KR20180063552A - 포토트랜지스터, 상기 포토트랜지스터의 형성 방법, 및 상기 포토트랜지스터를 포함하는 이미지 센서 - Google Patents

포토트랜지스터, 상기 포토트랜지스터의 형성 방법, 및 상기 포토트랜지스터를 포함하는 이미지 센서 Download PDF

Info

Publication number
KR20180063552A
KR20180063552A KR1020160163429A KR20160163429A KR20180063552A KR 20180063552 A KR20180063552 A KR 20180063552A KR 1020160163429 A KR1020160163429 A KR 1020160163429A KR 20160163429 A KR20160163429 A KR 20160163429A KR 20180063552 A KR20180063552 A KR 20180063552A
Authority
KR
South Korea
Prior art keywords
electrode
layer
phototransistor
forming
pattern
Prior art date
Application number
KR1020160163429A
Other languages
English (en)
Inventor
김대형
현택환
최창순
최문기
Original Assignee
서울대학교산학협력단
기초과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단, 기초과학연구원 filed Critical 서울대학교산학협력단
Priority to KR1020160163429A priority Critical patent/KR20180063552A/ko
Publication of KR20180063552A publication Critical patent/KR20180063552A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • H01L27/14616Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor characterised by the channel of the transistor, e.g. channel having a doping gradient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312

Abstract

포토트랜지스터, 상기 포토트랜지스터의 형성 방법, 및 상기 포토트랜지스터를 포함하는 이미지 센서가 제공된다. 상기 포토트랜지스터는, 제1 절연 패턴, 상기 제1 절연 패턴 위에 배치되는 제1 전극 및 제2 전극, 상기 제1 전극 및 상기 제2 전극 위에 배치되는 광흡수층, 및 상기 광흡수층 위에 배치되는 제2 절연 패턴을 포함한다. 상기 포토트랜지스터의 형성 방법은, 제1 절연 패턴을 형성하는 단계, 상기 제1 절연 패턴 위에 제1 전극 및 제2 전극을 형성하는 단계, 상기 제1 전극 및 상기 제2 전극 위에 광흡수층을 형성하는 단계, 및 상기 광흡수층 위에 제2 절연 패턴을 형성하는 단계를 포함한다. 상기 이미지 센서는, 기판, 및 상기 기판 위에 배치되는 포토트랜지스터 어레이를 포함하고, 상기 포토트랜지스터는, 제1 절연 패턴, 상기 제1 절연 패턴 위에 배치되는 제1 전극 및 제2 전극, 상기 제1 전극 및 상기 제2 전극 위에 배치되는 광흡수층, 및 상기 광흡수층 위에 배치되는 제2 절연 패턴을 포함한다.

