이러한 무한 DOF 조각으로 근사될 수 있다. 이러한 척추 배열에서 각 구성요소는 운동학적 사슬의 짧은 연결부이며, 각 연결부 사이의 이동가능한 기계적 구속장치(예를 들어, 핀 힌지, 컵 앤 볼, 라이브 힌지 등)가 연결부 사이의 상대적 움직임에 대해 1(예를 들어, 피치) 또는 2(예를 들어, 피치 및 요우)의 DOF를 허용할 수 있다. 짧은 가요성 구조는 운동학적 사슬의 2개 연결부 사이에 1 이상의 DOF를 제공하는 단일 기계적 구속장치(조인트)로서 소용되거나, 또는 모델링될 수 있으며, 이 가요성 구조 자체가 몇 개의 연결된 연결부로 이루어진 운동학적 사슬일 수도 있다. 당업자는 구성요소의 가요성이 강성의 항목으로 표현될 수 있음을 이해할 것이다.
본 설명에서, 가요성 기계 구조 또는 구성요소는 능동적 또는 피동적 가요성일 수 있다. 능동적 가요성 조각은 그 조각 자체와 고유하게 관련된 힘을 이용하여 휘어질 수 있다. 예를 들어, 하나 이상의 건이 조각을 따라 길게 이어질 수 있으며, 조각의 길이방향 축으로부터 분지되어 하나 이상의 건에 대한 장력이 조각을 휘게 할 수 있다. 능동적 가요성 조각을 능동적으로 휘게 하는 다른 방식은, 제한은 없지만 기압력 또는 유압력, 기어, 전기활성 폴리머 등의 사용을 포함한다. 수동적 가요성 조각은 조각에 외부 힘을 사용함으로써 휘어진다. 고유한 강성을 가진 수동적 가요성 조각의 예는 플라스틱 막대 또는 탄성 고무 튜브이다. 고유하게 관련된 힘으로 가동되지 않을 때 능동적 가요성 조각은 수동적 가용성일 수 있다. 단일 구성요소는 일렬로 있는 하나 이상의 능동적 및 수동적 가요성 부분들로 이루어질 수 있다.
본 발명의 양태들은 캘리포니아 서니베일의 Intuitive Surgical, Inc.에 의해 제조된 da Vinci® 수술 시스템(구체적으로, 모델 IS3000, da Vinci® Si™ HD™ 수술 시스템으로 시판중)을 사용하여 실시되는 측면에서 주로 설명된다. 그러나, 당업자는 본원에 개시된 본 발명의 양태들이 로봇 및 비-로봇 구체예 및 실시형태들을 포함하는 다양한 방식으로 구현 및 실시될 수 있음을 이해할 것이다. da Vinci® 수술 시스템(구체적으로, 모델 IS3000, da Vinci® Si™ HD™ 수술 시스템으로 시판중)에 의한 실시는 단지 예시일 뿐이며, 본원에 개시된 본 발명의 양태들의 범위를 제한하는 것으로서 생각되어서는 안 된다.
도 1a, 1b 및 1c는 최소 침습 수술을 위한 원격조종 로봇 수술 시스템의 3개의 주요 구성요소들의 정면 상방도이다. 이들 3개 구성요소는 서로 연결되며, 의사는 수술 팀의 보조하에 환자에게 진단 및 교정적 수술 과정을 수행할 수 있다.
도 1a는 da Vinci® 수술 시스템의 환자측 카트 구성요소(100)의 정면 상방도이다. 환자측 카트는 마루 위에 놓이는 기부(102), 기부(102) 상에 장착된 지지 타워(104), 및 수술 도구(이것은 입체 내시경을 포함한다)를 지지하는 몇 개의 암을 포함한다. 도 1a에 도시된 대로, 암(106a,106b)은 조직을 조작하는데 사용되는 수술 기구를 지지하고 움직이는 기구 암이고, 암(108)은 내시경을 지지하고 움직이는 카메라 암이다. 또한, 도 1a는 지지 타워(104)의 뒤쪽에서 지지되고, 수술 과정을 수행하기 위한 필요에 따라 환자측 카트의 좌우측 어느 한 쪽에 위치될 수 있는 선택적인 제 3 기구 암(106c)을 도시한다. 도 1a는 기구 암(106a,106b,106c) 상에 장착된 교환가능한 수술 기구(110a,110b,110c)를 더 도시하고, 그것은 카메라 암(108)에 장착된 내시경(112)을 도시한다. 암은 하기 더 상세히 논의된다. 당업자는 기구와 카메라를 지지하는 암들이 천장이나 벽에, 또는 일부 예에서는 수술실 내의 장비(예를 들어, 수술대)의 다른 조각에 장착된 기부 플랫폼(고정형 또는 이동형)에 의해서도 지지될 수 있음을 인정할 것이다. 마찬가지로, 당업자는 2개 이상의 분리된 기부가 사용될 수 있음을 인정할 것이다(예를 들어, 하나의 기부가 각 암을 지지한다).
도 1b는 da Vinci® 수술 시스템의 의사 콘솔(120) 구성요소의 정면 상방도이다. 의사 콘솔은 좌우에 다중 DOF 주 도구 조작기(MTM)(122a,122b)를 구비하며, 이들은 수술 도구(이것은 내시경과 다양한 캐뉼라를 포함한다)의 제어에 사용되는 운동학적 사슬이다. 의사는 전형적으로 엄지손가락과 집게손가락으로 각 MTM(122) 상의 핀처 조립체(124a,124b)를 잡고, 핀처 조립체를 다양한 위치 및 배향으로 움직일 수 있다. 도구 제어 모드가 선택된 경우, 각 MTM(122)이 연결되어 환자측 카트(100)의 상응하는 기구 암(106)을 제어할 수 있다. 예를 들어, 좌측 MTM(122a)을 연결해서 기구 암(106a)과 기구(110a)를 제어할 수 있고, 우측 MTM(122b)을 연결해서 기구 암(106b)과 기구(110b)를 제어할 수 있다. 수술 과정 동안에 제 3 기구 암(106c)이 좌측에 위치되어 사용된다면, 좌측 MTM(122a)은 제어 암(106a)과 기구(110a)와 제어 암(106c)과 기구(110c) 사이에서 전환될 수 있다. 마찬가지로, 제 3 기구 암(106c)이 수술 과정 동안에 우측에 위치되어 사용된다면, 우측 MTM(122a)이 제어 암(106b)과 기구(110b)에서 제어 암(106c)과 기구(110c) 사이에서 전환될 수 있다. 일부 예에서, MTM(122a,122b)과 암(106a)/기구(110a) 조합과 암(106b)/기구(110b) 조합 사이의 제어 설정은 교환될 수도 있다. 이것은, 예를 들어 내시경이 180도 말릴 경우 행해질 수 있으며, 이로써 내시경 시야에서 움직이는 기구는 의사가 MTM이 움직이는 것과 동일한 쪽에 있는 것으로 나타난다. 핀처 조립체는 전형적으로 기구(110)의 원단부에서 집게형 수술 단부 작동기(예를 들어, 가위, 파지 견인기, 니들 드라이버 등)을 작동시키는데 사용된다.
의사 콘솔(120)은 또한 입체 영상 디스플레이 시스템(126)을 포함한다. 입체 내시경(112)에 의해서 캡처된 좌우측 영상이 상응하는 좌우 디스플레이에 출력되고, 의사는 이것을 디스플레이 시스템(126) 상에서 3-차원 영상으로 인식한다. 유리한 구성형태에서, MTM(122)은 디스플레이 시스템(126) 아래에 위치되며, 이로써 디스플레이에 나타난 수술 도구의 영상이 디스플레이 아래에서 의사의 손과 동시에 위치된 것처럼 보인다. 이런 특징은 의사로 하여금 마치 손을 직접 보고 있는 것처럼 3-차원 디스플레이에서 다양한 수술 도구를 직관적으로 제어할 수 있도록 한다. 따라서, 관련된 기구 암과 기구의 MTM 서보 제어는 내시경 영상 기준 프레임에 기초한다.
또한, 내시경 영상 기준 프레임은 MTM이 카메라 제어 모드로 전환된 경우에도 사용된다. da Vinci® 수술 시스템에서, 카메라 제어 모드가 선택된다면, 의사는 MTM 중 하나 또는 둘 모두를 함께 움직임으로써 내시경의 원단부를 움직일 수 있다(2개의 MTM의 일부분이 서보 메커니즘 방식으로 연결될 수 있으며, 이로써 2개의 MTM 부분이 단위체로서 함께 움직이는 것처럼 보인다). 다음에, 의사는 마치 손 안에 영상이 있는 것처럼 MTM을 움직임으로써 표시된 입체 영상을 직관적으로 움직일 수 있다(예를 들어, 넓히기, 기울이기, 당기기).
의사 콘솔(120)은 전형적으로는 환자측 카트(100)와 같은 수술실에 위치되지만, 그것은 콘솔을 작동하는 의사가 멸균실 밖에 있을 수 있도록 위치되기도 한다. 전형적으로, 1명 이상의 어시스턴트가 수술실 안에서 일하면서 의사를 돕는다(예를 들어, 환자측 카트의 도구를 교환하고, 수동 견인을 수행하는 등). 따라서, 의사는 멸균장에서 먼 곳에서 작업하며, 이로써 콘솔은 수술실과는 별도의 방이나 건물에 위치될 수 있다. 일부 실시형태에서, 2개의 콘솔(120)(서로 같이 위치되거나 떨어져 위치된)이 함께 네트워크로 연결되어 2명의 의사가 동시에 수술 부위를 볼 수 있고 수술 부위에서 도구를 제어할 수 있다.
도 1c는 da Vinci® 수술 시스템의 비전 카트 구성요소(140)의 정면 상방도이다. 비전 카트(140)는 수술 시스템의 중앙 전자 데이터 처리 유닛(142)과 비전 장비(144)를 수용한다. 중앙 전자 데이터 처리 유닛은 수술 시스템의 작동에 사용되는 대부분의 데이터 처리를 포함한다. 그러나, 다양한 다른 실시형태에서, 전자 데이터 처리는 의사 콘솔과 환자측 카트에 분산될 수 있다. 비전 장비는 입체 내시경(112)의 좌우 영상 캡처 기능을 위한 카메라 제어 유닛을 포함한다. 또한, 비전 장비는 수술 부위의 영상화를 위한 조명을 제공하는 조명 장비(예를 들어, 제논 램프)를 포함한다. 도 1c에 도시된 대로, 비전 카트는 선택적인 24 인치 터치 스크린 모니터(146)를 포함하며, 이것은 어디에나, 예를 들어 환자측 카트(100) 상에 장착될 수 있다. 비전 카트(140)는 또한 전자수술 유닛 및 취입기와 같은 선택적인 보조 수술 장비를 위한 공간(148)을 포함한다. 환자측 카트와 의사 콘솔은 광섬유 통신 링크를 통해서 비전 카트와 연결되며, 이로써 3개의 구성요소가 함께 단일 원격조종 최소 침습 수술 시스템으로서 작용하여 의사에게 직관적인 텔레프리젠스를 제공한다. 그리고, 상기 언급된 대로, 제 2 의사 콘솔이 포함될 수 있으며, 이로써 제 2 의사가, 예를 들어 제 1 의사의 일을 감독할 수 있다.
도 2a는 예시적인 기구 암(106)의 측면 상방도이다. 수술 동안 일반적으로 사용되는 멸균 드레이프와 관련된 메커니즘은 명료성을 위해 생략된다. 암은 일련의 연결부와 연결부를 함께 연결하는 조인트로 이루어진다. 암은 두 부분으로 나눠진다. 제 1 부분은 "셋업" 부분(202)으로서, 무동력 조인트가 링크를 연결하는 부분이다. 제 2 부분은 수술 기구를 지지하고 움직이는 동력을 가진 로봇 조작기 부분(204)(환자측 조작기; "PSM")이다. 사용 동안, 셋업 부분(202)을 움직여 조작기 부분(204)을 적절한 위치에 배치해서 원하는 수술 작업을 수행할 수 있다. 다음에, 셋업 부분 조인트를 고정해서(예를 들어, 브레이크 메커니즘) 암의 이 부분이 움직이지 않도록 한다.
도 2b는 예시적인 기구(110)가 장착된 PSM(204)의 투시도이다. PSM(204)은 요우 종속 가동장치(206), 피치 종속 가동장치(208), 및 삽입 및 빼기("I/O") 가동장치(210)를 포함한다. 예시적인 수술 기구(110)가 기구 장착 캐리지(212)에 장착된 것이 도시된다. 예시적인 직선 캐뉼라(214)가 캐뉼라 장착부(216)에 장착된 것이 도시된다. 기구(110)의 샤프트(218)가 캐뉼라(24)를 통해 연장된다. PSM(204)은 기구 샤프트를 따라 위치된 고정된 원격 동작 중심(220) 주위에서 기구(110)를 움직이도록 기계적으로 구속된다. 요우 가동장치(206)는 원격 중심(220) 주위에서 요우 동작(222)을 제공하고, 피치 가동장치(208)는 원격 중심(220) 주위에서 피치 동작(224)을 제공하고, I/O 가동장치(210)는 원격 중심(220)을 통해 삽입 및 빼는 동작(226)을 제공한다. 셋업 부분(202)은 전형적으로 수술 동안 환자의 체벽에 있는 절개부에 원격 동작 중심(220)을 배치하고, 의도된 수술 작업을 수행하는데 이용될 수 있는 충분한 요우 및 피치 동작을 허용할 수 있도록 위치된다. 당업자는 원격 동작 중심 주위에서의 동작은 또한 기계 조립체에 의해 한정되는 물리적인 구속이 아니라 소프트웨어의 사용에만 의해서도 구속될 수 있음을 이해할 것이다.
장착 캐리지(212)의 힘 전달 디스크와 기구 힘 전달 조립체(230)를 합치시켜서 PSM(204)의 가동장치(232)들로부터의 가동력을 연결하여 기구(110)의 여러 부분을 이동시킴으로써 기구 단부 작동기(234)를 배치하고, 배향하고, 작동시킬 수 있다. 이러한 가동력들은 전형적으로 롤형 기구 샤프트(218)(이로써 원격 중심을 통해 또 다른 DOF를 제공한다)일 수 있으며, 요우 및 피치 DOF를 제공하는 손목(236)을 작동시키고, 다양한 단부 작동기의 이동가능한 조각 또는 파지형 악부(예를 들어, 가위(소작 또는 비소작 가능한), 절개기, 파지기, 니들 드라이버, 전기소작 후크, 견인기, 클립 적용장치 등)를 작동시킨다.
도 2c는 예시적인 카메라(112)가 장착된 카메라 암(108)의 일부의 측면 상방도이다. 기구 암(106)과 유사하게, 카메라 암(108)도 셋업 부분(240)과 조작기 부분(242)(내시경 카메라 조작기; "ECM")을 포함한다. ECM(242)은 PSM(204)과 유사하게 구성되며, 요우 동작 가동장치(244), 피치 동작 가동장치(246), 및 I/O 동작 가동장치(248)를 포함한다. 내시경(112)은 캐리지 조립체(250)에 장착되고, 내시경 캐뉼라(252)는 카메라 캐뉼라 장착부(254)에 장착된다. ECM(242)은 원격 동작 중심(256)을 통과해 그 주위에서 내시경(112)을 움직인다.
도 1a-2c를 참조하여 설명된 로봇 수술 시스템을 사용한 전형적인 수술 과정 동안, 적어도 2개의 절개부가 환자의 몸에 만들어진다(일반적으로 관련된 캐뉼라를 배치하기 위한 투관침의 사용을 동반한다). 한 절개부는 내시경 카메라 기구를 위한 것이고, 나머지 절개부는 필수적인 수술 기구를 위한 것이다. 이러한 절개부들은 때로 "입구"라고도 하는데, 이 용어는 또한 이러한 절개부 안에서 사용되는 장비의 조각을 의미할 수도 있으며, 이에 대해서는 아래 상세히 설명된다. 일부 수술 과정에서는 수술 부위에 대한 필요한 접근 및 영상화를 제공하기 위해서 몇 개의 기구 및/또는 카메라 입구가 필요하다. 전통적인 개방 수술법에서 사용되는 큰 절개부에 비해서 절개부가 비교적 작음에도, 환자 외상을 더욱 줄이고 미용성을 개선하기 위해서 절개부의 수를 더 줄이는 것이 바람직하며 필요하다.
단일 입구 수술은 최소 침습 수술에 사용되는 모든 기구가 환자의 체벽의 단일 절개부를 통해 지나가거나, 또는 일부 예에서는 단일 자연 구멍을 통해 지나가는 기술이다. 이러한 방법은 단일 입구 접근법(SPA), 복강 내시경 단일-부위 수술법(LESS), 단일 절개부 복강경 수술법(SILS), 1 입구 배꼽 수술법(OPUS), 단일 입구 무절개 기존 장비-이용 수술법(SPICES), 단일 접근 부위 수술 내시경(SASSE) 또는 자연 구멍 배꼽통과 수술법(NOTUS)과 같은 여러 명칭으로 언급될 수 있다. 단일 입구의 사용은 상기 설명된 것과 같은, 수동 기구 또는 로봇 수술 시스템을 사용하여 행해질 수 있다. 그러나, 이러한 기술은 어려움이 있는데, 단일 입구는 수술 기구가 수술 부위에 접근할 수 있는 각도를 구속하기 때문이다. 예를 들어, 2개의 기구가 거의 나란히 위치되면, 수술 부위에서 유익한 삼각형 공간을 달성하는 것이 어렵다(삼각형 공간은 2개의 수술 기구의 원단부가 삼각형의 두 변을 따라 위치될 수 있도록 함으로써 수술 부위에서 삼각형의 꼭짓점에서 효과적으로 일할 수 있도록 한다). 또한, 기구와 내시경이 동일한 절개부를 통해 들어가기 때문에, 직선 기구 샤프트가 내시경 시야의 대부분을 가리는 경향이 있다. 또한, 로봇 수술 시스템이 사용되는 경우, 다중 조작기들이 그들의 크기와 동작 모두로 인해서 서로 방해할 수 있고, 이것은 또한 의사에게 이용될 수 있는 단부 작동기 움직임의 양을 제한한다.
도 3은 단일 입구 수술에서 멀티-암 로봇 수술 시스템을 사용하는 것의 어려움을 예시한다. 도 3은 수술 부위(300)에 도달하도록 체벽을 통해 삽입된 다중 캐뉼라들과 관련된 기구들의 도식도이다. 도 3에 묘사된 대로, 카메라 캐뉼라(302)가 카메라 절개부(304)를 통해 연장되고, 제 1 기구 캐뉼라(306)가 제 1 기구 절개부(308)를 통해 연장되고, 제 2 기구 캐뉼라(310)가 제 2 기구 절개부(312)를 통해 연장된다. 이들 캐뉼라(302,306,310)들이 각각 동일한(약간 확장된) 입구(304)를 통해서 연장되어야 한다면, 각 캐뉼라가 원격 동작 중심 주위에서 움직인다는 요건으로 인해, 또한 장착 부품(302a,306a,310a)에 캐뉼라를 보유하는 상기 설명된 조작기의 부피 및 움직임으로 인해, 기구 단부 작동기의 매우 작은 움직임만이 가능해서 캐뉼라와 기구 샤프트가 내시경 시야 안에서 수술 부위를 가로막을 수 있다.
수술 부위에서 기구의 어떤 삼각형 공간을 회복하기 위해서, 기구 샤프트들을 교차시키고 기구 손목들을 이용해서 어떤 제한된 삼각형 공간을 제공하는 것이 시도되었지만, 이런 구성형태는 "후방식" 제어 계획(우측 사이드 마스터가 내시경 화면에서 좌측 사이드 종속 기구를 제어한다, 반대도 가능하다)을 가져오며, 이것은 비직관적이므로 직관적인 원격로봇 제어의 강력한 이점의 일부가 상실된다. 직선 샤프트 손목형 수동 기구도 마찬가지로 의사가 손이 교차되거나 시야가 교차되는 "후방" 방식으로 기구를 이동시킬 필요가 있다. 이에 더하여, 복강경 수술에서는 단일 절개부를 통해 위치된 다수의 기구/캐뉼라로 인하여 적절한 기복을 유지하는데 어려움이 있다.
수동 기구를 사용한 단일 입구 수술을 위해, 삼각형화의 개선을 위해 강성의 곡선형 기구 샤프트를 사용하려는 시도가 있었다. 이러한 곡선형 샤프트는 전형적으로 복합 "S" 휨을 가지며, 이로써 이들은 신체 내부에서는 절개부로부터 먼 곳에서 구부러져 수술 부위로 다시 돌아올 수 있고, 신체 밖에서는 절개부로부터 먼 곳에서 구부러져 기구의 핸들과 의사의 손에 여유공간을 제공할 수 있다. 이러한 곡선형 기구는 직선 샤프트 수동 기구보다 더욱 사용하기 어려운 것처럼 보이는데, 곡선형 샤프트는 샤프트를 움직이거나, 또는 수동 작동되는 손목 메커니즘을 이용함으로써 기구 단부 작동기를 정밀히 움직일 수 있는 의사의 능력을 더 제한하기 때문이다. 예를 들어, 봉합은 이러한 강성의 곡선형 샤프트 기구에서는 지극히 어려운 것처럼 보인다. 또한, 이들의 모양 때문에 절개부와 수술 부위 사이에서 직접 이러한 곡선형 샤프트 기구를 삽입하고 빼내는 의사의 능력이 제한된다. 그리고, 이들의 모양으로 인해서, 강성의 곡선형 기구를 말 경우 기구 샤프트의 일부분이 접촉하게 될 수 있고, 아마도 의사가 모르는 사이에 조직이 손상될 수도 있다.
로봇 수술 시스템을 사용한 단일 입구 수술을 위해, 수술 기구에 증가된 제어가능한 자유도를 제공하기 위한 방법이 제안된다. 예를 들어, 원격로봇 제어되는 "뱀 모양" 기구와 관련된 제어가능한 가이드 튜브의 사용이 단일 절개부를 통해서 수술 부위에 접근하기 위한 방식으로서 제안되었다. 유사하게, 소형 기계 평행 동작 메커니즘을 갖춘 기구의 사용이 제안되었다. 예를 들어, 미국 특허출원 공개 US 2008/0065105 A1(2007년 6월 13일 제출)(최소 침습 수술 시스템을 설명한다)을 참조한다. 이러한 기구는 궁극적으로는 효과적일 수 있지만, 이들은 주로 기계적으로 복잡하다. 그리고, 이들의 증가된 DOF 가동 요건으로 인하여, 이러한 기구들은 기존의 로봇 수술 시스템과 호환될 수 없을 수 있다.
곡선형 캐뉼라 시스템
도 4a는 곡선형 캐뉼라와 피동적 가요성 수술 기구의 조합을 지지하고 움직이는 환자측 로봇 조작기의 일부분의 도식도이다. 도 4a에 묘사된 대로, 원격로봇 조종식 수술 기구(402a)는 힘 전달 메커니즘(404a), 피동적 가요성 샤프트(406a), 및 단부 작동기(408a)를 포함한다. 기구(402a)는 PSM(204a)의 기구 캐리지 조립체(212a)에 장착된다(이미 설명된 구성요소는 명료성을 위해 도식적으로 묘사된다). 인터페이스 디스크(414a)가 PSM(204a)의 서보 가동장치들로부터의 가동력들을 연결하여 기구(402a) 구성요소들을 움직인다. 단부 작동기(408a)는 예를 들면 단일 DOF(예를 들어, 닫힌 집게)로서 작동한다. 1 이상의 단부 작동기 DOF(예를 들어, 피치, 요우; 예를 들어, 미국특허 제6,817,974호(2002년 6월 28일 제출)("절대적으로 배치가능한 직렬-가동되는 멀디-디스크 손목 조인트를 구비한 수술 도구"를 개시) 참조, 이것은 본원에 참고자료로 포함된다)도 선택사항이지만 도시하지는 않는다. 많은 기구들은 실시형태에서 이러한 손목을 포함하지 않는다. 손목의 생략은 PSM(204a)과 기구(402a) 간의 가동력 인터페이스의 수를 단순화하고, 또한 이러한 생략은 근위 힘 전달 메커니즘(404a)과 원위에서 가동되는 조각 간에 필요할 수 있는 힘 전달 요소(및 그에 따른 기구 복잡성 및 차원)의 수를 감소시킨다.
도 4a는 근단부(418a), 원단부(420a) 및 근단부(418a)와 원단부(420a) 사이에 연장된 중심 채널(422a)를 갖는 곡선형 캐뉼라(416a)를 더 도시한다. 한 실시형태에서, 곡선형 캐뉼라(416a)는 강성은 단일 조각 캐뉼라이다. 도 4a에 묘사된 대로, 곡선형 캐뉼라(416a)의 근단부(418a)는 PSM(204a)의 캐뉼라 장착부(216a)에 장착된다. 사용 동안, 기구(402a)의 가요성 샤프트(406a)가 곡선형 캐뉼라(416a)의 중심 채널(422a)을 통해 연장되어, 가요성 샤프트(406a)의 원위 부분과 단부 작동기(408a)가 캐뉼라(416a)의 원단부(420a)를 지나 연장되어 수술 부위(424)에 도달하게 된다. 상기 설명된 대로, PSM(204a)의 기계적 구속(또는 달리, PSM(204a)의 제어 시스템에서 미리 프로그램된 소프트웨어 구속)이 기구(402a)와 곡선형 캐뉼라(416a)를, 전형적으로는 환자의 체벽에 있는 절개부에 위치된, 캐뉼라(416a)를 따라 위치된 원격 동작 중심(426) 주위에서 피치 및 요우 방향으로 움직인다. 캐리지(212a)에 의해서 제공되는 PSM(204a)의 I/O 가동이 캐뉼라(416a)를 통해서 기구(402a)를 삽입하고 빼서 단부 작동기(408a)를 안팎으로 움직인다. 기구(402a), 캐뉼라(416a) 및 이들 두 구성요소의 제어에 관한 상세한 내용이 하기 설명된다.
도 4b는 도 4a의 도면에 더해서, 제 2 곡선형 캐뉼라와 피동적 가요성 수술 기구 조합을 지지하고 움직이는 제 2 환자측 로봇 조작기를 도시하는 도식도이다. 제 2 PSM(204b), 기구(402b) 및 곡선형 캐뉼라(416b)의 구성요소들은 도 4a에 설명된 것들과 실질적으로 유사하며, 실질적으로 유사한 방식으로 기능한다. 그러나, 곡선형 캐뉼라(416b)는 곡선형 캐뉼라(416b)가 구부러지는 방향과는 반대 방향으로 구부러진다. 따라서, 도 4b는 반대 방향으로 구부러지는 2개의 곡선형 캐뉼라와 관련된 기구들이 환자의 체벽(430)에 있는 단일 절개부(428)를 통해 연장되어 수술 부위(424)에 도달하도록 배치된 것을 예시한다. 각 곡선형 캐뉼라는 처음에는 절개부와 수술 부위 사이의 직선 라인으로부터 먼 곳에서 굽어져 있고, 다음에 이 직선을 향해 뒤로 구부러져 연장된 기구를 수술 부위까지 보낸다. 피치/요우 방향으로 PSM(204a 및 204b)을 작동시킴으로써 곡선형 캐뉼라의 원단부(420a,420b)가 그에 따라 움직이고, 이로써 기구 단부 작동기(404a 및 404b)가 수술 부위와 관련되어(그리고 그 결과 내시경의 시야와 관련되어) 움직이게 된다. 2개의 곡선형 캐뉼라와 가요성 기구 조합에 대한 원격 동작 중심은 동일하지 않지만, 둘 다 단일 절개부(428)에 배치될 수 있을 만큼 서로 충분히 가깝다(근접한다)는 것을 볼 수 있다.
도 4c는 도 4b의 도면에 더해서, 내시경을 지지하는 내시경 카메라 조작기를 도시하는 도식도이다. 이전에 사용된 참조번호들은 명료성을 위해서 일부 생략된다. 도 4c에 도시된 대로, ECM(242)이 내시경(112)을 보유하며, 이로써 내시경은 단일 절개부(428)를 통해 2개의 곡선형 캐뉼라와 가요성 기구 조합과 함께 연장될 수 있다. 내시경(112)은 캐뉼라 장착부(254)에 의해 지지된 종래의 캐뉼라(252)를 통해 연장된다. 일부 실시형태에서, 캐뉼라(252)는 체강으로의 취입을 제공한다. ECM(242)은 내시경(112)의 원격 동작 중심이 절개부(428)에 위치하도록 배치된다. 상기와 같이, 2개의 곡선형 캐뉼라와 기구 조합 및 내시경(112)의 원격 동작 중심은 동일하지는 않으며, 이들 모두가 과도하게 큰 절개부 없이 단일 절개부(428)를 통해 연장될 수 있을 만큼 충분히 가깝게 배치될 수 있음을 알 수 있다. 예시적인 실시형태에서, 3개의 원격 중심은 도 4c에 예시된 대로 대략 직선 라인 상에 배치될 수 있다. 다른 실시형태에서는, 하기 설명된 것과 같이, 원격 중심이 선형 정렬되지는 않지만, 충분히 가깝게 군집된다.
또한, 도 4c는 PSM(204a,204b)과 ECM(242)이 각각 서로 방해하지 않고 피치 및 요우 방향으로 움직일 수 있는 상당히 개선된 부피를 갖도록 배치될 수 있다는 것을 도식적으로 예시한다. 즉, 직선-샤프트 기구가 사용될 경우, PSM들은 일반적으로 단일 절개부를 통한 효과적인 작업을 위해 샤프트들이 거의 평행하게 유지될 수 있도록 서로 근처에 위치되는 것을 유지해야 한다. 그러나, 곡선형 캐뉼라와는 달리, PSM은 서로 더 멀리 배치될 수 있으며, 이로써 각 PSM은 일반적으로 직선-샤프트 기구보다 상대적으로 더 큰 부피 안에서 움직일 수 있다. 또한, 도 4c는 곡선형 캐뉼라(416)가 수술 기구를 위해 개선된 삼각형 각도를 제공함으로써 수술 부위(426)가 내시경(112)의 시야(430)에 비교적 방해가 되지 않을 수 있는 방식을 예시한다.
도 4c는 입구 특징부(432)가 절개부(428)에 위치될 수 있음을 더 예시한다. 캐뉼라(416a, 416b 및 252)는 각각 입구 특징부(432)를 통해 연장된다. 이러한 입구 특징부는 하기 설명된 대로 다양한 구성형태를 가질 수 있다.
도 5는 곡선형 캐뉼라와 함께 사용되는 예시적인 가요성 기구(500)의 도식도이다. 기구(500)는 근단부 힘 전달 메커니즘(502), 원단부 수술 단부 작동기(504) 및 힘 전달 메커니즘(502)과 단부 작동기(504)를 연결하는 샤프트(506)를 포함한다. 한 실시형태에서, 샤프트(506)는 약 43cm의 길이를 가진다. 일부 실시형태에서, 샤프트(506)는 피동적 가요성이고, 근위 구획(506a), 원위 구획(506c) 및 근위 구획(506a)과 원위 구획(506c) 사이의 중간 구획(506b)의 3개 구획을 포함한다.
일부 실시형태에서, 구획(506a,506b,506c)들은 각각 자신만의 상이한 강성을 특징으로 할 수 있다. 구획(506a)은 힘 전달 메커니즘(502)으로부터 곡선형 캐뉼라를 향해 연장된 샤프트(506)의 일부분이며, 곡선형 캐뉼라를 통해 샤프트(506)의 나머지 부분이 연장된다. 결과적으로, 구획(506a)은 다른 구획들(506a,506c)과 비교하여 상대적으로 강성이다. 일부 실시형태에서, 구획(506a)은 강성인 것이 효과적일 수 있다. 구획(506b)은 나머지 두 구획(506a,506c)보다는 상대적으로 더 가요성이다. 구획(506b)의 대부분은 수술 과정 동안 곡선형 캐뉼라 안에 있고, 그래서 구획(506b)은 곡선형 캐뉼라의 내벽과의 마찰을 줄이기 위해서 비교적 가요성이지만, 그것을 수동으로 또는 서보 제어 작동으로 삽입하는 동안 굽어질 정도로 가요성이지는 않다. 구획(506c)은 구획(506b)보다 상대적으로 더 강성인데, 곡선형 캐뉼라의 원단부로부터 구획(506c)이 연장되기 때문이다. 따라서, 구획(506c)은 곡선형 캐뉼라가 휘어져서 삽입될 수 있을 만큼 충분히 가요성이지만, 또한 단부 작동기(504)에 충분한 캔틸레버 지지를 제공할 수 있을 만큼 강성이기도 하다.
그러나, 일부 실시형태에서, 샤프트 구획(506a-506c)들은 각각 동일한 물리적 구조를 가지며, 각각 동일한 재료(들)로 이루어지고, 이 재료(들)은 각 구획에서 허용되는 휨 강성을 갖도록 선택됨으로써 구획들이 동일한 강성을 가질 수 있도록 선택된다. 이러한 기구 샤프트는 일반적으로 비용이 저렴한데, 예를 들어 이들은 부품이 더 적어서 조립이 용이하기 때문이다.
샤프트 롤을 통한 단부 작동기 롤 DOF를 필요로 하는 기구에서, 모든 3개 구획(506a-506c)은 롤 동작을 기구의 근단부로부터 원위 수술 단부 작동기(504)까지 전달할 수 있을 만큼 비틀림 측면에서 충분히 강성이다. 예가 아래에서 도 8a-8d를 참조하여 설명된다.
일부 실시형태에서, 캐뉼라 안에서 샤프트 마찰을 합리적으로 최소화하기 위해서 선택된 외부 재료를 사용한 기구 샤프트(또는 캐뉼라 안에서 이동하는 샤프트의 적어도 일부분)의 강성은 로봇이 삽입하고 말 수 있는 최대치에 근접한다. 이러한 삽입 및 마는 힘은 사람에 의해서 합리적으로 제어될 수 있는 힘을 실질적으로 넘고, 이로써 캐뉼라의 원단부로부터 연장된 기구의 원위 구획의 강성이, 유사하지만 수동 가동되는 곡선형 캐뉼라 시스템에 대한 손으로 조종되는 기구 샤프트 강성보다 실질적으로 높게 만들어질 수 있다. 이 특징은 곡선형 캐뉼라를 통해 작용하는 손으로 조종되는 기구가 경계적으로 기능적이거나 또는 비기능적일 수 있는 상황에서 곡선형 캐뉼라 로봇 수술 시스템의 사용을 가능하게 한다(예를 들어, 손으로 조종되는 샤프트 강성이 너무 낮아서 수술 부위에서 기구를 효과적으로 작동시킬 수 없을 때). 그래서 일부 실시형태에서, 기구 샤프트는 (i) 합당한 강성 샤프트에 의해서 로봇의 삽입 및 롤 구동 능력의 효과적인 사용을 이루면서 (ii) 이러한 합당한 강성 샤프트와 특정 캐뉼라 곡선 치수 사이의 마찰이 로봇의 구동 능력 이점을 상쇄하지 않도록 "조율"된다(예를 들어, 하나 이상의 특정 재료를 선택함으로써 및/또는 선택된 재료(들)를 사용한 다양한 샤프트 구성에 의해서). 이와 같이, 어떤 기구는 제 1 곡선 반경 및/또는 내경을 가진 캐뉼라와 함께 사용하기 위한 제 1 강성의 가요성 샤프트를 가질 수 있고, 다른 기구는 제 2 곡선 반경 및/또는 내경을 가진 캐뉼라와 함께 사용하기 위한 제 2 강성의 샤프트를 가질 수 있다. 예를 들어, 특정 샤프트 직경에 대해 캐뉼라 곡선 반경 및 캐뉼라 샤프트 마찰이 역으로 변한다고 가정하면, 상대적으로 큰 곡선 반경을 가진 캐뉼라와 함께 사용하도록 설계된 기구의 샤프트 강성은 상대적으로 작은 곡선 반경을 가진 캐뉼라와 함께 사용하도록 설계된 기구의 샤프트 강성보다 클 수 있다. 다양한 양태에서, 샤프트의 외측(휨) 강성은 약 1 lb-in2(PSI x in4) 내지 약 4 lb-in2 범위이고, 한 실시형태에서 샤프트의 외측 강성은 약 2.0 lb-in2이다. 다양한 양태에서, 샤프트의 회전 강성은 약 11 lb-in2보다 크고, 한 실시형태에서 샤프트의 회전 강성은 약 22.0 lb-in2이다. 약 1-4 lb-in2 범위 내의 외측 강성을 가진 샤프트 실시형태에 대해서, 회전 강성의 실질적인 범위는 약 11 lb-in2 내지 약 66 lb-in2의 범위이다.
주로 마찰로 인해서 곡선형 캐뉼라의 휨 반경이 감소할수록 기구 샤프트 강성 역시 감소한다. 등방성 재료가 기구 샤프트에 사용된 경우, 도 8c 및 8c와 관련해서 예시된 것과 같이, 캐뉼라의 원단부로부터 연장된 샤프트 부분의 강성도 또한 감소된다. 일부 지점에서 샤프트의 연장된 원단부의 강성 또는 전달 메커니즘과 캐뉼라 사이의 샤프트 부분의 강성은 허용될 수 없을 만큼 낮아질 수 있다. 따라서, 상기 설명된 대로, 강성의 범위는 캐뉼라의 휨 반경 및 내경에 따라서 고정된 치수의 등방성 재료 샤프트에 대해 한정될 수 있다.
가요성 샤프트 기구의 원단부에 위치된 수술 기구 단부 작동기는 2가지 일반적인 타입을 가진다. 단부 작동기의 제 1 타입은 무빙형 부품이 없는 것이다. 이러한 비-무빙형 단부 작동기는, 예를 들어 흡입/관류 팁, 전기소작 후크 또는 블레이드, 프로브, 무딘 절개기, 카메라, 견인기 등을 포함할 수 있다. 두 번째 타입의 단부 작동기는 로봇 제어하에 가동되는 적어도 하나의 무빙형 구성요소를 가진다. 이러한 무빙형 구성요소 단부 작동기는, 예를 들어 파지기, 니들 드라이버, 무빙형 소작 후크, 클립 적용장치, 전단기(비소작 및 소작 모두) 등을 포함할 수 있다.
하나 이상의 무빙형 단부 작동기 구성요소는 다양한 방식으로 가동될 수 있다. 한 양태에서, 2개의 견인 요소를 사용하여 단부 작동기 구성요소를 가동시킬 수 있다. 이러한 "당김/당김" 디자인에서 제 1 견인 요소는 단부 작동기 구성요소를 한 방향으로 움직이고, 제 2 견인 요소는 이 구성요소를 반대 방향으로 움직인다. 다른 양태에서, 단일 압축/견인 요소를 사용하여 단부 작동기 구성요소를 움직일 수 있다. 이러한 "밈/당김" 디자인에서 당기는 동작(견인)에 의해서 구성요소가 한 방향으로 움직이고, 미는 동작(압축)에 의해서 구성요소가 반대 방향으로 움직인다. 일부 실시형태에서, 견인력을 사용해서 최고의 힘이 필요한 방향으로(예를 들어, 집게부를 닫는 것) 단부 작동기 구성요소를 가동시킬 수 있다.
도 6a는 당김/당김 기구 디자인의 양태들을 예시하는 도식도이다. 도 6a에 도시된 대로, 기구 힘 전달 메커니즘(602)이 가요성 샤프트 바디(606)에 의해서 그립형 단부 작동기(604)에 연결된다. 견인 요소(608)가 샤프트 바디(606)를 통해서 이어져서 단부 작동기(604)의 움직이는 구성요소와 로봇 가동력을 수용하는 전달 메커니즘(602)의 구성요소(미도시; 하기 참조)를 연결한다. 견인 요소(608)는 단부 작동기의 기부(612)와 전달 메커니즘(602)의 받침판(614) 사이에서 연결된 힘 분리 구성요소(610)를 통해서 이어진다. 한 실시형태에서, 샤프트 바디(606)는 플라스틱 튜브(예를 들어, 폴리아릴에테르에테르케톤(PEEK))이고, 견인 요소(608)는 전달 메커니즘과 단부 작동기 구성요소에 연결되는 케이블(예를 들어, 0.018-인치 텅스텐)이 각 단부에 있는 하이포튜브(예를 들어, 316 스테인리스 스틸(정면 경화형), 0.028-인치 OD X 0.020 ID, 폴리테트라플루오로에틸렌(PTFE) 딥 코팅)이고, 힘 분리 구성요소(610)는 코일 튜브(예를 들어, 300 시리즈 스테인리스 스틸)이다. 한 실시형태에서, 304V(진공 아크 재용융) 스테인리스 스틸이 사용되는데, 그것의 표면 마감이 다른 300 시리즈 스테인리스 스틸보다 비교적 매끄럽기 때문이며, 이것은 코일 튜브의 내부 마찰을 적게 한다. 샤프트 바디(606)가 단부 작동기 구성요소를 움직이는 견인 요소(608)에 대한 견인 부하를 경험하지 않는다는 것을 알 수 있으며, 이것은 분리 구성요소(610)의 동일한 반응력과 반대 반응력에 의해 견인력이 상쇄되기 때문이다. 결과적으로, 샤프트 바디 튜브(606) 내의 2개의 이러한 견인 요소와 힘 분리 구성요소의 쌍이 당김/당김 단부 작동기 가동 디자인에 사용될 수 있으며, 기구 샤프트는 당김/당김 가동 동안 그것의 설계된 강성 또는 휨에 유효한 변화 없이 가요성을 유지하고, 견인 요소(608)에 대한 견인 부하는 샤프트 바디(606)의 휨에 유효하게 독립적이다.
도 6b는 밈/당김 기구 디자인의 양태들을 예시하는 도식도이다. 도 6b에 도시된 대로, 기구 힘 전달 메커니즘(620)이 가요성 샤프트 바디(624)에 의해서 그립형 단부 작동기(622)에 연결된다. 압축/견인 구동 요소(626)가 샤프트 바디(624)를 통해서 이어져서 단부 작동기(622)의 움직이는 구성요소와 로봇 가동력을 수용하는 전달 메커니즘(620)의 구성요소(미도시; 하기 참조)를 연결한다. 하나 이상의 힘 분리 구성요소(628)(예시로서 2개가 도시된다)가 또한 샤프트 바디(624)를 통해서 이어져서 단부 작동기의 기부(630)와 힘 전달 메커니즘의 받침판(632)에 연결된다. 한 실시형태에서, 샤프트 바디(624)는 플라스틱 튜브(예를 들어, PEEK)이고, 구동 요소(626)는 고형체 막대(예를 들어, 304V 스테인리스 스틸, 0.032-인치 OD, PTFE 스프레이 코팅)며, 힘 분리 구성요소(628)도 역시 고형체 막대(예를 들어, 304V 스테인리스 스틸, 0.032-인치 OD, PTFE 스프레이 코팅)이다. 샤프트 바디(624)가 단부 작동기 구성요소를 움직이는 구동 요소(626)에 대한 압축 또는 견인 부하를 경험하지 않는다는 것을 알 수 있으며, 이것은 분리 구성요소(628)의 동일한 반응력과 반대 반응력에 의해 구동력이 상쇄되기 때문이다. 결과적으로, 기구 샤프트는 밈/당김 가동 동안 그것의 설계된 강성 또는 휨에 유효한 변화 없이 가요성을 유지하고, 구동 요소(626)에 대한 구동 부하는 샤프트 바디(624)의 휨에 유효하게 독립적이다. 밈/당김 구동 부하를 분리하기 위해서 길이방향 축을 따라 기구 샤프트를 강화하는 것에 더해서, 힘 분리 구성요소(628)는 기구 샤프트의 휨 강성을 원하는 값으로 효과적으로 증가시키는 작용을 할 수 있다.
도 7a는 힘 전달 메커니즘(502)의 실시형태의 하방도이다. 도 7a에 도시된 대로, da Vinci® 수술 시스템에 사용된 수술 기구의 힘 전달 메커니즘은 기구 상의 손목 메커니즘을 제어하고, 단일 인터페이스 디스크만을 사용해서 단부 작동기(또는 다른 이동가능한 부분)의 집게를 제어하는데 사용되는 메커니즘이 제거되도록 변형되었다. 따라서, 한 예시적인 실시형태에서, 한 인터페이스 디스크(702a)는 샤프트(506)를 말아서 단부 작동기(504)에 대해 롤 DOF를 제공할 수 있고, 제 2 인터페이스 디스크(702b)는 단부 작동기(504)의 집게 메커니즘을 작동시킨다. 상기 설명된 대로, 한 실시형태에서, 전달 메커니즘(502)에 있는 격벽은 상기 상세히 설명되고 하기 상세히 설명된 대로 기구 샤프트를 통해 이어지는 코일 튜브를 지지한다. 힘 전달 메커니즘(502)은 기존 로봇 수술 시스템에서 곡선형 캐뉼라 양태들의 실시비용을 최소화하는 특징부인 PSM에 필요한 어떤 기계적 변형 없이 PSM(204)에 연결될 수 있다.
또한, 도 7a는 힘 전달 메커니즘(502)의 실시형태가 전기 전도성 인터페이스 핀(704)과 인터페이스 핀(704)과 전기적으로 연결된 전자 데이터 메모리(706)를 포함할 수 있다. 기구(500) 및 그것의 작동과 관련된 변수들(예를 들어, 기구 사용 횟수, 제어를 위한 Denavit-Hartenberg 변수(하기 설명된다) 등)이 메모리(706)에 저장될 수 있고, 수술 동안 로봇 수술 시스템에 의해 접근되어 기구가 적절히 사용될 수 있다(예를 들어, 본원에 참고자료로 포함되는 미국특허 제6,331,181호(1998년 10월 15일 제출)(수술 로봇 도구, 데이터 구조 및 사용)를 참조한다). 한 실시형태에서, 그것을 통해 기구가 연장되는 곡선형 캐뉼라에 특이적인 운동학적 데이터가 또한 메모리(706)에 저장될 수 있고, 이로써 시스템이 곡선형 캐뉼라가 장착된 것을 검출한 경우(예를 들어, 도 10 및 하기 관련된 내용 참조), 시스템이 저장된 캐뉼라 데이터에 접근하여 그것을 사용할 수 있다. 하나 이상의 곡선형 캐뉼라의 운동학적 구성형태(예를 들어, 상이한 길이, 휨 반경, 휨 각도 등)가 사용될 경우, 각각의 허용되는 구성형태에 특이적인 데이터가 관련된 기구의 메모리에 저장될 수 있고, 시스템은 장착된 특정 캐뉼라 구성형태에 대한 데이터에 접근하여 그것을 사용할 수 있다. 또한, 일부 예에서, 로봇 수술 시스템이 가요성 기구가 곡선형이 아닌 직선 캐뉼라를 보유한 조작기에 연결된 것을 감지한 경우에는, 시스템은 이 상황이 잘못된 상황임을 선언하여 작동을 막을 수 있다.
도 7b는 당김/당김 기구 디자인에서 사용된 힘 전달 메커니즘의 예시적인 실시형태의 평면도이다. 도 7b에 도시된 대로, 2개의 코일 튜브(730)가 받침판(732)에 기대어 위치된다. 2개의 견인 요소(734)가 코일 튜브로부터 받침판을 통해 연장되어 열림/닫힘 캡스턴(736)까지 이어지며, 이것은 화살표(738)에 의해 표시된 대로 회전하여 견인 요소들 중 하나 또는 나머지 하나를 당긴다. 도 7b는 또한 샤프트 롤-교차 연결 나선형 구동 기어(740)와 샤프트 롤 기어(742)의 예시적인 실시형태를 도시한다. 롤 기어(742)는 가요성 샤프트의 바디 튜브의 근단부 위에 압인된 스테인리스 스틸 어댑터에 연결된다(예를 들어, 레이저 용접된다). 도 7b는 또한 플러그(746)와 전기 전도성 견인 요소(734) 사이의 예시적인 단극 전기소작 에너지 접속부(744)를 도시한다. 그리고, 도 7b는 본원에 설명된 기구 및/또는 관련된 캐뉼라 데이터를 함유하는 메모리 칩(748), 및 PSM 상의 합치하는 접촉부를 통해서 수수 시스템과 접속된 칩의 관련된 전기 접촉부(750)의 예시적인 배치를 도시한다.
도 7c는 밈/당김 기구 디자인에서 사용된 힘 전달 메커니즘의 예시적인 실시형태의 평면도이다. 도 7c에 도시된 대로, 힘 분리 막대(760)가 가요성 기구 샤프트의 근단부로부터 연장되어 받침판(762)과 연결된다. 또한, 밈/당김 구동 요소 막대(764)는 기구 샤프트의 근단부로부터 연장되고, 또 받침판(762)을 통해 연장되어 슬라이더(766)와 연결된다. 이 실시형태에서, 구동 요소 막대(764)는 자유 롤링 베어링(768)을 이용해서 선형 슬라이더(766)와 연결된다. 이 자유 롤링 베어링은 기구 샤프트가 말릴 때 구동 막대가 꼬이는 것을 방지한다(즉, 구속이 없는 롤 DOF를 제공한다). 밈/당김 구동 기어(770)는 레버 기어(772)와 맞물린다. 레버 기어(772)는 링크(분기형 크랭크)(774)에 의해서 슬라이더(766)에 연결된다. 구동 기어(770)는 화살표(776)로 표시된 대로 되돌아오고, 슬라이더(766)는 화살표(780)로 표시된 대로 샤프트(778)를 따라 미끄러져 움직이고, 이로써 구동 요소(764)가 기구 샤프트의 길이방향 축을 따라 이동하게 된다. 도 7c의 샤프트 롤 실시형태는 도 7b를 참조하여 상기 설명된 실시형태와 실질적으로 유사하다.
또한, 도 7c는 기구 샤프트의 근단부에 있는 예시적인 플러싱 유체 진입 입구(790)를 도시한다. 묘사된 실시형태에서, 플러싱 유체 입구는 샤프트 바디 튜브와 롤 기어를 연결하는 조립체의 일부로서 제작된다. 플러싱 유체가 이 입구로 들어가서 샤프트 내부의 구성요소들을 세정한다. 예를 들어, 가동하는 구동 막대 또는 케이블이 샤프트의 원단부에서 와이프 실을 통해 연장될 수 있다 하더라도, 소량의 체액은 이 실을 지나서 샤프트 바디의 내부로 들어갈 수 있다.
도 7d는 밈/당김 기구 디자인에서 사용된 힘 전달 메커니즘의 또 다른 예시적인 실시형태의 투시도이다. 도 7d에 도시된 대로, 2개의 피니언 구동 기어(782)가 이들 사이에 있는 랙 기어(784)와 맞물린다. 묘사된 대로, 랙은 라운드형이며, 평평한 랙이 대신 사용될 수도 있다. 밈/당김 구동 요소 막대가 랙에 연결된다(예를 들어, 상기 설명된 프리 롤링 베어링에 의해서). 도 7d에 도시된 실시형태는 힘 전달 메커니즘의 뒤쪽을 향해서 위치된 2개의 여분의 구동 요소 및 관련된 인터페이스 디스크(미도시, 예를 들어 도 7a 참조)를 이용하고, 구동 요소들은 반대 방향으로 회전하여 기구 샤프트의 길이방향 축을 따라 랙을 움직인다. 도 7d의 실시형태가 로봇 조작기와의 힘 전달 메커니즘의 인터페이스에 여분의 구동 요소를 사용한다 하더라도, 이 실시형태의 디자인은 더 적은 부품을 사용하므로 비용이 적게 들고, 도 7c에 도시된 실시형태보다 제조가 간단하다. 그러나, 둘 이상의 구동 요소를 사용하는 것의 이점은 해당 메커니즘이 단지 하나의 비슷한 구동 요소를 사용하는 것에 비해서 더 많은 힘을 발휘할 수 있다는 점이다(예를 들어, 2개의 구동 요소가 사용될 경우 유효하게 2배 더 많이).
단부 작동기 구성요소를 움직이는 것에 관해 설명된 원리들은 기구 샤프트의 원단부에 움직이는 손목 메커니즘 또는 다른 메커니즘을 포함하는 기구들에 사용하기 알맞게 개조될 수 있다는 것이 이해되어야 한다. 이러한 손목 메커니즘은 샤프트 위치를 변화시키지 않고도 단부 작동기 배향을 변화시킬 수 있도록 한다.
다양한 디자인 양태들이 가요성 기구 샤프트에 사용될 수 있다. 다음 설명은 움직이는 단부 작동기 구성요소와 함께 기구에 사용되는 가요성 샤프트의 예시적인 실시형태를 개시하며, 설명된 원리들(예를 들어, 강화 방식)은 무빙형 구성요소를 가진 단부 작동기를 갖지 않는 샤프트에 맞게 개조하게 될 수 있다는 것이 이해되어야 한다. 또한, 이 원리들은 기구 샤프트의 원단부에 움직이는 손목 메커니즘 또는 다른 메커니즘을 포함하는 기구 양태들에 맞게 개조하게 될 수 있다는 것이 이해되어야 한다.
도 8a는 기구 샤프트(506)의 일부분의 예시적인 구조를 도시하는 컷어웨이 투시도이다. 2개의 견인 요소(802a,802b)가 샤프트(506)의 원위 부분을 통해 연장되고 연결되어 단부 작동기를 작동시킨다(도식적으로 도시; 예를 들어, 5mm 직경 유형 수술 단부 작동기가 da Vinci® 수술 시스템 기구에서 사용된다). 견인 요소(802a,802b)는 분리되어 있을 수도 있고, 또는 이들은, 예를 들어 단부 작동기의 도르래 주위를 감싸고 있는 동일한 요소의 부품들일 수도 있다. 한 실시형태에서, 견인 요소(802a,802b)는 0.018 인치 텅스텐 와이어이다. 도 8a에 도시된 대로, 견인 요소(802a,802b)의 근단부가 제 2 견인 요소(804a,804b)의 원단부에 연결되어(예를 들어, 주름작업 등), 샤프트(506)의 대부분을 통해 근위 쪽으로 더 연장된다. 한 실시형태에서, 견인 요소(804a,804b)는 0.032 인치 스테인리스 스틸 하이포튜브이다. 상기 설명된 대로, 근단부(미도시)에서 견인 요소(804a,804b)는 유사한 방식으로 연결된 와이어를 사용하여 전달 메커니즘(502)에 연결된다.
도 8a에 도시된 대로, 견인 요소(804a,804b)는 각각 지지 튜브(806a,806b)를 통해 연장되며, 이들은 견인 요소(804a,804b)를 안내하여 이들이 샤프트(506) 안에서 굽어지거나 꼬이지 않도록 한다. 한 실시형태에서, 지지 튜브(806a,806b)는 스테인리스 스틸(예를 들어, 304V(마찰을 감소시키는 진공 용융물) 코일 튜브(0.035 인치 내경; 0.065 인치 외경)이며, 다른 재료와 구조들도 사용될 수 있다. 각 견인 요소가 그것의 지지 튜브 안으로 미끄러져 들어감에 따라서 마찰을 감소시키기 위해서, 마찰 감소 외장(808a,808b)이 견인 요소와 지지 튜브의 내벽 사이에 위치된다. 한 실시형태에서, 외장(808a,808b)은 PTFE이며, 다른 재료들도 사용될 수 있다. 지지 튜브(806a,806b)는 둘 다 단일 내부 샤프트 튜브(810) 내에 위치된다. 한 실시형태에서, 평탄-나선 스테인리스 스틸 와이어가 내부 샤프트 튜브(810)에 사용되며, 이로써 롤 작업 동안 비틀림 강성을 제공할 수 있다. 외부 샤프트 튜브(812)(예를 들어, 꽈배기형 스테인리스 스틸 메시 또는 샤프트 구성요소를 보호하는데 적합한 다른 재료)가 내부 샤프트 튜브(810)를 둘러싸고 있다. 엘라스토머 스킨(814)(예를 들어, Pellothane® 또는 다른 적합한 재료)이 나머지 샤프트 튜브(812)를 둘러싸고 있다. 스킨(814)은, 예를 들어 수술 동안 체액에 의한 직접적인 오염으로부터 샤프트(506)의 내부 구성요소를 보호하며, 스킨은 곡선형 캐뉼라 내부로 샤프트(506)가 미끄러져 들어가는 것을 용이하게 한다. 일부 실시형태에서, 샤프트(506)는 약 5.5mm(0.220 인치) 외경이다.
한 예시적인 실시형태에서, 지지 튜브와 견인 요소 조립체가 PTFE 중에서 딥 코팅될 수 있으며, 이로써 마찰을 감소시키는 "외장"을 제공할 수 있다. 코일 사이의 공간이 딥 코팅 재료에 의해서 채워져 튜브를 형성한다. 다른 예시적인 실시형태에서는, 와이어가 코일을 감기 전에 미리 코팅되고, 그 다음 코일을 구워서 코팅을 다시 녹여서 고형체 튜브를 형성한다. 튜브의 단부는 견인 요소 주위에서 밀봉될 수 있으며, 이로써 견인 요소와 코일 튜브 사이에 오염물(예를 들어, 체액)이 들어가는 것이 방지될 수 있다.
샤프트(506)는 추가의 구성요소를 포함할 수 있다. 도 8에 도시된 대로, 예를 들어, 일부 실시형태에서, 하나 이상의 단단한 막대(816)가 샤프트(506)의 여러 부분을 통해 이어진다. 상기 설명된 대로, 막대(816)의 수, 크기 및 조성을 변화시켜 부분(506a-506c)들에 다양한 강성을 제공할 수 있다. 예를 들어, 일부 실시형태에서, 막대(816)는 스테인리스 스틸이다. 또한, 일부 실시형태에서, 다른 재료의 하나 이상의 추가 막대(818)가 샤프트(506)의 하나 이상의 부분을 통해서 이어질 수 있다. 예를 들어, 도 8a는 PEEK의 제 2 막대를 도시하며, 이 실시형태에서 이것은 원위 구획(506c)을 통해 이어져 막대(516)로부터의 강성에 더하여 강성을 제공할 수 있다. 또한, 단단한 막대에 더하여 또는 대신에, 예를 들어 흡인 및/또는 관류 또는 세척을 위한 플러싱을 제공하기 위한 하나 이상의 보충 튜브가 샤프트(506)에 포함될 수 있다. 그리고, 예를 들어 기구 샤프트의 원단부에서 선택적인 다중-DOF 손목 메커니즘을 작동시키기 위한 추가의 견인 요소들이 포함될 수 있다.
도 8b는 기구 샤프트 디자인의 또 다른 실시형태의 도식적 단면 투시도이다. 도 8b에 도시된 대로, PTFE 코팅된 2개의 하이포튜브 견인 요소(820)가 힘 분리 코일 튜브(822) 안에 위치된다. 선택적인 불화 에틸렌프로필렌(FEP) 분리층이 코일 튜브를 둘러쌀 수 있다. PEEK 바디 튜브(824)가 견인 요소와 코일 튜브를 둘러싸고, FEP 열 수축 스킨(826)이 바디 튜브를 둘러싼다. 선택적인 플러싱 튜브(828)가 바디 튜브(824) 안에 위치될 수 있으며, 그것은 샤프트의 근단부로부터 세정액이 세정 튜브를 통해 샤프트의 원단부까지 간 다음, 바디 튜브를 통해서 되돌아옴으로써, 예를 들어 오염된 체액을 씻어낼 수 있도록 구성된다. 그렇지만, 기구 재료는 기구가 오토클레이브에서 멸균될 수 있도록 선택된다.
도 8c는 기구 샤프트(506)의 일부분의 예시적인 제 2 구조를 도시하는 컷어웨이 투시도이다. 견인 요소(830a, 830b, 832a 및 832b)는 바로 위에서 설명된 견인 요소(802a, 802b, 804a 및 804d)와 유사하다. 견인 요소들은 각각 다중-채널 지지 튜브(834)의 각 채널을 통해서 이어진다. 한 실시형태에서, 튜브(834)는 다수 채널(836)을 가진 FEP 압출물이며, 다른 재료들도 사용될 수 있다. FEP는 견인 요소가 미끄러지는 저마찰 표면을 제공한다. 도 8 및 관련된 내용에서 상기 개시된 것들과 유사한 하나 이상의 단단한 막대(미도시)가 지지 튜브(834)의 여러 다른 채널(836)을 통해 이어질 수 있으며, 이로써 기구 샤프트 구획(506a-506c)의 각각에 원하는 강성을 제공할 수 있다. 7개 채널 튜브(834)(중심 채널 주변에 6개 채널이 배치된다)가 도 8c에 도시되고, 단단한 막대 또는 다른 요소가 중앙 채널에 삽입될 수 있다. 예를 들어, 샤프트(506)의 원단부에서 선택적인 다중-DOF 손목 메커니즘을 작동시키기 위한 추가의 케이블이 튜브(834)에 있는 다른 채널을 통해서 이어질 수 있다. 또는 달리, 채널을 통해서 흡인 및/또는 관류와 같은 다른 기능들이 제공될 수 있다.
도 8c는 샤프트(506)에 축 및 비틀림 강성을 제공하기 위해 지지 튜브(834)를 둘러싸고 있는 샤프트 바디 튜브(838)(예를 들어, 압출된 PEEK 또는 다른 적합한 재료)를 더 도시한다. 외부 스킨 또는 코팅(840)이 바디 튜브(838)를 둘러싸며, 이로써 샤프트(506)가 곡선형 캐뉼라 내부로 미끄러져 들어감에 따라서 마찰을 감소시키고, 샤프트 구성요소들을 보호할 수 있다. 한 실시형태에서, 스킨(840)은 바디 튜브(838) 주위에서 열 수축된 FEP의 0.005 인치 층이며, 다른 적합한 재료들도 사용될 수 있다. 도 8c에 도시된 구조의 한 실시형태에서, 샤프트(506) 외경은 약 5.5mm(0.220 인치)이고, 단일 압출 PEEK 바디 튜브는 외경 약 5.0mm 및 내경 약 3.5mm를 가진다. PEEK가 사용되는데, 이것은 곡선형 캐뉼라의 내부에서 마찰을 제한할 수 있을 만큼 충분히 낮은 방사상 힘 하에서 휠 수 있을 만큼 그것의 강성(탄성률, 또는 영률)이 충분히 낮아서 기구 I/O가 유의미한 방식으로 영향을 받지 않지만, 그것의 탄성률은 곡선형 캐뉼라의 원단부를 지나서 연장된 샤프트 원위 부분(506c)에 우수한 캔틸레버 빔 강성을 제공할 수 있을 만큼 충분히 높아서, 전달 메커니즘과 캐뉼라의 근단부 사이에서 샤프트의 어떤 부분이 굽어지는 것을 방지할 수 있고, 충분한 강성 및 정밀도로 기구 샤프트의 길이를 따라 롤 동작 및 토크를 전달할 수 있기 때문이다.
도 8d는 또 다른 실시형태의 가요성 기구 샤프트 디자인을 도시하는 내부가 보이는 도식적 투시도이다. 도 8d에 도시된 대로, 밈/당김 구동 요소(850)가 상기 설명된 튜브(834)와 유사한 다중-채널 튜브(854) 안의 중심 채널(852)을 통해 연장된다. 상기 설명된 대로 3개의 힘 분리/강화 막대(856)가 중심 채널을 둘러싼 채널(858)들 중 3개를 통해 연장된다. 도 8d에 도시된 대로, 막대(856)의 원단부는 채널에 꼭 맞는 스테인리스 스틸 플러그를 포함한다. 묘사된 실시형태에서, 중심 채널을 둘러싼 나머지 3개 채널(860)은 열린 채로 있고, 플러싱 유체 채널로 사용된다. 그러나, 다른 실시형태에서는, 다른 요소들이 채널(860)들 중 하나 이상을 통해 이어질 수 있다. 둘러싼 기구 샤프트 바디 튜브 및 스킨은 명료성을 위해 도면에서 생략된다.
도 9a는 가요성 샤프트 기구의 원단부의 실시형태에 대한 분해조립 투시도이다. 도 9a에 도시된 대로, 2개의 코일 튜브(902)가 원단부 캡(904)에 연결된다. 코일 튜브는 상기 설명된 대로 외부 스킨(908)을 가진 바디 튜브(906) 내에 위치된다(견인 요소는 도시되지 않는다). 견인 요소 밀봉부(910)가 단부 캡(904)에 장착되고, 견인 요소가 밀봉부(910)를 통해 연장되며, 이것은 유체가 코일 튜브로 들어가는 것을 막는다. 한 예시적인 실시형태에서, 밀봉부(910)는 성형 실리콘 와이프 실이다. 어댑터 캡(912)이 바디 튜브의 원단부 위에 위치되고, 단부 작동기 클레비스(914)가 어댑터 캡에 연결된다.
도 9b는 도 9a에 도시된 실시형태의 단면도이다. 도 9b에서, 단부 캡(904)이 릿지(916)를 포함하고, 이로써 캡이 바디 튜브(906) 안에 압인될 수 있음을 알 수 있다. 코일 튜브(902)가 캡(904)에 기대어 위치되고, 견인 요소 케이블(918)이 캡(904)과 밀봉부(910)를 통해 이어진다. 어댑터 캡(912)이 바디 튜브(906) 위에 압인되며, 예시적인 실시형태에서는 점감형으로써 FEP 열수축 스킨(908)이 캡(912)의 일부분을 덮을 수 있도록 된다. 단부 작동기 클레비스(914)가 어댑터 캡(912)에 연결된다(예를 들어, 레이저 용접). 도시되진 않았지만, 단일 클레비스와 어댑터 캡 조각(미도시)이 캡(912)과 클레비스(914)를 대신할 수 있다. 이런 단일 조각은 레이저 용접을 없앰으로써 제조 비용 및 복잡성을 감소시킨다.
도 9c는 가요성 샤프트 기구의 원단부에 있을 수 있는 당김/당김 타입 단부 작동기를 예시하는 도식도이다. 도 9c에 도시된 대로, 한 케이블을 당기면 단부 작동기 집게부가 열리고, 다른 케이블을 당기면 단부 작동기 집게부가 닫힌다.
도 9d는 가요성 샤프트 기구의 원단부의 또 다른 실시형태의 분해조립 투시도이다. 도 9d에 도시된 대로, 단부 캡(920)이 샤프트 바디 튜브(922)의 원단부 안에 장착된다. 와이프 실(924)이 단부 캡(920)의 개구를 덮고, 밈/당김 구동 막대 커넥터(926)가 단부 캡(920)과 실(924)을 통해 연장되어 단부 작동기의 움직이는 구성요소와 연결된다. 단부 작동기 클레비스와 부착 캡 조립체(928)는 샤프트 바디 튜브(922)의 단부 위에 장착된다. 이 구성요소들은 도 9b와 관련해서 설명된 것과 유사한 방식으로 조립된다(예를 들어, 압인 사용 등). 구동 막대 커넥터를 위한 실(924)의 개구는 크기가 약간 작으며, 샤프트 바디 튜브에 압인 조립체(928)를 장착하기 전에 실을 압축함으로써 실이 구동 막대 커넥터 주변에 더 밀착하게 된다.
도 9e는 가요성 샤프트 기구의 원단부에 있을 수 있는 밈/당김 타입 단부 작동기를 예시하는 도식도이다(예시적인 클립 적용장치 단부 작동기가 도시된다). 도 9e에 도시된 대로, 구동 막대를 밀면 단부 작동기 집게부가 닫히고, 구동 막대를 당기면 단부 작동기 집게부가 열린다.
도 9f는 세정을 용이하게 할 수 있도록 설계된 단부 캡의 실시형태의 도식적 투시도이다. 상기 설명된 코일 튜브가 개구(940)의 단부 캡과 이어진다. 상기 설명된 2개의 플러싱 유체 튜브가 개구(942)의 단부 캡과 이어진다. 각 개구(940, 942)를 교차하도록 기다란 내경(944)이 단부 캡에 위치된다. 내경의 단부는 단부 캡과 바디 튜브 사이의 압인식 접속에 의해서 밀봉되며, 이로써 챔버가 형성된다(압인식 릿지는 명료성을 위해서 도면에서 생략된다). 세정 유체가 플러싱 튜브를 통해서 기구 샤프트를 통해 원위 쪽으로 가서 챔버로 들어간 다음, 코일 튜브의 내부를 통과해 근위 쪽으로 방향을 돌려 나옴으로써 세정이 수행된다. 유사하게, 밈/당김 타입 기구 실시형태에서, 원단부 챔버가 다중-채널 지지 튜브의 하나 이상의 채널을 통해 세정 유체를 수용하고, 중심 채널을 통해 이 유체의 방향을 돌려서 오염물질을 씻어냄으로써 세정이 수행된다.
도 10은 예시적인 곡선형 캐뉼라(416)의 도식도이다. 도 10에 도시된 대로, 캐뉼라(416)는 장착 구획(1002)과 캐뉼라 바디 구획(1004)을 포함한다. 장착 구획(1002)은 로봇 시스템 조작기(예를 들어, PSM(204)) 상에 장착될 수 있도록 구성된다. 일부 실시형태에서, 하나 이상의 특징부(1006)가 장착 구획(1002) 상에 위치되며, 이것은 조작기의 캐뉼라 장착부에 있는 센서(1008)에 의해서 감지될 수 있다. 센서(1008)에 의해 감지된 특징부(1006)의 존재는, 예를 들어 캐뉼라가 적절히 장착된 것과, 캐뉼라의 타입(예를 들어, 직선 또는 곡선, 캐뉼라 길이, 곡선 반경 등)을 나타낼 수 있다. 한 실시형태에서, 특징부(1006)는 융기된 환형 금속 고리이고, 상응하는 센서(1008)는 Hall 효과 센서이다.
또한, 장착 구획(1002)은 조작기 상의 상응하는 특징부와 짝을 이루는 기계적 열쇠 특징부(1009)를 포함함으로써 캐뉼라가 조작기의 삽입축을 기준으로 적절한 배향으로 장착되는 것을 보장할 수 있다. 이 방식에서, 예를 들어, "왼쪽" 및 "오른쪽"으로 구부러지는 캐뉼라가 제조될 수 있다. 또한, 왼쪽 대 오른쪽의 구부러지는 배향을 구별하기 위해서, 열쇠형 특징부를 사용하여 캐뉼라가 조작기 장착부에서 적절한 각도로 말리는 것을 보장할 수 있으며, 이로써 기구가 원하는 각도로 수술 부위에 접근할 수 있다. 당업자는 많은 다양한 기계적 열쇠 특징부가 사용될 수 있음을 이해할 것이다(예를 들어, 짝을 이루는 핀/홀, 탭/그루브, 볼/디텐트 등). 도 10a는 한 예시적인 열쇠 특징부를 예시한다. 도 10a에 도시된 대로, 열쇠 특징부(1030)는 곡선형 캐뉼라를 위한 장착 브래킷(1032)의 측면에 부착된다(예를 들어, 용접된다). 열쇠 특징부(1030)는 로봇 조작기의 캐뉼라 장착 브래킷의 일부분과 2개의 수직 정렬 핀(1036a 및 1036b)을 수용하는 홈(1034)을 포함한다. 정렬 핀(1036a 및 1036b)이 조작기의 장착 브래킷에 있는 정렬 홀과 짝을 이루어서 조작기를 기준으로 캐뉼라의 적절한 롤 배향을 보장할 수 있다.
도 11a 및 11b는 2개의 곡선형 캐뉼라의 원단부(1102a 및 1102b)의 도식도로서, 내시경의 시야에서 캡처된 영상을 출력하는 의사 콘솔의 3D 디스플레이(1104)에서 의사에게 보이는 대로 도시된다. 이 디스플레이에서, 곡선형 캐뉼라는 내시경으로부터 멀리까지 연장됨으로써 기구(1106a 및 1106b)가 확실히 수술 부위의 조직(1108)에 도달할 수 있게 된다. 캐뉼라가 다양한 롤 각도로 조작기에 장착될 수 있거나, 또는 조작기가 수술 동안 배향될 수 있으며, 이로써 기구가 다양한 각도로 수술 부위에 접근하게 된다. 따라서, 캐뉼라 롤 배향은 몇 가지 방식으로 설명될 수 있다. 예를 들어, 캐뉼라 롤 각도는 서로 관련하여 설명될 수 있다. 도 11a는 한 실시형태에서 캐뉼라들이 이들의 원위 곡선이 단일의 공통 평면에 놓인 상태로 배향될 수 있다는 것을 도시하며, 이 경우 기구들은 직접 대향하는 각도로부터 수술 부위를 향해 연장된다. 도 11b는 한 실시형태에서 캐뉼라들이 이들의 원위 곡선이 서로를 기준으로 각이 져 있는, 예를 들어 도시된 대로 약 60도 각도로 되어 있는 평면들에 놓인 상태로 배향될 수 있다는 것을 도시하며, 이 경우 기구들은 분기된 각도로부터 수술 부위를 향해 연장된다. 많은 캐뉼라 곡선 평면 상대 각도가 가능하다(예를 들어, 120, 90, 45, 30, 또는 0도). 캐뉼라 롤 배향을 표현하기 위한 다른 방식은 캐뉼라의 곡선을 포함하는 평면과 조작기의 자유도 중 하나(예를 들어, 피치)의 동작면 사이의 각도로서 그것을 정의하는 것이다. 예를 들어, 캐뉼라는 그것의 곡선이 조작기의 피치 DOF에 대해 30도 각도로 되어 있는 평면에 놓이도록 장착될 수 있다.
따라서, 도 11b에 도시된 기구 캐뉼라의 배치를 얻기 위한 한 예시적인 방식은 2개의 PSM을 피치 동작면이 대략 평행이 되도록 서로 대면하여 배치하는 것이다(2개의 캐뉼라가 이들의 동작 중심에서 교차하지 않도록 동작면들이 약간 분기될 것이다). 다음에, 각 곡선형 캐뉼라가 그것의 상응하는 PSM의 피치 동작면을 기준으로 약 30도로 배향된다. 도 11c는 2개의 PSM(204)과 ECM(242)이 도 11b를 참조하여 상기 설명된 대로 곡선형 캐뉼라(416)를 배치하도록 위치된 예시적인 구성형태의 da Vinci® 수술 시스템의 평면도이다. 도 11c에서는 단일 신체 개구에서 직선 캐뉼라와 기구를 사용하는 것과는 다리, 곡선형 캐뉼라를 가진 PSM은 접힘 없이 캐뉼라들이 움직일 수 있는 합당한 큰 체적을 가지며, 이것은 수술 부위에서 기구가 움직일 수 있는 상응하는 큰 체적을 제공한다는 것을 알 수 있다.
다시, 도 10에 관해, 일부 실시형태에서, 캐뉼라 바디 구획(1004)은 근위 구획(1004a), 중간 구획(1004b) 및 원위 구획(1004c)로 나눠진다. 근위 구획(1004a)은 직선이고, 그것의 길이는 지지 PSM에 대한 충분한 움직임 여유공간을 제공하기에 충분하도록 제조된다. 중간 구획(1004b)은 조작기 위치로부터 수술 부위에 필요한 기구 삼각형 공간을 제공할 수 있도록 구부러지며, 이것은 유의한 충돌 없이 수술 작업을 완료하기에 충분한 동작 범위를 제공한다. 한 실시형태에서, 중간 구획(1004b)은 5 인치 휨 반경으로 60도 구부러진다. 특정한 수술 과정에서는 다른 곡선 각도와 휨 반경도 사용될 수 있다. 예를 들어, 특정한 절개 지점(예를 들어, 배꼽에서)으로부터 한 특정한 해부학적 구조(예를 들어, 담낭)까지 도달하기 위해서는 한 캐뉼라 길이, 곡선 각도 및 휨 반경이 가장 적합할 수 있고, 특정한 절개 지점으로부터 제 2 특정한 해부학적 구조(예를 들어, 충수)까지 도달하기 위해서는 다른 캐뉼라 길이, 휨 각도 및/또는 휨 반경이 가장 적합할 수 있다. 그리고, 일부 실시형태에서, 각각 상이한 길이 및/또는 휨 반경을 갖는 2개의 캐뉼라가 사용될 수 있다.
곡선 구획의 내벽과 안으로 미끄러져 들어가는 가요성 기구 사이의 상대적으로 타이트한 여유공간으로 인해서 그 길이 전체적으로 곡선 구획의 단면은 원형이거나 거의 원형 모양이어야 한다. 일부 실시형태에서, 곡선형 캐뉼라는 304 스테인리스 스틸(경화된 부속)로 제조되고, 곡선 구획(1004b)은, 예를 들어 휨 고정장치 또는 컴퓨터 수치 제어(CNC) 튜브 벤더를 사용하여 휘어진다. 5.5mm(0.220 인치) 외경 기구의 경우, 일부 실시형태에서, 곡선형 캐뉼라의 내경은 약 0.239 인치로 제조되며, 이것은 내경 제조 변동들에 허용되는 관용성을 제공하고, 이들은 기구 샤프트에 대해 여전히 우수한 미끄러짐 성능을 제공할 것이다.
원위 구획(1004c)은 캐뉼라 바디의 짧은 직선 구획이다. 도 12a에 관해, 기구 샤프트 외경과 캐뉼라 내경 사이의 작은 공간(강조를 위해 과장해서 도시된다)으로 인해, 그리고 기구 샤프트의 탄력성(피동적 가요성이지만 직선이 되려는 경향을 보유할 수 있다)으로 인해서, 기구 샤프트의 원위 구획(1202)은 캐뉼라 원단부의 바깥쪽 가장자리와 접촉된다. 결과적으로, 곡선형 캐뉼라가 곡선 구획(1004b)에서 끝날 경우, 기구의 원위 구획(1202)은 캐뉼라의 연장된 중심선(1204)을 기준으로 상대적으로 큰 각도(다시 과장해서 도시된다)로 캐뉼라로부터 연장된다. 또한, 기구 샤프트와 바깥쪽 가장자리 사이의 각도는 기구를 빼는 동안 마찰을 증가시킨다(예를 들어, 부스러기). 그러나, 도 12b에 도시된 대로, 캐뉼라에 원위 구획(1004c)을 덧붙이면 원위 구획(1202)과 캐뉼라의 연장된 중심선(1204) 사이의 각도가 줄어들고, 또한 바깥쪽 가장자리와 기구 샤프트 사이의 마찰이 줄어든다.
도 12c에 도시된 대로, 일부 실시형태에서 슬리브(1206)가 원위 구획(1004c)의 원단부에 삽입된다. 슬리브(1206)는 원단부에서 곡선형 캐뉼라의 내경을 좁게 함으로써, 캐뉼라의 연장된 중심선(1204) 근처에서 기구 샤프트의 원위 구획(1202)이 연장되는 것을 더 보조한다. 일부 실시형태에서, 슬리브(1206)의 바깥쪽 가장자리는 원형이고(즉, 라운드형의 내부 원위 립이고), 슬리브(1206)의 내경은 기구 샤프트의 외경과 비교적 가까이 있다. 이것은 기구를 빼는 동안 기구 샤프트와 캐뉼라 사이에 조직이 끼는 것을 방지함으로써 가능한 조직 손상을 감소시킨다. 일부 실시형태에서, 슬리브(1206)는 304 스테인리스 스틸로 제조되며, 길이는 약 0.5 인치이고, 내경은 약 0.225 인치이다. 또한, 슬리브(1206)는 PTFE와 같은 마찰감소재로 제조될 수 있다. 대안적인 실시형태에서, 분리된 슬리브(1206)를 사용하는 것 대신, 곡선형 캐뉼라의 원단부를 형철로 구부려서 캐뉼라의 내경을 감소시킴으로써 유사한 효과를 만들 수 있다. 원위 구획(1004c)을 좁게 만드는 다른 방식은, 예를 들어 캐뉼라 튜브를 인발하거나, 또는 캐뉼라 튜브의 단부에 직경이 작은 튜브를 용접하는 것이다.
다양한 길이의 직선 원위 구획을 사용하여 다양한 작업 깊이에서 가요성 기구에 지지를 제공할 수 있다. 예를 들어, 한 캐뉼라는 특정한 휨 반경 및 상대적으로 짧은 직선 원위 구획을 가진 곡선 구획을 가질 수 있고, 제 2 캐뉼라는 동일한 특정한 휨 반경을 갖지만, 상대적으로 긴 직선 원위 구획을 가진 곡선 구획을 가질 수 있다. 상대적으로 긴 직선 원위 구획을 가진 캐뉼라는 그것의 연계된 기구를 환자 안에서 비교적 멀리 있는 수술 부위에 도달하도록 배치하기 위해서 사용될 수 있고, 상대적으로 짧은 직선 원위 구획을 가진 캐뉼라는 그것의 연계된 기구를 단일 입구 진입 위치에 비교적 더 가까운 수술 부위에 도달하도록 배치하기 위해서 사용될 수 있다. 하기 설명된 대로, 이들 동일한 곡선형 캐뉼라의 각각의 제어 양태들은 유효하게 동일할 수 있으며, 따라서 일부 실시형태에서 각 캐뉼라는 수술 요원에게 그것의 직선 원위 구획의 길이를 나타내 주기 위해서 명확히 표지된다(마크, 색 코드 등).
다양한 직선 원위 구획 길이가 동일한 곡선 구획을 가진 캐뉼라에 사용될 수 있고, 이들 다양한 원위 구획 길이는 시스템에 대해서는 동일하지 않을 수 있으므로, 캐뉼라 안에서 기구의 삽입 깊이에 대한 시스템의 정보는 캐뉼라의 원단부와 관련해서 기구의 원단부 위치를 정확하게 확인할 수 없을 수 있다. 이 상황은 전기소작 기구의 사용과 같은 상황에서 문제가 될 수 있는데, 이 경우 안전을 위해서 기구는 그것의 원단부(즉, 전기소작 단부 작동기 및 어떤 관련된 노출된 에너지화된 부품)가 전기적으로 전도성인 곡선형 캐뉼라의 원단부를 지나갈 때까지는 에너지화되지 않아야 한다. 따라서, 일부 양태에서, 캐뉼라 및 간격 검출 시스템을 사용하여 기구의 원위 부분이 캐뉼라의 원단부를 안전하게 지났는지를 결정할 수 있다.
도 10b는 캐뉼라 단부 간격 검출 시스템의 한 실시형태를 예시하는 도식도이다. 도 10b에 도시된 대로, 기구의 원위 부분(1040)은 여전히 캐뉼라(1042)의 원위 직선 구획에 있다. 원위 부분(1040)은 전기 소작 단부 작동기(1044)를 포함하며, 이것은 에너지 컨트롤러(1046)로부터 전기소작 에너지를 수용한다. 또한, 원위 부분(1040)은 검출기 조립체(1048)를 포함하며, 이것은 도 10b에서, 예를 들어 광 반사 센서로서 묘사된다(Hall 효과 센서와 같은 다양한 다른 센서 타입이 사용될 수 있다). 센서 구성요소(1050a)에 의해 발생된 빛이 캐뉼라(1042)의 내벽으로부터 반사되어 센서 구성요소(1050b)에 의해 수용된다(기구와 캐뉼라 사이에 작은 틈이 있고, 이것이 반사 광 경로를 제공한다). 에너지 컨트롤러(1046)는 검출기 조립체(1048)에 연결되고, 이로써 검출기 조립체는 기구의 원단부가 캐뉼라의 원단부 안에 있는지 아니면 그것을 지났는지를 표시한다. 점선으로 표시된 대로 기구의 원단부가 캐뉼라의 원단부를 지나 삽입됨에 따라, 에너지 컨트롤러(1046)가 검출기 조립체(1048)로부터의 표시를 수신해서 단부 작동기(1044)를 에너지화한다. 간격 검출 시스템의 실시형태는 다양한 기구에 사용될 수 있으며(예를 들어, 레이저 기구의 안전한 활성화, 기구를 뺄 경우 기계적 손목 조립체의 자동 배치 등), 하나 이상의 센서가 캐뉼라에 또는 기구와 캐뉼라 모두에 위치될 수 있다.
도 13은 곡선형 캐뉼라와 가요성 기구 조합의 대안적인 실시형태를 예시하는 도식도이다. 상기 설명된 단순한 C-형 휨(즉, 하나의 평면형 곡선) 대신에, 곡선형 캐뉼라(1302)는 복합 S-형 휨(평면으로 또는 입체로)(즉, 2 이상의 곡선으로 이루어진 복합 곡선)을 가진다. 한 예시적인 실시형태에서, 각 휨은 약 3-인치의 휨 반경을 가진다. 원위 휨 구획(1304)은 수술 기구를 위한 삼각형 영역을 제공하고, 근위 휨(1306)은, 예를 들어 PSM(204b)을 위한 여유공간을 제공한다(또는 수동 실시형태에서는, 수술 기구 핸들과 의사의 손을 위한). 묘사된 대로, 로봇 제어 수술 기구(402b)의 피동적 가요성 샤프트(404b)는 곡선형 캐뉼라(1302)를 통해 캐뉼라의 원단부(1308)를 지나서 연장된다. 제 2 곡선형 캐뉼라와 가요성 기구 조합은 이 도면에서는 명료성을 위해서 생략된다. S-형 곡선형 캐뉼라의 사용은 본원에 개시된 C-형 곡선형 캐뉼라의 사용과 유사하다. 그러나, S-형 캐뉼라의 경우, 내시경의 시야에 대해 한정된 기준 프레임에서, 기구를 제어하는 조작기가 상응하는 단부 작동기와 동일한 수술 부위 측면에 배치된다. S-형 캐뉼라에서 다중 휨은 C-형 캐뉼라보다 캐뉼라의 길이를 따라 더 많은 지점에서 기구 샤프트와 캐뉼라 벽 사이에 접촉을 일으키므로, 각 지점에서 정상적인 힘이 유사하다면, 기구와 캐뉼라의 I/O 및 롤 마찰은 S-형 캐뉼라를 사용할 때 상대적으로 높아진다.
본원에 설명된 곡선형 캐뉼라는 강성인 것으로 설명되며, 이것은 이들이 사용하는 동안 유효하게 강성인 것을 의미한다. 특정 재료 또는 메커니즘이 제 1 곡선 모양으로 휘게 할 수 있고, 이후 제 2 곡선 모양으로 다시 휘게 할 수 있다는 것은 잘 알려져 있다. 예를 들어, 많은 짧은 링크들로 이루어진 가요성 튜브는 튜브의 길이방향 축을 따라 링크들을 압축함으로써 유효하게 강성을 가질 수 있으며, 이로써 마찰에 의해서 서로 관련하여 링크들이 움직이는 것이 방지된다. 또는, 내부 튜브와 외부 튜브가 함께 방사상으로 압축되어 이들이 서로 관련하여 미끄러져 움직이는 것을 방지할 수 있다. 예를 들어, 미국특허 제5,251,611호(1991년 5월 7일 제출)("탐사 과정을 수행하기 위한 방법 및 장치"를 개시) 및 미국 특허출원 공개 US 2008/0091170 A1(2006년 6월 30일 제출)("자유-공간 네비게이션의 캐뉼라 시스템 및 사용 방법"을 개시)를 참조하며, 이들은 모두 참고자료로 본원에 포함된다. 따라서, 일부 실시형태에서, 본원에 설명된 곡선형 캐뉼라의 곡선 구획은 다양한 곡선 모양으로 다시 휘어질 수 있다(재위치설정이 가능). 곡선 모양에 대한 운동학적 변수, 및 하기 설명된 제어에 필요한 변수를 결정하기 위해서, 공지된 감지 기술이 사용될 수 있다. 곡선 구획을 다시 구부리는데 사용되는 텐던들의 모터 위치를 측정하는 것(또는 텐던 자체의 변위), 또는 곡선 모양을 결정하기 위해 광섬유 모양의 감지를 사용하는 것을 포함한다. 예를 들어, 미국특허 제5,798,521호(1997년 2월 27일 제출)("Bragg Gratings의 응력을 측정하기 위한 장치 및 방법"을 개시), 미국 특허출원 공개 US 2006/0013523 A1(2005년 7월 13일 제출)("광섬유 위치 및 모양 감지 장치 및 그와 관련된 방법"을 개시), 미국 특허출원 공개 US 2007/0156019 A1(2006년 7월 20일 제출)("섬유 Bragg Gratings을 사용한 위치 센서를 포함하는 로봇 수술 시스템"을 개시), 및 미국 특허출원 공개 US 2007/0065077 A1(2006년 9월 26일 제출)(광섬유 위치 및 모양 감지 장치 및 그와 관련된 방법"을 개시)를 참조하며, 이들은 모두 참고자료로 본원에 포함된다.
상기 설명된 다양한 양태들 및 실시형태들은 2개의 곡선형 캐뉼라의 사용에 관해 집중되었으며, 이로써 이들의 연계된 가요성 샤프트 기구를 위해 수술 부위에 삼각형 공간을 제공할 수 있다. 그러나, 일부 양태 및 실시형태에서는, 하나의 곡선형 캐뉼라와 그것의 연계된 가요성 샤프트 기구가 직선 캐뉼라와 그것의 연계된 강성 샤프트 기구와 함께 사용될 수 있다. 이러한 실시형태는 이중 곡선형 캐뉼라 실시형태보다 적은 기구 삼각형 공간을 수술 부위에 제공하고, 내시경의 수술 부위 영상을 더 많이 차단할 수 있지만, 곡선형 캐뉼라와 직선 캐뉼라의 조합은 특정한 해부학적 영역에서 수술을 수행하는 데는 유리하거나 또는 심지어 필요할 수도 있다. 도 11c와 관련해서, 예를 들어, 곡선형 캐뉼라 수술 시스템의 한 예시적인 사용에서, 좌측 PSM(204)과 그것의 연계된 캐뉼라 및 기구는 단일 신체 개구로부터 일시적으로 제거되고, 추가의 좌측 PSM(부분적으로 삽입된 위치에 도시된다)은 그것의 직선 캐뉼라와 직선 샤프트 기구를 단일 신체 개구에 배치할 수 있도록 위치될 수 있다.
또한, 상기 설명된 양태들 및 실시형태들은 직선의 강성 내시경의 예시적인 사용에 집중되었다. 그러나, 다른 양태 및 실시형태에서는, 곡선형 내시경 캐뉼라가 사용될 수 있고, 가요성 샤프트 카메라 기구가 곡선형 내시경 캐뉼라를 통해 삽입될 수 있다. 이러한 가요성 샤프트 카메라 기구는, 예를 들어 가요성 광섬유 다발을 사용하여 내시경의 원단부로부터 신체 바깥의 근단부 카메라까지 영상을 전달할 수 있거나, 또는 피동적 가요성 샤프트의 단부에 장착된 원단부 영상 시스템(예를 들어, CMOS 영상 센서)를 가질 수 있다. 직선의 강성 내시경과 마찬가지로, 가요성 내시경도 본원에 설명된 대로 그것의 연계된 캐뉼라 안에서 삽입되고 빼내지고 말릴 수 있다. 곡선형 내시경 캐뉼라를 사용하는 것의 이점은 그것이 수술 기구에 의해 덜 방해받는 수술 부위의 삼각형 공간 화면을 제공할 수 있거나, 또는 특정 조직 구조를 투시하는데 더 유리하다는 점이다. 각진 화면(예를 들어, 축으로부터 30도)을 가진 직선 샤프트 내시경을 사용해서는 또 다른 화면 투시를 제공할 수 있다.
입구 특징부
도 14a는 곡선형 캐뉼라와 기구 조합, 및 내시경과 본원에 설명된 하나 이상의 다른 기구들과 함께 사용될 수 있는 입구 특징부(1402)의 예시적인 실시형태의 도식적 평면도이다. 도 14b는 도 14a에 도시된 실시형태의 상면 투시도이다. 입구 특징부(1402)는 환자의 체벽에 있는 단일 절개부로 삽입된다. 도 14a에 도시된 대로, 입구 특징부(1402)는 상부면(1404)과 하부면(1406) 사이에 연장된 5개의 채널을 갖는 단일 바디이다. 다른 실시형태는 입구 특징부의 여러 위치에 다양한 수의 입구를 가질 수 있다. 제 1 채널(1408)은 내시경 채널로서 소용되며, 내시경 캐뉼라를 수용할 수 있는 크기이다. 대안적인 실시형태에서, 채널(1408)은 캐뉼라 없이 내시경을 수용할 수 있는 크기일 수 있다. 도 14a에 도시된 대로, 내시경 채널(1404)은 입구 특징부(1402)의 중심축(1410)으로부터 분기된다. 수술 과정에 취입이 필요한 경우, 그것은 내시경 캐뉼라 상의 잘 공지된 특징부를 통해서 제공될 수 있다.
도 14a는 기구 채널로서 소용되는 2개 이상의 채널(1412a 및 1412b)을 도시하며, 이들은 각각 본원에 설명된 곡선형 캐뉼라를 수용할 수 있는 크기이다. 채널(1412a,1412b)은 대향하는 각도로 입구 특징부(1402)를 통해 연장되어 곡선형 캐뉼라의 배치대로 수용한다. 따라서, 일부 실시형태에서, 채널(1412a,1412b)은 도 14a에 도시된 배향에서 좌우측으로 입구 특징부를 분할하는 평면을 가로질러 연장된다. 도 14a에 도시된 대로, 기구 채널(1412a 및 1412b)은 또한 중심축(1410)으로부터 분기된다. 사용하는 동안, 내시경과 기구 캐뉼라의 원격 동작 중심은 일반적으로 이들 각각의 채널 내에서 중앙 수직 위치에 있게 될 것이다. 중심축(1410)으로부터 내시경 채널(1408)과 기구 채널(1412a,1412b)을 수평으로 분기함으로써, 이 원격 중심 군의 중앙 지점은 입구 특징부의 중심에 대략 위치될 수 있다(즉, 절개부의 중심에). 원격 중심들을 함께 모아서 배치함으로써 수술 동안 환자의 외상을 최소화한다(예를 들어, 캐뉼라 동작 동안의 조직 신장으로 인한). 그리고, 입구 특징부는 캐뉼라들을 서로 가깝게 유지시키지만, 조직이 캐뉼라들을 서로를 향해 미는 경향을 방지하며, 이로써 캐뉼라들은 서로를 방해하지 않게 된다. 다양한 실시형태에서, 다양한 채널 각도를 사용하여 사용되는 곡선형 캐뉼라의 특정한 구성형태를 수용할 수 있거나, 또는 특정한 수술 과정에서 필요한 곡선형 캐뉼라 배치를 용이하게 할 수 있다.
또한, 도 14a는 입구 특징부(1402)를 통해 수직으로 연장된 2개의 예시적인 선택적 보조 채널(1414 및 1416)을 도시한다(보조 채널의 수는 변할 수 있다). 제 1 보조 채널(1414)의 직경은 제 2 보조 채널(1416)의 직경보다 상대적으로 더 크다(다양한 크기의 직경이 각 보조 채널에 사용될 수 있다). 제 1 보조 채널(1414)을 사용하여 입구 특징부(1402)를 통해 또 다른 수술 기구(수동 또는 로봇, 견인기 또는 흡인 기구; 캐뉼라 사용 여부 무관)를 삽입할 수 있다. 도 14a에 도시된 대로, 내시경 채널(1408), 기구 채널(1412a,1412b) 및 제 1 보조 채널(1414)은 각각 밀봉부(하기 설명된다)를 포함하고, 제 2 보조 채널(1416)은 그렇지 않다. 그래서, 제 2 보조 채널(1416)은 마찬가지로 다른 수술 기구를 삽입하는데도 사용될 수 있고, 또는 채널에 밀봉부가 없기 때문에 더 좋게 소용되는 또 다른 목적에, 예를 들어 가요성 흡인 또는 관류 튜브(또는 다른 비-강성 기구)를 위한 채널을 제공하거나, 또는 취입 또는 배출(취입은 내시경 캐뉼라 또는 다른 캐뉼라 상의 전형적인 특징부를 사용하여 행해질 수 있다)을 위한 채널을 제공하기 위해서 사용될 수 있다.
도면에 도시된 채널 각도는 예시이며, 다양한 각도의 채널이 사용될 수 있다는 것이 이해되어야 한다. 예를 들어, 내시경 채널은 입구 특징부의 상부면과 하부면 사이의 각도로 연장될 수 있고, 이로써 내시경은 수술 동안 입구 특징부에 대해 꼬는 힘을 발휘할 수 없게 된다(예를 들어, 30도 분기 화면 각도의 내시경에서는 이것을 이용해서 수술 부위에서 "아래"를 봄으로써 곡선형 캐뉼라와 기구에 의해 덜 방해받는 시야를 제공할 수 있다). 마찬가지로, 보조 채널들 중 하나 이상이 각이 져 있을 수 있다. 그래서, 하나 이상의 곡선형 캐뉼라가 직선 캐뉴라와 조합하여 사용된 실시형태에서는, 직선 캐뉼라 기구 채널이 어떤 각도로 연장된 곡선형 캐뉼라 기구 채널과 함께 입구 특징부의 상부면과 하부면 사이에서 수직 연장될 수 있다.
도 14a는 일부 실시형태에서 입구 배향 특징부(1418)가 상부면(1404)에 위치될 수 있는 것을 도시한다. 사용하는 동안, 의사는 입구 특징부(1402)를 절개부에 삽입하고, 이후 배향 표식(1418)이 일반적으로 수술 부위의 방향에 있도록 입구 특징부를 배향한다. 따라서, 입구 특징부는 수술 과정을 수행하기 위해서 내시경과 곡선형 캐뉼라에 필요한 위치를 제공할 수 있도록 배향된다. 배향 특징부(1418)는 상부면(1404)에 성형하거나, 또는 상부면 위에 인쇄하는 것과 같은 다양한 방식으로 제조될 수 있다. 마찬가지로, 도 14a는 일부 실시형태에서 기구 입구 식별 특징부(1420a 및 1420b)(원안의 수치 "1" 및 "2"가 도시된다)가 각각 2개의 기구 입구 중 하나에 가깝게 위치될 수 있는 것을 도시하며, 이로써 기구 채널을 식별할 수 있다. 유사한 식별 특징부가 "좌" 또는 "우" 측에 사용하기 위한 목적으로 캐뉼라 상에 배치될 수 있으며, 이로써 의료 요원은 캐뉼라와 입구 채널 식별을 일치시킴으로써 곡선형 캐뉼라를 그것의 적절한 입구 채널에 쉽게 배치할 수 있다.
일부 실시형태에서, 입구 특징부(1402)는 성형된 실리콘의 단일 조각으로 제작된다(예를 들어, 사출 성형, 압축 성형 등). 입구 특징부는 다양한 듀로미터 값을 가지 수 있으며(예를 들어, 약 40 Shore 00(3-4 Shore A) 내지 약 15 Shore A의 범위), 한 예시적인 실시형태에서, 사출 성형된 실리콘 입구 특징부는 약 5 Shore A의 듀로미터 값을 가진다. 예를 들어, 본원에 설명된 내시경과 곡선형 캐뉼라를 모두 수용할 수 있는 부속 캐뉼라를 가진 다중-부분 입구 특징부를 포함하는 입구 특징부(1402)의 다른 구성형태들도 사용될 수 있다.
도 14b에 관해, 일부 예에서, 상부면(1404)과 하부면(1406)(미도시)은 오목하게 만들어진다. 또한, 도 14b는 일부 예에서 입구 특징부(1402)가 허리같이 잘록하게 된 것을 도시한다. 허리(1422)는 상부 플랜지(1424)와 하부 플랜지(1426)를 제공하며, 이들은 절개부 내의 제자리에 입구 특징부(1402)를 고정하여 보유한다. 입구 특징부(1402)가 연질 탄성 재료로 제조될 수 있기 때문에, 허리(1422)에 의해 형성된 플랜지(1424,1426)와 오목한 상부면과 하부면은 쉽게 변형되며, 이로써 의사는 입구 특징부를 절개부에 쉽게 삽입할 수 있고, 이후 플랜지는 원래 모양으로 되돌아가 입구 특징부를 제자리에 보유하게 된다.
도 15a는 도 14의 절단선 A-A를 따라 취해진 도식적 단면도이며, 이것은 채널(1408b)이 입구 특징부(1402)를 통해 수직 중앙 구획을 가로질러 한 쪽에서 다른 쪽으로 예각으로 상부면에서 하부면으로 지나가는 방식을 예시한다. 채널(1408a)은 반대 방향으로 유사하게 이어진다. 2개의 채널이 교차하는 수직 지점(도 15a 배향에서 채널(1412a)(미도시)은 뷰어에 더 가까이 있고, 상부 우측에서 하부 좌측으로 입구 특징부를 교차한다)은 적절히 삽입되었을 때 대략 각 캐뉼라의 원격 동작 중심의 수직 위치이다. 상기 언급된 대로, 일부 실시형태에서, 밀봉부가 입구 특징부(1402)를 통해 채널들 중 하나 이상에 배치될 수 있으며, 도 15a는 캐뉼라의 원격 동작 중심의 수직 위치에 또는 유효하게 수직 위치에 예를 들어 위치된 이러한 밀봉부의 일례를 도시한다.
도 15b는 기구 채널(1412b) 내의 밀봉부(1502)의 예시적인 실시형태의 상세도이다. 도 15b에 도시된 대로, 밀봉부(1502)는 채널(1412b)의 길이방향 중심선을 향해서 채널(1412b)의 내벽(1506)으로부터 안쪽으로 연장된 일체 성형된 고형체 고리(1504)를 포함한다. 작은 개구(1508)가 고리(1504)의 중심에 존재하며, 이로써 삽입된 물체 주위에서 고리를 늘려서 열 수 있고, 이 개구는 일반적으로 어떤 유의한 유체 통과를 방지할 만큼 충분히 작다(예를 들어, 취입 기체의 탈출). 따라서, 밀봉부는 어떤 기구(예를 들어, 캐뉼라)가 삽입되기 전에 취입을 허용한다(예를 들어, 입구 특징부의 보조 채널을 통해서). 또한, 밀봉부는 입구 특징부가 가요성이어서 수술 동안 캐뉼라의 이동으로 인해서 채널 모양이 왜곡될 경우 입구 특징부와 캐뉼라 사이의 밀봉을 개선한다. 또 다른 실시형태에서, 밀봉부의 개구를 메우기 위해 얇은 막이 성형되며, 이로써 기구가 채널에 삽입될 때까지 완전한 취입식 밀봉부를 제공할 수 있다. 이러한 막은 제 1 캐뉼라 삽입 동안, 예를 들어 폐색구에 의해서 뚫릴 수 있다.
도 15c는 도 14a의 절단선 B-B를 따라 취해진 도식적 단면도이다. 절단선 B-B는 내시경 채널(1408)의 중심선을 통해 취해지며, 따라서 절단선 B-B는 보조 채널(1414 또는 1416) 중심선을 포함하지 않는다. 도 15c는 일부 실시형태에서 내시경 채널(1408)이 밀봉부(1508)를 포함하고, 보조 채널(1414)은 밀봉부(1510)를 포함하지만, 보조 채널(1416)은 밀봉부를 갖지 않는 것을 예시한다. 도 15c는 밀봉부(1508 및 1510)가 밀봉부(1502)와 유사한 것을 더 예시하지만, 상기 설명된 대로 다양한 밀봉부들이 사용될 수 있다.
도 15d는 도 14의 절단선 A-A를 따라 취해진 도식적 단면도이며, 이것은 일부 실시형태에서 입구 특징부의 중앙을 수평으로 가로질러 연장된 전기전도성 실리콘 층(1512)이 있는 것을 예시한다(예를 들어, 도시된 대로 허리(1422)에). 전도층(1512)은 입구 특징부의 상부면과 하부면 사이의 중간에서 이격된 것으로 도시되며, 이로써 그것은 상기 설명된 밀봉부와 통합된다. 다른 실시형태에서, 전기전도층은 밀봉부와 통합되지 않은 다른 수직 위치에 있을 수도 있고, 또는 2개 이상의 전기전도층이 사용될 수도 있다. 일부 실시형태에서, 채널 내부는 전도층에서 좁아지지만, 반드시 밀봉부로서 구성되어야 하는 것은 아니며, 이로써 전도층과 기구 사이에 필요한 전기적 접촉을 제공할 수 있다. 한 실시형태에서, 전도층(1512)은 입구 특징부의 상부 부분(1514)과 하부 부분(1516)에 일체 성형된다. 전기전도성 실리콘은 필수 첨가제들로 인해서 상부 및 하부 부분보다 높은 듀로미터 값을 가질 수 있지만, 그것이 대략 캐뉼라의 동작 중심 수준에 위치되기 때문에, 전기전도층이 없는 유사한 입구 특징부에 비해서 더 높은 경도가 캐뉼라 움직임에 유의한 영향을 미치지는 않는다. 이런 전기전도층은 입구 특징부의 외면과 접촉되는 환자의 체벽과 채널을 통과하는 캐뉼라 및/또는 기구 사이에 전기전도성 경로를 형성한다. 이런 전기전도성 경로는 전기소작술 동안 전기 접지까지의 경로를 제공한다.
도 15e는 입구 특징부 바디에 있는 여러 채널들 중 어느 하나 안에 위치될 수 있는 밀봉부의 또 다른 예시적인 실시형태의 상세한 도면이다. 도 15e에 도시된 대로, 환형 돌출부(1520)가 입구 특징부 바디와 일체식 성형되고, 채널(1412)의 내벽(1506)으로부터 채널의 중심선을 향해 연장된다. 이 예시적인 도면에서, 돌출부의 표면은 채널 벽과 약 60도의 각도를 이루고 있으며, 이것은 삽입시 기구가 밀봉부와 더 쉽게 정렬되어 그것을 지나갈 수 있도록 한다. 상기 설명된 밀봉부와 마찬가지로, 돌출부는 캐뉼라 또는 다른 수술 기구 주변을 안쪽으로 압박해서 입구 특징부 바디와 기구 사이에 취입식 밀봉부를 제공한다. 돌출부의 단면은 일반적으로 삼각형이면서 라운드형의 밀봉면이 기구에 맞닿아 있고, 기구의 원격 동작 중심은 일반적으로 밀봉부에 또는 밀봉부에 유효하게 위치되기 때문에, 기구가 원격 동작 중심 주변에서 움직이는 동안 입구 특징부 바디를 늘려서 채널 단면을 약간 왜곡할 때도 밀봉부는 기구와 함께 움직여서 기구에 맞닿은 튼튼한 밀봉부를 제공할 수 있다. 작은 개구(예를 들어, 기구 채널에 대해 0.014 인치, 내시경 채널에 대해 0.043 인치)가 밀봉부의 중심에 유지되며, 일부 실시형태에서는 상기 설명된 대로 얇은 막이 이 개구를 가로질러 성형된다.
당업자는 효과적인 밀봉부를 실시하기 위해 여러 다른 방식이 사용될 수 있다는 것을 이해할 것이다. 예를 들어, 다른 밀봉부 실시형태에서, 일체식 성형된 탄성 막이 채널을 완전히 차단하고, 물체가 채널을 통해 삽입되는 최초의 순간에 이 막이 뚫린다. 다음에, 막이 물체와의 밀봉부를 형성한다. 또 다른 실시형태에서, 별도의 조각인 밀봉부가 채널에 삽입될 수 있다. 예를 들어, 환형 디텐트가 채널 벽(1506)에 성형될 수 있고, 이후 밀봉부가 디텐트에 위치되어 고정될 수 있다.
상기 설명된 대로, 일부 경우, 입구 특징부(1402)는 전체 체벽을 통해 삽입될 수 있다. 그러나, 다른 경우, 단일 절개부가 전체 체벽을 관통해서 만들어지지 않을 수 있다. 예를 들어, 단일 절개부는 배꼽에 만들어진 단일 경피 절개부(예를 들어, Z 모양)과 아래 근막의 다중 절개부를 포함할 수 있다. 따라서, 일부 경우, 입구 특징부는 제거될 수 있으며, 내시경 캐뉼라와 곡선형 캐뉼라는 각각 단일 경피 절개부를 통해 연장되고, 캐뉼라들은 각각 근막에 있는 분리된 절개부들을 통과해서 이들에 의해 지지될 수 있다. 도 16a는 내시경 캐뉼라(1602)의 일부분과 단일 피부 절개부(1606)를 통과하고, 각각 분리된 근막 절개부(1608)를 통과한 좌우 곡선형 캐뉼라(1604a 및 1604b)를 예시하는 도식도이다. 예를 들어, 좌측 곡선형 캐뉼라(1604a)가 통과하는 근막 절개부(1608)가 제 1 개구가 될 수 있고, 우측 곡선형 캐뉼라(1604b)가 통과하는 근막 절개부(1608)가 제 2 개구가 될 수 있다. 일부 예에서, 수술실 요원은 이러한 단일 경피/다중 근막 절개부에서 캐뉼라를 위한 추가의 지지물을 원할 수 있다(예를 들어, 삽입된 캐뉼라와 이들의 관련된 로봇 조작기를 도킹시키는 동안). 이러한 예에서, 상부 부분(1514)(도 15d)과, 또는 조합된 상부 부분(1514)과 전도층(1512)과 유사하게 구성된 입구가 사용될 수 있다.
도 16b는 단일 피부 절개부/다중 근막 절개부 과정에서 사용될 수 있는 다른 입구 특징부의 도식적 투시 단면도이다. 입구 특징부(1620)는 구성형태에 있어서 입구 특징부(1402)와 유사하며, 상기 설명된 특징들(예를 들어, 배향과 입구 표식, 적용되는 밀봉부, 연질 탄성 재료 등)이 입구 특징부(1620)에도 적용될 수 있다. 입구 특징부(1620)는 상부면(1622), 하부면(1624) 및 상부면과 하부면 사이의 좁은 측벽 허리(1626)를 포함하는 일반적으로 실린더 모양의 바디를 가진다. 결과적으로, 상부 플랜지(1628)와 하부 플랜지(1630)는 측벽과 상부면 및 하부면 사이에 형성된다. 사용하는 동안, 피부는 상부 플랜지와 하부 플랜지 사이의 허리(1626)에 보유되고, 하부면(1624)과 하부 플랜지(1630)는 피부 밑의 근막층에 놓인다.
도 16b는 입구 특징부의 상부면과 하부면 사이에 연장된 4개의 예시적인 입구를 더 도시한다. 채널(1632)은 내시경 채널이고, 채널(1634)은 보조 채널로서, 입구 특징부(1402)와 관련하여 상기 설명된 이러한 채널들과 유사하다. 마찬가지로, 채널(1636a 및 1636b)은 상기 설명된 이러한 채널들과 유사한 각진 기구 채널이며, 채널(1636b)은 도시된 대로 상부 우측에서 하부 좌측을 향해 각이 져 있고, 채널(1636a)은 상부 좌측에서 하부 우측을 향해 각이 져 있다(도면에서 숨겨져 있다). 그러나, 입구 특징부(1402)의 기구 채널과는 달리, 입구 특징부(1620)의 기구 채널(1636a 및 1636b)들의 중심선은 입구 특징부의 수직 중앙선을 가로질러 연장되지 않는다. 대신에, 각진 기구 채널들은 입구 특징부(1620)의 중앙선에서 중단되며, 이로써 캐뉼라와 기구의 원격 동작 중심이 아래 근막 절개부에 위치하게 된다(동작 위치(1638)의 예시적인 중심이 예시된다). 따라서, 입구 특징부의 하부면 상에서 기구 채널들의 출구 위치는 환자의 조직을 기준으로 원하는 위치에 동작 중심이 위치할 수 있도록 변경될 수 있다는 것을 볼 수 있다.
일부 수술 과정에서, 단일 절개부와 수술 부위 사이(예를 들어, 배꼽과 담낭 사이)의 직선 라인은 환자의 관상(전방)면에 대해 예각으로 접근되도록 시작된다. 결과적으로, 캐뉼라는 피부 표면을 기준으로 상대적으로 작은 각도(예각)으로 단일 절개부로 들어가고, 캐뉼라/기구 또는 입구 상에서 체벽이 꼬여 토션을 발휘한다. 도 17a는 단일 절개부를 통해 들어가는 2개 이상의 캐뉼라를 안내하고 지지하는데 사용될 수 있는 또 다른 입구 특징부(1702)의 도식적 상면도이고, 도 17b는 도식적 측면도이다. 도 17a 및 17b에 도시된 대로, 입구 특징부(1702)는 상부 깔대기 구획(1704), 하부 전방 혀(1706) 및 하부 후방 혀(1708)를 포함한다. 일부 실시형태에서, 깔대기 구획과 혀들은 단일 조각이다. 입구 특징부(1702)는, 예를 들어 폴리에테르이미드(예를 들어, Ultem® 제품), 폴리에틸렌, 폴리프로필렌, PEEK 등과 같은 상대적으로 강성인 성형된 플라스틱으로 형성될 수 있으며, 이로써 입구 특징부(1702)는 일반적으로 사용하는 동안 그 모양을 유지하게 된다. 절개부(1710)에 위치되었을 때, 하부 혀(1706,1708)는 체내에 있게 되고, 깔대기 구획(1704)은 체외에 남게 된다. 도면들에 도시된 대로, 일부 실시형태에서, 깔대기 구획(1704)은 비스듬한 원형 또는 타원형의 원뿔체로서, 이것은 하기 설명된 대로 입구 특징부가 절개부에서 꼬였을 때 깔대기 구획 위에 배치된 장비에 의한 방해를 줄인다. 일단 제자리에 위치되면, 깔대기 구획(1704)의 원단부(1712)가 피부 표면을 향해 압축될 수 있다. 이런 작용은 상부 깔대기 부분과 하부 혀 사이의 허리 구획(1714)을 절개부에서 꼬이게 하여 절개부를 효과적으로 재배향하고, 이로써 수술 부위까지 더욱 저항이 없는 경로를 제공한다. 전방 혀는 입구 특징부(1702)가 꼬이는 동안 그것이 절개부로부터 나오는 것을 방지한다. 또한, 깔대기 구획의 원단부(1712) 상에서 아래로 밀면 전방 혀의 원단부(1716)가 상승한다. 일부 실시형태에서, 전방 혀는 혀의 원단부가 상승함에 따라 조직을 수축시킬 수 있는 크기 및 모양을 가질 수 있다. 또한, 후방 혀(1708)는 절개부에 입구 특징부(1702)를 유지하는데 도움을 준다.
또한, 입구 특징부(1702)는 내시경과 기구 캐뉼라를 수용할 수 있는 적어도 2개의 접근 채널을 포함한다. 도 17a에 예시된 대로, 일부 실시형태에서는 4개의 예시적인 채널이 허리 부분(1714) 내에 존재한다. 내시경 캐뉼라 채널(1720)은 허리 부분(1714)의 중앙에 위치되고, 3개의 기구 캐뉼라 채널(1722)은 내시경 캐뉼라 채널(1720) 주변에 배치된다. 일부 실시형태에서, 채널은 깔대기 구획 및 혀와 동일한 단일 조각으로 형성된다. 다른 실시형태에서, 채널은 실린더형 조각(1723)으로 형성되며, 이것은 허리 구획(1714)에서 화살표(1723a)에 의해 표시된 대로 회전할 수 있도록 장착된다. 일부 실시형태에서, 기구 캐뉼라 채널(1722)은 각각 볼 조인트(1724)로 형성되며, 이것은 허리 구획(1714)에 배치된다(예를 들어, 직접, 또는 실린더형 조각에). 캐뉼라들의 원격 동작 중심이 볼 조인트에 위치되고, 이것은 이후 캐뉼라들이 입구 특징부(1702) 내에서 쉽게 선회할 수 있도록 한다. 다른 실시형태에서, 채널은 원격 동작 중심에서 캐뉼라에 고정된(예를 들어, 프레스 핏) 볼을 수용하도록 구성되고, 다음에 캐뉼라 볼이 볼 조인트로서 채널 소켓 내에서 선회한다. 일부 실시형태에서, 허리 구획의 상부면과 하부면(예를 들어, 실린더형 조각의 상부면과 하부면)은 빗각을 이룰 수 있으며, 이것은 볼 조인트에서 움직이는 캐뉼러의 동작 범위가 증가되도록 할 수 있다. 일부 실시형태에서, 내시경 캐뉼라 채널(1720)은 볼 조인트를 포함하지 않는다. 일부 실시형태에서, 내시경 및/또는 강성 샤프트를 가진 기구는 캐뉼라 없이 각각의 채널을 통해 이어질 수 있으며, 상기 설명된 볼 조인트를 사용할 수도 있고 사용하지 않을 수도 있다. 일부 실시형태에서, 밀봉부는 상기 설명된 채널들 중 하나 이상의 안에 위치될 수 있다.
도 18a는 단일 절개부를 통해서 들어간 2개 이상의 캐뉼라를 안내하고 지지하는데 사용될 수 있는 또 다른 입구 특징부(1802)의 도식적 상면도이고, 도 18b는 도식적 측면도이다. 입구 특징부(1802)의 기본적 구성형태는 입구 특징부(1702)와 유사한데, 예를 들어 깔대기 구획, 전방 혀, 및 채널이 일반적으로 유사하다. 그러나, 입구 특징부(1802)에서는 후방 혀(1804)가, 대체 위치(1808)에 의해 표시된 대로 전방 혀(1806)와 정렬된 위치로부터 도 18b에 도시된 대로 전방 혀와 대향하는 위치까지 회전될 수 있다. 따라서, 후방 혀(1804)는 후방 혀(1708)(도 17b)보다 상대적으로 더 길 수 있고, 입구 특징부(1802)는 여전히 단일의 작은 절개부로 삽입될 수 있다. 후방 혀(1804)는 입구 특징부(1802)가 절개부에 위치될 때 전방 혀(1806)와 정렬되고, 입구 특징부가 제자리에 있을 때는 후방 위치로 회전된다. 한 실시형태에서, 후방 혀(1804)는 상기 설명된 채널을 함유하는 회전 실린더에 연결되고, 실린더 조각 상의 깔대기 구획 내에 위치된 탭(1810)이 화살표에 의해 표시된 대로 그것의 대체 삽입 위치(1812)로부터 전방을 향해 회전되어 후방 혀를 수술에 사용할 수 있도록 위치시킨다.
본원에 설명된 입구 특징부들의 양태들은 하나 이상의 곡선형 캐뉼라와 함께 사용하는 것에 국한되지 않으며, 이러한 입구 특징부들은, 예를 들어 직선 기구 캐뉼라와 함께, 강성 기구 샤프트(캐뉼라 사용 유무에 상관없이)와 함께, 그리고 로봇 및 수동 수술 모두에서 사용될 수 있다.
삽입 고정부
다중-입구 최소 침습 수술에서, 내시경은 전형적으로 삽입되어야 하는 제 1 수술 기구이다. 일단 삽입되면, 내시경은 기구가 부주의하게 조직과 접촉되어 조직을 손상시키지 않도록 다른 캐뉼러 및 기구의 삽입을 볼 수 있도록 위치될 수 있다. 그러나, 단일 절개부의 경우, 일단 내시경이 삽입되면, 다른 캐뉼라와 기구들이 적어도 처음에는 내시경의 시야를 벗어나서 삽입된다. 그리고, 곡선형 캐뉼라의 경우, 캐뉼라 팁이 다른 조직과의 접촉 없이 곧바로 내시경의 시야 안에서 움직이도록 보장하는 것이 어렵다. 또한, 로봇 조작기가 조정되고, 이후 캐뉼라와 연결(도킹)됨에 따라 캐뉼라가 적절히 위치되고 배향된 상태를 유지하는 것은 1명 이상을 포함하는 상당히 기민한 수작업을 필요로 할 수 있다. 따라서, 단일 절개부를 통해 다수의 기구들을 안전하고 용이하게 삽입하는 방식이 필요하다. 일부 수술 과정 동안, 상기 설명된 것들과 같은 입구 특징부는 다수의 기구들을 안전하게 삽입하는 충분한 방식을 제공할 수 있다. 예를 들어, 입구 특징부(전체 높이 또는 반절 높이)는 체벽 내에 또는 체벽 상에 위치될 수 있다. 입구 특징부의 채널은 캐뉼라 삽입을 위한 가이드로서 작용하며, 일단 캐뉼라가 삽입되면 입구 특징부는 캐뉼라를 지지하여 그것을 관련된 로봇 조작기에 연결한다. 따라서, 상기 설명된 입구 특징부는 하기 설명된 대로 수술 과정의 앞 부분에서 삽입 및 안정화 고정부로서 작용할 수 있다.
다른 수술 과정 동안에는, 또는 의사의 선호도에 따라서는, 다수의 기구들을 안전하게 삽입하고 지지할 수 있는 다른 방식들이 사용될 수 있다.
도 19a는 캐뉼라 삽입 고정부(1902)의 일례의 투시도이다. 도 19a에 도시된 대로, 삽입 고정부(1902)는 내시경 캐뉼라와 2개의 곡선형 기구 캐뉼라를 단일 절개부 안으로 안내할 수 있다. 다른 실시형태는 더 많은 또는 더 적은 캐뉼라를 안내할 수 있다. 삽입 고정부(1902)는 기부(1904), 내시경 캐뉼라 지지 암(1906) 및 2개의 기구 캐뉼라 지지 암(1908a 및 1908b)을 포함한다. 도 19a에 도시된 대로, 내시경 캐뉼라 지지 암(1906)은 기부(1904)에 단단하게 장착되지만, 다른 실시형태에서는 선회 가능하게 장착될 수 있다. 내시경 캐뉼라 지지 암(1906)의 원단부는 기부 평면을 향해 아래로 구부러지며, 캐뉼라 장착 브래킷으로 기능하는 내시경 캐뉼라 지지 슬롯(1910)을 함유한다. 지지 슬롯(1910)의 디텐트(1912)는 내시경 캐뉼라가 다양한 각도로 위치되어 보유될 수 있도록 한다.
또, 도 19a는 한 기구 캐뉼라 지지 암(1908a)이 힌지(1914a)에서 기부(1904)에 선회 가능하게 장착된 것을 도시한다. 기구 캐뉼라 장착부(1916a)는 캐뉼라 지지 암(1908a)의 원단부에 있고, 예시적인 기구 캐뉼라(예를 들어, 상기 설명된 곡선형 캐뉼라)를 보유한다. 캐뉼라 장착부(1916a)는 상기 설명된 대로 캐뉼라가 원하는 롤 배향으로 보유되도록 보장할 수 있는 하나 이상의 기계적 열쇠 특징부를 포함할 수 있다. 도 19a는 관련된 캐뉼라가 삽입된 위치에 있는 지지 암(1908a)의 위치를 도시한다.
도 19a는 다른 기구 캐뉼라 지지 암(1908b)이 지지 암(1908a)에 대향하는 쪽의 힌지(1914b)에서 기부(1904)에 선회 가능하게 장착된 것을 더 도시한다. 지지 암(1908b)은 캐뉼라 장착부(1916a)와 유사한 기구 캐뉼라 장착부(1916b)를 포함한다. 도 19a는 절개부를 통해 캐뉼라가 삽입되기 전의 지지 암(1908b)의 위치를 관련된 캐뉼라와 함께 도시한다. 캐뉼라는 힌지(1914a,1914b)의 회전축이 대략 곡선형 캐뉼라의 만곡축에 있도록 캐뉼라 장착부(1916a,1916b)에 의해 보유된다. 따라서, 지지 암이 힌지에서 회전함에 따라, 곡선형 캐뉼라는 단일 절개부 또는 체내로의 다른 진입 입구와 정렬된, 대략 동일한 작은 면적을 통해서 지나가게 된다. 도 19b에 관해, 지지 암(1908b)이 그것의 관련된 캐뉼라를 삽입할 수 있게 이동된 것을 볼 수 있으며, 이것은 절개부를 통해 원호를 지나간다. 또한, 2개의 캐뉼라가 절개부의 약간 상이한 영역을 통해 지나가도록 힌지(1914a,1914b)가 배향될 수 있으며, 이로써 원하는 여유공간 및 절개부에서 다양한 캐뉼러들의 정렬이 확립된다.
캐뉼라 삽입 고정부의 예시적인 사용은 상기 설명된 것과 같은 단일 경피/다중-근막 절개부와 함께 사용된다. 의사는 먼저 단일 경피 절개부를 만든다. 다음에, 의사는 내시경 캐뉼라로 절개용(예를 들어, 예리한) 폐색구를 삽입하고, 내시경 캐뉼라와 삽입 고정부를 원하는 각도로 연결한다. 이때 의사는 내시경 캐뉼라를 통해 내시경을 삽입하여 절개부를 더 관찰할 수 있으며, 내시경 캐뉼라와 내시경은 로봇 조작기에 장착되거나, 또는 일시적으로 손으로 내시경이 지지된다. 다음에, 의사는 캐뉼라가 체벽에 접촉할 때까지 절개부의 원호를 따라 캐뉼라들을 많이 이동시킨다. 다음에, 의사는 절개용 폐색구를 사용하여 각 캐뉼라를 근막을 통해 삽입할 수 있다. 다음에, 의사는 선택적으로 캐뉼라로부터 절개용 폐색구를 제거할 수 있으며, 캐뉼라는 빈 상태로 남거나, 또는 끝이 무딘 폐색구를 삽입할 수 있다. 다음에, 의사는 기구 캐뉼라를 완전히 삽입된 위치까지 계속 이동시킬 수 있으며, 이때 이들의 원단부는 내시경의 시야에 보이도록 위치된다. 일단 캐뉼라가 삽입되면, 로봇 조작기가 제자리로 이동될 수 있고, 기구 캐뉼라가 이들의 로봇 조작기에 장착(도킹)될 수 있다. 다음에, 삽입 고정부가 제거되고, 가요성 샤프트 기구가 내시경의 시야 아래에서 수술 부위를 향해 캐뉼라를 통해 삽입된다. 이 예시적인 삽입 과정은 다양한 절개부와 신체 개구를 통해 다수의 캐뉼라를 삽입하고 지지하기 위해 삽입 고정부를 사용하는데 대한 많은 가능한 변형들의 일례이다.
일부 경우, 삽입 고정부의 실시형태는 캐뉼라를 지지하는데 사용될 수 있으며, 하나 이상의 수동 작동되는 기구들이 캐뉼라(들)을 통해 삽입되어 수술 부위에서 사용된다.
일부 대안적인 실시형태에서, 삽입 고정부는 관련된 조작기와 도킹하는 동안 고정된 위치에 캐뉼라를 보유하는 방식을 제공하기 위한 것으로만 단순화될 수 있다. 예를 들어, 이것은 먼저 캐뉼라를 삽입하고, 이후 고정부를 카메라 캐뉼라에 적용하고, 이후 고정부를 곡선형 캐뉼라에 부착함으로써 달성될 수 있다. 일단 삽입된 캐뉼라가 고정부와 연결되면, 환자측 로봇과 그것의 조작기가 환자를 기준으로 적절한 위치까지 이동된다. 다음에, 고정부가 카메라 캐뉼라와 곡선형 캐뉼라를 제자리에 보유하고 있는 동안, 각 캐뉼라가 그것의 관련된 조작기와 도킹된다. 일반적으로, 카메라 캐뉼라가 먼저 도킹된다.
도 19c는 캐뉼라 안정화 고정부(1930)의 도식적 투시도이다. 고정부(1930)는 기부(1932)와 2개의 캐뉼라 홀더(1934a 및 1934b)를 포함한다. 암(1936a)이 캐뉼라 홀더(1934a)와 기부(1932)를 연결하고, 암(1936b)이 캐뉼라 홀더(1934b)와 기부(1932)를 연결한다. 기부(1932)는 고정 물체에 연결되며, 고정부가 암의 단부에 보유된 캐뉼라를 지지할 수 있다. 한 실시형태에서, 기부(1932)는 개구(1938)에서 내시경 캐뉼라를 수용하도록 구성되고, 개구(1938)의 한쪽에서 2개의 일체식 스프링 클립(1940a 및 1940b)이 내시경 캐뉼라 상의 기부를 고정하여 보유한다(내시경 캐뉼라는 그것의 관련된 ECM에 단단히 연결될 수 있다). 각 캐뉼라 홀더(1934a, 1934b)는 도 10a를 참조하여 상기 설명된 열쇠 특징부와 유사한 열쇠 특징부를 수용함으로써 기구 캐뉼라를 보유하도록 구성된다. 캐뉼라 홀더의 구멍은 도 10a에 도시된 핀(1036)을 수용한다. 한 예시적인 실시형태에서, 암(1936a,1936b)은 내부식성을 위해 실리콘 튜브로 덮인 무겁고 휘어질 수 있는 알루미늄 와이어이며, 이로써 암은 원하는 대로 위치 및 재위치될 수 있다. 다른 실시형태에서, 스테인리스 스틸(내부식성 커버나 코팅이 필요하지 않다)과 같은 다른 재료 및 다양한 다시 휘어질 수 있고/다시 배치될 수 있는 구성형태(예를 들어, 상기 설명된 강성을 가질 수 있는 일련의 링크들, "거스넥" 타입 튜브 등)가 암에 사용되어 충분한 캐뉼라 지지를 제공할 수 있다. 각 암은 그것의 관련된 캐뉼라 홀더와 기구 캐뉼라를 지지하며, 이로써 기구 캐뉼라는 내시경 캐뉼라를 기준으로 고정된 상태로 보유되며, 이때 단일 피부 절개부 안에 모두 위치된다. 당업자는 삽입하는 동안과 로봇 조작기와 도킹하는 동안 제자리에 단일 유닛으로서 다양한 캐뉼라들을 효과적으로 보유할 수 있도록 이 고정부에 많은 변형이 가능하다는 것을 이해할 것이다. 예를 들어, 한쪽 단부에 캐뉼라 홀더를 가진 단일 암을 사용하여 2개의 캐뉼라를 서로를 기준으로 해서 지지할 수 있다.
도 20a-20d는 단일 절개부에 캐뉼라를 삽입하는 또 다른 방식을 예시하는 도식도이다. 도 20a는 내시경 캐뉼라(2002)와 2개의 곡선형 캐뉼라(2004a 및 2004b)를 예를 들어 도시한다. 일부 예에서, 내시경(2006)은 내시경 캐뉼라(2002)에 삽입될 수 있다. 캐뉼라의 원단부는, 내시경의 영상화 단부가 이용된다면, 캡(2008) 안에 함께 군집된다. 일부 실시형태에서, 캡(2008)은 체벽을 뚫을 수 있는 폐색구로서 기능할 수 있는 충분히 단단한 재료로 제조된 정확한 원형의 원뿔체일 수 있다. 일부 실시형태에서, 의사는 먼저 절개부를 만들고, 이후 절개부의 뒤에서 캐뉼라들이 군집되어 들어 있는 캡(2008)이 절개부를 통해 삽입된다. 일부 예에서, 캡은 캡의 정면에서 내시경이 삽입 경로를 영상화할 수 있도록 투명한 재료로 제조될 수 있다. 일부 실시형태에서, 캡(2008)은 상기 설명된 것과 같은 또는 다른 적합한 입구 특징부와 같은 입구 특징부(2010)와 함께 군집될 수 있다. 따라서, 일부 예에서, 입구 특징부는 내시경 및/또는 기구를 위한 캐뉼라들 중 하나 이상으로서 기능할 수 있다(도시된 대로, 입구 특징부(2010)는 또한 어떤 입구 특징부에 있는 취입 채널(2012)을 통한 취입이 일부 실시형태에서 제공될 수 있음을 예시하지만, 상기 설명된 대로 취입은 캐뉼라들 중 하나를 통해서와 같은 다른 방식으로도 제공될 수 있다). 테터(2014)가 캡(2008)에 부착되고, 테터는 체외로 연장된다.
도 20b는 캐뉼라(또는 기구, 이용된 경우)의 원단부들이 캡(2008) 안에 군집된 채로 환자 안으로 더 멀리까지 삽입되는 것을 도시한다. 입구 특징부(2010)가 체벽(2016)에 고정된 채로 있기 때문에, 캐뉼라(또는 기구, 이용된 경우)가 그것을 통해 미끄러져 들어가 캡(2008) 안에 머무를 수 있다. 일부 예에서, 캡은 캐뉼라들(또는 기구들, 이용된 경우) 중 하나 이상을 압축함으로써 안쪽으로 더 멀리까지 이동된다. 예를 들어, 내시경 캐뉼라 및/또는 캐뉼라는 로봇 카메라 조작기에 장착될 수 있고, 조작기를 사용해서 캡을 더 안쪽으로 삽입할 수 있다.
도 20c는 일단 캐뉼라(또는 기구, 이용된 경우)의 원단부가 원하는 깊이에 도달하면, 캐뉼라가 그들의 관련된 로봇 조작기와 연결될 수 있다는 것을 도시한다.(예를 들어, 캐뉼라(2004a)와 조작기(2018a), 캐뉼라(2004b)와 조작기(2018b)). 다음에, 수술 기구가 기구 캐뉼라들 중 하나를 통해 삽입될 수 있고(예를 들어, 도시된 대로 캐뉼라(2004b)를 통해 수술 기구(2020b)가 삽입된다), 관련된 조작기(예를 들어, 조작기(2018b)에 장착된다. 다음에, 수술 기구를 사용해서 캡을 캐뉼라(또는 다른 기구, 이용된 경우)의 원단부로부터 제거할 수 있다. 도 20d는 두 로봇 제어 기구(2020a 및 2020b) 모두와 내시경 사용하여 캡(2008)이 수술 과정 동안 환자 체내에서 수술 부위로부터 먼 곳에 위치될 수 있음을 도시한다. 캡(2008)은 선택적으로 과정이 끝날 때 견본 회수를 위한 견본 백(2022)을 가질 수 있다. 이 견본 백은 선택적으로 백을 닫는 드로우 스트링을 가질 수 있으며, 견본 백 드로우 스트링은 선택적으로 캡 테터(2014)와 일체형일 수 있다. 수술이 완료되고, 기구, 캐뉼라 및 입구 특징부가 제거된 후, 테터(2014)를 당김으로써 캡(2008)(및 선택적인 백)이 제거될 수 있다.
한 양태에서, 본원에 설명된 다양한 장착 고정부는 하나 이상의 곡선형 기구 캐뉼라와 하나 이상의 직선 기구 캐뉼라의 조합의 삽입을 보조하거나 이것을 지지하도록 구성된다.
제어 양태
최소 침습 수술 로봇 시스템의 제어는 공지되어 있다(예를 들어, 미국특허 제5,859,934호(1997년 1월 14일 제출)(원격조작 시스템에서 좌표 시스템을 변형하기 위한 방법 및 장치), 제6,223,100호(1998년 3월 25일 제출)(관절형 기구로 컴퓨터 증진된 수술을 수행하기 위한 장치 및 방법), 제7,087,049호(2002년 1월 15일 제출)(최소 침습 원격수술에서 주/종속 관계의 재배치 및 재배향), 및 제7,155,315호(2005년 12월 12일 제출)(최소 침습 수술 장치에서 카메라 기준 제어), 그리고 미국 특허출원 공개 제2006/0178559호(2007년 12월 27일 제출)(최소 침습 수술 과정에서 협력 또는 훈련을 위한 다중-사용자 의료 로봇 시스템)을 참조하며, 이들은 모두 본원에 참고로 포함된다. 수술 로봇 시스템을 작동시키기 위한 제어 시스템은 곡선형 캐뉼라 및 피동적 가요성 수술 기구와 함께 사용될 수 있도록 본원에 설명된 대로 변형될 수 있다. 한 예시적인 실시형태에서, da Vinci® 수술 시스템의 제어 시스템도 그렇게 변형된다.
도 21은 로봇 조작기에 장착된 근단부(2104), 원단부(2106) 및 원단부와 근단부 사이의 곡선 구획(예를 들어, 60도 휨)을 갖는 곡선형 캐뉼라(2102)의 도식도이다. 길이방향 중심선 축(2110)이 곡선형 캐뉼라(2102)의 근단부와 원단부 사이에 한정된다. 또한, 삽입 및 빼기 축(2112)은 곡선형 캐뉼라의 원단부로부터의 직선 라인으로 길이방향 축(2110)을 따라 연장된 중심선을 포함하도록 한정된다. 피동적 가요성 기구 샤프트의 원위 구획(506c, 도 5)이 상대적으로 강성이기 때문에, 그것은 곡선형 캐뉼라의 원단부로부터 연장됨에 따라 대략 삽입 및 빼기 축(2112)을 따라서 움직인다. 따라서, 가요성 샤프트가 삽입 및 빼기 축(2112)을 가진 직선의 강성 샤프트로서 작용한다는 것을 가정하여 제어 시스템이 구성된다. 즉, 기구의 I/O 축은 곡선형 캐뉼라의 원단부로부터의 연장된 직선 길이방향 중심선이도록 취해지고, 시스템은 기구 팁의 가상 위치가 I/O 축(2112)을 따라서 있게 되도록 결정한다. 캐뉼라 원단부에서의 이런 기구 I/O 동작이 이중-헤드 화살표(2114)에 의해 예시된다. 캐뉼라의 원단부를 넘어서 연장된 가요성 샤프트의 구획에서 과잉의 외측 움직임을 방지하기 위해서, 한 실시형태에서, 연장 거리는 제어 시스템 소프트웨어에 의해서 조절되며, 예를 들어 사용될 특정한 기구에 대한 가요성 샤프트의 원위 구획의 강성에 좌우될 수 있다. 그리고, 한 실시형태에서, 제어 시스템은 기구 팁이 캐뉼라의 원단부를 지나서 연장될 때까지 주 조작기가 캐뉼라나 기구를 움직이지 못하도록 할 것이다.
또한, 제어 시스템은 곡선형 캐뉼라와 관련된 운동학적 구속과 통합될 수 있도록 변형된다. 캐뉼라로부터 연장된 기구 팁의 움직임은 기준 프레임의 가상 연속 운동학적 사슬에 의해서 생성되는 것처럼 설명되며, 이것은 Denavit-Hartenberg (DH) 변수 세트에 의해 유일하게 설명된다. 예를 들어, 캐뉼라의 원단부(2106)에 대한 경계선 조건은 팁 위치, 팁 배향, 및 곡선 구획을 따른 길이로서 한정된다. 다른 예로서, 경계선 조건은 캐뉼라의 원위 직선 구획을 포함하는 캐뉼라의 물리적 단부를 사용하는 것 대신 한정된다. 이러한 경계선 조건을 사용하여 적절한 DH 변수들을 한정할 수 있다. 도 21에 예시된 대로, 기준 프레임은 길이방향 축(2110)을 따라 있는 위치에(예를 들어, 도시된 대로 캐뉼라의 원격 동작 중심(2116)에) 기원을 갖는 것으로 한정될 수 있다. 이러한 기준 프레임의 한 축(2118)은 지점(2120)에서 연장된 I/O 축(2112)과 교차할 수 있도록 한정될 수 있다. 캐뉼라의 원단부(2106)와 기준 프레임의 기원과 사이에서 최소 거리가 결정될 수 있다. 여러 상이한 캐뉼라 구성형태(예를 들어, 길이, 휨 각도, 조작기에 장착되었을 때의 회전 등)는 다양한 관련된 운동학적 구속을 가질 것이다. 그러나, 기구 I/O에 있어서는 곡선 구획을 따른 실제 경로 길이가 원격 동작 중심과 기구의 원위 팁 사이의 최소 거리 대신에 사용된다. 당업자는 다양한 방법들이 운동학적 구속을 설명하는데 사용될 수 있음을 이해할 것이다. 예를 들어, 이 문제를 해결하는 다른 방식은 곡선형 캐뉼라의 기하구조를 설명하는 동종성 변환을 일련의 운동학적 사슬에 명확하게 통합하는 것이다.
상기 설명된 대로, 2개 이상의 곡선형 캐뉼라가 있을 수 있으며, 이들은 동일한 곡률을 갖지만, 원위 직선 구획의 길이는 상이할 수 있다. 이들 캐뉼라의 각각 하나와 관련된 DH 변수는 동일하므로, 각 캐뉼라의 원위 직선 구획의 길이와 무관하게 동일한 직관적인 제어가 유지된다. 따라서, 이들 캐뉼라들이 각각 제어 목적으로 동일하게 처리될 수 있으므로, 도 10을 참조하여 상기 설명된 캐뉼라-타입 검출 특징부는 이러한 캐뉼라들을 단일 캐뉼라 타입인 것처럼 처리할 수 있다.
제어 시스템에 대한 추가의 변형은 의사가 주 조작기(예를 들어, 도 1b에 도시된 122a,122b)에서 촉각적 피드백을 수신할 수 있도록 한다. 다양한 로봇 수술 시스템에서, 의사는 주 조작기의 서보모터로부터 촉각적 힘을 경험한다. 예를 들어, 종속 측 조인트 한계에 도달하거나 거의 도달한 것을 시스템이 감지한 경우(예를 들어, 인코더에 의해 촉발된다), 의사는 의사로 주 조작기에서 힘을 경험하며, 이것은 의사가 종속 측 조인트 한계 방향으로 주 조작기를 움직이는 것을 막는 경향이 있다. 다른 예로서, 외력이 수술 부위에서 기구에 가해진 것을 시스템이 감지한 경우(예를 들어, 시스템이 명령받은 위치에 기구를 유지하려 시도함에 따라 사용된 과잉의 모터 전류를 감지함으로써), 의사는 주 조작기에서 힘을 경험할 수 있으며, 이것은 종속 측에 작용하는 외력의 방향 및 크기를 표시한다.
주 조작기에서의 촉각적 피드백은 사용된 제어 시스템의 한 실시형태에서 의사에게 곡선형 캐뉼라를 사용하는 동안 직관적인 제어 경험을 제공하기 위해서 사용된다. 손목이 없는 가요성 기구의 경우, 제어 시스템은 의사가 다중-DOF 주 조작기를 손목 동작으로 움직이는 것을 방지하기 위해서 주 조작기에서 촉각적 힘을 제공한다. 즉, 의사가 주 조작기 위치를 바꿈에 따라서 주 조작기 서보모터가 주 조작기 배향을 피치 및 요우 배향으로 고정된 상태로 유지하려 시도한다. 이 특징은 손목이 없는 직선의 강성 샤프트를 가진 기구를 위한 현재의 로봇 수술 시스템에서 사용되는 특징과 유사하다. 시스템은 기구 타입(예를 들어, 손목형, 비-손목형)을 감지하고, 그에 따라 촉각적 피드백을 적용한다.
또한, 한 실시형태에서는 촉각적 피드백을 이용하여 의사에게 기구 운동학적 사슬의 다양한 지점들에 가해지는 외력의 감지를 제공할 수 있다. 촉각적 피드백에 의해 조작기에(예를 들어, 조작기가 다른 조작기와 충돌할 때 발생할 수 있다), 또는 곡선형 캐뉼라의 직선 근위 부분에 가해지는 어떤 감지된 외력이 의사에게 제공된다. 그러나, 캐뉼라가 구부러지기 때문에, 시스템은 캐뉼라의 곡선 구획에 가해지는 외력(예를 들어, 내시경 시야의 안이나 밖에서 다른 곡선형 캐뉼라와의 충돌에 의한)에 대해서는 적절한 촉각적 피드백을 제공할 수 없는데, 이 시스템은 가해지는 힘의 방향과 크기를 결정할 수 없기 때문이다. 이 예시적인 실시형태에서 이러한 비-직관적인 촉각적 피드백을 최소화하기 위해서, 로봇 조작기와 그들의 관련된 캐뉼라들을 적절히 배치함으로써, 예를 들어 처음에는 고정부를 사용하고 및/또는 수술 동안에는 상기 설명된 입구 특징부를 사용함으로써 캐뉼라 충돌이 최소화된다. 유사하게, 캐뉼라의 원단부로부터 연장된 기구의 일부분에 가해진 외력에 의해 야기되는 시스템이 의사에게 제공하는 촉각적 피드백은 부정확할 것이다(I/O 축에 따라 직접 경험되지 않는다면). 실제로는 그럼에도 기구의 원단부 상의 이러한 힘은 기구/전달에서의 마찰량 및 순응성에 비해 낮으며, 따라서 어떤 발생된 촉각적 피드백은 무시할 수 있다.
그러나, 다른 실시형태에서는, 힘 센서를 사용하여 의사에게 캐뉼라의 곡선 구획이나 기구의 연장된 원단부에 가해지는 외력의 정확한 경험을 제공할 수 있다. 예를 들어, 광섬유 변형력 감지를 이용하는 힘 센서가 공지되어 있다(예를 들어, 미국 특허출원 공개 US 2007/0151390 A1(2006년 9월 29일 제출)("수술 기구를 위한 힘 토크 감지"를 개시), US 2007/0151391 A1(2006년 10월 26일 제출)("모듈형 힘 센서"를 개시), US 2008/0065111 A1(2007년 9월 29일 제출)("수술 기구의 힘 감지"를 개시), US 2009/0157092 A1(2007년 12월 18일 제출)("리브형 힘 센서"를 개시), 및 US 2009/0192522 A1(2009년 3월 30일)("힘 센서 온도 보상"을 개시)을 참조하며, 이들은 모두 본원에 참고자료로 포함된다. 도 22는 곡선형 캐뉼라 및 가요성 기구의 원위 부분의 도식도로서, 한 예시적인 실시형태에서, 하나 이상의 힘 감지 광섬유(2202a,2202b)가 곡선형 캐뉼라(2204) 상에 위치될 수 있는 것을 도시한다(예를 들어, 4개의 섬유가 바깥 주변에 같은 간격으로 이격된다)(광섬유에 대한 변형력 감지 호출신호 및 변형력 결정 구성요소들은 명료성을 위해 생략된다). 유사하게, 가요성 기구의 원위 구획(2206)이 원위 구획 상의 어떤 위치에서의 휨, 또는 원위 구획의 모양을 감지하는 하나 이상의 변형력 감지 광섬유(2208)와 통합될 수 있으며(예를 들어, 내부로 이어진다), 캐뉼라의 원단부를 기준으로 변위량 및 위치를 사용하여 연장된 기구에 대한 외력을 결정할 수 있다.
도 23은 텔레프리젠스를 가진 원격조종 로봇 수술 시스템을 위한 제어 시스템 구조의 도식도이다. 도 23에 도시된 바는 다음과 같다.
f h = 사람의 힘
x h = 주 위치
e m,s = 인코더 값 (주, 종속)
i m,s = 모터 전류 (주, 종속)
θ m,x = 조인트 위치 (주, 종속)
τ m,s = 조인트 토크 (주, 종속)
f m,s = 데카르트 힘 (주, 종속)
x m,s = 데카르트 위치 (주, 종속)
f e = 환경적인 힘
x e = 종속 위치
한 실시형태에서, 상기 설명된 제어 시스템 변형은 제어 시스템 구조(2300)의 "종속 운동학" 부분(2302)에서 행해진다. 제어 시스템 구조(2300)를 설명하는 추가의 상세내용은, 예를 들어 상기 인용된 참고자료들에서 찾아진다. 제어 시스템(2300)의 데이터 프로세싱은 전자 데이터 프로세싱 유닛(142)(도 1c)에서 실행될 수 있거나, 또는 그것은 수술 시스템 전체의 여러 처리 유닛들에 분산될 수 있다.
도 11a 및 11b에 관해, 도 1b 및 도 4c와 함께 보면, 많은 실시형태에서, "좌측" 로봇 조작기에 의해 가동되는 기구 단부 작동기는 내시경 시야의 우측에서 나타나고, "우측" 로봇 조작기에 의해 가동되는 기구 단부 작동기는 내시경 시야의 좌측에서 나타난다. 따라서, 의사 콘솔 디스플레이에서 의사에 의해 보이는 대로 단부 작동기의 직관적인 제어를 보존하기 위해, 우측 주 조작기는 "좌측" 로봇 조작기를 제어하고, 좌측 주 조작기는 "우측" 로봇 조작기를 제어한다. 이런 구성형태는 로봇 조작기와 그것의 관련된 기구가 모두 내시경 시야의 수직 분할을 기준으로 같은 쪽에 위치되는 직선 수술 기구와 함께 전형적으로 사용되는 구성형태로 반대이다. 곡선형 캐뉼라와 함께 사용하는 동안, 로봇 조작기와 그것의 관련된 기구는 내시경 기준 프레임의 반대 쪽들에 위치된다. 그러나, 이것은 도 13 및 관련된 내용에 의해서 예시되는 것과 같은 어떤 복합 곡선형 캐뉼라의 사용에는 적용되지 않을 수 있다.
따라서, 제어 시스템의 다양한 실시형태는 의사로 하여금 기구 단부 작동기의 직관적인 제어와 결과의 텔레프리젠스를 심지어 피치와 요우 움직임을 제공하는 기구 손목을 사용하지 않고도 경험할 수 있게 한다. 주 조작기(예를 들어, 122a, 도 1b)의 움직임은 관련된 곡선형 캐뉼라(수술 부위에서의 피치 및 요우 움직임을 위한)의 원단부나, 또는 기구 단부 작동기(I/O, 롤, 및 그립(또는 다른 단부 작동기 DOF를 위한)의 상응하는 움직임을 가져온다. 따라서, 주 제어부에서 의사의 손 동작은 기구에 별도의 손목 메커니즘을 사용하지 않고도 수술 부위에서 상응하는 종속 움직임에 합당하게 잘 가까워질 수 있다. 기구 팁은 주 조작기 위치 변화에 대응하여 움직이며, 주 조작기 배향 변화에는 대응하지 않는다. 제어 시스템은 이러한 의사 손목-동작 배향 변화를 해석하지 않는다.
일부 실시형태에서, 수술 로봇 시스템의 제어 시스템은 관련된 직선 샤프트 기구를 가진 직선 캐뉼라의 사용과 관련된 가요성 샤프트 기구를 가진 곡선형 캐뉼라의 사용 사이에서 자동 전환되도록 구성될 수 있다. 예를 들어, 시스템은 도 6 및 도 10과 관련하여 상기 설명된 대로 곡선형 캐뉼라와 가요성 샤프트 기구가 둘 다 조작기에 장착된 것을 감지할 수 있으며, 이로써 곡선형 캐뉼라 및 가요성 기구와 관련된 제어 모드를 전환할 수 있다. 그러나, 시스템이 조작기에 장착된 직선 캐뉼라와 가요성 기구를 감지한 경우, 이 감지는 잘못된 상태를 촉발할 수 있고, 시스템은 작동하지 않게 될 것이다.
다수 로봇 조작기를 가진 수술 로봇 시스템에 대한 일부 실시형태에서, 제어 소프트웨어가 의사로 하여금 여러 상이한 모양의 곡선형 캐뉼라, 여러 상이한 길이의 가요성 샤프트 기구를 직선 캐뉼라 및 강성의 직선-샤프트 기구와 함께 혼합하여 사용할 수 있도록 한다. 모든 이러한 기구들의 팁 움직임은 동일한 것처럼 보일 것이며, 따라서 의사는 상기 설명된 캐뉼라의 운동학적 구속의 자동적 조종으로 인해서 직관적인 제어를 경험할 것이다.
Claims (1)
- 시스템에있어서,
제 1 마스터 조작기;
제 2 마스터 조작기;
상기 제 1 마스터 조작기 및 상기 제 2 마스터 조작기 중 하나에 작동 가능하게 결합된 제 1 슬레이브 조작기;
상기 제 1 마스터 조작기 및 상기 제 2 마스터 조작기 중 하나에 작동 가능하게 결합된 제 2 슬레이브 조작기; 및
상기 제 1 마스터 및 슬레이브 조작기와 상기 제 2 마스터 및 슬레이브 조작기 중 하나에 작동 가능하게 결합된 제어 시스템을 포함하고,
상기 제어 시스템은 상기 시스템을 제 1 및 제 2 제어 모드 사이에서 전환하도록 구성되며,
상기 제 1 제어 모드에서, 제 1 수술도구는 상기 제 1 슬레이브 조작기에 작동 가능하게 연결되고 제 1 몸체 벽의 제 1 절개부를 통해 연장되고, 제 2 수술도구는 상기 제 2 슬레이브 조작기에 작동 가능하게 연결되고 제 1 몸체 벽의 제 2 절개부를 통해 연정되고;
상기 제 2 제어 모드에서, 제 3 수술도구는 상기 제 1 슬레이브 조작기에 작동 가능하게 결합되고 제 2 몸체 벽의 단일 절개부를 통해 연장되고, 제 4 수술도구는 상기 제 2 슬레이브 조작기에 작동 가능하게 연결되고 상기 제 2 몸체 벽의 상기 단일 절개부를 통해 연장되는 시스템.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/618,549 US20110071541A1 (en) | 2009-09-23 | 2009-11-13 | Curved cannula |
US12/618,583 US8545515B2 (en) | 2009-09-23 | 2009-11-13 | Curved cannula surgical system |
US12/618,549 | 2009-11-13 | ||
US12/618,583 | 2009-11-13 | ||
PCT/US2010/056173 WO2011060031A1 (en) | 2009-09-23 | 2010-11-10 | Curved cannula surgical system |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020177012289A Division KR101868123B1 (ko) | 2009-11-13 | 2010-11-10 | 곡선형 캐뉼라 수술 시스템 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020207015200A Division KR20200064161A (ko) | 2009-11-13 | 2010-11-10 | 곡선형 캐뉼라 수술 시스템 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20180067725A true KR20180067725A (ko) | 2018-06-20 |
KR102118008B1 KR102118008B1 (ko) | 2020-06-02 |
Family
ID=43754950
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020177012289A KR101868123B1 (ko) | 2009-11-13 | 2010-11-10 | 곡선형 캐뉼라 수술 시스템 |
KR1020127011588A KR20120115486A (ko) | 2009-11-13 | 2010-11-10 | 곡선형 캐뉼라 수술 시스템 |
KR1020127011590A KR101772426B1 (ko) | 2009-11-13 | 2010-11-10 | 곡선형 캐뉼라, 로봇 조작기 및 피동적 가요성 샤프트를 가진 수술 기구 |
KR1020187016418A KR102118008B1 (ko) | 2009-11-13 | 2010-11-10 | 곡선형 캐뉼라 수술 시스템 |
KR1020207015200A KR20200064161A (ko) | 2009-11-13 | 2010-11-10 | 곡선형 캐뉼라 수술 시스템 |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020177012289A KR101868123B1 (ko) | 2009-11-13 | 2010-11-10 | 곡선형 캐뉼라 수술 시스템 |
KR1020127011588A KR20120115486A (ko) | 2009-11-13 | 2010-11-10 | 곡선형 캐뉼라 수술 시스템 |
KR1020127011590A KR101772426B1 (ko) | 2009-11-13 | 2010-11-10 | 곡선형 캐뉼라, 로봇 조작기 및 피동적 가요성 샤프트를 가진 수술 기구 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020207015200A KR20200064161A (ko) | 2009-11-13 | 2010-11-10 | 곡선형 캐뉼라 수술 시스템 |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP2467074B1 (ko) |
JP (4) | JP5824456B2 (ko) |
KR (5) | KR101868123B1 (ko) |
CN (2) | CN102596062B (ko) |
BR (1) | BR112012011326B1 (ko) |
Families Citing this family (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11974822B2 (en) | 2012-06-21 | 2024-05-07 | Globus Medical Inc. | Method for a surveillance marker in robotic-assisted surgery |
US11045267B2 (en) | 2012-06-21 | 2021-06-29 | Globus Medical, Inc. | Surgical robotic automation with tracking markers |
US10624710B2 (en) | 2012-06-21 | 2020-04-21 | Globus Medical, Inc. | System and method for measuring depth of instrumentation |
US10799298B2 (en) | 2012-06-21 | 2020-10-13 | Globus Medical Inc. | Robotic fluoroscopic navigation |
US11864839B2 (en) | 2012-06-21 | 2024-01-09 | Globus Medical Inc. | Methods of adjusting a virtual implant and related surgical navigation systems |
US11589771B2 (en) | 2012-06-21 | 2023-02-28 | Globus Medical Inc. | Method for recording probe movement and determining an extent of matter removed |
US12004905B2 (en) | 2012-06-21 | 2024-06-11 | Globus Medical, Inc. | Medical imaging systems using robotic actuators and related methods |
US11864745B2 (en) | 2012-06-21 | 2024-01-09 | Globus Medical, Inc. | Surgical robotic system with retractor |
US11793570B2 (en) | 2012-06-21 | 2023-10-24 | Globus Medical Inc. | Surgical robotic automation with tracking markers |
US11317971B2 (en) | 2012-06-21 | 2022-05-03 | Globus Medical, Inc. | Systems and methods related to robotic guidance in surgery |
US11857266B2 (en) | 2012-06-21 | 2024-01-02 | Globus Medical, Inc. | System for a surveillance marker in robotic-assisted surgery |
US11298196B2 (en) | 2012-06-21 | 2022-04-12 | Globus Medical Inc. | Surgical robotic automation with tracking markers and controlled tool advancement |
US11857149B2 (en) | 2012-06-21 | 2024-01-02 | Globus Medical, Inc. | Surgical robotic systems with target trajectory deviation monitoring and related methods |
US11896446B2 (en) | 2012-06-21 | 2024-02-13 | Globus Medical, Inc | Surgical robotic automation with tracking markers |
US11786324B2 (en) | 2012-06-21 | 2023-10-17 | Globus Medical, Inc. | Surgical robotic automation with tracking markers |
US11399900B2 (en) | 2012-06-21 | 2022-08-02 | Globus Medical, Inc. | Robotic systems providing co-registration using natural fiducials and related methods |
US11963755B2 (en) | 2012-06-21 | 2024-04-23 | Globus Medical Inc. | Apparatus for recording probe movement |
US20170258535A1 (en) * | 2012-06-21 | 2017-09-14 | Globus Medical, Inc. | Surgical robotic automation with tracking markers |
US11253327B2 (en) | 2012-06-21 | 2022-02-22 | Globus Medical, Inc. | Systems and methods for automatically changing an end-effector on a surgical robot |
US8821509B2 (en) * | 2012-10-27 | 2014-09-02 | Danamed, Inc. | Surgical instrument and method of using same |
US10292730B2 (en) | 2013-03-15 | 2019-05-21 | Intuitive Surgical Operations, Inc. | Sealing multiple surgical instruments |
US9888941B2 (en) | 2013-03-15 | 2018-02-13 | Intuitive Surgical Operations, Inc. | Sealing multiple surgical instruments |
US10492825B2 (en) | 2013-03-15 | 2019-12-03 | Intuitive Surgical Operations, Inc. | Sealing multiple surgical instruments |
JP6755791B2 (ja) * | 2013-03-15 | 2020-09-16 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | 多数の手術器具のシーリング |
WO2014186412A2 (en) * | 2013-05-15 | 2014-11-20 | Intuitive Surgical Operations, Inc. | Force transmission mechanism for teleoperated surgical system |
EP3799812B1 (en) * | 2013-05-22 | 2023-11-29 | Covidien LP | Apparatus for controlling surgical instruments using a port assembly |
JP6274630B2 (ja) * | 2013-06-19 | 2018-02-07 | タイタン メディカル インコーポレイテッドTitan Medical Inc. | 多関節器具位置決め装置およびそれを採用するシステム |
WO2015142824A1 (en) | 2014-03-17 | 2015-09-24 | Intuitive Surgical Operations, Inc. | Surgical drape and systems including surgical drape and attachment sensor |
WO2015142794A1 (en) * | 2014-03-17 | 2015-09-24 | Intuitive Surgical Operations, Inc. | Cannula seal assembly |
ES2848100T3 (es) * | 2014-09-04 | 2021-08-05 | Memic Innovative Surgery Ltd | Control de dispositivo que incluye brazos mecánicos |
CN113229942A (zh) * | 2015-09-09 | 2021-08-10 | 奥瑞斯健康公司 | 手术器械装置操纵器 |
GB201521809D0 (en) * | 2015-12-10 | 2016-01-27 | Cambridge Medical Robotics Ltd | Symmetrically arranged surgical instrument articulation |
GB201521807D0 (en) * | 2015-12-10 | 2016-01-27 | Cambridge Medical Robotics Ltd | Surgical instrument shaft spokes |
JP2017104451A (ja) * | 2015-12-11 | 2017-06-15 | 川崎重工業株式会社 | 外科手術システム |
US11883217B2 (en) | 2016-02-03 | 2024-01-30 | Globus Medical, Inc. | Portable medical imaging system and method |
EP3219283B1 (en) | 2016-03-09 | 2020-12-02 | Memic Innovative Surgery Ltd. | Modular surgical device comprising mechanical arms |
CN105686883B (zh) * | 2016-03-14 | 2018-11-30 | 昆山一邦泰汽车零部件制造有限公司 | 一种冗余自由度持镜机械臂 |
WO2017165183A1 (en) * | 2016-03-25 | 2017-09-28 | Intuitive Surgical Operations, Inc. | Surgical platform supported by multiple arms |
CN114767266A (zh) * | 2016-06-09 | 2022-07-22 | 直观外科手术操作公司 | 计算机辅助远程操作手术系统和方法 |
JP6632487B2 (ja) * | 2016-07-13 | 2020-01-22 | キヤノン株式会社 | 連続体ロボット、その運動学の補正方法、および連続体ロボットの制御方法 |
US11207145B2 (en) * | 2016-07-14 | 2021-12-28 | Intuitive Surgical Operations, Inc. | Multi-cable medical instrument |
KR102456414B1 (ko) * | 2016-09-09 | 2022-10-19 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 가요성 인장 부재를 이용한 푸시-풀 수술 기기 엔드 이펙터 작동 |
WO2018070040A1 (ja) | 2016-10-14 | 2018-04-19 | 株式会社メディカロイド | 把持機構 |
US10973592B2 (en) | 2017-03-09 | 2021-04-13 | Memie Innovative Surgery Ltd. | Control console for surgical device with mechanical arms |
CN110868902B (zh) * | 2017-04-25 | 2023-02-28 | 项目莫里股份有限公司 | 用于导管的混合式流体/机械致动和经中隔系统 |
JP2021502156A (ja) * | 2017-11-09 | 2021-01-28 | エンドマスター・プライベート・リミテッドEndomaster Pte Ltd | 内視鏡検査システム |
CN108567489B (zh) * | 2018-03-23 | 2022-05-13 | 深圳市精锋医疗科技股份有限公司 | 操作臂、从操作设备及手术机器人 |
CN108839047B (zh) * | 2018-03-28 | 2020-07-31 | 江苏求恒医疗器械有限公司 | 一种医疗器械夹具 |
WO2019199827A1 (en) * | 2018-04-10 | 2019-10-17 | Intuitive Surgical Operations, Inc. | Articulable medical devices having flexible wire routing |
GB201806943D0 (en) * | 2018-04-27 | 2018-06-13 | Imperial Innovations Ltd | Laparoscopic instruments |
CN108514447A (zh) * | 2018-06-11 | 2018-09-11 | 沈阳尚贤微创医疗器械股份有限公司 | 内镜手术机器人控制终端及机器人系统 |
CN108742733A (zh) * | 2018-06-29 | 2018-11-06 | 哈尔滨理工大学 | 新型可收缩式微创手术操作臂 |
WO2020017605A1 (ja) * | 2018-07-18 | 2020-01-23 | リバーフィールド株式会社 | 医療用器具の関節部および医療用器具 |
CN108888360B (zh) * | 2018-08-02 | 2024-05-28 | 北京德迈特科技发展有限公司 | 术前定位针 |
KR102149167B1 (ko) | 2018-11-07 | 2020-08-31 | 주식회사 삼육오엠씨네트웍스 | 인공지능 기반의 캐뉼라 수술 진단 장치 |
JP6870010B2 (ja) * | 2019-01-21 | 2021-05-12 | 株式会社メディカロイド | 手術システムおよび支持装置 |
CN109893255A (zh) * | 2019-04-17 | 2019-06-18 | 李宽正 | 微创神经内镜弧形导引器及其使用方法 |
CN111714162B (zh) * | 2019-05-10 | 2023-03-28 | 上海微创医疗机器人(集团)股份有限公司 | 手术装置及手术器械 |
JP6791516B1 (ja) * | 2019-10-17 | 2020-11-25 | リバーフィールド株式会社 | 手術ロボット用術具 |
CN110786932B (zh) * | 2019-11-19 | 2022-04-12 | 杭州唯精医疗机器人有限公司 | 聚散式微创手术机器人从臂系统 |
WO2022037385A1 (zh) * | 2020-08-19 | 2022-02-24 | 北京术锐技术有限公司 | 机器人系统以及控制方法 |
CN111888012B (zh) * | 2020-08-26 | 2021-11-05 | 上海微创医疗机器人(集团)股份有限公司 | 手术器械平台 |
EP3981461A1 (de) * | 2020-10-06 | 2022-04-13 | Erbe Elektromedizin GmbH | Instrument mit halterung |
JP7520678B2 (ja) * | 2020-10-07 | 2024-07-23 | 株式会社メディカロイド | 手術器具 |
KR102537304B1 (ko) | 2020-10-21 | 2023-05-30 | 주식회사 삼육오엠씨(365mc) | 음파 탐지를 이용한 캐뉼라 기반의 지방흡입 장치 및 위험도 모니터링 방법 |
WO2023006049A1 (zh) * | 2021-07-30 | 2023-02-02 | 上海微创医疗机器人(集团)股份有限公司 | 一种穿刺器及腔镜机器人 |
CN113413201B (zh) * | 2021-07-30 | 2023-09-08 | 上海微创医疗机器人(集团)股份有限公司 | 一种穿刺器及腔镜机器人 |
DE102021122841A1 (de) | 2021-09-02 | 2023-03-02 | Olympus Winter & Ibe Gmbh | Verfahren zum Betreiben eines chirurgischen Systems |
CN114010320B (zh) * | 2021-09-15 | 2022-09-23 | 苏州中科华影健康科技有限公司 | 一种柔性手术器械控制装置及内镜手术机器人系统 |
CN114569249B (zh) * | 2022-02-28 | 2023-10-31 | 复旦大学 | 一种用于复杂气道插管机器人的软镜递送装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6364888B1 (en) * | 1996-09-09 | 2002-04-02 | Intuitive Surgical, Inc. | Alignment of master and slave in a minimally invasive surgical apparatus |
KR20050100147A (ko) * | 2004-04-13 | 2005-10-18 | 국립암센터 | 복강경 수술 로봇 시스템 |
US20060167440A1 (en) * | 2005-01-24 | 2006-07-27 | Intuitive Surgical | Modular manipulator support for robotic surgery |
US20060178559A1 (en) * | 1998-11-20 | 2006-08-10 | Intuitive Surgical Inc. | Multi-user medical robotic system for collaboration or training in minimally invasive surgical procedures |
JP2008534045A (ja) * | 2005-03-22 | 2008-08-28 | アトロポス・リミテッド | 手術器具 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0699053B1 (en) * | 1993-05-14 | 1999-03-17 | Sri International | Surgical apparatus |
JP4176126B2 (ja) * | 1996-02-20 | 2008-11-05 | コンピュータ・モーション・インコーポレーテッド | 侵襲を最小に抑えた心臓手術を施術するための方法および装置 |
US6843793B2 (en) * | 1998-02-24 | 2005-01-18 | Endovia Medical, Inc. | Surgical instrument |
US7344547B2 (en) * | 1998-09-15 | 2008-03-18 | Phavel Systems, Inc. | Laparoscopic instruments and trocar systems and related surgical method |
US7594912B2 (en) * | 2004-09-30 | 2009-09-29 | Intuitive Surgical, Inc. | Offset remote center manipulator for robotic surgery |
JP2001309920A (ja) * | 2000-02-24 | 2001-11-06 | Hitachi Ltd | 鉗子及びそれを用いたマニピュレータ |
US6716226B2 (en) * | 2001-06-25 | 2004-04-06 | Inscope Development, Llc | Surgical clip |
US20030135204A1 (en) * | 2001-02-15 | 2003-07-17 | Endo Via Medical, Inc. | Robotically controlled medical instrument with a flexible section |
JP2003230565A (ja) * | 2002-02-12 | 2003-08-19 | Univ Tokyo | 能動トロカール |
US7753901B2 (en) * | 2004-07-21 | 2010-07-13 | Tyco Healthcare Group Lp | Laparoscopic instrument and cannula assembly and related surgical method |
JP4577215B2 (ja) * | 2005-12-27 | 2010-11-10 | 株式会社島津製作所 | X線検査装置 |
US9820771B2 (en) * | 2006-03-03 | 2017-11-21 | Axcess Instruments Inc. | Apparatus and method for minimally invasive surgery |
CN2889158Y (zh) * | 2006-04-12 | 2007-04-18 | 徐永芳 | 医用硬质内窥镜 |
KR101477125B1 (ko) * | 2006-06-13 | 2014-12-29 | 인튜어티브 서지컬 인코포레이티드 | 미소절개 수술 시스템 |
US20090062602A1 (en) * | 2007-07-30 | 2009-03-05 | Hansen Medical, Inc. | Apparatus for robotic instrument having variable flexibility and torque transmission |
JP5154961B2 (ja) * | 2008-01-29 | 2013-02-27 | テルモ株式会社 | 手術システム |
US8858528B2 (en) * | 2008-04-23 | 2014-10-14 | Ncontact Surgical, Inc. | Articulating cannula access device |
-
2010
- 2010-11-10 JP JP2012538937A patent/JP5824456B2/ja active Active
- 2010-11-10 BR BR112012011326-7A patent/BR112012011326B1/pt active IP Right Grant
- 2010-11-10 KR KR1020177012289A patent/KR101868123B1/ko active IP Right Grant
- 2010-11-10 CN CN201080051135.0A patent/CN102596062B/zh active Active
- 2010-11-10 EP EP10781769.4A patent/EP2467074B1/en active Active
- 2010-11-10 KR KR1020127011588A patent/KR20120115486A/ko active Search and Examination
- 2010-11-10 KR KR1020127011590A patent/KR101772426B1/ko active IP Right Grant
- 2010-11-10 KR KR1020187016418A patent/KR102118008B1/ko active IP Right Grant
- 2010-11-10 JP JP2012538933A patent/JP5722336B2/ja active Active
- 2010-11-10 KR KR1020207015200A patent/KR20200064161A/ko not_active Application Discontinuation
- 2010-11-10 CN CN201080051159.6A patent/CN102596063B/zh active Active
-
2015
- 2015-01-19 JP JP2015007410A patent/JP6000382B2/ja active Active
-
2016
- 2016-03-18 JP JP2016054862A patent/JP2016105938A/ja not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6364888B1 (en) * | 1996-09-09 | 2002-04-02 | Intuitive Surgical, Inc. | Alignment of master and slave in a minimally invasive surgical apparatus |
US20060178559A1 (en) * | 1998-11-20 | 2006-08-10 | Intuitive Surgical Inc. | Multi-user medical robotic system for collaboration or training in minimally invasive surgical procedures |
KR20050100147A (ko) * | 2004-04-13 | 2005-10-18 | 국립암센터 | 복강경 수술 로봇 시스템 |
US20060167440A1 (en) * | 2005-01-24 | 2006-07-27 | Intuitive Surgical | Modular manipulator support for robotic surgery |
JP2008534045A (ja) * | 2005-03-22 | 2008-08-28 | アトロポス・リミテッド | 手術器具 |
Also Published As
Publication number | Publication date |
---|---|
KR20200064161A (ko) | 2020-06-05 |
EP2467074A2 (en) | 2012-06-27 |
JP5824456B2 (ja) | 2015-11-25 |
JP2013510663A (ja) | 2013-03-28 |
EP2467074B1 (en) | 2019-01-02 |
JP2013510661A (ja) | 2013-03-28 |
BR112012011326B1 (pt) | 2021-10-26 |
KR101868123B1 (ko) | 2018-06-18 |
CN102596062B (zh) | 2016-08-24 |
KR102118008B1 (ko) | 2020-06-02 |
CN102596062A (zh) | 2012-07-18 |
CN102596063B (zh) | 2015-09-23 |
KR101772426B1 (ko) | 2017-08-30 |
JP5722336B2 (ja) | 2015-05-20 |
BR112012011326A2 (pt) | 2020-12-15 |
JP2016105938A (ja) | 2016-06-16 |
KR20120117017A (ko) | 2012-10-23 |
KR20170055557A (ko) | 2017-05-19 |
KR20120115486A (ko) | 2012-10-18 |
JP2015077466A (ja) | 2015-04-23 |
CN102596063A (zh) | 2012-07-18 |
JP6000382B2 (ja) | 2016-09-28 |
CN106137397A (zh) | 2016-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101868123B1 (ko) | 곡선형 캐뉼라 수술 시스템 | |
KR101948703B1 (ko) | 곡선형 캐뉼라 및 로봇 조작기 | |
KR101933191B1 (ko) | 곡선형 캐뉼라, 로봇 조작기 및 수술용 포트 | |
KR101734114B1 (ko) | 곡선형 캐뉼라, 로봇 조작기 및 수술용 포트 | |
EP2467073B1 (en) | Curved cannula and robotic manipulator | |
KR20120089852A (ko) | 곡선형 캐뉼라 및 로봇 조작기 | |
CN106137397B (zh) | 弯曲套管、机器人操纵器和具有被动柔性轴的手术器械 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
E902 | Notification of reason for refusal | ||
E90F | Notification of reason for final refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |