WO2022037385A1 - 机器人系统以及控制方法 - Google Patents

机器人系统以及控制方法 Download PDF

Info

Publication number
WO2022037385A1
WO2022037385A1 PCT/CN2021/109302 CN2021109302W WO2022037385A1 WO 2022037385 A1 WO2022037385 A1 WO 2022037385A1 CN 2021109302 W CN2021109302 W CN 2021109302W WO 2022037385 A1 WO2022037385 A1 WO 2022037385A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
moving arm
moving
movement
joint
Prior art date
Application number
PCT/CN2021/109302
Other languages
English (en)
French (fr)
Inventor
徐凯
赵江然
杨皓哲
Original Assignee
北京术锐技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京术锐技术有限公司 filed Critical 北京术锐技术有限公司
Priority to EP21857480.4A priority Critical patent/EP4201363A4/en
Priority to CA3173684A priority patent/CA3173684A1/en
Priority to US18/013,757 priority patent/US20230294284A1/en
Priority to JP2022580281A priority patent/JP2023533919A/ja
Priority to KR1020227040611A priority patent/KR20230002909A/ko
Publication of WO2022037385A1 publication Critical patent/WO2022037385A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0084Programme-controlled manipulators comprising a plurality of manipulators
    • B25J9/0087Dual arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1682Dual arm manipulator; Coordination of several manipulators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0423Input/output
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00225Systems for controlling multiple different instruments, e.g. microsurgical systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/00296Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means mounted on an endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • A61B2017/00318Steering mechanisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/0034Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means adapted to be inserted through a working channel of an endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2059Mechanical position encoders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2061Tracking techniques using shape-sensors, e.g. fiber shape sensors with Bragg gratings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/302Surgical robots specifically adapted for manipulations within body cavities, e.g. within abdominal or thoracic cavities
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras
    • A61B2090/3612Image-producing devices, e.g. surgical cameras with images taken automatically
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39083Robot interference, between two robot arms
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45117Medical, radio surgery manipulator

Definitions

  • the present disclosure relates to the field of robots, and in particular, to a robot system and a control method.
  • Laparoscopic surgery is a widely used surgical form with advantages such as small incision.
  • surgical robots have used moving arms to achieve higher stability and precision in surgical procedures.
  • the moving arm pushes the surgical instrument into the surgical site in the body (eg, human or animal) by poking to perform the surgical procedure.
  • the surgical process realized by the use of surgical robots mainly includes preoperative positioning, intraoperative operation and postoperative finishing.
  • a surgical assistant such as an assistant doctor or a nurse
  • the moving arm Before surgery, it is usually necessary for a surgical assistant (such as an assistant doctor or a nurse) to adjust the moving arm to a suitable posture according to the type of surgery and the surgical posture, connect the moving arm to the stamping card fixedly, and then set it at the end of the moving arm Surgical instruments, so that the surgical instruments enter the body by poking.
  • Movement of the kinematic arm can be manually adjusted by the surgical assistant from its distal end (i.e., near the patient end), or by the surgical assistant or physician by operating controls at the proximal end of the kinematic arm (i.e., near the physician's control end) control.
  • the present disclosure provides a control method for a robotic system including a plurality of motion arms including a first motion arm and a second motion arm, the control The method includes: determining a movement pattern of a first end of a first moving arm and a second end of a second moving arm of the robotic system, the moving pattern including the first end of the first moving arm and the second moving arm the overall movement of the second end of the a first motion path and a second motion path of the second motion arm; and based on the first motion path and the second motion path, controlling the first motion arm and the second motion arm to move to The first end of the first moving arm and the second end of the second moving arm are moved in the movement manner, and the relative pose relationship of the ends is kept unchanged during the movement.
  • the present disclosure provides a robotic system comprising: a plurality of motion arms, the plurality of motion arms comprising: a first motion arm; a second motion arm; a control device configured to: determine the The movement mode of the first end of the first movable arm and the second end of the second movable arm of the robot system, the movement mode includes the whole of the first end of the first movable arm and the second end of the second movable arm movement; based on the movement mode and the relative pose relationship between the first end of the first movement arm and the second end of the second movement arm, determine the first movement path of the first movement arm and the a second movement path of the second movement arm; and based on the first movement path and the second movement path, controlling the first movement arm and the second movement arm to move so as to cause the first movement The first end of the arm and the second end of the second moving arm move in the movement manner, and the relative pose relationship of the ends is kept unchanged during the movement.
  • the present disclosure provides a computer-readable storage medium comprising one or more instructions executed by a processor to perform a control method of a robotic system; the robotic system comprising a plurality of motion arms, The plurality of moving arms include a first moving arm and a second moving arm, and the control method includes: determining the movement modes of the first end of the first moving arm and the second end of the second moving arm of the robot system, The movement pattern includes the overall movement of the first end of the first movement arm and the second end of the second movement arm; based on the movement pattern and the first end of the first movement arm and the second movement the relative pose relationship between the ends of the second ends of the arms, determining a first motion path of the first moving arm and a second motion path of the second moving arm; and determining the first motion path and the second motion path based on the first motion path and the second motion path a movement path, controlling the movement of the first movement arm and the second movement arm, so that the first end of the first movement arm and the second end of the second movement arm move in the movement
  • FIG. 1 shows a structural block diagram of a robot system according to some embodiments of the present disclosure
  • FIG. 2 shows a schematic three-dimensional structure diagram of a robot system according to some embodiments of the present disclosure
  • FIG. 3 shows a schematic structural diagram of a moving arm of a robot system according to some embodiments of the present disclosure
  • FIG. 4 shows a partial cross-sectional view of an auxiliary connection device according to some embodiments of the present disclosure
  • FIG. 5 shows a flowchart of a control method for a robotic system according to some embodiments of the present disclosure
  • FIG. 6 shows another structural block diagram of a robot system according to some embodiments of the present disclosure
  • FIG. 7 shows a flowchart of a method for determining a motion path of a moving arm according to some embodiments of the present disclosure
  • FIG. 8 shows a flowchart of a method for determining a target pose of a moving arm according to some embodiments of the present disclosure
  • FIG. 9 shows a flowchart of a method for controlling a movement path of a moving arm according to some embodiments of the present disclosure
  • FIG. 10 shows a flowchart of a method for determining a joint step size of each joint included in a moving arm according to some embodiments of the present disclosure
  • FIG. 11 shows a schematic structural diagram of a control apparatus according to some embodiments of the present disclosure.
  • the terms “installed”, “connected”, “connected” and “coupled” should be understood in a broad sense, for example, it may be a fixed connection, or It can be a detachable connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • installed e.g., it may be a fixed connection, or It can be a detachable connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • the end close to the user eg, a doctor
  • proximal proximal or rear
  • distal distal or front
  • anterior distal, distal or front
  • position refers to the location of an object or a portion of an object in three-dimensional space (eg, the three translational degrees of freedom can be described using changes in Cartesian X, Y, and Z coordinates, such as along the Cartesian X, respectively axis, three translational degrees of freedom in Y-axis and Z-axis).
  • position refers to a rotational setting of an object or a portion of an object (eg, three rotational degrees of freedom, which may be described using roll, pitch, and yaw).
  • the term "pose” refers to a combination of position and pose of an object or a part of an object, which can be described, for example, using the six parameters of the six degrees of freedom mentioned above.
  • the pose of the moving arm or a part thereof refers to the pose of the coordinate system defined by the moving arm or a part thereof relative to the coordinate system defined by the support, the base where the moving arm is located, or the world coordinate system.
  • the position of the kinematic arm or a portion thereof may be represented by a set of joint values (eg, a one-dimensional matrix of these joint values) of a plurality of joints of the kinematic arm.
  • the joint value of the joint may include the angle that the corresponding joint rotates relative to the corresponding joint axis or the distance that the joint moves relative to the initial position.
  • the movement path of the moving arm refers to the path traveled by the moving arm to move from one position or posture to another position or posture.
  • FIG. 1 shows a structural block diagram of a robotic system 10 according to some embodiments of the present disclosure.
  • the robotic system 10 may include a control device 11 and a plurality of motion arms connected with the control device 11 .
  • the plurality of movement arms may include a first movement arm 12a and a second movement arm 12b.
  • the control device 11 may be used to control the first moving arm 12a and the second moving arm 12b.
  • the control device 11 can adjust the movement, posture, mutual coordination and the like of the first moving arm 12a and the second moving arm 12b.
  • the first kinematic arm 12a and the second kinematic arm 12b may include a first end arm 128a and a second end arm 128b, respectively, at the ends or distal ends.
  • the control device 11 may control the movement of the first moving arm 12a or the second moving arm 12b so as to move the first end arm 128a or the second end arm 128b to a desired position and posture.
  • the present disclosure illustrates an exemplary robotic system 10 in FIG. 1 and subsequent figures as including two kinematic arms.
  • the robotic system 10 may also include three, four or more kinematic arms.
  • the robotic system 10 may include a surgical robotic system, such as a laparoscopic surgical robotic system. It should be understood that robotic system 10 may also include specialized or general-purpose robotic systems used in other fields (eg, manufacturing, machinery, etc.).
  • FIG. 2 shows a schematic three-dimensional structure diagram of the robot system 10 according to some embodiments of the present disclosure.
  • the robot system 10 is a surgical robot system, which may include an operating cart 13 and a first moving arm 12 a and a second moving arm 12 b provided on the operating cart 13 .
  • the surgical cart 13 may include a base 131 and a beam 132 .
  • the first moving arm 12a and the second moving arm 12b can be movably arranged on the beam 132 .
  • multiple moving arms of the robot system 10 may also be arranged on multiple operating trolleys, for example, each moving arm is correspondingly arranged on one operating trolley. Or one moving arm is arranged on one operating trolley, and the other multiple moving arms are arranged on another operating trolley. These embodiments still fall within the scope of the present disclosure.
  • each kinematic arm of the robotic system 10 may include multiple links and multiple joints.
  • each joint of each moving arm may include a motor for driving the corresponding joint to move, thereby driving the corresponding link to rotate.
  • FIG. 3 shows a schematic structural diagram of a moving arm of the robot system 10 according to some embodiments of the present disclosure.
  • the second moving arm 12b (or the first moving arm 12a) may include joints 1201b-1208b and links 121b-128b.
  • the proximal end of the link 121b (the end close to the beam 132 is defined as the proximal end of the moving arm in the present disclosure) is connected with the beam 132, and the links 121b-127b are serially connected in sequence.
  • the joint 1201b may be located at the proximal end of the connection between the beam 132 and the connecting rod 121b
  • the joint 1202b may be located at the connection between the connecting rod 121b and the second connecting rod 122b
  • the joint 1203b may be located at the connection between the connecting rod 122b and the connecting rod 123b.
  • 1204b may be located at the connection between link 123b and link 124b
  • joint 1205b may be located at the connection between link 124b and link 125b
  • joint 1206b may be located at the connection between link 125b and link 126b
  • joint 1207b may be located at the link
  • joint 1208b may be located at the connection of link 127b to link 128b.
  • the link 128b serves as the most distal link of the second moving arm 12b, forming a second end arm 128b of the second moving arm 12b.
  • the determination and representation of the position and pose of the end arm requires a joint decision of each of the aforementioned joints. It should be understood that the links 126b, 127b and 128b together constitute the distal center of motion mechanism (RCM mechanism) of the second moving arm 12b.
  • RCM mechanism distal center of motion mechanism
  • robotic system 10 may include one or more surgical instruments.
  • surgical instrument 14a may be mounted on first end arm 128a of first kinematic arm 12a
  • surgical instrument 14b may be mounted on second end arm 128b of second kinematic arm 12b.
  • surgical instruments 14a and 14b may include, but are not limited to, clamps for performing surgery, electrosurgical knives, or image capture devices (eg, endoscopic tools) for performing illuminated imaging, and the like.
  • Surgical instrument 14a and a portion of surgical instrument 14b (eg, an arm body and a tip instrument disposed at the distal end of the arm body) may be entered into a body part of a human or animal to perform a medical procedure, such as surgery.
  • the robotic system 10 may also include an auxiliary connection device 15, such as a sheath.
  • Auxiliary connection device 15 can be installed on the human or animal body (eg in an incision or opening), one part can be positioned on the part of the human or animal body where surgery is required, and the other part is used to connect with the moving arm (eg with the first, second and second).
  • the first and second end arms 128a, 128b) of the moving arms 12a, 12b are detachably connected to better serve the surgery.
  • FIG. 4 shows a partial cross-sectional view of the auxiliary connection device 15 according to some embodiments of the present disclosure.
  • the auxiliary connection device 15 may include a sheath 151 and a sheath 152 .
  • the auxiliary connecting device 15 may also include at least two connecting portions (eg, connecting portions 153 and 154 ).
  • the connection part may include, but is not limited to, a clamp, a snap-fit structure, an adhesive structure, a plug-in structure, and a pull-in structure.
  • the connecting parts 153 and 154 may be fixedly arranged on the sheath tubes 151 and 152, respectively.
  • each moving arm (eg, the first and second moving arms 12a, 12b ) may include a connecting member (eg, the connecting member shown in FIG. 2 ) that cooperates with the connecting portion (eg, connecting portions 153 and 154 ) 1281a and 1281b).
  • the auxiliary connecting device 15 can be detachably and fixedly connected to the connecting pieces 1281 a and 1281 b of the first and second moving arms 12 a and 12 b through the connecting parts 153 and 154 , respectively.
  • the connectors 1281a and 1281b may be fixedly disposed on the first end arm 128a and the second end arm 128b, respectively.
  • the connecting pieces 1281a and 1281b are respectively connected with the connecting portion 153 and the connecting portion 154, so that the auxiliary connecting device 15 can be detachably and fixedly connected with the first and second moving arms 12a, 12b.
  • the spatial position of the first end arm 128a, the second end arm 128b, the connecting pieces 1281a and 1281b in Cartesian coordinates and the attitude orientation of the rotational coordinates can be represented by a coordinate vector.
  • the configuration of the auxiliary connection device may be determined based on the current procedure type or the configuration of the auxiliary connection device, eg, the configuration of the auxiliary connection device may be determined based on the current procedure type. Based on the configuration of the auxiliary connecting device, the shapes and relative positional relationships between the multiple sheath tubes of the auxiliary connecting device are determined to determine the relative postures of the distal ends of the multiple moving arms.
  • the distal end of the moving arm may comprise a distal arm of the moving arm, a distal motion center mechanism (RCM mechanism) of the moving arm, or a portion on the moving arm for connecting with an auxiliary connection device.
  • the pose of the distal end of the moving arm may include the pose of the distal arm of the moving arm, the pose of the distal motion center mechanism (RCM mechanism) of the moving arm, or the pose of the part on the moving arm for connecting with the auxiliary connecting device .
  • the relative pose relationship of the ends of the first moving arm 12a and the second moving arm 12b can be determined.
  • the relative pose relationship between the ends of the first moving arm 12a and the second moving arm 12b may indicate the positional relationship and attitude relationship of the end of the first moving arm 12a relative to the end of the second moving arm 12b in the world space coordinate system.
  • the end relative pose relationship may include, for example, a relative pose relationship formed between the first end arm 128a of the first moving arm 12a and the second end arm 128b of the second moving arm 12b.
  • the tip relative pose relationship may also include a relative pose relationship formed between the surgical instruments 14a and 14b mounted on the first tip arm 128a and the second tip arm 128b.
  • the relative pose relationship of the ends may further include a relative pose relationship formed between the connecting pieces 1281a and 1281b fixedly disposed on the first end arm 128a and the second end arm 128b.
  • the tip relative pose relationship may be stored in an associated relative pose model, which may be used to calculate the target pose of the tip of the first moving arm 12a or the second moving arm 12b.
  • connecting pieces 1281a and 1281b are respectively fixed on the first end arm 128a and the second end arm 128b, when the first end arm 128a and the second end arm 128b conform to the relative pose relationship of the ends, the connecting pieces 1281a and 1281b can be respectively Connected with the connecting parts 153 and 154 .
  • the target pose of the surgical instrument 14a installed at the end of the first moving arm 12a in the world coordinates can be determined
  • the second moving arm 12b moves to the target pose, which can be The target pose of the surgical instrument 14b mounted on the end of the second moving arm 12b in the world coordinates is determined.
  • the pose of the moving arm or part of it can be achieved by joints.
  • the fixed locations on each moving arm may be achieved by some of the plurality of joints included in the respective kinematic arms.
  • the target spatial posture of the fixed part on each moving arm can be realized by other joints among the plurality of joints included in the corresponding moving arm.
  • the plurality of joints of the ends of the kinematic arm (eg, first and second end arms 128a, 128b ) used to achieve the target spatial pose are relative to the joints of the kinematic arm used to achieve the target spatial position near the distal end of the exercise arm.
  • the multiple joints for realizing the target spatial posture and target spatial position of the end of the moving arm may also include other setting manners, which may be specifically set according to usage requirements.
  • the surgical instruments 14a and 14b can pass through the sheath tubes 151 and 152 of the auxiliary connecting device 15, respectively, and smoothly pass through the sheath tubes 151 and 152 at a predetermined angle, along the sheath tubes.
  • the movement of 151 and 152 into the human body requires the corresponding poses of surgery.
  • the sheaths 151 and 152 of the auxiliary connection device 15 may be flexible, and the portion of the surgical instruments 14a, 14b extending through the auxiliary connection device 15 may also be flexible, which may facilitate the connection between the first distal arm 128a and the second
  • the connecting parts 153 and 154 on the auxiliary connecting device 15 can be connected with the connecting parts 1281a and 1281b on each moving arm, and the flexible part of the auxiliary connecting device 15 can be connected to the end arm.
  • auxiliary connection device 15 shown in FIG. 4 is merely exemplary.
  • robotic system 10 may include three, four, or more kinematic arms, and auxiliary connection device 15 may include three, four, or more sheaths, each sheath including a corresponding connection thereon A part is used for connecting each sheath with each moving arm and constraining the relative pose relationship between the plurality of end arms.
  • FIG. 5 shows a flowchart of a control method 500 for a robotic system (eg, robotic system 10 ) in accordance with some embodiments of the present disclosure.
  • FIG. 6 illustrates another simplified block diagram of robotic system 10 in accordance with some embodiments of the present disclosure.
  • the method 500 may be performed by a control device (eg, control device 11 ) of the robotic system 10 .
  • the control device 11 may be configured on a computing device.
  • Method 500 may be implemented by software, firmware, and/or hardware.
  • the movement modes of the first end of the first moving arm and the second end of the second moving arm of the robot system are determined.
  • the movement pattern may include integral movement of the end of the first movement arm 12a (eg, the first end arm 128a ) and the end of the second movement arm 12b (eg, the second end arm 128b ).
  • global motion may include, but is not limited to, global translation, global rotation, or a combination of global translation and global rotation.
  • the overall rotation of the tip may include a pitch rotation or a pan rotation about a predetermined point.
  • the predetermined point may be the point of attachment of the auxiliary attachment device 15 to the ventral port, or the predetermined point may include a point along an extension of the distal end of the exercise arm, such as an RCM (Remote Center of Motion) point.
  • RCM Remote Center of Motion
  • the control device 11 may determine the movement manner of the end of the first moving arm 12a and the end of the second moving arm 12b based on the operation command.
  • the control device 11 may include an input device 113 .
  • the input device 113 is configured to receive an operation command from the user, or receive an operation instruction from the user, so that the control device 11 can obtain a specific operation command based on the operation instruction.
  • the operation command may be a command for the first end arm 128a of the first movement arm 12a and the second end arm 128b of the second movement arm 12b to translate together as a whole.
  • the operation command may be a command for the first end arm 128a of the first movement arm 12a and the second end arm 128b of the second movement arm 12b to rotate together around a predetermined point or a line as a whole.
  • the first end arm 128a of the first kinematic arm 12a and the second end arm 128b of the second kinematic arm 12b as a whole pivot together about a predetermined point in pitch or about a longitudinal axis together.
  • the operation command may be that the first end arm 128a of the first movement arm 12a and the second end arm 128b of the second movement arm 12b translate and rotate together as a whole Order.
  • the method 500 may include determining a relative pose relationship between the ends of the first end of the first motion arm and the end of the second end of the second motion arm.
  • the distal end of the first kinematic arm 12a eg, the first distal arm 128a
  • the distal end of the second kinematic arm 12b may be determined based on the current procedure type or the configuration of the auxiliary attachment device (eg, auxiliary attachment device 15 )
  • the relative pose relationship between the ends eg, the second end arm 128b.
  • the relative pose relationship between the first end of the first moving arm and the end of the second moving arm may be predetermined or known.
  • the current surgery type may be the type currently requiring surgery, for example, the surgery type may include, but is not limited to, general surgery, thoracic surgery, urological surgery, gynecological surgery, and the like.
  • the auxiliary connection device may include a sheath, and the configuration of the sheath may include, for example, the specifications and types of sheaths under different surgical procedures (the specifications and types may include, but are not limited to, for example, the length of the sheath, radial size, aperture size, number of sheath tubes, relative positional relationship of multiple sheath tubes, etc.).
  • Each of the plurality of sheaths is associated with the relative pose relationship of at least one moving arm, and the relative pose relationship between the sheaths of different configurations and each moving arm may be different.
  • the input device 113 may be used to receive setup information from a user (eg, current procedure type, configuration of auxiliary attachment devices, setup information for relative pose models, etc., etc.).
  • the relative posture relationship of the ends may include the relative positional relationship and the relative posture relationship of the first end arm 128a of the first moving arm 12a and the second end arm 128b of the second moving arm 12b.
  • the surgical instruments 14a, 14b may be mounted on the first and second end arms 128a, 128b, and the relative positional relationship of the ends may include the relative positional relationship and the relative posture relationship of the surgical instruments 14a, 14b. It should be understood that the relative pose relationship between the surgical instruments 14a, 14b may be determined by the relative pose relationship of the first end arm 128a and the second end arm 128b.
  • the relative pose relationship of the ends may further include the relative position relationship and the relative pose relationship of the connectors 1281a and 1281b.
  • the connecting pieces 1281a and 1281b are respectively fixed on the first end arm 128a and the second end arm 128b.
  • the relative pose relationship of the surgical instruments 14a, 14b can also be determined by the relative pose relationship of the connecting pieces 1281a and 1281b. It should be understood that the relative pose relationship between the surgical instruments, the relative pose relationship between the end arms and the relative pose relationship between the connectors can be converted to each other.
  • the difference between the end of the first moving arm 12a and the end of the second moving arm 12b may be determined.
  • the relative pose relationship between the ends For example, during an operation, the relative pose relationship of the tip may be determined based on the current pose of the tip arm 128a of the first moving arm 12a and the current pose of the tip arm 128b of the second moving arm 12b.
  • the control device 11 may be communicatively coupled with each of the movement arms (eg, the first and second movement arms 12a, 12b).
  • the first motion arm 12a may also include one or more sensors 129a.
  • the motors of the joints 1201-1208a may be coupled to a plurality of sensors 129a, respectively.
  • the second kinematic arm 12b may also include one or more sensors 129b.
  • the motors of the joints 1201-1208b may be coupled to a plurality of sensors 129b, respectively.
  • FIG. 6 exemplarily shows one sensor, it being understood that the illustrated sensors 129a and 129b may represent a plurality of sensors.
  • Sensors 129a and 129b may include, but are not limited to, encoders or potentiometers, for example.
  • the sensor can be used to acquire data corresponding to multiple joints of the moving arm, so as to measure the joint value of the corresponding joint.
  • the sensor may include a fiber optic sensor extended on the moving arm for obtaining the pose of the moving arm.
  • the control device 11 may include one or more processors 111 and memory 112 .
  • the processor 111 may be connected in communication with the plurality of sensors 129a of the first moving arm 12a to obtain current joint values of the respective joints 1201-1208a of the first moving arm 12a through the plurality of sensors 129a.
  • the processor 111 may be connected in communication with the plurality of sensors 129b of the second moving arm 12b to obtain current joint values of the respective joints 1201-1208b of the second moving arm 12b through the plurality of sensors 129b.
  • the processor 111 may solve the current joint value of each joint based on the forward kinematic models of the first and second moving arms 12a and 12b to obtain the first moving arm 12a and the second moving arm
  • the current pose of 12b (eg the end of the first moving arm and the end of the second moving arm).
  • the current posture may include the current posture and the current position, and the current posture may be the position and posture at any moment.
  • the forward kinematics model of the first moving arm 12a may be preset and stored in the memory 112 .
  • the forward kinematics model of the moving arm can obtain the pose of any position or any part of the moving arm based on all known joint variables (such as joint values) of the moving arm (for example, the first and second end arms 128a, 128b, and the fixedly arranged connectors 1281a, 1281b on the first and second moving arms 12a, 12b, and the postures of the surgical instruments 14a, 14b installed on the first and second moving arms 12a, 12b).
  • joint variables such as joint values
  • the movement path of the first moving arm 12a may refer to the path taken by the first moving arm 12a to move from one pose to another pose, which may be changed by the joint values of a plurality of joints (for example, the joints 1201-1208a) ( For example, continuous changes in joint values, or one or more transition joint values).
  • the movement path of the second moving arm 12b may refer to a path that the second moving arm 12b moves from one position to another, and may be represented by changes in joint values of a plurality of joints (eg, joints 1201-1208b).
  • step 507 the first moving arm and the second moving arm are respectively controlled to move based on the first moving path and the second moving path, so that the end of the first moving arm and the end of the second moving arm move in a moving manner, and when the moving During the process, the relative pose relationship of the ends is kept unchanged.
  • the method 500 may further determine whether there will be formation between the first moving arm 12a and the second moving arm 12b based on the first moving path of the first moving arm 12a and the second moving path of the second moving arm 12b interference relationship. In response to no interference relationship between the first moving arm 12a and the second moving arm 12b, step 507 is performed. And in response to an interference relationship between the first moving arm 12a and the second moving arm 12b, the first moving arm 12a and the second moving arm 12b are controlled to stop moving or an alarm message is issued.
  • method 500 may include receiving an operational command.
  • the operation command includes, for example, moving the first moving arm 12a and the second moving arm 12b as a whole by a certain distance or rotating a certain angle.
  • At least one of the surgical instruments may be disposed on the distal end of the corresponding movement arm (eg, the first movement arm of the first movement arm). end arm 128a, second end arm 128b of the second movement arm).
  • FIG. 7 shows a flowchart of a method 700 for determining a motion path of a moving arm according to some embodiments of the present disclosure.
  • the method 700 can be used to implement step 505 as shown in FIG. 5 , determining the first motion path of the first motion arm and the second motion path of the second motion arm based on the motion mode and the relative pose relationship of the end .
  • Method 700 may be performed by a control device (eg, control device 11 ) of robotic system 10 .
  • the control device 11 may be configured on a computing device.
  • Method 700 may be implemented by software, firmware, and/or hardware.
  • a target pose of the first end of the first moving arm is determined based on the movement mode.
  • the target pose of the first end may be determined based on manipulation commands received from the user.
  • the operation command may include the target pose, the mode and magnitude of the movement, and so on.
  • the forward kinematics model of the first moving arm 12a may be used for calculation based on the current joint values of the respective joints of the first moving arm 12a to obtain the end of the first moving arm 12a (for example, the first end The current pose of the arm 128a).
  • the target posture of the first end of the first moving arm 12a may be determined based on the current posture of the end of the first moving arm 12a and the user operation command.
  • the target pose may be determined based on the current pose of the first end of the first moving arm and the manner of movement (eg, overall leftward movement, rotation, etc.) and magnitude (eg, movement distance, rotation angle, etc.).
  • the target pose of the first end of the first moving arm 12a may include one of the following: a target position and a target pose of the first end arm 128a of the first moving arm 12a, the first moving arm 12a
  • RCM mechanism remote center of motion mechanism
  • the target pose of the second end of the second movement arm is determined.
  • the target pose of the second end of the second moving arm may be determined based on the overall motion mode and the target pose of the first end and the relative pose relationship of the end.
  • the target posture of the end of the second moving arm 12b may include one of the following: the target position and target posture of the second end arm 128b of the second moving arm 12b, the distance of the second moving arm 12a
  • the target pose of the end of the second moving arm 12b can be determined through the relationship between the target pose of the end of the first moving arm 12a and the relative pose of the end.
  • the target poses of the surgical instruments 14a and 14b may be based on the ends of the first moving arm 12a and the second moving arm 12b. The target pose of the distal end of the moving arm 12b is determined.
  • method 700 may also include step 705 .
  • a target pose of the first moving arm is determined based on the current pose of the first moving arm and the target pose of the first end, and a target pose based on the current pose of the second moving arm and the target pose of the second end , to determine the target pose of the second moving arm.
  • the current joint values of the respective joints of the first kinematic arm 12a may be obtained through sensors (eg, sensor 129a) installed at the respective joints of the first kinematic arm 12a, utilizing the positive kinematics of the first kinematic arm 12a The model is solved to obtain the current pose of the first moving arm 12a.
  • the current joint value of each joint of the second moving arm 12b can be obtained through sensors (eg, sensor 129b) installed at each joint of the second moving arm 12b, and the forward kinematics model of the second moving arm 12b can be used to obtain The current posture of the second moving arm 12b.
  • the pose of the moving arm may be represented by a set of joint values of a plurality of joints included in the moving arm.
  • the target pose of the moving arm may be determined based on the current pose of the moving arm and the target pose of the end by the method shown in FIG. 8 .
  • a first motion path and a second motion path are determined based on the current pose and target pose of the first motion arm and the second motion arm.
  • the first motion path of the first motion arm 12a and the second motion path of the second motion arm 12b may be determined based on an interpolation method, and the motion paths may include at least one motion cycle.
  • the movement path of the moving arm from the initial pose to the target pose can be planned by the method shown in FIG. 9 .
  • method 700 may also include step 707 .
  • step 707 it is determined whether an interference relationship will be formed between the first moving arm and the second moving arm. It should be understood that the interfering relationship may include a collision between the first moving arm 12a and the second moving arm 12b.
  • step 709 is performed.
  • method 700 may also include step 711 .
  • step 711 in response to an interference relationship between the first moving arm and the second moving arm, the first moving arm and the second moving arm are controlled to stop moving or an alarm message is issued.
  • whether an interference relationship will be formed between the first moving arm 12a and the second moving arm 12b may be determined based on the constraint relationship. Based on the constraint relationship being satisfied, it is determined that no interference relationship will occur between the first moving arm 12a and the second moving arm 12b. Based on that the constraint relationship is not satisfied, it is determined that an interference relationship will occur between the first moving arm 12a and the second moving arm 12b. It should be understood that the constraint relationship can be defined by an interference model.
  • the constraint relationship may include at least one of the following relationships: the relative position sequence relationship between the first movable arm 12a and the second movable arm 21b conforms to a predetermined relative position sequence relationship, and the relative position sequence relationship between the first movable arm 12a and the second movable arm 21b
  • the distance between the associated predetermined point and the predetermined point associated with the second moving arm 12b is greater than the predetermined safety distance
  • the predetermined line segment associated with the first moving arm 12a and the predetermined line associated with the second moving arm 12b The minimum distance between the line segments is greater than the predetermined safety line segment distance, or the difference between the joint value of one or more joints of the first moving arm 12a and the joint value of the corresponding joint of the second moving arm 12b is greater than the predetermined safe value.
  • the predetermined relative position sequence relationship may include, but is not limited to, clockwise or counterclockwise order among the plurality of movement arms.
  • the relative position sequence relationship between the plurality of moving arms can be represented by the relative position sequence of the joints or links of the moving arms.
  • one or more joints (eg, joints 1202a and/or 1203a) of the first kinematic arm 12a proximate the beam 132 are at the end of each motion cycle with the adjacent kinematic arm (eg, the second kinematic arm 12b) proximate the beam 132
  • the relative position sequence of the corresponding one or more joints (for example, the joints 1202b and/or 1203b) at the end position of each motion cycle conforms to clockwise or counterclockwise ordering, and it can be determined that the first motion arm 12a and the second motion arm 12b satisfy Constraints on relative position order relationships.
  • the end of one or more links (eg, links 121a and/or 122a ) of the first moving arm 12a can also be determined by determining the ends of the corresponding links of the second moving arm 12b (eg, links 121b and 122a ).
  • Whether the relative position sequence of the ends of 122b) conforms to a predetermined relative position sequence relationship (for example, clockwise or counterclockwise ordering), so as to determine whether the relative position sequence relationship between the first moving arm 12a and the second moving arm 12b conforms to A predetermined relative position sequence relationship.
  • the relative position sequence relationship among the plurality of moving arms may also be represented by the movement angles of the joints or links of the moving arms relative to the same reference direction. For example, based on the initial position sequence, it is determined that the rotation angle of the joint (eg, joint 1201 a ) of the first moving arm 12 a relative to the beam 132 is smaller than the rotation angle of the joint (eg, joint 1201 b ) of the second moving arm 12 b relative to the beam 132 . In response to the rotation angle of the joint 1201a relative to the beam 132 being smaller than the rotation angle of the joint 1201b relative to the beam 132, it can be determined that the first moving arm 12a and the second moving arm 12b satisfy the constraints of the predetermined relative position sequence relationship. On the contrary, it can be determined that the predetermined relative position sequence is not satisfied between the first moving arm 12a and the second moving arm 12b, which may lead to an interference relationship between the first moving arm 12a and the second moving arm 12b.
  • the predetermined points associated with the kinematic arm may include fixed points on links of the kinematic arm, joints of the kinematic arm, or other points associated with the kinematic arm.
  • the predetermined point associated with the first moving arm 12a may be a predetermined joint (eg, joint 1203a) of the first moving arm 12a
  • the predetermined point associated with the second moving arm 12b may be a corresponding joint of the second moving arm 12b (eg joint 1203b).
  • the distance between the joint 1203a of the first kinematic arm 12a and the joint 1203b of the second kinematic arm 12b may be based on the joint axis of the joint 1203a of the first kinematic arm 12a and the joint 1203b of the second kinematic arm 12b joint axis to determine.
  • the predetermined point associated with the first moving arm 12a may be a fixed point on a predetermined link (eg, link 121a) of the first moving arm 12a, and the predetermined point associated with the second moving arm 12b This may be a fixed point on a corresponding link (eg link 121b) of the second moving arm 12b or an adjacent link (eg 123b).
  • the predetermined point associated with the first kinematic arm 12a may be a fixed point on a predetermined link (eg, a distal center of motion mechanism, RCM mechanism) in the first kinematic arm 12a, the same as the second kinematic arm 12a.
  • the predetermined point to which the arm 12b is associated may be a projection point on the horizontal plane of the axis of the link of the second moving arm 12b (eg, link 124b).
  • the safety distance may be a preset distance, for example, may include but not be limited to 135mm.
  • the safety distance may also be set based on the size of the joint or link.
  • the safety distances between predetermined points corresponding to different joints or links may be different.
  • the predetermined points associated with the first moving arm 12a and the second moving arm 12b may include, but are not limited to, the situations shown in the above embodiments.
  • the predetermined line segment associated with the kinematic arm may include an edge or axis of a link of the kinematic arm, a joint axis of the kinematic arm, or other line segments associated with the kinematic arm. It should be understood that the minimum distance between two line segments is the smaller of the distance between the start points of the two line segments and the distance between the end points of the two line segments.
  • the predetermined line segment associated with the first moving arm 12a may be a predetermined link (eg, link 121a) of the first moving arm 12b
  • the predetermined line segment associated with the second moving arm 12b may be the A predetermined link (eg, link 122b).
  • the predetermined line segment associated with the first moving arm 12a may be a predetermined link (eg, link 125a) of the first moving arm 12a
  • the predetermined line segment associated with the second moving arm 12b may be the second A predetermined link of the moving arm 12b (eg, a remote center of motion mechanism (RCM mechanism) is near the edge of the link 125a, eg, the link 126a is near the edge of the link 125a).
  • RCM mechanism remote center of motion mechanism
  • the predetermined line segment associated with the first moving arm 12a may be between the RCM point of the first moving arm 12a and a point on the extension line of a predetermined link (eg, link 128a) of the first moving arm 12a
  • the formed line segment, the predetermined line segment associated with the second moving arm 12b may be the edge of the predetermined link (eg, link 128b) of the second moving arm 12b close to the first moving arm 12a.
  • the predetermined line segment associated with the first moving arm 12a may be an edge (eg, an edge close to the second moving arm 12b) of a predetermined link (eg, link 124a) of the first moving arm 12a
  • the predetermined line segment associated with the second moving arm 12b may be an edge (eg, an edge close to the first moving arm 12a) of a corresponding link (eg, link 124b) of the second moving arm 12b.
  • the predetermined line segment associated with the first moving arm 12a may be the joint axis of the first moving arm 12a
  • the predetermined line segment associated with the second moving arm 12b may be the joint axis of the second moving arm 12b.
  • the predetermined line segment associated with the first moving arm 12a may be the intersection of the joint axis of the first moving arm 12a (eg, the axis of the joint 1204a ) and another joint axis (eg, the axis of the joint 1205a ) and the first A line segment between the distal ends of a link (eg, link 125a) of a moving arm 12a
  • the predetermined line segment associated with the second moving arm 12b may be the joint axis of the second moving arm 12b (eg, the axis of the joint 1204b) and another A line segment between the intersection of a joint axis (eg, the axis of joint 1205b ) and the distal end of a link (eg, link 125b ) of second kinematic arm 12b .
  • the minimum distance between the link 121a and the link 122b is greater than the safety distance, or the RCM mechanism of the link 125a and the second moving arm 12b is close to the edge of the link 125a (for example, the link 126b is close to the edge of the link 125a ) is greater than the safety distance, or the line segment formed between the RCM point of the first moving arm 12a and the point on the extension line of the connecting rod 128a and the edge of the first moving arm 12a that the connecting rod 128b is close to
  • the minimum distance is greater than the safety distance, or the minimum distance between the edge of the link 124a close to the second moving arm 12b and the edge of the link 124b close to the first moving arm 12a is greater than the safety distance, or the intersection of the axes of the joint 1204a and the joint 1205a
  • the safety distance may include, but is not limited to, 135mm, 120mm, 60mm, and the like, for example. It should be understood that the safety distance may also be set based on the size of the joint or link. The safety distances between predetermined points corresponding to different joints or links may be different. It should be understood that the predetermined line segments associated with the first moving arm 12a and the second moving arm 12b may include, but are not limited to, the situations shown in the above embodiments.
  • the joint value of one or more joints of the first kinematic arm 12a (eg, the joint value of joint 1203a ) and the joint value of the corresponding joint of the second kinematic arm 12b (eg, the joint value of joint 1203b ) are between
  • the difference value of is greater than a predetermined safety value (eg safety angle), it can be determined that the first moving arm 12a and the second moving arm 12b satisfy the constraints of the joint safety angle relationship. On the contrary, if the difference between the joint values is smaller than the predetermined safety value, it is determined that an interference relationship may occur between the first moving arm 12a and the second moving arm 12b.
  • a predetermined safety value eg safety angle
  • the constraint relationship can also be used for the interference judgment between the moving arms adjacent to each other or between the moving arms in close positions.
  • the comparison object of the constraint relationship may be a structure prone to interference between adjacent moving arms (for example, the predetermined line segment associated with the first moving arm 12a and the predetermined line segment associated with the second moving arm 12b, the same The predetermined point associated with the first moving arm 12a and the predetermined point associated with the second moving arm 12b, one or more joints of the first moving arm 12a and the corresponding joint of the second moving arm 12b).
  • FIG. 8 shows a flowchart of a method 800 for determining a target pose of a moving arm according to some embodiments of the present disclosure.
  • the first target pose of the first moving arm is determined based on the first current pose of the first moving arm and the target pose of the first end
  • the second moving arm is based on the second moving arm.
  • the current pose and the target pose of the second end determine the second target pose of the second moving arm through the method 800 .
  • Method 800 may be performed by a control device (e.g., control device 11) of robotic system 10.
  • the control device 11 may be configured on a computing device.
  • Method 800 may be implemented by software, firmware, and/or hardware.
  • the method 800 may include selecting one of the plurality of joints of the moving arm as the characteristic joint, and setting the recommended target joint value of the characteristic joint.
  • the second movement arm 12b is taken as an example.
  • One of multiple joints of the second moving arm 12b may be selected as the characteristic joint, and the recommended target joint value of the characteristic joint may be preset.
  • the characteristic joint of the moving arm may be a joint among the plurality of joints that is prone to collision with an adjacent moving arm.
  • the selected characteristic joint may be a joint among a plurality of joints of the second moving arm 12b that is likely to collide with the first moving arm 12a, such as the joint 1205b or 1206b shown in FIG. 3 .
  • the recommended target joint values of the characteristic joints of different moving arms may be different.
  • the recommended target joint value may be predetermined.
  • the inverse kinematics model of the moving arm is solved based on the target pose of the end of the moving arm and the recommended target joint value to obtain other target joint values of the moving arm.
  • the other target joint values include target joint values of all other joints of the moving arm except the characteristic joints.
  • the inverse kinematics model of the second moving arm 12b is solved to obtain the second moving arm Additional target joint values for 12b.
  • method 800 may also include step 805 .
  • step 805 it is determined whether other target joint values of the moving arm are within the joint motion range of the corresponding joint. It should be understood that each joint of the moving arm has a certain movement range, and the joint movement range of each joint is the range between the minimum limit joint value and the maximum limit joint value of the corresponding joint. The minimum limit joint value and the maximum limit joint value may not be within this range. For example, some joints have a range of motion between 18 degrees and 45 degrees, some joints have a range of motion between 45 degrees and 90 degrees, and some joints have a range of motion between -90 degrees and -45 degrees, etc. Wait.
  • method 800 may also include step 807 .
  • step 807 the recommended target joint value is incremented or decremented by a predetermined adjustment value to adjust the recommended target joint value of the moving arm, and the method 800 returns to step 803.
  • the recommended target joint value is incremented or decremented by a predetermined adjustment value to adjust the recommended target of the second moving arm 12b joint value.
  • the adjustment value may be set to, for example, 0.2° or 0.5°, etc. to adjust the recommended target joint value.
  • 0.2° or 0.5° is only an example, and the adjustment value can also be set to other values.
  • the predetermined adjustment value is incremented or decremented until there is a solution or the joint motion range of the characteristic joint (which may not include joint limit values) is reached.
  • a solution can indicate that the recommended target joint value is within the joint motion range of the feature joint, and other target joint values are all within the joint motion range of the corresponding joint.
  • the method 800 may further include the following step: judging whether the adjusted recommended target joint value is within the joint motion range of the characteristic joint. In response to the adjusted recommended target joint value being within the joint motion range of the characteristic joint, the adjusted recommended target joint value is selected as the recommended target joint value, and the process returns to step 803 .
  • method 800 may further include step 811 .
  • a target pose of the moving arm is determined based on the recommended target joint value of the moving arm and other target joint values. For example, in response to the other target joint values of the second moving arm 12b being within the joint motion range of the corresponding joint, the target of the second moving arm 12b is determined based on the recommended target joint value of the second moving arm 12b and the other target joint values pose. For example, a set of the recommended target joint value and other target joints may be selected as the target joint value of the second moving arm 12b. By determining the target joint value of the second moving arm 12b, the target pose of the second moving arm 12b can be determined. It should be understood that the target pose of the first moving arm 12a can also be determined through the method 800 .
  • method 800 may further include step 809 between steps 805 and 811 .
  • step 809 it is determined whether an interference relationship will be formed between the plurality of moving arms. For example, in response to all other target joint values of the second moving arm 12b being within the joint motion range of the corresponding joint, the second moving arm 12b and the adjacent moving arm (eg, the first moving arm 12a) are determined based on the constraint relationship. whether there will be interference between them.
  • step 811 is performed in response to no interference relationship being formed between the plurality of motion arms.
  • the target pose of the second moving arm 12b is determined based on the recommended target joint value of the second moving arm 12b and other target joint values .
  • method 800 proceeds to step 807 in response to a situation in which an interfering relationship may be formed between the plurality of motion arms.
  • the recommended target joint value of the second moving arm 12b is incremented or decremented by a predetermined adjustment value to adjust the recommended target of the second moving arm 12b joint value.
  • the second moving arm 12b may be selected.
  • a set of solutions in which each joint of 1 is least likely to interfere with the first moving arm 12a is output as a unique solution as the target joint value of the second moving arm 12b.
  • Method 900 shows a flowchart of a method 900 for determining a movement path of a moving arm from an initial pose to a target pose, according to some embodiments of the present disclosure.
  • method 900 may be used to implement step 709 as shown in FIG. 7 .
  • Method 900 may be performed by a control device (eg, control device 11 ) of robotic system 10 .
  • the control device 11 may be configured on a computing device.
  • Method 900 may be implemented by software, firmware, and/or hardware.
  • the joint step length of each joint included in the moving arm is determined.
  • the process of controlling the movement of the moving arm to the target pose may include one or more movement cycles, and each joint step corresponds to the movement step of the moving arm in a single movement cycle.
  • a single motion cycle may be 80ms.
  • the joint step size of each joint may indicate the angle by which the corresponding joint can move about its joint axis during each motion cycle.
  • a single motion cycle corresponding to a motion step of the motion arm may be preset, wherein the motion step of the motion arm may be a set of joint steps of a plurality of joints of the motion arm.
  • the method 1000 shown in FIG. 10 may be used to determine the step size of each joint included in the motion arm.
  • the ending pose of the moving arm in each motion cycle is determined.
  • an interpolation method may be used between the initial pose of the moving arm and the target pose to determine the ending pose of each motion cycle in the plurality of motion cycles. For example, taking the first movement arm 12a as an example, when the current movement cycle is the first movement cycle, the current posture of the first movement arm 12a is the initial posture of the first movement arm 12a. When the current motion cycle is not the first motion cycle, the current pose of the first motion arm 12a is the end pose of the previous motion cycle. Based on the current pose of the first moving arm 12a and the joint step length corresponding to each joint of the first moving arm 12a, the ending joint value of each joint of the first moving arm 12a in the current cycle is determined.
  • method 900 further includes step 905 .
  • step 905 based on the ending pose of each motion cycle, it is determined whether an interference relationship will be formed between the motion arm and other motion arms. For example, based on the ending pose of the current cycle, it is determined whether an interference relationship, such as a collision, will be formed between the first moving arm 12a and the second moving arm 12b or other moving arms (eg, other moving arms with a similar distance).
  • a motion path of the motion arm is determined based on the ending pose of each motion cycle. For example, in response to the movement of the moving arm from the initial pose to the target pose without forming an interference relationship between the moving arm and other moving arms, the ending pose of each motion cycle is determined as the motion path.
  • an alarm message is issued.
  • an alert message may be issued in response to the formation of an interfering relationship between the kinematic arm and other kinematic arms.
  • an interference judgment is performed on the first moving arm 12a and the second moving arm 12b, and an alarm message may be issued in response to at least one of the first moving arm 12a and the second moving arm 12b colliding with other moving arms.
  • FIG. 10 shows a flowchart of a method 1000 of determining the joint step size of each joint included in a moving arm according to some embodiments of the present disclosure.
  • the method 1000 can be used to implement step 901 as shown in FIG. 9 , determining the joint step size of each joint included in the moving arm.
  • Method 1000 may be performed by a control device (eg, control device 11 ) of robotic system 10 .
  • the control device 11 may be configured on a computing device.
  • Method 1000 may be implemented by software, firmware, and/or hardware.
  • step 1001 based on the target pose of the moving arm, a difference between the target pose of the moving arm and the initial pose is determined.
  • the pose of the moving arm can be represented by a set of joint values of a plurality of joints included in the moving arm.
  • the difference between the target pose of the moving arm and the initial pose can be represented by a set of differences between the joint values of the corresponding joint of the moving arm at the target pose and the corresponding joint at the initial pose.
  • the target joint step number is determined based on the difference of each joint in the difference between the target pose of the moving arm and the initial pose and the joint step extreme value of each joint.
  • the joint step size may indicate the angle by which the joint can move about its joint axis in each motion cycle.
  • the step extreme value can refer to the maximum angle that the joint can move about its joint axis in each motion cycle. For example, based on the difference between the target pose and the initial pose of the moving arm (eg, the first moving arm 12a ), the difference value of each joint and the step length extreme value of each joint, the determination of the first moving arm 12a The number of steps per joint. The maximum number of steps in the number of steps for each joint can be selected as the target joint step number.
  • step 1005 the joint step length of each joint of the moving arm is determined based on the difference value of each joint in the difference between the target pose and the initial pose of the moving arm and the target joint step number. For example, by dividing the difference of each joint in the difference between the target pose and the initial pose of the first moving arm 12a (or the second moving arm 12b) by the number of steps of the target joint, the first moving arm is calculated The joint step size of each joint of 12a (or the second moving arm 12b).
  • FIG. 11 shows an architectural schematic diagram of the control device 11 included in the robot system 10 according to an embodiment of the present disclosure.
  • the control device 11 may include an input device 113 , an output device 114 , one or more memories 112 , one or more processors 111 , and a communication interface 115 .
  • the control device 11 may also not include an output device.
  • the input device 113 may include, but is not limited to, buttons, keyboards, touch screens, microphones, and the like.
  • the input device may be configured to directly receive an operation command from the user, or receive an operation instruction from the user so that the control device can acquire a specific operation command based on the operation instruction.
  • the operation command may include, for example, a command to command the second end arm 128b and the first end arm 128a to keep the relative pose relationship of the ends unchanged.
  • the input device 113 may also be used to receive setting information from the user, such as the current surgical type, the configuration of the auxiliary connecting device, the setting information of the relative pose model, etc., and the like.
  • output devices 114 may include, but are not limited to, displays, speakers, indicator lights, and the like, which may be configured to indicate the status of various components of robotic system 10, output alarm signals, and the like.
  • a computer program executable on the processor 111 may be stored in the memory 112 .
  • the processor 111 implements the control methods described in the above embodiments when executing the computer program.
  • the number of the memory 112 and the processor 111 may be one or more.
  • the communication interface 115 is used for communication between the control device 11 (eg, the processor 111 of the control device 11 ) and external devices.
  • the control device 11 may communicate with the motors provided in the respective joints of the moving arms (eg, the first moving arm 12a, the second moving arm 12b), for example, through the communication interface 115, so as to instruct the moving arms to move to Corresponding to the target position, the control device 11 can also communicate with the sensors at each joint of the moving arm, for example, through the communication interface 115, so as to receive the joint value of each joint of the moving arm.
  • the communication interface 115 may be a CAN bus communication interface, which enables the control device 11 to communicate with the motors and sensors provided in each joint through the CAN bus.
  • the input device 113 , the output device 114 , the memory 112 , the processor 111 and the communication interface 115 can be connected to each other through a bus to complete mutual communication.
  • the bus can be an industry standard architecture (ISA, Industry Standard Architecture) bus, a peripheral device interconnect (PCI, Peripheral Component) bus or an extended industry standard architecture (EISA, Extended Industry Standard Component) bus and so on.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component
  • EISA Extended Industry Standard Component
  • the processor 111 may be various types of general-purpose processors such as a central processing unit (CPU) and a digital signal processor (DSP), which are not limited herein.
  • CPU central processing unit
  • DSP digital signal processor
  • control device 11 may be integrated with the base 131 and located within the base 131 (eg, below the base 131 ) to save space.
  • control device 11 may also be provided separately from the base 131 , or the control device 11 may be partially integrated with the base 131 and the other part separated from the base 131 .
  • the control device 11 can also adopt other setting manners, and is connected in communication with each moving arm and can control each moving arm.
  • the present disclosure provides a computer-readable storage medium, which may include at least one instruction executed by a processor to perform the control method in any of the above embodiments.
  • the present disclosure provides a computer system that can include a non-volatile storage medium and at least one processor.
  • the non-volatile storage medium may include at least one instruction.
  • the processor is configured to execute at least one instruction to configure the processor to perform the control method in any of the above embodiments.
  • a computer-readable storage medium may be a tangible device that can hold and store instructions for use by an instruction execution device.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any combination of the above.
  • computer readable storage media may include, but are not limited to, portable computer disks, hard disks, read only memory (ROM), random access memory (RAM), erasable programmable read only memory (EPROM) , Electrically Erasable Programmable Read-Only Memory (EEPROM), Flash memory or other solid-state memory technology, CD-ROM, Digital Versatile Disc (DVD), HD-DVD, Blue-Ray or other optical storage devices, magnetic tape, Disk storage or other magnetic storage device, or any other medium capable of storing required information and accessible by a computer, having stored thereon computer-executable instructions that, when executed in a machine (eg, a computer device), The machine is caused to execute the control method of the present disclosure.
  • computer devices may include personal computers, servers, or network devices, among others.
  • Some embodiments of the present disclosure can help to optimize the position of the moving arm during preoperative preparation, and can calculate the target pose of the other moving arm according to the real-time pose of one moving arm and make it move to the target pose , so as to realize the preoperative setup process with a high degree of automation.
  • the moving arm after calculating the target pose of another moving arm in real time, can also reach the target position accurately, quickly and safely in a specific planning manner, so as to achieve efficient and safe preoperative preparation .
  • the ends of the plurality of moving arms move in an integral manner, and the relative pose relationship of the ends of the plurality of moving arms can be kept unchanged during the movement, so as to realize the movement of the plurality of moving arms quickly and accurately .
  • the position and posture of the surgical instruments installed on the multiple moving arms can also be quickly adjusted, which can reduce the difficulty of the user (such as a doctor) in the operation, so as to improve the preoperative or intraoperative performance. work efficiency.
  • the present disclosure also discloses the following:
  • a control method for a robotic system comprising a plurality of moving arms including a first moving arm and a second moving arm, the control method comprising:
  • the first movement arm and the second movement arm are controlled to move so that the first end of the first movement arm and the first end of the second movement arm
  • the two ends move in the motion mode, and the relative pose relationship of the ends remains unchanged during the movement.
  • the relative pose relationship between the first end of the first movable arm and the end of the second end of the second movable arm is determined.
  • a target pose of the second end of the second movement arm is determined.
  • the target pose of the first end includes one of the following:
  • the target pose of the second end includes one of the following:
  • the second moving arm is used for the target position and target posture of the end connected with the auxiliary connecting device.
  • a second target pose of the second moving arm is determined.
  • Determining the second target pose of the second moving arm based on the second current pose of the second moving arm and the target pose of the second end includes:
  • the first recommended target joint value is incremented or decremented by a predetermined adjustment value to adjust the first recommendation target joint value
  • the second recommended target joint value is incremented or decremented by a predetermined adjustment value to adjust the second recommendation Target joint value.
  • target joint values of the second moving arm are determined based on the target pose of the second end and the adjusted second recommended target joint value.
  • the first recommended target joint value or the second recommended target joint value is adjusted.
  • the first characteristic joint is a joint among the plurality of joints of the first moving arm that is prone to collide with other moving arms in the plurality of moving arms;
  • the second characteristic joint is a joint among the plurality of joints of the second moving arm that is prone to collide with other moving arms among the plurality of moving arms.
  • the first moving arm and the second moving arm are controlled to stop moving or an alarm message is issued.
  • judging whether an interference relationship will be formed between the first moving arm and the second moving arm comprises:
  • the relative position sequence relationship between the first moving arm and the second moving arm conforms to a predetermined relative position sequence relationship
  • the distance between the predetermined point associated with the first moving arm and the predetermined point associated with the second moving arm is greater than a predetermined safety distance
  • the minimum distance between the predetermined line segment associated with the first moving arm and the predetermined line segment associated with the second moving arm is greater than a predetermined safety line segment distance
  • the difference between the joint value of one or more joints of the first moving arm and the joint value of the corresponding joint of the second moving arm is greater than a predetermined safety value.
  • the first motion path of the first motion arm and the second motion path of the second motion arm are determined.
  • the motion path of the motion arm is determined.
  • a robotic system comprising:
  • the plurality of motion arms comprising:
  • a control device configured to perform the control method of any one of items 1-18.
  • the robotic system of item 19 further comprising an auxiliary connection device comprising at least a first sheath for connection with the first end and a first sheath for connection with the first end. A second sheath with two ends connected,
  • the relative pose relationship of the ends is determined based on the shapes of the first sheath tube and the second sheath tube and their relative positional relationship.
  • the end of the first moving arm is provided with a first arm body connecting portion for connecting with the first auxiliary connecting portion
  • the end of the second moving arm is provided with a connecting portion for connecting with the second auxiliary connecting portion
  • the second arm body connection part is provided.
  • a computer-readable storage medium comprising one or more instructions executable by a processor to perform the control method according to any of items 1-18.
  • a computer system comprising:
  • a memory for storing at least one instruction
  • a processor configured to execute the at least one instruction to perform the control method of any of items 1-18.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Robotics (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)

Abstract

本公开涉及医疗器械领域,公开一种用于机器人系统的控制方法,机器人系统包括多个运动臂,多个运动臂包括第一、第二运动臂,控制方法包括:确定机器人系统的第一、第二运动臂的末端的运动方式,运动方式包括第一、第二运动臂的末端的整体运动;基于运动方式以及第一、第二运动臂的末端相对位姿关系,确定第一、第二运动臂的运动路径;以及基于对应的运动路径,控制第一、第二运动臂运动,以使第一、第二运动臂的末端以运动方式运动,且在运动过程中保持末端相对位姿关系不变。以使多个运动臂的末端以整体方式运动,并在运动过程中能够保持彼此的相对位姿关系不变,以快速准确地实现多个运动臂的运动。

Description

机器人系统以及控制方法
相关申请的交叉引用
本申请要求于2020年8月19日提交的、申请号为202010838021.6、发明名称为“用于医疗设备的控制方法、医疗设备控制系统及存储介质”、2020年8月19日提交的、申请号为2020108372328、发明名称为“用于医疗设备的控制方法、医疗设备控制系统及存储介质”的中国专利申请的优先权,这些申请的全文以引用方式整体结合于此。
技术领域
本公开涉及机器人领域,尤其涉及机器人系统以及控制方法。
背景技术
腹腔镜手术是被广泛运用的手术形式,具有创口小等优势。近年来,手术机器人使用运动臂实现更高稳定性和精确性的外科手术。手术中,运动臂将手术器械通过戳卡送入体内(例如人类或动物)的手术部位,实施外科手术。
目前,使用手术机器人实现的手术过程主要包括术前定位、术中操作和术后整理。在术前,通常需要由手术助理(例如助理医生或护师)根据手术类型及手术位姿将运动臂调整到合适的位姿,将运动臂与戳卡固定连接,然后在运动臂的末端设置手术器械,以使手术器械通过戳卡进入体内。运动臂的运动既可以由手术助理从其远端(即靠近患者端处)手动调整,也可以由手术助理或医生通过操作在运动臂近端(即靠近医生控制端处)的控制装置来进行控制。然而,由于运动臂可能体积和重量较大,存在稳定性问题和碰撞风险,尤其在单孔手术中。因此,运动臂调整复杂且耗时。类似地,在术中、术后,运动臂的调整都存在以上问题。
发明内容
在一些实施例中,本公开提供了一种用于机器人系统的控制方法,所述机器人系统包括多个运动臂,所述多个运动臂包括第一运动臂和第二运动臂,所述控制方法包括:确定所述机器人系统的第一运动臂的第一末端和第二运动臂的第二末端的运动方式,所述运动方式包括所述第一运动臂的第一末端和第二运动臂的第二末端的整体运动;基于所述运动方式以及所述第一运动臂的第一末端与所述第二运动臂的第二末端的末端相对位姿关系,确定所述第一运动臂的第一运动路径以及所述第二运动臂的第二运动路径;以及基于所述第一运动路径和所述第二运动路径,控制所述第一运动臂和所述第二运动臂运动,以使所述第一运动臂的第一末端和第二运动臂的第二末端以所述运动方式运动,且在运动过程中保持所述末端相对位姿关系不变。
在一些实施例中,本公开提供了一种机器人系统,包括:多个运动臂,所述多个运动臂包括:第一运动臂;第二运动臂;控制装置,被配置成:确定所述机器人系统的第一运动臂的第一末端和第二运动臂的第二末端的运动方式,所述运动方式包括所述第一运动臂的第一末端和第二运动臂的第二末端的整体运动;基于所述运动方式以及所述第一运动臂的第一末端与所述第二运动臂的第二末端的末端相对位姿关系,确定所述第一运动臂的第一运动路径以及所述第二运动臂的第二运动路径;以及基于所述第一运动路径和所述第二运动路径,控制所述第一运动臂和所述第二运动臂运动,以使所述第一运动臂的第一末端和第二运动臂的第二末端以所述运动方式运动,且在运动过程中保持所述末端相对位姿关系不变。
在一些实施例中,本公开提供了一种计算机可读存储介质,包括一个或多个指令,所述指令由处理器执行以执行机器人系统的控制方法;所述机器人系统包括多个运动臂,所述多个运动臂包括第一运动臂和第二运动臂,所述控制方法包括:确定所述机 器人系统的第一运动臂的第一末端和第二运动臂的第二末端的运动方式,所述运动方式包括所述第一运动臂的第一末端和第二运动臂的第二末端的整体运动;基于所述运动方式以及所述第一运动臂的第一末端与所述第二运动臂的第二末端的末端相对位姿关系,确定所述第一运动臂的第一运动路径以及所述第二运动臂的第二运动路径;以及基于所述第一运动路径和所述第二运动路径,控制所述第一运动臂和所述第二运动臂运动,以使所述第一运动臂的第一末端和第二运动臂的第二末端以所述运动方式运动,且在运动过程中保持所述末端相对位姿关系不变。
附图说明
为了清楚地说明本公开实施例中的技术方案,下面将对本公开实施例描述中所需要使用的附图作简单的介绍。下面描述中的附图仅仅示出本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据本公开实施例的内容和这些附图获得其他的实施例。
图1示出了根据本公开一些实施例的机器人系统的结构框图;
图2示出了根据本公开一些实施例的机器人系统的立体结构示意图;
图3示出了根据本公开一些实施例的机器人系统的运动臂的结构示意图;
图4示出了根据本公开一些实施例的辅助连接装置的局部剖面图;
图5示出了根据本公开一些实施例的用于机器人系统的控制方法的流程图;
图6示出了根据本公开一些实施例的机器人系统的另一结构框图;
图7示出了根据本公开一些实施例的用于确定运动臂的运动路径的方法的流程图;
图8示出了根据本公开一些实施例的用于确定运动臂的目标位姿的方法的流程图;
图9示出了根据本公开一些实施例的用于控制运动臂的运动路径的方法的流程图;
图10示出了根据本公开一些实施例的用于确定运动臂所包含的每一关节的关节步长的方法的流程图;
图11示出了根据本公开一些实施例的控制装置的架构示意图。
具体实施方式
为使本公开解决的技术问题、采用的技术方案和达到的技术效果更加清楚,下面将结合附图对本公开实施例的技术方案作进一步的详细描述,显然,所描述的实施例仅仅是本公开示例性实施例,而不是全部的实施例。
在本公开的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。在本公开的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“耦合”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连;可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。在本公开中,在手术机器人系统中,定义靠近用户(例如医生)的一端为近端、近部或后端、后部,靠近手术患者的一端为远端、远部或前端、前部。本领域技术人员可以理解,本公开的实施例可以用于医疗器械或手术机器人,也可以用于其他非医疗装置。
在本公开中,术语“位置”指对象或对象的一部分在三维空间中的定位(例如,可使用笛卡尔X、Y和Z坐标方面的变化描述三个平移自由度,例如分别沿笛卡尔X轴、Y轴和Z轴的三个平移自由度)。在本公开中,术语“姿态”指对象或对象的一部分的旋转设置(例如三个旋转自由度,可使用滚转、俯仰和偏转来描述这三个旋转自由度)。在本公开中,术语“位姿”指对象或对象的一部分的位置和姿态的组合,例如可使用以上提到的六个自由度中的六个参数来描述。在本公开中,运动臂或其一部分的位姿是指运动臂或其一部分定义的坐标系相对于运动臂所在的支架、基座定义的坐标系或世界坐标系的位姿。在本公开中,运动臂或其一部分的位置可由运动臂的多个关节的关节值的集合(例如由这些关节值组成的一维矩阵)来表示。在本公开中,关节的关节值可以包括相应关节相对于相应的关节轴所旋转的角度或者相对于初始位置移动的距离。在本公开中,运动臂的运动路径是指运动臂从一个位置或姿态移动到另一个位置或姿态所经过的路径。
图1示出了根据本公开一些实施例的机器人系统10的结构框图。如图1所示,机器人系统10可以包括控制装置11以及与控制装置11连接的多个运动臂。在一些实施例中,如图1所示,多个运动臂可以包括第一运动臂12a和第二运动臂12b。控制装置11可以用于控制第一运动臂12a和第二运动臂12b。例如,控制装置11可以调整第一运动臂12a和第二运动臂12b的运动、位姿、相互协调等。在一些实施例中,第一运动臂12a和第二运动臂12b在末端或远端处可以分别包括第一末端臂128a和第二末端臂128b。控制装置11可以控制第一运动臂12a或第二运动臂12b运动,以使第一末端臂128a或第二末端臂128b运动至期望的位置和姿态。
本公开文本为了便于简要说明,在图1以及后续附图中将示例性机器人系统10示为包括两个运动臂。但是本领域的技术人应理解,机器人系统10还可以包括三个、四个或更多的运动臂。机器人系统10可以包括手术机器人系统,例如腔镜手术机器人 系统。应当理解,机器人系统10还可以包括用于其他领域(例如,制造、机械等等)的专用或通用机器人系统。
图2示出了根据本公开一些实施例的机器人系统10的立体结构示意图。如图2所示,机器人系统10是手术机器人系统,可以包括手术台车13以及设置在手术台车13上的第一运动臂12a和第二运动臂12b。在一些实施例中,手术台车13可以包括基座131和横梁132。在一些实施例中,第一运动臂12a和第二运动臂12b可以活动设置在横梁132上。应当理解,机器人系统10的多个运动臂也可以设置在多个手术台车上,例如,每个运动臂对应设置在一个手术台车上。或者一个运动臂设置在一个手术台车上,其余多个运动臂设置在另一手术台车上。这些实施例仍落在本公开的保护范围之内。
在一些实施例中,机器人系统10的每一运动臂(例如第一运动臂12a和第二运动臂12b)可以包括多根连杆以及多个关节。在一些实施例中,每个运动臂的每个关节可以包括电机,用于驱动相应的关节运动,进而带动相应的连杆转动。
图3示出了根据本公开一些实施例的机器人系统10的运动臂的结构示意图。如图3所示,第二运动臂12b(或第一运动臂12a)可以包括关节1201b-1208b和连杆121b-128b。连杆121b的近端(在本公开中靠近横梁132的一端被定义为运动臂的近端)与横梁132连接,连杆121b-127b依次串连。其中关节1201b可以位于横梁132与连杆121b的近端连接处,关节1202b可以位于连杆121b与第二连杆122b的连接处,关节1203b可以位于连杆122b与连杆123b的连接处,关节1204b可以位于连杆123b与连杆124b的连接处,关节1205b可以位于连杆124b与连杆125b的连接处,关节1206b可以位于连杆125b与连杆126b的连接处,关节1207b可以位于连杆126b与连杆127b的连接处,关节1208b可以位于连杆127b与连杆128b的连接处。连杆128b作为第二运动臂12b的最远端的连杆,形成第二运动臂12b的第二末端臂128b。末端 臂的位置和姿态的确定和表示需要前述每个关节共同决定。应当理解,连杆126b、127b和128b,共同构成第二运动臂12b的远端运动中心机构(RCM机构)。
在一些实施例中,机器人系统10可以包括一个或多个手术器械。如图3所示,手术器械14a可以安装在第一运动臂12a的第一末端臂128a上,并且手术器械14b可以安装在第二运动臂12b的第二末端臂128b上。应当理解,手术器械14a和手术器械14b可以包括但不限于用于实施手术的夹钳、电刀或用于进行照明成像的图像捕获设备(例如内窥镜工具)等等。手术器械14a和手术器械14b的一部分(例如臂体和设置在臂体远端的末端器械)可进入人类或动物的某个身体部位内以实施医疗操作,例如手术。
在一些实施例中,如图2所示,机器人系统10还可以包括辅助连接装置15,例如鞘套。辅助连接装置15可以安装在人体或动物体上(例如切口或开口中),一部分可以被定位在人类或动物需要进行手术的身体部位,另一部分用于与运动臂(例如与第一、第二运动臂12a、12b的第一、第二末端臂128a、128b)可拆卸地连接,以更好地为手术服务。
图4示出了根据本公开一些实施例的辅助连接装置15的局部剖面图。在一些实施例中,如图4所示,辅助连接装置15可以包括鞘管151和鞘管152。在一些实施例中,辅助连接装置15还可以包括至少两个连接部(例如连接部153和154)。连接部可以包括但不限于夹钳、卡合结构、粘合结构、插拔结构、吸合结构。连接部153和154可以分别固定设置在鞘管151和152上。
在一些实施例中,每个运动臂(例如第一、第二运动臂12a、12b)上可以包括与连接部(例如连接部153和154)配合的连接件(例如图2所示的连接件1281a和1281b)。辅助连接装置15可以通过连接部153和154分别与第一、第二运动臂12a、12b的连接件1281a和1281b可拆卸地固定连接。在一些实施例中,如图2所示,连接件1281a 和1281b可以分别固定设置在第一末端臂128a和第二末端臂128b上。连接件1281a和1281b分别与连接部153和连接部154连接,以使辅助连接装置15与第一、第二运动臂12a、12b可拆卸固定连接。
应当理解,第一末端臂128a、第二末端臂128b、连接件1281a和1281b在笛卡尔坐标的空间位置和旋转坐标的姿态指向可以通过坐标向量表示。在一些实施例中,可基于当前手术类型或辅助连接装置的构型,例如,基于当前手术类型可以确定辅助连接装置的构型。基于辅助连接装置的构型,确定辅助连接装置的多个鞘管之间的形状和相对位置关系,以确定多个运动臂的末端相对位姿。应该理解,运动臂的末端可以包括运动臂的末端臂、运动臂的远端运动中心机构(RCM机构)、或者运动臂上用于与辅助连接装置连接的部位。运动臂的末端的位姿可以包括运动臂的末端臂的位姿、运动臂的远端运动中心机构(RCM机构)的位姿、或者运动臂上用于与辅助连接装置连接的部位的位姿。
例如,可基于鞘管151和152的形状和相对位置关系,可以确定第一运动臂12a和第二运动臂12b的末端相对位姿关系。第一运动臂12a与第二运动臂12b之间的末端相对位姿关系可指示在世界空间坐标系下第一运动臂12a的末端相对于第二运动臂12b的末端的位置关系和姿态关系。应当理解,末端相对位姿关系可以包括例如第一运动臂12a的第一末端臂128a和第二运动臂12b的第二末端臂128b之间形成的相对位姿关系。或者,末端相对位姿关系还可以包括安装在第一末端臂128a和第二末端臂128b上的手术器械14a和14b之间形成的相对位姿关系。或者,末端相对位姿关系还可以包括固定设置在第一末端臂128a和第二末端臂128b上的连接件1281a和1281b之间形成的相对位姿关系。在一些实施例中,末端相对位姿关系可以存储在相关联的相对位姿模型中,可以用于计算第一运动臂12a或第二运动臂12b的末端的目标位姿。由于连接件1281a和1281b分别固定在第一末端臂128a和第二末端臂128b上,因此 在第一末端臂128a和第二末端臂128b符合末端相对位姿关系时,连接件1281a和1281b可以分别与连接部153和154连接。
应当理解,第一运动臂12a运动至目标位姿,可以确定安装于第一运动臂12a末端的手术器械14a在世界坐标内的目标位姿,并且第二运动臂12b运动至目标位姿,可以确定安装于第二运动臂12b末端的手术器械14b在世界坐标内的目标位姿。运动臂或其一部分的姿态可以通过关节来实现。例如,在一些实施例中,每个运动臂上的固定部位(例如第一、第二末端臂128a、128b,以及固定设置的在第一、第二运动臂12a、12b上的连接件1281a、1281b、安装在第一、第二运动臂12a、12b上的手术器械14a、14b)的目标空间位置可以通过相应运动臂所包括的多个关节中的一些关节实现。每个运动臂上的固定部位的目标空间姿态可以通过相应运动臂所包括的多个关节中的另一些关节实现。在一些实施例中,运动臂的末端(例如第一、第二末端臂128a、128b)用于实现目标空间姿态的多个关节相对于该运动臂的用于实现目标空间位置的多个关节更靠近运动臂的远端。应当理解,实现运动臂的末端的目标空间姿态和目标空间位置的多个关节还可以包括其他设置方式,具体可以根据使用需求设置。
在一些实施例中,待手术器械安装到末端臂后,手术器械14a和14b可以通过辅助连接装置15的鞘管151和152,按预定的角度分别顺利穿过鞘管151和152,沿鞘管151和152运动进入人体内需要手术的相应位姿。在一些实施例中,辅助连接装置15的鞘管151和152可以是柔性的,并且手术器械14a、14b延伸穿过辅助连接装置15的部分也是柔性的,可以便于在第一末端臂128a和第二末端臂128b大致符合末端相对位姿关系时,辅助连接装置15上的连接部153、154可以与每个运动臂上的连接件1281a、1281b连接,辅助连接装置15的柔性部分可以在末端臂的位姿具有一定误差的情况下,保证每个手术器械仍可以顺利通过鞘管进入手术区域。
应当理解,如图4所示的辅助连接装置15仅仅是示例性的。在一些实施例中,机 器人系统10可以包括三个、四个或更多的运动臂,辅助连接装置15可包括三个、四个或更多的鞘管,每个鞘管上包括相应的连接部,以便用于每个鞘管与每个运动臂连接,并约束多个末端臂之间的末端相对位姿关系。
本公开提供了一种可以用于机器人系统的控制方法。图5示出了根据本公开一些实施例的用于机器人系统(例如机器人系统10)的控制方法500的流程图。图6示出了根据本公开一些实施例的机器人系统10的另一简化框图。如图5和图6所示,该方法500可以由机器人系统10的控制装置(例如控制装置11)来执行。控制装置11可以配置在计算设备上。方法500可以由软件、固件和/或硬件来实现。
如图5所示,在步骤501,确定机器人系统的第一运动臂的第一末端和第二运动臂的第二末端的运动方式。在一些实施例中,运动方式可以包括第一运动臂12a的末端(例如第一末端臂128a)和第二运动臂12b的末端(例如第二末端臂128b)的整体运动。例如,整体运动可以包括但不限于整体平移、整体转动、或整体平移和整体转动的组合。应当理解,末端整体转动可以包括绕预定点的俯仰转动或者水平转动。在一些实施例中,预定点可以为辅助连接装置15与入腹口的连接点,或者预定点可以包括沿运动臂的末端的延长线上的点,例如RCM(远程运动中心)点。
在一些实施例中,控制装置11可基于操作命令,确定第一运动臂12a的末端和第二运动臂12b的末端的运动方式。在一些实施例中,控制装置11可包括输入装置113。输入装置113被配置成可以用于接收来自用户的操作命令,或者接收来自用户的操作指示,以使控制装置11能够基于该操作指示而获取具体的操作命令。例如,在运动方式为整体平移的情况下,该操作命令可以是第一运动臂12a的第一末端臂128a和第二运动臂12b的第二末端臂128b作为整体一起平移的命令。在运动方式为整体转动的情况下,该操作命令可以是第一运动臂12a的第一末端臂128a和第二运动臂12b的第二末端臂128b作为整体一起绕预定点或直线转动的命令。例如,第一运动臂12a的第一 末端臂128a和第二运动臂12b的第二末端臂128b作为整体一起绕预定点俯仰转动或一起绕纵轴线转动。在运动方式为整体平移和整体转动的组合的情况下,该操作命令可以是第一运动臂12a的第一末端臂128a和第二运动臂12b的第二末端臂128b作为整体一起平移并转动的命令。
在步骤503,可任选地,方法500可以包括确定第一运动臂的第一末端与第二运动臂第二末端的末端相对位姿关系。在一些实施例中,基于当前手术类型或辅助连接装置(例如辅助连接装置15)的构型,可以确定第一运动臂12a的末端(例如第一末端臂128a)和第二运动臂12b的末端(例如第二末端臂128b)之间的末端相对位姿关系。在一些实施例中,第一运动臂的第一末端与第二运动臂第二末端的末端相对位姿关系可以是预先确定的或者已知的。
在一些实施例中,当前手术类型可以是当前需进行手术的类型,例如,手术类型可以包括但不限于普外科手术、胸外科手术、泌尿外科手术、妇科手术等。在一些实施例中,辅助连接装置可以包括鞘套,鞘套的构型可以包括例如不同术式下的鞘套的规格和型号(规格和型号可以包括但不限于例如鞘套的长度、径向尺寸、孔径大小、鞘管数量、多个鞘管设置的相对位置关系等)。多个鞘套中的每个与至少一个运动臂的相对位姿关系相关联,不同构型的鞘套与每个运动臂的相对位姿关系可以不同。在一些实施例中,输入装置113可用于接收来自用户的设置信息(例如当前手术类型、辅助连接装置的构型、相对位姿模型等的设置信息等)。
在一些实施例中,末端相对位姿关系可以包括第一运动臂12a的第一末端臂128a与第二运动臂12b的第二末端臂128b的相对位置关系以及相对姿态关系。在一些实施例中,手术器械14a、14b可以安装于第一、第二末端臂128a、128b上,末端相对位姿关系可以包括手术器械14a、14b的相对位置关系以及相对姿态关系。应当理解,手术器械14a、14b之间的相对位姿关系可以通过第一末端臂128a和第二末端臂128b的 相对位姿关系来确定。在一些实施例中,末端相对位姿关系还可以包括连接件1281a和1281b的相对位置关系以及相对姿态关系。连接件1281a和1281b分别固定设置于第一末端臂128a和第二末端臂128b上。这样,手术器械14a、14b的相对位姿关系还可以通过连接件1281a和1281b的相对位姿关系来确定。应理解,手术器械之间的相对位姿关系,末端臂之间的相对位姿关系和连接件之间的相对位姿关系可以相互转换。
在一些实施例中,还可以基于第一运动臂12a的末端的当前位姿以及第二运动臂12b的末端的当前位姿,确定第一运动臂12a的末端和第二运动臂12b的末端之间的末端相对位姿关系。例如在术中时,可以基于第一运动臂12a的末端臂128a的当前位姿和第二运动臂12b的末端臂128b的当前位姿,确定末端相对位姿关系。
在一些实施例中,如图6所示,控制装置11可与各运动臂(例如,第一运动臂和第二运动臂12a、12b)通信连接。在一些实施例中,如图6所示,第一运动臂12a还可以包括一个或多个传感器129a。关节1201-1208a的电机可以分别与多个传感器129a耦合。第二运动臂12b还可以包括一个或多个传感器129b。关节1201-1208b的电机可以分别与多个传感器129b耦合。图6示例性地示出一个传感器,应当理解,图示的传感器129a和129b可以表示多个传感器。传感器129a和129b可以包括但不限于例如编码器或电位计。传感器可以用于获取对应运动臂的多个关节的数据,以测得相应关节的关节值。在一些实施例中,传感器可以包括延伸设置在运动臂上的光纤传感器,用于获得运动臂的位姿。
在一些实施例中,如图6所示,控制装置11可以包括一个或多个处理器111和存储器112。处理器111可以与第一运动臂12a的多个传感器129a通信连接,以通过多个传感器129a获得第一运动臂12a的各个关节1201-1208a的当前关节值。处理器111可以与第二运动臂12b的多个传感器129b通信连接,以通过多个传感器129b获得第二运动臂12b的各个关节1201-1208b的当前关节值。
在一些实施例中,处理器111可以基于第一、第二运动臂12a、12b的正运动学模型,对各个关节的当前关节值进行解算,以得到第一运动臂12a和第二运动臂12b(例如第一运动臂的末端和第二运动臂的末端)的当前位姿。应当理解,当前位姿可以包括当前姿态和当前位置,当前位姿可以是任一时刻的位置和姿态。第一运动臂12a的正运动学模型可以预先设置并存储在存储器112中。运动臂的正运动学模型可以基于运动臂已知的所有关节变量(例如关节值)的情况下,获得运动臂任意位置或任意部分的位姿(例如第一、第二末端臂128a、128b,以及固定设置的在第一、第二运动臂12a、12b上的连接件1281a、1281b、安装在第一、第二运动臂12a、12b上的手术器械14a、14b的位姿)。
在步骤505,基于运动方式以及末端相对位姿关系,确定第一运动臂的第一运动路径以及第二运动臂的第二运动路径。应当理解,第一运动臂12a的运动路径可以指第一运动臂12a从一个位姿移动到另一个位姿所经过的路径,可以由多个关节(例如关节1201-1208a)的关节值变化(例如,关节值的连续变化,或者一个或多个过渡关节值)来表示。第二运动臂12b的运动路径可以指第二运动臂12b从一个位置移动到另一个位置所经过的路径,可以由多个关节(例如关节1201-1208b)的关节值变化来表示。
在步骤507,基于第一运动路径和第二运动路径分别控制第一运动臂和第二运动臂运动,以使第一运动臂的末端和第二运动臂的末端以运动方式运动,且在运动过程中保持末端相对位姿关系不变。
在一些实施例中,方法500还可以基于第一运动臂12a的第一运动路径以及第二运动臂12b的第二运动路,判断第一运动臂12a和第二运动臂12b之间是否会形成干涉关系。响应于第一运动臂12a和第二运动臂12b之间不会形成干涉关系,执行步骤507。以及响应于第一运动臂12a和第二运动臂12b之间会形成干涉关系,控制第一运 动臂12a和第二运动臂12b停止运动或发出警报信息。
在一些实施例中,方法500可以包括接收操作命令。在一些实施例中,操作命令包括,例如,使第一运动臂12a和第二运动臂12b整体移动特定距离或旋转特定角度。
在一些实施例中,在进行步骤501到507的过程中,手术器械(例如手术器械14a和14b)中的至少一个可以被设置于对应的运动臂的末端上(例如第一运动臂的第一末端臂128a、第二运动臂的第二末端臂128b)。
图7示出了根据本公开一些实施例的用于确定运动臂的运动路径的方法700的流程图。在一些实施例中,方法700可以用于实现如图5所示的步骤505,基于运动方式以及末端相对位姿关系确定第一运动臂的第一运动路径以及第二运动臂的第二运动路径。方法700可以由机器人系统10的控制装置(例如控制装置11)来执行。控制装置11可以配置在计算设备上。方法700可以由软件、固件和/或硬件来实现。
在步骤701,基于运动方式,确定第一运动臂的第一末端的目标位姿。在一些实施例中,第一末端的目标位姿可以基于从用户接收的操作命令来确定。操作命令可以包括目标位姿、运动的方式和幅度等等。在一些实施例中,可以基于第一运动臂12a的各个关节的当前关节值,利用第一运动臂12a的正运动学模型进行解算,以得到第一运动臂12a的末端(例如第一末端臂128a)的当前位姿。可以基于第一运动臂12a的末端的当前位姿以及用户操作命令,确定第一运动臂12a的第一末端的目标位姿。例如,可以基于第一运动臂的第一末端的当前位姿以及运动的方式(例如,整体向左移动、旋转等)和幅度(例如,移动距离、旋转角度等),确定目标位姿。
在一些实施例中,第一运动臂12a的第一末端的目标位姿可以包括以下中的一种:第一运动臂12a的第一末端臂128a的目标位置和目标姿态、第一运动臂12a的远端运动中心机构(RCM机构)的目标位置和目标姿态、第一运动臂12a用于与辅助连接装置15连接的末端(例如连接件1281a)的目标位置和目标姿态。
在步骤703,基于运动方式,确定第二运动臂的第二末端的目标位姿。在一些实施例中,可以基于整体运动方式以及第一末端的目标位姿和末端相对位姿关系,确定第二运动臂的第二末端的目标位姿。在一些实施例中,第二运动臂12b的末端的目标位姿可以包括以下中的一种:第二运动臂12b的第二末端臂128b的目标位置和目标姿态、第二运动臂12a的远端运动中心机构(RCM机构)的目标位置和目标姿态、第二运动臂12b用于与辅助连接装置15连接的末端(例如连接件1281b)的目标位置和目标姿态。应当理解,可以通过第一运动臂12a的末端的目标位姿和末端相对位姿关系,确定第二运动臂12b的末端的目标位姿。在一些实施例中,在第一运动臂12a和第二运动臂12b的末端设置有手术器械14a和14b时,手术器械14a、14b的目标位姿可以基于第一运动臂12a的末端和第二运动臂12b的末端的目标位姿来确定。
在一些实施例中,方法700还可以包括步骤705。在步骤705,基于第一运动臂的当前位姿和第一末端的目标位姿,确定第一运动臂的目标位姿,以及基于第二运动臂的当前位姿和第二末端的目标位姿,确定第二运动臂的目标位姿。在一些实施例中,可以通过安装在第一运动臂12a的各个关节处的传感器(例如传感器129a)获得第一运动臂12a的各个关节的当前关节值,利用第一运动臂12a的正运动学模型解算,以得到第一运动臂12a的当前位姿。可以通过安装在第二运动臂12b的各个关节处的传感器(例如传感器129b)获得第二运动臂12b的各个关节的当前关节值,利用第二运动臂12b的正运动学模型解算,以得到第二运动臂12b的当前位姿。应当理解,运动臂的位姿可以通过运动臂所包括的多个关节的关节值的集合表示。在一些实施例中,可以通过如图8所示方法基于运动臂的当前位姿和末端的目标位姿,确定运动臂的目标位姿。
在步骤709,基于第一运动臂和第二运动臂的当前位姿和目标位姿,确定第一运动路径和第二运动路径。在一些实施例中,可以基于插值法,确定第一运动臂12a的 第一运动路径和第二运动臂12b的第二运动路径,运动路径可以包括至少一个运动循环。在一些实施例中,可以通过如图9所示方法,规划运动臂从初始位姿到目标位姿的运动路径。
在一些实施例中,方法700还可以包括步骤707。在步骤707,判断第一运动臂和第二运动臂之间是否会形成干涉关系。应理解,干涉关系可以包括第一运动臂12a和第二运动臂12b之间发生碰撞。响应于第一运动臂12a和第二运动臂12b之间不会形成干涉关系,执行步骤709。
在一些实施例中,方法700还可以包括步骤711。在步骤711,响应于第一运动臂和第二运动臂之间会形成干涉关系,控制第一运动臂和第二运动臂停止运动或发出警报信息。
在一些实施例中,可以基于约束关系判断所述第一运动臂12a和所述第二运动臂12b之间是否会形成干涉关系。基于约束关系被满足,确定第一运动臂12a和第二运动臂12b之间不会发生干涉关系。基于约束关系不被满足,确定所述第一运动臂12a和第二运动臂12b之间会发生干涉关系。应当理解,约束关系可以通过干涉模型进行限定。
在一些实施例中,约束关系可以包括以下关系中的至少一种:第一运动臂12a与第二运动臂21b之间的相对位置顺序关系符合预定的相对位置顺序关系、同第一运动臂12a相关联的预定点与同第二运动臂12b相关联的预定点之间的距离大于预定安全距离、同第一运动臂12a相关联的预设线段与同第二运动臂12b相关联的预设线段之间的最小距离大于预定安全线段距离、或者第一运动臂12a的一个或多个关节的关节值与第二运动臂12b的相应关节的关节值之间的差值大于预定安全值。
在一些实施例中,预定的相对位置顺序关系可以包括但不限于多个运动臂之间按顺时针或逆时针顺序排序。多个运动臂之间的相对位置顺序关系可以通过运动臂的关 节或连杆的相对位置顺序表示。例如,第一运动臂12a靠近横梁132的一个或多个关节(例如关节1202a和/或1203a)在每个运动循环的结束位置与相邻运动臂(例如第二运动臂12b)靠近横梁132的相应的一个或多个关节(例如关节1202b和/或1203b)在每个运动循环的结束位置的相对位置顺序符合顺时针或逆时针排序,可以确定第一运动臂12a与第二运动臂12b满足相对位置顺序关系的约束。反之,可以确定第一运动臂12a与第二运动臂12b之间不满足预定的相对位置顺序,可能导致第一运动臂12a与第二运动臂12b之间发生干涉关系。在一些实施例中,还可以通过判断第一运动臂12a的一个或多个连杆(例如连杆121a和/或122a)的末端与第二运动臂12b的相应连杆(例如连杆121b和/或122b)的末端的相对位置顺序是否符合预定的相对位置顺序关系(例如顺时针或逆时针排序),以确定第一运动臂12a与第二运动臂12b之间的相对位置顺序关系是否符合预定的相对位置顺序关系。
在一些实施例中,多个运动臂之间的相对位置顺序关系还可以通过运动臂的关节或连杆相对于相同基准方向的运动角度表示。例如,基于初始位置顺序,确定第一运动臂12a的关节(例如关节1201a)相对于横梁132的转动角度小于第二运动臂12b的关节(例如关节1201b)相对于横梁132的转动角度。响应于关节1201a相对于横梁132的转动角度小于关节1201b相对于横梁132的转动角度,可以确定第一运动臂12a与第二运动臂12b满足预定的相对位置顺序关系的约束。反之,可以确定第一运动臂12a与第二运动臂12b之间不满足预定的相对位置顺序,可能导致第一运动臂12a与第二运动臂12b之间发生干涉关系。
在一些实施例中,同运动臂相关联的预定点可以包括运动臂的连杆上的固定点、运动臂的关节或其他与运动臂相关的点。例如,同第一运动臂12a相关联的预定点可以为第一运动臂12a的预定关节(例如关节1203a),同第二运动臂12b相关联的预定点可以为第二运动臂12b的相应关节(例如关节1203b)。在一些实施例中,第一 运动臂12a的关节1203a与第二运动臂12b的关节1203b之间的距离可以基于第一运动臂12a的关节1203a的关节轴线与第二运动臂12b的关节1203b的关节轴线来确定。在一些实施例中,同第一运动臂12a相关联的预定点可以为第一运动臂12a的预定连杆(例如连杆121a)上的固定点,同第二运动臂12b相关联的预定点可以为第二运动臂12b的相应连杆(例如连杆121b)或相邻连杆(例如123b)上的固定点。在一些实施例中,同第一运动臂12a相关联的预定点可以为第一运动臂12a中的预定连杆(例如,远端运动中心机构,RCM机构)上的固定点,同第二运动臂12b相关联的预定点可以为第二运动臂12b的连杆(例如连杆124b)的轴线在水平面上的投影点。例如,关节1203a与关节1203b的关节轴线的距离大于安全距离,或者第一运动臂12a和第二运动臂12b上的预定点之间的距离大于安全距离,可以确定第一运动臂12a与第二运动臂12b满足预定点安全距离关系的约束。反之,预定点之间的距离小于安全距离,确定第一运动臂12a和第二运动臂12b之间可能会发生干涉关系。应当理解,安全距离可以是预先设定的距离,例如可以包括但不限于135mm。应理解,安全距离还可以基于关节或连杆的尺寸设定。不同关节或连杆对应的预定点之间的安全距离可以不同。应当理解,同第一运动臂12a和同第二运动臂12b相关联的预定点可以包括但不限于上述实施例中示出的情况。
在一些实施例中,同运动臂相关联的预定线段可以包括运动臂的连杆的棱边或轴线、运动臂的关节轴线或其他与运动臂相关的线段。应理解,两个线段之间的最小距离是这两个线段的起点之间的距离与这两个线段的终点之间的距离之中较小的那个距离。例如,同第一运动臂12a相关联的预定线段可以为第一运动臂12b的预定连杆(例如连杆121a),同第二运动臂12b相关联的预定线段可以为第二运动臂12b的预定连杆(例如连杆122b)。在一些实施例中,同第一运动臂12a相关联的预定线段可以为第一运动臂12a的预定连杆(例如连杆125a),同第二运动臂12b相关联的预定线段 可以为第二运动臂12b的预定连杆(例如远端运动中心机构(RCM机构)靠近连杆125a的棱边,例如连杆126a靠近连杆125a的棱边)。在一些实施例中,同第一运动臂12a相关联的预定线段可以为第一运动臂12a的RCM点与第一运动臂12a的预定连杆(例如连杆128a)延长线上的点之间形成的线段,同第二运动臂12b相关联的预定线段可以为第二运动臂12b的预定连杆(例如连杆128b)靠近第一运动臂12a的棱边。在一些实施例中,同第一运动臂12a相关联的预定线段可以为第一运动臂12a的预定连杆(例如连杆124a)的棱边(例如靠近第二运动臂12b的棱边),并且同第二运动臂12b相关联的预定线段可以为第二运动臂12b的相应连杆(例如连杆124b)的棱边(例如靠近第一运动臂12a的棱边)。在一些实施例中,同第一运动臂12a相关联的预定线段可以为第一运动臂12a的关节轴线,同第二运动臂12b相关联的预定线段可以为第二运动臂12b的关节轴线。在一些实施例中,同第一运动臂12a相关联的预定线段可以为第一运动臂12a的关节轴线(例如关节1204a的轴线)和另一关节轴线(例如关节1205a的轴线)的交点与第一运动臂12a的连杆(例如连杆125a)远端之间的线段,同第二运动臂12b相关联的预定线段可以为第二运动臂12b的关节轴线(例如关节1204b的轴线)和另一关节轴线(例如关节1205b的轴线)的交点与第二运动臂12b的连杆(例如连杆125b)远端之间的线段。例如,连杆121a与连杆122b之间的最小距离大于安全距离,或者连杆125a与第二运动臂12b的RCM机构靠近连杆125a的棱边(例如连杆126b靠近连杆125a的棱边)之间的最小距离大于安全距离,或者第一运动臂12a的RCM点与连杆128a延长线上的点之间形成的线段与连杆128b靠近的第一运动臂12a的棱边之间的最小距离大于安全距离,或者连杆124a靠近第二运动臂12b的棱边与连杆124b靠近第一运动臂12a的棱边之间的最小距离大于安全距离,或者关节1204a和关节1205a的轴线交点与连杆125a远端形成的线段与关节1204b和关节1205a的轴线交点与连杆125b远端形成的线段之间的最小距离大于安全距离, 可以确定第一运动臂12a与第二运动臂12b满足预定线段安全距离关系的约束。反之,预定线段之间的距离小于安全距离,确定第一运动臂12a和第二运动臂12b之间可能会发生干涉关系。应当理解,安全距离例如可以包括但不限于135mm、120mm、60mm等。应理解,安全距离还可以基于关节或连杆的尺寸设定。不同关节或连杆对应的预定点之间的安全距离可以不同。应当理解,同第一运动臂12a和同第二运动臂12b相关联的预定线段可以包括但不限于上述实施例中示出的情况。
在一些实施例中,第一运动臂12a的一个或多个关节的关节值(例如关节1203a的关节值)与第二运动臂12b的相应关节的关节值(例如关节1203b的关节值)之间的差值大于预定安全值(例如安全角度),可以确定第一运动臂12a与第二运动臂12b满足关节安全角度关系的约束。反之,关节值之间的差值小于预定安全值,确定第一运动臂12a和第二运动臂12b之间可能会发生干涉关系。
应当理解,在机器人系统包括三个、四个或更多个运动臂时,约束关系也可以用于彼此相邻的运动臂之间或者位置相近的运动臂之间的干涉判断。在一些实施中,约束关系的比较对象可以是相邻运动臂之间易于发生干涉的结构(例如同第一运动臂12a相关联的预定线段与同第二运动臂12b相关联的预定线段、同第一运动臂12a相关联的预定点与同第二运动臂12b相关联的预定点、第一运动臂12a的一个或多个关节与第二运动臂12b的相应关节)。而多个运动臂之间必然不会发生干涉的结构可以被排除在约束关系的比较对象之外,不需要对相邻运动臂上的所有结构进行比较,可以减少约束关系的比较过程的运算量,提高系统的工作效率。
图8示出了根据本公开一些实施例的用于确定运动臂的目标位姿的方法800的流程图。例如,图7所示的步骤705,基于第一运动臂的第一当前位姿和第一末端的目标位姿确定第一运动臂的第一目标位姿,以及基于第二运动臂的第二当前位姿和第二末端的目标位姿确定第二运动臂的第二目标位姿可以通过方法800实现。方法800可 以由机器人系统10的控制装置(例如控制装置11)来执行。控制装置11可以配置在计算设备上。方法800可以由软件、固件和/或硬件来实现。
如图8所示,在步骤801,方法800可以包括选择运动臂的多个关节之一作为特征关节,以及设置特征关节的推荐目标关节值。在一些实施例中,以第二运动臂12b为例。可以选择第二运动臂12b的多个关节之一作为特征关节,并预先设置特征关节的推荐目标关节值。在一些实施例中,运动臂的特征关节可以为多个关节中易于与相邻运动臂发生碰撞的关节。例如,所选的特征关节可以为第二运动臂12b的多个关节中容易与第一运动臂12a发生碰撞的关节,例如图3所示的关节1205b或1206b。应当理解,在机器人系统10包括多个运动臂(例如三个或四个运动臂)时,不同的运动臂的特征关节的推荐目标关节值可以不同。在一些实施例中,推荐目标关节值可以是预定的。
在步骤803,基于运动臂的末端的目标位姿和推荐目标关节值对运动臂的逆运动学模型进行解算,以获得运动臂的其他目标关节值。应理解,其他目标关节值包括运动臂的除特征关节外的所有其他关节的目标关节值。例如,基于第二运动臂12b的末端臂128b的目标位姿和推荐关节(例如1205b)的推荐目标关节值,对第二运动臂12b的逆运动学模型进行解算,以获得第二运动臂12b的其他目标关节值。
在一些实施例中,方法800还可以包括步骤805。在步骤805,判断运动臂的其他目标关节值是否在相应关节的关节运动范围之内。应当理解,运动臂的每一关节具有一定的运动范围,每个关节的关节运动范围为相应关节的最小极限关节值和最大极限关节值之间的范围。该最小极限关节值以及该最大极限关节值可以不在该范围之内。例如,有的关节的运动范围在18度到45度之间,有的关节的运动范围在45度到90度之间,还有的关节的运动范围在-90度到-45度之间等等。
在一些实施例中,方法800还可以包括步骤807。在步骤807,将推荐目标关节值 递增或递减预定调整值,以调整运动臂的推荐目标关节值,方法800返回步骤803。例如,响应于第二运动臂12b的其他目标关节值中的至少一个不在相应关节的关节运动范围之内,将推荐目标关节值递增或递减预定调整值,以调整第二运动臂12b的推荐目标关节值。在一些实施例中,可以将调整值设置为例如0.2°或0.5°等等来调整推荐目标关节值。应理解,0.2°或0.5°仅作为示例,调整值还可以设置为其他值。递增或递减预定调整值,直到有解或者达到特征关节的关节运动范围(可以不包括关节极限值)。例如,有解可以表示推荐目标关节值在特征关节的关节运动范围之内,而且其他目标关节值都在相应关节的关节运动范围之内。
在一些实施例中,方法800还可以包括以下步骤:判断调整后的推荐目标关节值是否在特征关节的关节运动范围之内。响应于调整后的推荐目标关节值在特征关节的关节运动范围之内,选取调整后的推荐目标关节值作为推荐目标关节值,并返回步骤803。
在一些实施例中,方法800还可以包括步骤811。在步骤811,基于运动臂的推荐目标关节值和其他目标关节值,确定运动臂的目标位姿。例如,响应于第二运动臂12b的其他目标关节值都在相应关节的关节运动范围之内,基于第二运动臂12b的推荐目标关节值和其他目标关节值,确定第二运动臂12b的目标位姿。例如,可以选择推荐目标关节值和其他目标关节的集合作为第二运动臂12b的目标关节值。通过确定第二运动臂12b的目标关节值,可以确定第二运动臂12b的目标位姿。应当理解,也可以通过方法800以确定第一运动臂12a的目标位姿。
在一些实施例中,方法800在步骤805和步骤811之间还可以包括步骤809。在步骤809,判断多个运动臂之间是否会形成干涉关系。例如,响应于第二运动臂12b的所有的其他目标关节值都在相应关节的关节运动范围之内,基于约束关系,判断第二运动臂12b与相邻运动臂(例如第一运动臂12a)之间是否会形成干涉关系。在一 些实施例中,响应于多个运动臂之间不会形成干涉关系,执行步骤811。例如,响应于第二运动臂12b与第一运动臂12a之间不会形成干涉关系,基于第二运动臂12b的推荐目标关节值和其他目标关节值,确定第二运动臂12b的目标位姿。在一些实施例中,响应于多个运动臂之间会形成干涉关系的情况下,方法800进行到步骤807。例如,响应于第二运动臂12b与第一运动臂12a之间会形成干涉关系,将第二运动臂12b的推荐目标关节值递增或递减预定调整值,以调整第二运动臂12b的推荐目标关节值。
在一些实施例中,在推荐目标关节值和其他目标关节值有多组满足条件的解(例如有多组满足条件的第二运动臂12b的目标关节值)时,可以选择第二运动臂12b的各关节最不会与第一运动臂12a发生干涉的一组解作为唯一解输出,作为第二运动臂12b的目标关节值。
图9示出了根据本公开一些实施例的用于确定运动臂从初始位姿到目标位姿的运动路径的方法900的流程图。在一些实施例中,方法900可以用于实现如图7所示的步骤709。方法900可以由机器人系统10的控制装置(例如控制装置11)来执行。控制装置11可以配置在计算设备上。方法900可以由软件、固件和/或硬件来实现。
如图9所示,在步骤901,确定运动臂所包含的每一关节的关节步长。在一些实施例中,控制运动臂运动至目标位姿的过程,可以包括一个或多个运动循环,每个关节步长对应于运动臂在单个运动循环中的运动步长。在一种实现中,单个运动循环可以是80ms。在一些实施例中,每一关节的关节步长可以指示相应关节在每一运动循环可绕其关节轴移动的角度。例如,单个运动循环对应于运动臂的运动步长可以预先设定,其中运动臂的运动步长可以是运动臂的多个关节的关节步长的集合。在一些实施例中,如图10所示方法1000可以用于确定运动臂所包含的每一关节的步长。
在步骤903,基于每一关节的关节步长,确定运动臂在每个运动循环的结束位姿。在一些实施例中,可以在运动臂的初始位姿与目标位姿之间,采用插值法确定多个运 动循环中每个运动循环的结束位姿。例如,以第一运动臂12a为例,在当前运动循环为第一个运动循环时,第一运动臂12a的当前位姿为第一运动臂12a的初始位姿。在当前运动循环不是第一个运动循环时,第一运动臂12a的当前位姿为上一个运动循环的结束位姿。基于第一运动臂12a的当前位姿,以及第一运动臂12a的每一关节对应的关节步长,确定第一运动臂12a的每一关节在当前循环的结束关节值。
在一些实施例中,方法900还包括步骤905。在步骤905,基于每个运动循环的结束位姿,判断运动臂和其他运动臂之间是否会形成干涉关系。例如,基于当前循环的结束位姿,判断第一运动臂12a与第二运动臂12b或与其他运动臂(例如距离相近的其他运动臂)之间是否会形成干涉关系,例如碰撞。
在步骤907,基于每个运动循环的结束位姿,确定运动臂的运动路径。例如,响应于运动臂从初始位姿运动到目标位姿过程中运动臂和其他运动臂之间不会形成干涉关系,确定每个运动循环的结束位姿作为运动路径。
在步骤909,发出警报信息。例如,响应于运动臂和其他运动臂之间会形成干涉关系,可以发出警报信息。例如,对第一运动臂12a和第二运动臂12b进行干涉判断,响应于第一运动臂12a和第二运动臂12b中的至少一个与其他运动臂发生碰撞,可以发出警报信息。
图10示出了根据本公开一些实施例的确定运动臂所包含的每一关节的关节步长的方法1000的流程图。在一些实施例中,方法1000可以用于实现如图9所示的步骤901,确定运动臂所包含的每一关节的关节步长。方法1000可以由机器人系统10的控制装置(例如控制装置11)来执行。控制装置11可以配置在计算设备上。方法1000可以由软件、固件和/或硬件来实现。
如图10所示,在步骤1001,基于运动臂的目标位姿,确定运动臂的目标位姿与初始位姿之间的差值。例如,运动臂的位姿可以通过运动臂所包括的多个关节的关节 值的集合表示。运动臂的目标位姿与初始位姿之间的差值可以通过运动臂对应关节在目标位姿与对应关节在初始位姿的关节值的差值的集合表示。
在步骤1003,基于运动臂的目标位姿与初始位姿之间的差值中每一关节的差值以及每一关节的关节步长极值,确定目标关节步数。应当理解,关节步长可以指示关节在每一运动循环中可绕其关节轴移动的角度。步长极值可以指关节在每一运动循环中可绕其关节轴移动的最大角度。例如,基于运动臂(例如第一运动臂12a)的目标位姿与初始位姿之间的差值中每一关节的差值以及每一关节的步长极值,确定第一运动臂12a的每一关节的步数。可以选择每一关节的步数中的最大步数作为目标关节步数。
在步骤中1005,基于运动臂的目标位姿与初始位姿之间的差值中每一关节的差值以及目标关节步数,确定运动臂的每一关节的关节步长。例如,通过将第一运动臂12a(或第二运动臂12b)的目标位姿与初始位姿之间的差值中每一关节的差值除以目标关节步数,计算得到第一运动臂12a(或第二运动臂12b)的每一关节的关节步长。
图11示出了根据本公开的实施例的包括在机器人系统10中的控制装置11的架构示意图。在一些实施例中,如图11所示,该控制装置11可包括输入装置113、输出装置114、一个或多个存储器112、一个或多个处理器111以及通信接口115。在一些实施例中,控制装置11也可不包括输出装置。
在一些实施例中,输入装置113可以包括但不限于按钮、键盘、触摸屏、话筒等装置。输入装置可以被配置成用于直接接收来自用户的操作命令,或者接收来自用户的操作指示使得控制装置能够基于该操作指示而获取具体的操作命令。操作命令可以包括例如命令第二末端臂128b与第一末端臂128a保持末端相对位姿关系不变运动的命令。在一些实施例中,输入装置113还可用于接收来自用户的设置信息,例如当前手术类型、辅助连接装置的构型、相对位姿模型等的设置信息等。
在一些实施例中,输出装置114可以包括但不限于显示器、扬声器和指示灯等, 其可被配置成用于指示机器人系统10的各个组成部分的状态、输出警报信号等等。
在一些实施例中,存储器112中可存储可在处理器111上执行的计算机程序。处理器111在执行计算机程序时实现上述实施例中描述的控制方法。存储器112和处理器111的数量可以为一个或多个。通信接口115用于在该控制装置11(例如控制装置11的处理器111)和外部设备之间进行通信。在本公开中,控制装置11可例如通过通信接口115与设置在各运动臂(例如第一运动臂12a、第二运动臂12b)的各个关节中的电机进行通信,从而指令各运动臂运动到相应的目标位置,控制装置11还可例如通过通信接口115与运动臂的各个关节处的传感器进行通信,以接收运动臂的各个关节的关节值。在本公开的一个示例中,该通信接口115可以为CAN总线通信接口,其使得控制装置11能够通过CAN总线与设置在各关节的电机以及传感器连接通信。
如图11所示,输入装置113、输出装置114、存储器112、处理器111和通信接口115可通过总线相互连接,以完成相互间的通信。总线可以是工业标准体系结构(ISA,Industry Standard Architecture)总线,外部设备互连(PCI,Peripheral Component)总线或扩展工业标准体系结构(EISA,Extended Industry Standard Component)总线等等。
在一些实施例中,处理器111可以为中央处理器(CPU)、数字信号处理器(DSP)等各种类型通用处理器,在此不做限定。
在一些实施例中,控制装置11可以与基座131集成在一起并位于基座131内(例如基座131下方),以便节约空间。但是在实际应用中,控制装置11还可以与基座131分开设置,或者控制装置11可部分与基座131集成在一起,另一部分与基座131分开。或者控制装置11也可采用其他设置方式,与各个运动臂通信连接并能对各运动臂进行控制。
在一些实施例中,本公开提供了一种计算机可读存储介质,计算机可读存储介质可以包括至少一个指令,至少一个指令由处理器执行以执行以上任何实施例中的控制 方法。
在一些实施例中,本公开提供了一种计算机系统,可以包括非易失性存储介质和至少一个处理器。非易失性存储介质可以包括至少一个指令。处理器被配置为执行至少一个指令以将处理器配置为执行以上任何实施例中的控制方法。
在一些实施例中,计算机可读存储介质可以是可以保持和存储由指令执行设备使用的指令的有形设备。计算机可读存储介质例如可以是但不限于电存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备或者上述的任意组合。
在一些实施例中,计算机可读取存储介质可以包括但不限于:便携式计算机盘、硬盘、只读存储器(ROM)、随机存取存储器(RAM)、可擦除可编程只读存储器(EPROM)、电可擦可编程只读存储器(EEPROM)、闪存或其他固态存储器技术、CD-ROM、数字多功能盘(DVD)、HD-DVD、蓝光(Blue-Ray)或其他光存储设备、磁带、磁盘存储或其他磁性存储设备、或能用于存储所需信息且可以由计算机访问的任何其他介质,其上存储有计算机可执行指令,计算机可执行指令在机器(例如计算机设备)中运行时,使得机器执行本公开的控制方法。应当理解,计算机设备可以包括个人计算机、服务器或者网络设备等。
本公开的一些实施例,能够有助于优化术前准备过程中运动臂的摆位,可以根据一个运动臂的实时位姿计算出其他运动臂的目标位姿并使其运动至该目标位姿,从而实现自动化程度较高的术前摆位过程。
本公开的一些实施例,在实时计算出其他运动臂的目标位姿后,还可以以特定的规划方式使该运动臂精确、快速、安全地到达目标位置,从而实现高效安全的手术术前准备。
本公开的一些实施例,多个运动臂的末端以整体方式运动,并在运动过程中能够保持多个运动臂的末端的相对位姿关系不变,以快速准确地实现多个运动臂的运动。 在术中,通过多个运动臂整体运动,还可以实现安装于多个运动臂上的手术器械的位姿快速调整,可以降低用户(例如医生)的操作难度,以提高术前或术中的工作效率。
本公开还公开了以下:
1.一种用于机器人系统的控制方法,所述机器人系统包括多个运动臂,所述多个运动臂包括第一运动臂和第二运动臂,所述控制方法包括:
确定所述机器人系统的第一运动臂的第一末端和第二运动臂的第二末端的运动方式,所述运动方式包括所述第一运动臂的第一末端和第二运动臂的第二末端的整体运动;
基于所述运动方式以及所述第一运动臂的第一末端与所述第二运动臂的第二末端的末端相对位姿关系,确定所述第一运动臂的第一运动路径以及所述第二运动臂的第二运动路径;以及
基于所述第一运动路径和所述第二运动路径,控制所述第一运动臂和所述第二运动臂运动,以使所述第一运动臂的第一末端和第二运动臂的第二末端以所述运动方式运动,且在运动过程中保持所述末端相对位姿关系不变。
2.根据第1项所述的控制方法,还包括:
基于当前手术类型或辅助连接装置的构型,确定所述第一运动臂的所述第一末端与所述第二运动臂所述第二末端的末端相对位姿关系。
3.根据第1-2项中的任一项所述的控制方法,基于所述运动方式以及所述末端相对位姿关系确定所述第一运动臂的第一运动路径以及所述第二运动臂的第二运动路径包括:
基于所述运动方式,确定所述第一运动臂的所述第一末端的目标位姿;以及
基于所述运动方式,确定所述第二运动臂的所述第二末端的目标位姿。
4.根据第3项所述的控制方法,
所述第一末端的所述目标位姿包括以下中的一种:
所述第一运动臂的末端臂的目标位置和目标姿态;
所述第一运动臂的远端运动中心机构(RCM机构)的目标位置和目标姿态;或
所述第一运动臂用于与辅助连接装置连接的末端的目标位置和目标姿态;或者
所述第二末端的所述目标位姿包括以下中的一种:
所述第二运动臂的末端臂的目标位置和目标姿态;
所述第二运动臂的远端运动中心机构(RCM机构)的目标位置和目标姿态;或
所述第二运动臂用于与辅助连接装置连接的末端的目标位置和目标姿态。
5.根据第3-4项中的任一项所述的控制方法,包括:
基于所述第一运动臂的第一当前位姿和所述第一末端的所述目标位姿,确定所述第一运动臂的第一目标位姿;以及
基于所述第二运动臂的第二当前位姿和所述第二末端的所述目标位姿,确定所述第二运动臂的第二目标位姿。
6.根据第5项所述的控制方法,基于所述第一运动臂的第一当前位姿和所述第一末端的所述目标位姿确定所述第一运动臂的第一目标位姿包括:
选择所述第一运动臂的多个关节之一作为第一特征关节;
设置所述第一特征关节的第一推荐目标关节值;以及
基于所述第一末端的所述目标位姿和所述第一推荐目标关节值,确定所述第一运动臂的其他目标关节值;或者
基于所述第二运动臂的第二当前位姿和所述第二末端的所述目标位姿确定所述第二运动臂的第二目标位姿包括:
选择所述第二运动臂的多个关节之一作为第二特征关节;
设置所述第二特征关节的第二推荐目标关节值;以及
基于所述第二末端的所述目标位姿和所述第二推荐目标关节值,确定所述第二运动臂的其他目标关节值。
7.根据第6项所述的控制方法,还包括:
判断所述第一运动臂的其他目标关节值是否在相应关节的关节运动范围之内;以及
响应于所述第一运动臂的其他目标关节值中的至少一个不在相应关节的关节运动范围之内,将所述第一推荐目标关节值递增或递减预定调整值,以调整所述第一推荐目标关节值;或者
判断所述第二运动臂的其他目标关节值是否在相应关节的关节运动范围之内;
响应于所述第二运动臂的其他目标关节值中的至少一个不在相应关节的关节运动范围之内,将所述第二推荐目标关节值递增或递减预定调整值,以调整所述第二推荐目标关节值。
8.根据第7项所述的控制方法,还包括:
响应于所述第一运动臂的其他目标关节值都在相应关节的关节运动范围之内,基于所述第一推荐目标关节值和其他目标关节值,确定所述第一运动臂的第一目标位姿;或者
响应于所述第二运动臂的其他目标关节值都在相应关节的关节运动范围之内,基于所述第二推荐目标关节值和其他目标关节值,确定所述第二运动臂的第二目标位姿。
9.根据第7-8项中的任一项所述的控制方法,还包括:
基于所述第一末端的所述目标位姿和经调整的第一推荐目标关节值,确定所述第一运动臂的其他目标关节值;或者
基于所述第二末端的所述目标位姿和经调整的第二推荐目标关节值,确定所述第二运动臂的其他目标关节值。
10.根据第6-9项中的任一项所述的控制方法,进一步包括:
判断所述第二运动臂与所述第一运动臂之间是否会形成干涉关系;以及
响应于所述第二运动臂与所述第一运动臂之间会形成干涉关系,调整所述第一推荐目标关节值或第二推荐目标关节值。
11.根据第6-10项中的任一项所述的控制方法,
所述第一特征关节为所述第一运动臂的多个关节中易于与多个运动臂中的其他运动臂发生碰撞的关节;或者
所述第二特征关节为所述第二运动臂的多个关节中易于与多个运动臂中的其他运动臂发生碰撞的关节。
12.根据第1-11项中的任一项所述的控制方法,还包括:
基于约束关系,判断所述第一运动臂和所述第二运动臂之间是否会形成干涉关系;以及
响应于所述第一运动臂和所述第二运动臂之间会形成干涉关系,控制所述第一运动臂和所述第二运动臂停止运动或发出警报信息。
13.根据第12项所述的控制方法,判断所述第一运动臂和所述第二运动臂之间是否会形成干涉关系包括:
基于约束关系被满足,确定所述第一运动臂和第二运动臂之间不会发生干涉关系;以及
基于所述约束关系不被满足,确定所述第一运动臂和第二运动臂之间会发生干涉关系。
14.根据第13项所述的控制方法,所述约束关系包括以下中的至少一种:
所述第一运动臂与第二运动臂之间的相对位置顺序关系符合预定的相对位置顺序关系;
同所述第一运动臂相关联的预定点与同所述第二运动臂相关联的预定点之间的距离大于预定安全距离;
同所述第一运动臂相关联的预定线段与同所述第二运动臂相关联的预定线段之间的最小距离大于预定安全线段距离;或者
所述第一运动臂的一个或多个关节的关节值与所述第二运动臂的相应关节的关节值之间的差值大于预定安全值。
15.根据第1-14项中的任一项所述的控制方法,包括:
基于插值法,确定所述第一运动臂的所述第一运动路径,以及所述第二运动臂的所述第二运动路径。
16.根据第15项所述的控制方法,对于每个运动臂,基于所述运动臂的目标位姿与初始位姿,确定所述运动臂所包含的每一关节的关节步长。
17.根据第16项所述的控制方法,对于每个运动臂,基于所述运动臂所包含的每一关节的关节步长,确定所述运动臂在每个运动循环的结束位姿;以及
基于每个运动循环的结束位姿,确定所述运动臂的运动路径。
18.根据第1-17项中的任一项所述的控制方法,所述整体运动包括:整体平移、整体转动、或整体平移和整体转动的组合。
19.一种机器人系统,包括:
多个运动臂,所述多个运动臂包括:
第一运动臂;
第二运动臂;
控制装置,被配置成执行如第1-18项中的任一项所述的控制方法。
20.根据第19项所述的机器人系统,所述机器人系统还包括辅助连接装置,所述辅助连接装置至少包括用于与所述第一末端连接的第一鞘管和用于与所述第二末端连 接的第二鞘管,
所述末端相对位姿关系是基于所述第一鞘管和所述第二鞘管的形状及其相对位置关系确定的。
21.根据第20项所述的机器人系统,所述第一鞘管上设置有第一辅助连接部,所述第二鞘管上设置有第二辅助连接部;
所述第一运动臂的末端上设有用于与所述第一辅助连接部连接的第一臂体连接部,所述第二运动臂的末端上设有用于与所述第二辅助连接部连接的第二臂体连接部。
22.一种计算机可读存储介质,包括一个或多个指令,所述指令由处理器执行以执行根据如第1-18项中的任一项所述的控制方法。
23.一种计算机系统,包括:
存储器,用于存储至少一个指令;以及
处理器,被配置为执行所述至少一个指令以执行如第1-18项中的任一项所述的控制方法。
注意,上述仅为本公开的示例性实施例及所运用技术原理。本领域技术人员会理解,本公开不限于这里的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本公开的保护范围。因此,虽然通过以上实施例对本公开进行了较为详细的说明,但是本公开不仅仅限于以上实施例,在不脱离本公开构思的情况下,还可以包括更多其他等效实施例,而本公开的范围由所附的权利要求范围决定。

Claims (20)

  1. 一种用于机器人系统的控制方法,所述机器人系统包括多个运动臂,所述多个运动臂包括第一运动臂和第二运动臂,所述控制方法包括:
    确定所述机器人系统的第一运动臂的第一末端和第二运动臂的第二末端的运动方式,所述运动方式包括所述第一运动臂的第一末端和第二运动臂的第二末端的整体运动;
    基于所述运动方式以及所述第一运动臂的第一末端与所述第二运动臂的第二末端的末端相对位姿关系,确定所述第一运动臂的第一运动路径以及所述第二运动臂的第二运动路径;以及
    基于所述第一运动路径和所述第二运动路径,控制所述第一运动臂和所述第二运动臂运动,以使所述第一运动臂的第一末端和第二运动臂的第二末端以所述运动方式运动,且在运动过程中保持所述末端相对位姿关系不变。
  2. 根据权利要求1所述的控制方法,其特征在于,还包括:
    基于当前手术类型或辅助连接装置的构型,确定所述第一运动臂的所述第一末端与所述第二运动臂所述第二末端的末端相对位姿关系。
  3. 根据权利要求1所述的控制方法,其特征在于,基于所述运动方式以及所述末端相对位姿关系确定所述第一运动臂的第一运动路径以及所述第二运动臂的第二运动路径包括:
    基于所述运动方式,确定所述第一运动臂的所述第一末端的目标位姿;以及
    基于所述运动方式,确定所述第二运动臂的所述第二末端的目标位姿。
  4. 根据权利要求3所述的控制方法,其特征在于,
    所述第一末端的所述目标位姿包括以下中的一种:
    所述第一运动臂的末端臂的目标位置和目标姿态;
    所述第一运动臂的远端运动中心机构(RCM机构)的目标位置和目标姿态;或
    所述第一运动臂用于与辅助连接装置连接的末端的目标位置和目标姿态;或者
    所述第二末端的所述目标位姿包括以下中的一种:
    所述第二运动臂的末端臂的目标位置和目标姿态;
    所述第二运动臂的远端运动中心机构(RCM机构)的目标位置和目标姿态;或
    所述第二运动臂用于与辅助连接装置连接的末端的目标位置和目标姿态。
  5. 根据权利要求3所述的控制方法,其特征在于,包括:
    基于所述第一运动臂的第一当前位姿和所述第一末端的所述目标位姿,确定所述第一运动臂的第一目标位姿;以及
    基于所述第二运动臂的第二当前位姿和所述第二末端的所述目标位姿,确定所述第二运动臂的第二目标位姿。
  6. 根据权利要求5所述的控制方法,其特征在于,基于所述第一运动臂的第一当前位姿和所述第一末端的所述目标位姿确定所述第一运动臂的第一目标位姿包括:
    选择所述第一运动臂的多个关节之一作为第一特征关节;
    设置所述第一特征关节的第一推荐目标关节值;以及
    基于所述第一末端的所述目标位姿和所述第一推荐目标关节值,确定所述第一运动臂的其他目标关节值;或者
    基于所述第二运动臂的第二当前位姿和所述第二末端的所述目标位姿确定所述第二运动臂的第二目标位姿包括:
    选择所述第二运动臂的多个关节之一作为第二特征关节;
    设置所述第二特征关节的第二推荐目标关节值;以及
    基于所述第二末端的所述目标位姿和所述第二推荐目标关节值,确定所述第二运动臂的其他目标关节值。
  7. 根据权利要求6所述的控制方法,其特征在于,还包括:
    判断所述第一运动臂的其他目标关节值是否在相应关节的关节运动范围之内;以及
    响应于所述第一运动臂的其他目标关节值中的至少一个不在相应关节的关节运动范围之内,将所述第一推荐目标关节值递增或递减预定调整值,以调整所述第一推荐目标关节值;或者
    判断所述第二运动臂的其他目标关节值是否在相应关节的关节运动范围之内;
    响应于所述第二运动臂的其他目标关节值中的至少一个不在相应关节的关节运动范围之内,将所述第二推荐目标关节值递增或递减预定调整值,以调整所述第二推荐目标关节值。
  8. 根据权利要求7所述的控制方法,其特征在于,还包括:
    基于所述第一末端的所述目标位姿和经调整的第一推荐目标关节值,确定所述第一运动臂的其他目标关节值;或者
    基于所述第二末端的所述目标位姿和经调整的第二推荐目标关节值,确定所述第二运动臂的其他目标关节值。
  9. 根据权利要求6所述的控制方法,其特征在于,进一步包括:
    判断所述第二运动臂与所述第一运动臂之间是否会形成干涉关系;以及
    响应于所述第二运动臂与所述第一运动臂之间会形成干涉关系,调整所述第一推荐目标关节值或第二推荐目标关节值。
  10. 根据权利要求6所述的控制方法,其特征在于,
    所述第一特征关节为所述第一运动臂的多个关节中易于与多个运动臂中的其他运动臂发生碰撞的关节;或者
    所述第二特征关节为所述第二运动臂的多个关节中易于与多个运动臂中的其他 运动臂发生碰撞的关节。
  11. 根据权利要求1所述的控制方法,其特征在于,还包括:
    基于约束关系,判断所述第一运动臂和所述第二运动臂之间是否会形成干涉关系;以及
    响应于所述第一运动臂和所述第二运动臂之间会形成干涉关系,控制所述第一运动臂和所述第二运动臂停止运动或发出警报信息。
  12. 根据权利要求11所述的控制方法,其特征在于,所述约束关系包括以下中的至少一种:
    所述第一运动臂与第二运动臂之间的相对位置顺序关系符合预定的相对位置顺序关系;
    同所述第一运动臂相关联的预定点与同所述第二运动臂相关联的预定点之间的距离大于预定安全距离;
    同所述第一运动臂相关联的预定线段与同所述第二运动臂相关联的预定线段之间的最小距离大于预定安全线段距离;或者
    所述第一运动臂的一个或多个关节的关节值与所述第二运动臂的相应关节的关节值之间的差值大于预定安全值。
  13. 根据权利要求1所述的控制方法,其特征在于,包括:
    基于插值法,确定所述第一运动臂的所述第一运动路径,以及所述第二运动臂的所述第二运动路径。
  14. 根据权利要求13所述的控制方法,其特征在于,对于每个运动臂,基于所述运动臂的目标位姿与初始位姿,确定所述运动臂所包含的每一关节的关节步长。
  15. 根据权利要求14所述的控制方法,其特征在于,基于所述运动臂所包含的每一关节的关节步长,确定所述运动臂在每个运动循环的结束位姿;以及
    基于每个运动循环的结束位姿,确定所述运动臂的运动路径。
  16. 根据权利要求1所述的控制方法,其特征在于,所述整体运动包括:整体平移、整体转动、或整体平移和整体转动的组合。
  17. 一种机器人系统,包括:
    多个运动臂,所述多个运动臂包括:
    第一运动臂;
    第二运动臂;
    控制装置,被配置成:
    确定所述机器人系统的第一运动臂的第一末端和第二运动臂的第二末端的运动方式,所述运动方式包括所述第一运动臂的第一末端和第二运动臂的第二末端的整体运动;
    基于所述运动方式以及所述第一运动臂的第一末端与所述第二运动臂的第二末端的末端相对位姿关系,确定所述第一运动臂的第一运动路径以及所述第二运动臂的第二运动路径;以及
    基于所述第一运动路径和所述第二运动路径,控制所述第一运动臂和所述第二运动臂运动,以使所述第一运动臂的第一末端和第二运动臂的第二末端以所述运动方式运动,且在运动过程中保持所述末端相对位姿关系不变。
  18. 根据权利要求17所述的机器人系统,其特征在于,所述机器人系统还包括辅助连接装置,所述辅助连接装置至少包括用于与所述第一末端连接的第一鞘管和用于与所述第二末端连接的第二鞘管,
    所述末端相对位姿关系是基于所述第一鞘管和所述第二鞘管的形状及其相对位置关系确定的。
  19. 根据权利要求18所述的机器人系统,其特征在于,所述第一鞘管上设置有第 一辅助连接部,所述第二鞘管上设置有第二辅助连接部;
    所述第一运动臂的末端上设有用于与所述第一辅助连接部连接的第一臂体连接部,所述第二运动臂的末端上设有用于与所述第二辅助连接部连接的第二臂体连接部。
  20. 一种计算机可读存储介质,包括一个或多个指令,所述指令由处理器执行以执行机器人系统的控制方法,所述机器人系统包括多个运动臂,所述多个运动臂包括第一运动臂和第二运动臂,所述控制方法包括:
    确定所述机器人系统的第一运动臂的第一末端和第二运动臂的第二末端的运动方式,所述运动方式包括所述第一运动臂的第一末端和第二运动臂的第二末端的整体运动;
    基于所述运动方式以及所述第一运动臂的第一末端与所述第二运动臂的第二末端的末端相对位姿关系,确定所述第一运动臂的第一运动路径以及所述第二运动臂的第二运动路径;以及
    基于所述第一运动路径和所述第二运动路径,控制所述第一运动臂和所述第二运动臂运动,以使所述第一运动臂的第一末端和第二运动臂的第二末端以所述运动方式运动,且在运动过程中保持所述末端相对位姿关系不变。
PCT/CN2021/109302 2020-08-19 2021-07-29 机器人系统以及控制方法 WO2022037385A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21857480.4A EP4201363A4 (en) 2020-08-19 2021-07-29 ROBOTIC SYSTEM AND CONTROL METHOD
CA3173684A CA3173684A1 (en) 2020-08-19 2021-07-29 Robot system and control method
US18/013,757 US20230294284A1 (en) 2020-08-19 2021-07-29 Robot system and control method
JP2022580281A JP2023533919A (ja) 2020-08-19 2021-07-29 ロボットシステムおよび制御方法
KR1020227040611A KR20230002909A (ko) 2020-08-19 2021-07-29 로봇 시스템 및 제어 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010837232.8 2020-08-19
CN202010838021 2020-08-19
CN202010838021.6 2020-08-19
CN202010837232 2020-08-19

Publications (1)

Publication Number Publication Date
WO2022037385A1 true WO2022037385A1 (zh) 2022-02-24

Family

ID=80283175

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2021/109302 WO2022037385A1 (zh) 2020-08-19 2021-07-29 机器人系统以及控制方法
PCT/CN2021/111225 WO2022037425A1 (zh) 2020-08-19 2021-08-06 机器人系统以及控制方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111225 WO2022037425A1 (zh) 2020-08-19 2021-08-06 机器人系统以及控制方法

Country Status (7)

Country Link
US (1) US20230294284A1 (zh)
EP (1) EP4201363A4 (zh)
JP (1) JP2023533919A (zh)
KR (1) KR20230002909A (zh)
CN (2) CN114073587A (zh)
CA (1) CA3173684A1 (zh)
WO (2) WO2022037385A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114952806B (zh) * 2022-06-16 2023-10-03 法奥意威(苏州)机器人系统有限公司 约束运动控制方法、装置、系统和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110190937A1 (en) * 2008-08-29 2011-08-04 Kuka Laboratories Gmbh Medical Work Station And Operating Device For Manually Moving A Robot Arm Of A Medical Work Station
CN105188590A (zh) * 2012-12-10 2015-12-23 直观外科手术操作公司 图像采集装置和可操纵装置活动臂受控运动过程中的碰撞避免
CN107427327A (zh) * 2014-09-30 2017-12-01 奥瑞斯外科手术机器人公司 具有虚拟轨迹和柔性内窥镜的可配置机器人外科手术系统
CN108175510A (zh) * 2018-01-19 2018-06-19 上海联影医疗科技有限公司 医疗机器人以及医疗系统
CN109091230A (zh) * 2017-06-21 2018-12-28 山东威高手术机器人有限公司 一种微创手术主操作臂
CN110547874A (zh) * 2018-05-30 2019-12-10 上海舍成医疗器械有限公司 制定移动路径的方法及其组件和在自动化设备中的应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6804580B1 (en) * 2003-04-03 2004-10-12 Kuka Roboter Gmbh Method and control system for controlling a plurality of robots
CN102596063B (zh) * 2009-11-13 2015-09-23 直观外科手术操作公司 弯曲套管手术系统
CN105232155B (zh) * 2015-09-08 2018-11-09 微创(上海)医疗机器人有限公司 手术机器人调整系统
US10219868B2 (en) * 2016-01-06 2019-03-05 Ethicon Llc Methods, systems, and devices for controlling movement of a robotic surgical system
US11344379B2 (en) * 2016-12-07 2022-05-31 Koninklijke Philips N.V. Automatic motion control of a dependent surgical robotic arm
CN108210070B (zh) * 2017-12-29 2020-04-10 微创(上海)医疗机器人有限公司 机械臂及其工作方法与手术机器人
US11148297B2 (en) * 2017-12-31 2021-10-19 Asensus Surgical Us, Inc. Force based gesture control of a robotic surgical manipulator
JP7091777B2 (ja) * 2018-03-30 2022-06-28 株式会社安川電機 ロボットシステム及び制御方法
CN110464470B (zh) * 2019-09-10 2021-07-09 深圳市精锋医疗科技有限公司 手术机器人及其臂体的控制方法、控制装置
CN110786932B (zh) * 2019-11-19 2022-04-12 杭州唯精医疗机器人有限公司 聚散式微创手术机器人从臂系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110190937A1 (en) * 2008-08-29 2011-08-04 Kuka Laboratories Gmbh Medical Work Station And Operating Device For Manually Moving A Robot Arm Of A Medical Work Station
CN105188590A (zh) * 2012-12-10 2015-12-23 直观外科手术操作公司 图像采集装置和可操纵装置活动臂受控运动过程中的碰撞避免
CN107427327A (zh) * 2014-09-30 2017-12-01 奥瑞斯外科手术机器人公司 具有虚拟轨迹和柔性内窥镜的可配置机器人外科手术系统
CN109091230A (zh) * 2017-06-21 2018-12-28 山东威高手术机器人有限公司 一种微创手术主操作臂
CN108175510A (zh) * 2018-01-19 2018-06-19 上海联影医疗科技有限公司 医疗机器人以及医疗系统
CN110547874A (zh) * 2018-05-30 2019-12-10 上海舍成医疗器械有限公司 制定移动路径的方法及其组件和在自动化设备中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4201363A4 *

Also Published As

Publication number Publication date
US20230294284A1 (en) 2023-09-21
WO2022037425A1 (zh) 2022-02-24
EP4201363A1 (en) 2023-06-28
EP4201363A4 (en) 2024-09-04
CN114073589A (zh) 2022-02-22
CA3173684A1 (en) 2022-02-24
KR20230002909A (ko) 2023-01-05
JP2023533919A (ja) 2023-08-07
CN114073587A (zh) 2022-02-22

Similar Documents

Publication Publication Date Title
WO2022037356A1 (zh) 机器人系统以及控制方法
CN110893118B (zh) 手术机器人系统以及机械臂的运动控制方法
JP6671347B2 (ja) 手術台に対して位置合わせをするシステム及び方法
US20230111360A1 (en) System and method for radio based location of modular arm carts in a surgical robotic system
CN104334110B (zh) 使用零空间回避操纵器臂与患者碰撞
JP6293777B2 (ja) 画像キャプチャ装置及び操作可能な装置可動アームの制御された動作の間の衝突回避
CN114073585A (zh) 机器人系统以及控制方法
WO2022037385A1 (zh) 机器人系统以及控制方法
EP4309853A2 (en) Surgical system
KR101812297B1 (ko) 로봇의 마스터 조작 디바이스 및 이를 구비한 수술용 로봇의 제어방법
WO2023274098A1 (zh) 可移动设备的摆位指引方法及系统、手术机器人系统
WO2022037392A1 (zh) 机器人系统以及控制方法
CN116649992B (zh) 用于医学技术的机器人系统的轨迹规划
CN115363762A (zh) 手术机器人的摆位方法、装置及计算机设备
CN107688293B (zh) 一种微创外科手术机器人的建模方法
CN113742992B (zh) 基于深度学习的主从控制方法及应用
WO2022166024A1 (zh) 一种腔镜手术机器人的手术臂初始位姿规划方法及装置
Trejos et al. Port placement for endoscopic cardiac surgery based on robot dexterity optimization
CN116076984A (zh) 内窥镜视野调整方法、控制系统及可读存储介质
CN115781690A (zh) 多关节机械臂的控制方法、装置、电子设备及存储介质
CN115252140A (zh) 手术器械导引方法、手术机器人和介质
US20220175479A1 (en) Surgical operation system and method of controlling surgical operation system
CN114073586A (zh) 机器人系统以及控制方法
US20220160458A1 (en) Surgery assisting device
JP2021151469A (ja) 連続体ロボットを制御するための方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857480

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3173684

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20227040611

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022580281

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021857480

Country of ref document: EP

Effective date: 20230320