Description

포토트랜지스터, 상기 포토트랜지스터의 형성 방법, 및 상기 포토트랜지스터를 포함하는 이미지 센서{PHOTOTRANSISTOR, METHOD FOR FORMING THE PHOTOTRANSISTOR, AND IMAGE SENSOR COMPRISING THE PHOTOTRANSISTOR}
본 발명은 포토트랜지스터, 상기 포토트랜지스터의 형성 방법, 및 상기 포토트랜지스터를 포함하는 이미지 센서에 관한 것이다.
커브드 이미지 센서(curved image sensor)는 작은 광학 수차(optical aberration), 소형화되고 단순화된 렌즈 시스템, 및 넓은 시계(field-of-view) 등과 같은 장점을 가지고 있어 차세대 카메라 모듈로 큰 관심을 받고 있다. 그러나, 상기 커브드 이미지 센서는 종래의 광흡수 소재의 강성과 두꺼운 두께 때문에 고집적으로 형성되기 어렵다.
상기와 같은 문제점을 해결하기 위하여, 본 발명은 새로운 포토트랜지스터를 제공한다.
본 발명은 상기 포토트랜지스터의 형성 방법을 제공한다.
본 발명은 상기 포토트랜지스터를 포함하는 이미지 센서를 제공한다.
본 발명은 우수한 성능을 갖는 이미지 센서를 제공한다.
본 발명은 고집적 커브드 이미지 센서를 제공한다.
본 발명의 다른 목적들은 다음의 상세한 설명과 첨부한 도면으로부터 명확해 질 것이다.
본 발명의 실시예들에 따른 포토트랜지스터는, 제1 절연 패턴, 상기 제1 절연 패턴 위에 배치되는 제1 전극 및 제2 전극, 상기 제1 전극 및 상기 제2 전극 위에 배치되는 광흡수층, 및 상기 광흡수층 위에 배치되는 제2 절연 패턴을 포함한다.
상기 광흡수층은 전이금속 디칼코게나이드를 포함할 수 있다. 상기 광흡수층은 MoS2를 포함할 수 있다. 상기 제1 전극 및 상기 제2 전극은 각각 그래핀을 포함할 수 있다. 상기 제1 절연 패턴은 실리콘 질화물을 포함할 수 있고, 상기 제2 절연 패턴은 알루미늄 산화물을 포함할 수 있다.
상기 포토트랜지스터는 상기 제2 절연 패턴 위에 배치되는 게이트 전극을 더 포함할 수 있다. 상기 포토트랜지스터의 두께는 60nm보다 작을 수 있다.
본 발명의 실시예들에 따른 포토트랜지스터의 형성 방법은, 제1 절연 패턴을 형성하는 단계, 상기 제1 절연 패턴 위에 제1 전극 및 제2 전극을 형성하는 단계, 상기 제1 전극 및 상기 제2 전극 위에 광흡수층을 형성하는 단계, 및 상기 광흡수층 위에 제2 절연 패턴을 형성하는 단계를 포함한다.
상기 광흡수층을 형성하는 단계는, 희생 기판 위에 희생층을 형성하는 단계, 상기 희생층 위에 전이금속 디칼코게나이드층을 형성하는 단계, 상기 전이금속 디칼코게나이드층을 패터닝하여 전이금속 디칼코게나이드 패턴을 형성하는 단계, 상기 전이금속 디칼코게나이드 패턴 위에 전사용 지지층을 형성하는 단계, 상기 희생 기판에 식각 용액을 제공하여 상기 희생층을 제거하는 단계, 및 상기 전이금속 디칼코게나이드 패턴을 상기 제1 전극 및 상기 제2 전극 위로 전사하는 단계를 포함할 수 있다. 상기 전이금속 디칼코게나이드는 MoS2를 포함할 수 있다.
상기 희생 기판은 실리콘 기판일 수 있고, 상기 희생막은 실리콘 산화막일 수 있으며, 상기 식각 용액은 HF 용액일 수 있다.
상기 전사용 지지층은 상기 식각 용액에 의해 노출될 수 있다. 상기 전사용 지지층은 폴리메틸메타크릴레이트 또는 폴리이소부텐으로 형성될 수 있다.
상기 제1 전극 및 상기 제2 전극은 그래핀으로 형성될 수 있다.
본 발명의 실시예들에 따른 이미지 센서는, 기판, 및 상기 기판 위에 배치되는 포토트랜지스터 어레이를 포함하고, 상기 포토트랜지스터는, 제1 절연 패턴, 상기 제1 절연 패턴 위에 배치되는 제1 전극 및 제2 전극, 상기 제1 전극 및 상기 제2 전극 위에 배치되는 광흡수층, 및 상기 광흡수층 위에 배치되는 제2 절연 패턴을 포함한다.
상기 광흡수층은 전이금속 디칼코게나이드를 포함할 수 있다. 상기 광흡수층은 MoS2를 포함할 수 있다. 상기 제1 전극 및 상기 제2 전극은 각각 그래핀을 포함할 수 있다. 상기 제1 절연 패턴은 실리콘 질화물을 포함할 수 있고, 상기 제2 절연 패턴은 알루미늄 산화물을 포함할 수 있다.
상기 포토트랜지스터는 상기 제2 절연 패턴 위에 배치되는 게이트 전극을 더 포함할 수 있다. 상기 포토트랜지스터의 두께는 60nm보다 작을 수 있다.
상기 포토트랜지스터 어레이는 깎은 이십면체의 부분 형상을 가질 수 있다.
상기 이미지 센서는, 상기 기판과 상기 포토트랜지스터 어레이 사이에 배치되는 제1 보호층과, 상기 포토트랜지스터 어레이 위에 배치되는 제2 보호층을 더 포함할 수 있다. 상기 제1 보호층 및 상기 제2 보호층은 각각 깎은 이십면체의 부분 형상을 가질 수 있다.
상기 기판은 곡면 형상을 가질 수 있다. 상기 이미지 센서는 커브드 이미지 센서일 수 있다.
본 발명의 실시예들에 따르면, 새로운 포토트랜지스터가 구현될 수 있다. 상기 포토트랜지스터는 MoS2와 그래핀의 안정적인 접합 구조(또는 적층 구조)를 포함할 수 있다. 상기 포토트랜지스터를 이용하여 우수한 성능을 갖는 이미지 센서가 형성될 수 있다. 또, 전방향으로 굽혀진 조건에서 플렉시블한 고집적 커브드 이미지 센서가 형성될 수 있다. 이러한 커브드 이미지 센서를 이용하여 신뢰성을 갖는 인공 망막이 구현될 수 있다. 상기 이미지 센서는 적외선 필터 없이 정확한 이미징(imaging)을 할 수 있다.
도 1은 본 발명의 일 실시예에 따른 이미지 센서를 개략적으로 나타낸다.
도 2는 도 1의 A영역을 확대하여 나타낸다.
도 3은 도 1의 이미지 센서의 포토트랜지스터 영역의 단면도이다.
도 4는 본 발명의 실시예들에 따른 이미지 센서의 실제 이미지를 나타낸다.
도 5 내지 도 11은 본 발명의 일 실시예에 따른 이미지 센서의 형성 방법을 나타낸다.
도 12는 본 발명의 일 실시예에 따른 오목한 형상의 커브드 이미지 센서의 실제 이미지와 상기 이미지 센서에 의해 캡쳐된 이미지를 나타낸다.
도 13은 도 12의 커브드 이미지 센서의 포토트랜지스터의 수직 구조를 보여주는 HR-TEM 이미지이다.
도 14는 도 12의 커버드 이미지 센서의 고집적 이미지센서 어레이를 보여주는 SEM 이미지이다.
도 15는 본 발명의 일 실시예에 따른 MoS2 어레이 전사 방법과 비교예에 따른 MoS2 어레이 전사 방법의 공정 흐름을 비교하여 나타낸다.
도 16은 본 발명의 일 실시예에 따른 전사 방법과 비교예에 따른 전사 방법에 의해 전사된 MoS2 어레이를 비교하여 나타낸다.
도 17은 본 발명의 일 실시예에 따른 전사 방법과 비교예에 따른 전사 방법에 의해 전사된 MoS2 어레이 중 불량 셀의 비율을 비교하여 나타낸다.
도 18은 본 발명의 일 실시예에 따라 그래핀 어레이 위로 MoS2 어레이를 전사하기 전후의 이미지를 나타내고, 도 19는 도 18의 확대된 이미지를 나타낸다.
도 20은 본 발명의 일 실시예에 따른 전사 전후의 MoS2 패턴의 라만 강도를 나타낸다.
도 21은 본 발명의 일 실시예에 따라 전사된 MoS2층의 적층된 수에 따른 광 흡수도를 나탄내다.
도 22는 깎은 이십면체의 부분 형상을 갖는 본 발명의 일 실시예에 따른 포토트랜지스터 어레이의 광학 이미지를 나타내고, 도 23 내지 도 26은 도 22의 MoS2-GP 포토트랜지스터의 특성을 나타낸다.
도 26은 본 발명의 일 실시예에 따른 커브드 이미지 센서에 의한 이미징을 나타낸다.
이하, 실시예들을 통하여 본 발명을 상세하게 설명한다. 본 발명의 목적, 특징, 장점은 이하의 실시예들을 통해 쉽게 이해될 것이다. 본 발명은 여기서 설명되는 실시예들에 한정되지 않고, 다른 형태로 구체화될 수도 있다. 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 따라서, 이하의 실시예들에 의하여 본 발명이 제한되어서는 안 된다.
본 명세서에서 제1, 제2 등의 용어가 다양한 요소들(elements)을 기술하기 위해서 사용되었지만, 상기 요소들이 이 같은 용어들에 의해서 한정되어서는 안 된다. 이러한 용어들은 단지 상기 요소들을 서로 구별시키기 위해서 사용되었을 뿐이다. 또, 어떤 요소가 다른 요소 위에 있다고 언급되는 경우에 그것은 다른 요소 위에 직접 형성될 수 있거나 또는 그들 사이에 제3의 요소가 개재될 수도 있다는 것을 의미한다.
도면들에서 요소의 크기, 또는 요소들 사이의 상대적인 크기는 본 발명에 대한 더욱 명확한 이해를 위해서 다소 과장되게 도시될 수 있다. 또, 도면들에 도시된 요소의 형상이 제조 공정상의 변이 등에 의해서 다소 변경될 수 있을 것이다. 따라서, 본 명세서에서 개시된 실시예들은 특별한 언급이 없는 한 도면에 도시된 형상으로 한정되어서는 안 되며, 어느 정도의 변형을 포함하는 것으로 이해되어야 한다.
도 1은 본 발명의 일 실시예에 따른 이미지 센서를 개략적으로 나타내고, 도 2는 도 1의 A영역을 확대하여 나타내며, 도 3은 도 1의 이미지 센서의 포토트랜지스터 영역의 단면도이다.
도 1 내지 도 3을 참조하면, 이미지 센서(10)는 포토트랜지스터(100), 제1 보호층(210), 제2 보호층(220), 및 기판(300)을 포함할 수 있다. 복수 개의 포토트랜지스터(100)는 서로 교차하는 두 방향으로 배열되어 포토트랜지스터 어레이를 구성할 수 있다.
포토트랜지스터(100)는 제1 절연 패턴(110), 제1 전극(121), 제2 전극(122), 광흡수층(130), 제2 절연 패턴(140), 및 게이트 전극(150)을 포함할 수 있다.
제1 절연 패턴(110)은 제1 보호층(210) 위에 배치될 수 있다. 제1 절연 패턴(110)은, 예를 들어, 실리콘 질화물(Si3N4)로 형성될 수 있다. 제1 절연 패턴(110)은 약 5nm의 두께를 가질 수 있다.
제1 전극(121) 및 제2 전극(122)은 제1 절연 패턴(110) 위에 배치될 수 있다. 제1 전극(121) 및 제2 전극(122)은, 예를 들어, 그래핀(graphene)으로 형성될 수 있다. 제1 전극(121) 및 제2 전극(122)은 각각 약 2nm의 두께를 가질 수 있다.
제1 전극(121) 및 제2 전극(122)은 각각 소오스 전극 또는 드레인 전극일 수 있다. 제1 전극(121)과 제2 전극(122) 사이의 채널 영역을 길게 하기 위해 제1 전극(121) 및 제2 전극(122)의 서로 마주보는 부분은 빗살 형상을 가질 수 있다. 상기 채널 영역의 길이는 약 10㎛일 수 있다.
광흡수층(130)은 제1 전극(121) 및 제2 전극(122) 위에 배치될 수 있다. 광흡수층(130)은 전이금속 디칼코게나이드(transition metal dichalcogenide)를 포함할 수 있다. 광흡수층(130)은 MoS2, MoSe2, WS2, WSe2 등을 포함할 수 있다. 광흡수층(130)의 두께와 성능을 고려하여 광흡수층(130)은 MoS2를 포함할 수 있다. 광흡수층(130)은 약 4nm의 두께를 가질 수 있다.
제2 절연 패턴(140)은 광흡수층(130) 위에 배치될 수 있다. 제2 절연 패턴(140)은, 예를 들어, 알루미늄 산화물(Al2O3)로 형성될 수 있다. 제2 절연 패턴(140)은 약 25nm의 두께를 가질 수 있다.
게이트 전극(150)은 제2 절연 패턴(140) 위에 배치될 수 있다. 게이트 전극(150)은, 예를 들어, Ti/Au으로 형성될 수 있다. 게이트 전극(150)은 약 15nm의 두께를 가질 수 있다.
도면에 도시되지 않았지만, 전기 신호 전송을 위해 제1 방향에서 상기 포토트랜지스터 어레이의 상기 제1 전극들 또는 상기 제2 전극들은 서로 전기적으로 연결될 수 있고, 상기 제1 방향과 교차하는 제2 방향에서 상기 게이트 전극들은 서로 전기적으로 연결될 수 있다.
광흡수층과 제1 전극 및 제2 전극이 약 2~4nm로 얇게 형성될 수 있어, 포토트랜지스터(100)는 약 51nm의 얇은 두께로 형성될 수 있다. 포토트랜지스터의 초박막 두께는 커브드 이미지 센서(curved image sensor)에서 벤딩(bending) 등에 의해 야기되는 스트레인(strain)을 감소시킬 수 있다. MoS2 및 그래핀의 파단 변형률(fracture strain)은 각각 약 23% 및 약 25%로서, 실리콘 및 갈륨 비소(gallium arsenide)(파단 변형률 약 1%)보다 훨씬 더 높기 때문에 커브드 이미지 센서에서 광흡수 채널 및 인터커넥션(photo-absorbing channels and interconnections)으로 효과적으로 사용될 수 있다.
제1 절연 패턴(110) 및 제2 절연 패턴(140)은 섬형 어레이(island-like array)로 패터닝되고, 그 사이에 유연한 소재인 그래핀과 MoS2로 형성된 제1 및 제2 전극(121,122)과 광흡수층(130)이 배치된다. 이러한 구조는 제1 절연 패턴(110) 및 제2 절연 패턴(140)에 발생하는 스트레인을 감소시킬 수 있고, 상기 스트레인의 대부분이 제1 절연 패턴(110) 및 제2 절연 패턴(140) 사이의 유연한 영역에 집중될 수 있어 스트레인에 의한 부정적인 영향이 감소하거나 제거될 수 있다.
제1 보호층(210)은 포토트랜지스터(100) 아래에 배치되고, 제2 보호층(220)은 포토트랜지스터(100) 위에 배치될 수 있다. 제1 보호층(210)과 제2 보호층(220)에 의해 그 사이에 배치된 포토트랜지스터(100)가 보호될 수 있다. 제1 보호층(210) 및 제2 보호층(220)은, 예를 들어, 폴리이미드(PI)로 형성될 수 있다.
제1 보호층(210) 및 제2 보호층(220)은 깎은 이십면체(truncated icosahedron)의 부분 형상을 가질 수 있다. 제1 보호층(210) 및 제2 보호층(220) 사이에 배치되는 포토트랜지스터 어레이도 깍은 이십면체의 부분 형상을 가질 수 있다. 깎은 이십면체의 부분 형상은 스트레인을 추가적으로 감소시킬 수 있다.
기판(300)은 포토트랜지스터(100), 제1 보호층(210), 및 제2 보호층(220)을 지지할 수 있다. 기판(300)은 곡면 형상, 예를 들어, 반구 형상을 가질 수 있다. 기판(300)은, 예를 들어, 폴리디메틸실록산(PDMS)로 형성될 수 있다.
포토트랜지스터의 초박막 두께, 광흡수 패턴과 제1 및 제2 전극 패턴의 유연한 소재, 제1 절연 패턴과 제2 절연 패턴의 섬형 어레이, 및 포토트랜지스터 어레이(제1 보호층 및 제2 보호층)의 깎은 이십면체의 부분 형상에 의해, 전방향으로 굽혀진 조건(omnidirectionally bent conditions)에서 플렉시블한 고집적 커브드 이미지 센서 어레이가 형성될 수 있다. 이러한 커브드 이미지 센서를 이용하여 신뢰성을 갖는 인공 망막이 구현될 수 있다.
도 4는 본 발명의 실시예들에 따른 이미지 센서의 실제 이미지를 나타낸다.
도 4를 참조하면, 본 발명의 실시예들에 따른 이미지 센서는 포토트랜지스터 어레이와 반구형 기판을 포함할 수 있고, 상기 포토트랜지스터 어레이가 상기 반구형 기판의 볼록한 면과 오목한 면에 각각 기계적 결함 없이 안정적으로 배치될 수 있다.
도 5 내지 도 11은 본 발명의 일 실시예에 따른 이미지 센서의 형성 방법을 나타낸다.
도 5를 참조하면, 제1 희생 기판(410) 위에 보호층(210a)을 형성한다. 제1 희생 기판(410) 실리콘 산화물(SiO2) 기판일 수 있다. 보호층(210a)은, 예를 들어, 스핀 코팅을 수행하여 폴리이미드로 형성될 수 있다.
보호층(210a) 위에 제1 절연 패턴(110)을 형성한다. 제1 절연 패턴(110)은, 예를 들어, PECVD 공정을 수행하여 보호층(210a) 위에 실리콘 질화물로 절연층을 형성한 후 포토리소그래피(photolithography) 공정과 건식 식각 공정을 수행하는 것에 섬형 어레이 구조로 형성될 수 있다. 상기 절연층은 약 5nm의 두께를 갖도록 형성될 수 있다.
제1 절연 패턴(110) 위에 제1 전극(121) 및 제2 전극(122)을 형성한다. 제1 전극(121) 및 제2 전극(122)은, 예를 들어, 제1 절연 패턴(110) 위에 그래핀층을 형성한 후 상기 그래핀층을 패터닝하는 것에 의해 형성될 수 있다. 상기 그래핀층은 약 2nm의 두께를 갖도록 형성될 수 있다. 상기 그래핀층은 제1 절연 패턴(110) 위에 직접 형성될 수도 있고, 다른 곳에서 형성된 후 제1 절연 패턴(110) 위로 전사될 수도 있다. 제1 전극(121) 및 제2 전극(122)은 각각 소오스 전극 또는 드레인 전극일 수 있다. 제1 전극(121)과 제2 전극(122) 사이의 채널 영역을 길게 하기 위해 제1 전극(121) 및 제2 전극(122)의 서로 마주보는 부분은 빗살 형상을 갖도록 형성될 수 있다. 상기 채널 영역의 길이는 약 10㎛일 수 있다.
도 6을 참조하면, 제1 전극(121) 및 제2 전극(122) 위에 광흡수층(130)을 형성한다. 광흡수층(130)의 형성과정은 도 7 내지 도 9를 참조하여 설명한다.
도 7을 참조하면, 제2 희생 기판(420) 위에 희생층(421)을 형성하고, 희생층(421) 위에 광흡수층(130)을 형성한다. 제2 희생 기판(420)은 실리콘 기판일 수 있고, 희생층(421)은 실리콘 산화물층일 수 있다. 희생층(421)은 열산화 공정 또는 CVD 공정을 수행하는 것에 의해 형성될 수 있다.
광흡수층(130)은 전이금속 디칼코게나이드로 형성될 수 있다. 광흡수층(130)은 MoS2, MoSe2, WS2, WSe2 등으로 형성될 수 있다. 광흡수층(130)의 두께와 성능을 고려하여 광흡수층(130)은 MoS2로 형성될 수 있다. 광흡수층(130)은, 예를 들어, 황(sulfur)과 MoO3를 이용한 CVD 공정을 수행하여 MoS2층을 형성한 후 상기 MoS2층을 패터닝하는 것에 의해 형성될 수 있다. 광흡수층(130)은 약 4nm의 두께를 갖도록 형성될 수 있다.
광흡수층(130) 위에 전사용 지지층(430)을 형성한다. 전사용 지지층(430)은, 예를 들어, 스핀 코팅 공정을 수행하여 폴리메틸메타크릴레이트(PMMA, poly(methyl methacrylate)) 또는 폴리이소부텐(polyisobutene)으로 형성될 수 있다.
도 8 및 도 9를 참조하면, 제2 희생 기판(420)에 식각 용액(440)을 제공하여 희생층(421)을 제거한다. 식각 용액(440)은, 예를 들어, HF 용액일 수 있다. 제2 희생 기판(420)에 식각 용액(440)을 제공할 때, 전사용 지지층(430)이 식각 용액(440)에 완전히 담그어지지 않고 외부로 노출되도록 하는 것이 바람직하다. 광흡수층(130)과 전사용 지지층(430)은 제2 희생 기판(420)으로부터 분리되어 식각 용액(440) 위에 뜰 수 있다.
다시 도 6 및 도 9를 참조하면, 광흡수층(130)은 전사용 지지층(430)에 의해 픽업되어 제1 전극(121) 및 제2 전극(122) 위로 전사된다. 광흡수층(130)은 상기 전사 전에 탈이온수에 의해 세정될 수 있다. 상기 전사 공정에 의해 광흡수층(130)이 제1 전극(121) 및 제2 전극(122) 위로 안정적으로 전사될 수 있다. 또, 상기 전사 공정을 이용하여 대면적의 광흡수층 어레이가 안정적으로 전사될 수 있다. 상기 전사 공정은 MoS2 패턴과 그래핀 패턴의 이종 집적(heterogeneous integration)을 용이하게 할 수 있다.
도 10을 참조하면, 광흡수층(130) 위에 제2 절연 패턴(140)을 형성한다. 제2 절연 패턴(140)은, 예를 들어, 원자층증착공정을 수행하여 Al2O3층을 형성한 후 상기 Al2O3층을 패터닝하는 것에 의해 형성될 수 있다. 제2 절연 패턴(140)은 약 25nm의 두께를 갖도록 형성될 수 있다.
제2 절연 패턴(140) 위에 게이트 전극(150)을 형성한다. 게이트 전극(150)은, 예를 들어, Ti/Au으로 금속층을 형성한 후 패터닝하는 것에 의해 형성될 수 있다. 게이트 전극(150)은 약 15nm의 두께를 갖도록 형성될 수 있다.
도 11을 참조하면, 게이트 전극(150) 위에 제2 보호층(220)을 형성한다. 제2 보호층(220)은 스핀 코팅을 수행하여 폴리이미드층을 형성한 후 상기 폴리이미드층을 패터닝하는 것에 의해 형성될 수 있다. 이때 보호층(210a)도 패터닝되어 제1 보호층(210)이 형성될 수 있다. 제1 보호층(210) 및 제2 보호층(220)은 깎은 이십면체의 부분 형상을 갖도록 형성될 수 있다.
다시 도 3을 참조하면, 포토트랜지스터(100), 제1 보호층(210), 및 제2 보호층(220)을 기판(300) 위로 전사한다. 상기 전사는, 예를 들어, 수용성 테이프를 이용하여 제1 보호층(210)을 희생층(421)으로부터 분리하는 것에 의해 이루어질 수 있다. 상기 전사 후 상기 수용성 테이프는 제거될 수 있다. 기판(300)은 곡면 형상, 예를 들어, 반구 형상을 가질 수 있다. 기판(300)은, 예를 들어, 폴리디메틸실록산(PDMS)로 형성될 수 있다.
도 12는 본 발명의 일 실시예에 따른 오목한 형상의 커브드 이미지 센서의 실제 이미지와 상기 이미지 센서에 의해 캡쳐된 이미지를 나타내고, 도 13은 도 12의 커브드 이미지 센서의 포토트랜지스터의 수직 구조를 보여주는 HR-TEM 이미지이며, 도 14는 도 12의 커버드 이미지 센서의 고집적 이미지센서 어레이를 보여주는 SEM 이미지이다.
도 12 내지 도 14를 참조하면, 유연한 소재인 MoS2와 그래핀(GP)을 이용하여 약 51nm의 초박막 포토트랜지스터 구조를 도입하고, 섬형태의 절연 패턴들(Si3N4, Al2O3)을 이용하여 스트레인 격리 구조를 적용하고, 깍은 이십면체의 부분 형상을 적용하는 것에 의해 반구형 기판의 오목한 면 위에 광학적 및 기계적 결함을 갖지 않는 고집적 이미지 센서 어레이가 형성될 수 있다.
도 15는 본 발명의 일 실시예에 따른 MoS2 어레이 전사 방법과 비교예에 따른 MoS2 어레이 전사 방법의 공정 흐름을 비교하여 나타낸다.
도 15를 참조하면, KOH 용액을 사용하는 비교예에서는 실리콘과 OH- 사이의 반응에 기인하여 버블들이 형성될 수 있고, 상기 버블들에 의해 MoS2 어레이의 불균일성과 미스얼라인먼트가 야기될 수 있다. 또, 비교예에서는 식각 속도가 느려 대량 생산이 어렵다. 그러나, HF 용액을 이용하는 본 발명의 실시예에서는 버블이 형성되지 않으면서 식각 속도가 빨라 MoS2 어레이가 안정적으로 빠르게 전사될 수 있다.
도 16은 본 발명의 일 실시예에 따른 전사 방법과 비교예에 따른 전사 방법에 의해 전사된 MoS2 어레이를 비교하여 나타내고, 도 17은 본 발명의 일 실시예에 따른 전사 방법과 비교예에 따른 전사 방법에 의해 전사된 MoS2 어레이 중 불량 셀의 비율을 비교하여 나타낸다.
도 16 및 도 17을 참조하면, 비교예에 따른 전사 방법에 의해 전사된 MoS2 어레이는 불량 셀(crumpled cell)의 비율이 약 30%로 나타났으나, 본 발명의 일 실시예에 따른 전사 방법에 의해 전사된 MoS2 어레이는 불량 셀의 비율이 약 2% 이하로 매우 낮게 나타났다.
도 18은 본 발명의 일 실시예에 따라 그래핀 어레이 위로 MoS2 어레이를 전사하기 전후의 이미지를 나타내고, 도 19는 도 18의 확대된 이미지를 나타낸다.
도 18 및 도 19를 참조하면, 본 발명의 전사 방법에 따르면, MoS2 어레이가 그래핀 어레이 위로 안정적으로 전사될 수 있다. 상기 전사 방법에 의해 MoS2 패턴과 그래핀 패턴의 이종 집적이 용이하게 이루어질 수 있다. 또, 상기 전사 방법에 의해 고집적의 MoS2-그래핀 하이브리드 어레이가 용이하게 형성될 수 있다.
도 20은 본 발명의 일 실시예에 따른 전사 전후의 MoS2 패턴의 라만 강도를 나타낸다. 도 20을 참조하면, MoS2 패턴은 전사된 후에도 우수한 성능을 유지하는 것으로 나타났다.
도 21은 본 발명의 일 실시예에 따라 전사된 MoS2층의 적층된 수에 따른 광 흡수도를 나탄내다. 도 21을 참조하면, MoS2층의 적층된 수에 비례하여 광 흡수도가 증가하는 것으로 나타났다.
도 22는 깎은 이십면체의 부분 형상을 갖는 본 발명의 일 실시예에 따른 포토트랜지스터 어레이의 광학 이미지를 나타내고, 도 23 내지 도 26은 도 22의 MoS2-GP 포토트랜지스터의 특성을 나타낸다.
도 23은 515nm 가시광선 파장의 조명 하에서 상기 MoS2-GP 포토트랜지스터의 전달 곡선을 나타낸다. 도 23을 참조하면, 상기 MoS2-GP 포토트랜지스터는 전형적인 감광 전계 효과 트랜지스터(light-senstive field effect transistor)의 거동을 나타낸다.
도 24는 다른 광도 하에서 상기 MoS2-GP 포토트랜지스터의 정규화된 광전류를 나타낸다. 도 24를 참조하면, 게이트 전극의 일정한 바이어스 전압(-4V) 하에서 상기 MoS2-GP 포토트랜지스터의 정규화된 광전류는 광도에 비례하는 것으로 나타났다.
도 25는 MoS2-GP 포토트랜지스터의 광응답특성을 단결정 실리콘 포토트랜지스터와 비교하여 나타낸다. 도 25를 참조하면, MoS2-GP 포토트랜지스터는 단결정 실리콘 포토트랜지스터에 비해 광응답성(photoresponsivity)이 100 ~ 1000배 더 높은 것으로 나타났다.
도 26은 850nm 적외선 파장의 조명 하에서 MoS2-GP 포토트랜지스터의 정규화된 광전류를 단결정 실리콘 포토트랜지스터와 비교하여 나타낸다. 도 26을 참조하면, 단결정 실리콘 포토트랜지스터는 적외선(IR)을 흡수하여 적외선 노이즈를 야기하지만, MoS2-GP 포토트랜지스터는 적외선을 흡수하지 않는다. 따라서, 본 발명의 실시예들에 따른 이미지 센서는 적외선 필터 없이 정확한 이미징(imaging)을 할 수 있다.
도 26은 본 발명의 일 실시예에 따른 커브드 이미지 센서에 의한 이미징을 나타낸다. 상기 이미지 센서는 12×12 포토트랜지스터 어레이를 포함한다.
도 26(a)를 참조하면, 상기 커브드 이미지 센서는 반구형 표면에 포토트랜지스터들이 균일한 밀도로 배치되어 있어 이미지가 왜곡되는 것을 방지할 수 있다.
도 26(b)를 참조하면, 상기 커브드 이미지 센서는 적외선 조명 하에서도 적외선 노이즈를 야기하지 않고, 획득된 이미지는 적외선에 의해 영향을 받지 않는다.
도 26(c) 내지 (f)를 참조하면, 다양한 이미지들이 적외선 노이즈 없이 정확하게 처리될 수 있다.
이제까지 본 발명에 대한 구체적인 실시예들을 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.
10 : 커브드 이미지 센서 100 : 포토트랜지스터
110 : 제1 절연 패턴 121 : 제1 전극
122 : 제2 전극 130 : 광흡수층
140 : 제2 절연 패턴 150 : 게이트 전극
210 : 제1 보호층 220 : 제2 보호층
300 : 기판

Claims (25)

  1. 제1 절연 패턴;
    상기 제1 절연 패턴 위에 배치되는 제1 전극 및 제2 전극;
    상기 제1 전극 및 상기 제2 전극 위에 배치되는 광흡수층; 및
    상기 광흡수층 위에 배치되는 제2 절연 패턴을 포함하는 포토트랜지스터.
  2. 제 1 항에 있어서,
    상기 광흡수층은 전이금속 디칼코게나이드를 포함하는 것을 특징으로 하는 포토트랜지스터.
  3. 제 1 항에 있어서,
    상기 광흡수층은 MoS2를 포함하는 것을 특징으로 하는 포토트랜지스터.
  4. 제 1 항에 있어서,
    상기 제1 전극 및 상기 제2 전극은 각각 그래핀을 포함하는 것을 특징으로 하는 포토트랜지스터.
  5. 제 1 항에 있어서,
    상기 제1 절연 패턴은 실리콘 질화물을 포함하고,
    상기 제2 절연 패턴은 알루미늄 산화물을 포함하는 것을 특징으로 하는 포토트랜지스터.
  6. 제 1 항에 있어서,
    상기 제2 절연 패턴 위에 배치되는 게이트 전극을 더 포함하는 포토트랜지스터.
  7. 제 6 항에 있어서,
    상기 포토트랜지스터의 두께는 60nm보다 작은 것을 특징으로 하는 포토트랜지스터.
  8. 제1 절연 패턴을 형성하는 단계;
    상기 제1 절연 패턴 위에 제1 전극 및 제2 전극을 형성하는 단계;
    상기 제1 전극 및 상기 제2 전극 위에 광흡수층을 형성하는 단계; 및
    상기 광흡수층 위에 제2 절연 패턴을 형성하는 단계를 포함하는 포토트랜스터의 형성 방법.
  9. 제 8 항에 있어서,
    상기 광흡수층을 형성하는 단계는,
    희생 기판 위에 희생층을 형성하는 단계,
    상기 희생층 위에 전이금속 디칼코게나이드층을 형성하는 단계
    상기 전이금속 디칼코게나이드층을 패터닝하여 전이금속 디칼코게나이드 패턴을 형성하는 단계
    상기 전이금속 디칼코게나이드 패턴 위에 전사용 지지층을 형성하는 단계,
    상기 희생 기판에 식각 용액을 제공하여 상기 희생층을 제거하는 단계, 및
    상기 전이금속 디칼코게나이드 패턴을 상기 제1 전극 및 상기 제2 전극 위로 전사하는 단계를 포함하는 것을 특징으로 하는 포토트랜지스터의 형성 방법.
  10. 제 9 항에 있어서,
    상기 전이금속 디칼코게나이드는 MoS2를 포함하는 것을 특징으로 하는 포토트랜지스터의 형성 방법.
  11. 제 9 항에 있어서,
    상기 희생 기판은 실리콘 기판이고,
    상기 희생막은 실리콘 산화막이며,
    상기 식각 용액은 HF 용액인 것을 특징으로 하는 포토트랜지스터의 형성 방법.
  12. 제 9 항에 있어서,
    상기 전사용 지지층은 상기 식각 용액에 의해 노출되는 것을 특징으로 하는 포토트랜지스터의 형성 방법.
  13. 제 9 항에 있어서,
    상기 전사용 지지층은 폴리메틸메타크릴레이트 또는 폴리이소부텐으로 형성되는 것을 특징으로 하는 포토트랜지스터의 형성 방법.
  14. 제 8 항에 있어서,
    상기 제1 전극 및 상기 제2 전극은 그래핀으로 형성되는 것을 특징으로 하는 포토트랜지스터의 형성 방법.
  15. 기판; 및
    상기 기판 위에 배치되는 포토트랜지스터 어레이를 포함하고,
    상기 포토트랜지스터는,
    제1 절연 패턴,
    상기 제1 절연 패턴 위에 배치되는 제1 전극 및 제2 전극,
    상기 제1 전극 및 상기 제2 전극 위에 배치되는 광흡수층, 및
    상기 광흡수층 위에 배치되는 제2 절연 패턴을 포함하는 것을 특징으로 하는 이미지 센서.
  16. 제 15 항에 있어서,
    상기 광흡수층은 전이금속 디칼코게나이드를 포함하는 것을 특징으로 하는 이미지 센서.
  17. 제 15 항에 있어서,
    상기 광흡수층은 MoS2를 포함하는 것을 특징으로 하는 이미지 센서.
  18. 제 15 항에 있어서,
    상기 제1 전극 및 상기 제2 전극은 각각 그래핀을 포함하는 것을 특징으로 하는 포토트랜지스터.
  19. 제 15 항에 있어서,
    상기 제1 절연 패턴은 실리콘 질화물을 포함하고,
    상기 제2 절연 패턴은 알루미늄 산화물을 포함하는 것을 특징으로 하는 포토트랜지스터.
  20. 제 15 항에 있어서,
    상기 포토트랜지스터는 상기 제2 절연 패턴 위에 배치되는 게이트 전극을 더 포함하는 것을 특징으로 하는 이미지 센서.
  21. 제 20 항에 있어서,
    상기 포토트랜지스터의 두께는 60nm보다 작은 것을 특징으로 하는 이미지 센서.
  22. 제 15 항에 있어서,
    상기 포토트랜지스터 어레이는 깎은 이십면체의 부분 형상을 갖는 것을 특징으로 하는 이미지 센서.
  23. 제 15 항에 있어서,
    상기 기판과 상기 포토트랜지스터 어레이 사이에 배치되는 제1 보호층과,
    상기 포토트랜지스터 어레이 위에 배치되는 제2 보호층을 더 포함하고,
    상기 제1 보호층 및 상기 제2 보호층은 각각 깎은 이십면체의 부분 형상을 갖는 것을 특징으로 하는 이미지 센서.
  24. 제 15 항에 있어서,
    상기 기판은 곡면 형상을 갖는 것을 특징으로 하는 이미지 센서.
  25. 제 24 항에 있어서,
    상기 이미지 센서는 커브드 이미지 센서인 것을 특징으로 하는 이미지 센서.
KR1020160163429A 2016-12-02 2016-12-02 포토트랜지스터, 상기 포토트랜지스터의 형성 방법, 및 상기 포토트랜지스터를 포함하는 이미지 센서 KR20180063552A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160163429A KR20180063552A (ko) 2016-12-02 2016-12-02 포토트랜지스터, 상기 포토트랜지스터의 형성 방법, 및 상기 포토트랜지스터를 포함하는 이미지 센서

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160163429A KR20180063552A (ko) 2016-12-02 2016-12-02 포토트랜지스터, 상기 포토트랜지스터의 형성 방법, 및 상기 포토트랜지스터를 포함하는 이미지 센서

Publications (1)

Publication Number Publication Date
KR20180063552A true KR20180063552A (ko) 2018-06-12

Family

ID=62622536

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160163429A KR20180063552A (ko) 2016-12-02 2016-12-02 포토트랜지스터, 상기 포토트랜지스터의 형성 방법, 및 상기 포토트랜지스터를 포함하는 이미지 센서

Country Status (1)

Country Link
KR (1) KR20180063552A (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102362028B1 (ko) 2021-11-12 2022-02-14 대한민국 수중촬영이 용이한 3d 카메라리그
US11600774B2 (en) 2019-11-20 2023-03-07 Samsung Electronics Co., Ltd. Nonvolatile memory device and operating method of the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080845A (ja) * 2008-09-29 2010-04-08 Sanyo Electric Co Ltd 光電流増倍素子及びフォトトランジスタ
JP2014522117A (ja) * 2011-08-02 2014-08-28 フンダシオ インスティチュート デ サイエンセズ フォトニクス 炭素系伝導体と量子ドットとを有するフォトトランジスタ
KR20160004433A (ko) * 2014-07-02 2016-01-13 경희대학교 산학협력단 광반응성 증폭 포토 디바이스 및 그 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080845A (ja) * 2008-09-29 2010-04-08 Sanyo Electric Co Ltd 光電流増倍素子及びフォトトランジスタ
JP2014522117A (ja) * 2011-08-02 2014-08-28 フンダシオ インスティチュート デ サイエンセズ フォトニクス 炭素系伝導体と量子ドットとを有するフォトトランジスタ
KR20160004433A (ko) * 2014-07-02 2016-01-13 경희대학교 산학협력단 광반응성 증폭 포토 디바이스 및 그 제조방법

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Haijie Tan et al., "Ultrathin 2D Photodetector Utilizing Chemical Vapor Deposition Grown WS2 With Graphene Electrodes", ACS Nano, Vol.10, pp.7866-7873 (2016.07.21.) 1부. *
Lili Yu et al., "Graphene/MoS2 Hybrid Technology for Large-Scale Two-Dimensional Electronics", Nano Letters, Vol.14, pp.3055-3063 (2014.05.08) 1부. *
Sidong Lei et al., "Optoelectronic Memory Using Two-Dimensional Materials", Nano Letters, Vol.15, pp.259-265 (2014.12.17.) 1부. *
학회지(2013.04.02.) *
학회지(2015.07.10.) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11600774B2 (en) 2019-11-20 2023-03-07 Samsung Electronics Co., Ltd. Nonvolatile memory device and operating method of the same
KR102362028B1 (ko) 2021-11-12 2022-02-14 대한민국 수중촬영이 용이한 3d 카메라리그

Similar Documents

Publication Publication Date Title
US9337220B2 (en) Solar blind ultra violet (UV) detector and fabrication methods of the same
US9054008B2 (en) Solar blind ultra violet (UV) detector and fabrication methods of the same
US7897427B2 (en) Method for manufacturing solid-state image pick-up device
US9029686B2 (en) Strain-enhanced silicon photon-to-electron conversion devices
KR100781545B1 (ko) 감도가 향상된 이미지 센서 및 그의 제조방법
US7233037B2 (en) Solid state imaging device and method of manufacturing the same
CN111341875B (zh) 一种石墨烯/二硒化钯/硅异质结自驱动光电探测器
US20140027612A1 (en) Integrated Image Sensor Package With Liquid Crystal Lens
US20090294767A1 (en) Isolated Sensor Structures Such As For Flexible Substrates
KR102283831B1 (ko) 3차원 구조의 광검출 소자 및 그의 제조 방법
KR20180063552A (ko) 포토트랜지스터, 상기 포토트랜지스터의 형성 방법, 및 상기 포토트랜지스터를 포함하는 이미지 센서
CN116885040A (zh) 一种光探测器件及制备方法
JP2007165864A5 (ko)
US20020102498A1 (en) Method for forming biconvex microlens of image sensor
JP2005268238A (ja) 裏面照射型固体撮像装置及びその製造方法
US20130277787A1 (en) Backside illumination cmos image sensor and method for fabricating the same
JP2014067951A (ja) 光電変換素子、光電変換素子の製造方法、及び電子機器
US8871608B2 (en) Method for fabricating backside-illuminated sensors
KR20100024874A (ko) 나노구조 및 나노구조의 제조
KR100780246B1 (ko) 이미지 센서 제조방법
US7651884B2 (en) Method of fabricating a CMOS image sensor with micro lenses formed in a wiring layer
CN110071133A (zh) 图像传感器及其形成方法、摄像模组
JPH10173159A (ja) 固体撮像素子およびその製造方法
CN116666500B (zh) 锗光电探测器及通过热失配应力提高其长波响应的方法
JP2023183538A (ja) 撮像素子及び撮像素子の製造方法

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment