KR20180060785A - 전기 분해용 전극 및 전기 분해용 전극의 제조방법 - Google Patents
전기 분해용 전극 및 전기 분해용 전극의 제조방법 Download PDFInfo
- Publication number
- KR20180060785A KR20180060785A KR1020160160679A KR20160160679A KR20180060785A KR 20180060785 A KR20180060785 A KR 20180060785A KR 1020160160679 A KR1020160160679 A KR 1020160160679A KR 20160160679 A KR20160160679 A KR 20160160679A KR 20180060785 A KR20180060785 A KR 20180060785A
- Authority
- KR
- South Korea
- Prior art keywords
- electrode
- electrolysis
- atom
- mixture
- titanium
- Prior art date
Links
- 238000005868 electrolysis reaction Methods 0.000 title claims abstract description 45
- 238000000034 method Methods 0.000 title claims description 26
- 239000003054 catalyst Substances 0.000 claims abstract description 48
- 239000010936 titanium Substances 0.000 claims abstract description 38
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 35
- 239000000203 mixture Substances 0.000 claims abstract description 34
- 229910052751 metal Inorganic materials 0.000 claims abstract description 33
- 239000002184 metal Substances 0.000 claims abstract description 33
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical group [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims abstract description 31
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract description 31
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical group [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 29
- 238000004519 manufacturing process Methods 0.000 claims abstract description 17
- 239000002243 precursor Substances 0.000 claims abstract description 15
- -1 titanium alkoxide Chemical class 0.000 claims abstract description 12
- 125000004430 oxygen atom Chemical group O* 0.000 claims abstract description 11
- 239000006104 solid solution Substances 0.000 claims abstract description 10
- 239000000758 substrate Substances 0.000 claims description 37
- 125000004429 atom Chemical group 0.000 claims description 22
- 239000002253 acid Substances 0.000 claims description 13
- 238000001035 drying Methods 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 239000002904 solvent Substances 0.000 claims description 10
- 238000010304 firing Methods 0.000 claims description 8
- 239000002585 base Substances 0.000 claims description 6
- 125000004432 carbon atom Chemical group C* 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 5
- 238000003843 chloralkali process Methods 0.000 claims description 5
- 230000032683 aging Effects 0.000 claims description 4
- 238000001354 calcination Methods 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 2
- 238000001879 gelation Methods 0.000 claims description 2
- 150000002576 ketones Chemical class 0.000 claims description 2
- 238000007789 sealing Methods 0.000 claims description 2
- 239000010410 layer Substances 0.000 abstract description 37
- 230000000694 effects Effects 0.000 abstract description 4
- 239000000463 material Substances 0.000 abstract description 3
- 239000011247 coating layer Substances 0.000 abstract description 2
- 230000000052 comparative effect Effects 0.000 description 10
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 229910010413 TiO 2 Inorganic materials 0.000 description 7
- 239000011259 mixed solution Substances 0.000 description 7
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 6
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 5
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 5
- 230000001680 brushing effect Effects 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 235000006408 oxalic acid Nutrition 0.000 description 3
- 238000000197 pyrolysis Methods 0.000 description 3
- 235000011121 sodium hydroxide Nutrition 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 229940035637 spectrum-4 Drugs 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- XWURZHGKODQZMK-UHFFFAOYSA-N O.[Ru]=O Chemical compound O.[Ru]=O XWURZHGKODQZMK-UHFFFAOYSA-N 0.000 description 1
- 229910021603 Ruthenium iodide Inorganic materials 0.000 description 1
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004502 linear sweep voltammetry Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- OJLCQGGSMYKWEK-UHFFFAOYSA-K ruthenium(3+);triacetate Chemical compound [Ru+3].CC([O-])=O.CC([O-])=O.CC([O-])=O OJLCQGGSMYKWEK-UHFFFAOYSA-K 0.000 description 1
- WYRXRHOISWEUST-UHFFFAOYSA-K ruthenium(3+);tribromide Chemical compound [Br-].[Br-].[Br-].[Ru+3] WYRXRHOISWEUST-UHFFFAOYSA-K 0.000 description 1
- LJZVDOUZSMHXJH-UHFFFAOYSA-K ruthenium(3+);triiodide Chemical compound [Ru+3].[I-].[I-].[I-] LJZVDOUZSMHXJH-UHFFFAOYSA-K 0.000 description 1
- YBCAZPLXEGKKFM-UHFFFAOYSA-K ruthenium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Ru+3] YBCAZPLXEGKKFM-UHFFFAOYSA-K 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- YRQNNUGOBNRKKW-UHFFFAOYSA-K trifluororuthenium Chemical compound F[Ru](F)F YRQNNUGOBNRKKW-UHFFFAOYSA-K 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/091—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
-
- C25B11/0478—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/063—Titanium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/46—Ruthenium, rhodium, osmium or iridium
- B01J23/462—Ruthenium
-
- B01J35/0006—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/19—Catalysts containing parts with different compositions
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/34—Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
-
- C25B11/0415—
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/055—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
- C25B11/057—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Electrochemistry (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
Abstract
본 발명은 루테늄 원자, 티타늄 원자 및 산소 원자가 네트워크 구조를 형성하고 있는 고용체인 촉매층을 포함하는 전기 분해용 전극 및 그 제조방법에 관한 것으로, 본 발명의 전기 분해용 전극은 금속 기재의 표면에 루테늄 원자, 티타늄 원자 및 산소 원자가 네트워크를 형성하고 있는 촉매층이 형성되어 있어서 촉매 코팅층의 안정성이 우수하고 촉매의 활성도가 우수하며, 본 발명의 전기 분해용 전극의 제조방법은 겔화된 티타늄 알콕사이드 및 루테늄 전구체를 용해한 혼합물을 이용하여 상기 전기분해용 전극을 제조할 수 있다.
Description
본 발명은 전기 분해용 전극 및 전기 분해용 전극의 제조방법에 관한 것으로, 더욱 자세하게는 금속 기재의 표면에 루테늄 원자, 티타늄 원자 및 산소 원자가 네트워크를 형성하고 있는 촉매층이 형성되어 있는 전기 분해용 전극, 및 겔 코팅 방법을 통하여 상기 전기 분해용 전극을 제조하는 방법에 관한 것이다.
클로르-알칼리(chlor-alkali, 이하 "CA"라 함) 공정은 NaCl과 물을 전기 분해 하여 비닐클로라이드 모노머(VCM) 제조의 원료가 되는 염소가스(Cl2), 가성소다(NaOH), 및 수소가스(H2)를 생성하는 공정이다. CA 공정은 에너지 사용량이 많은 공정으로 다량의 전력이 필요하므로 전력비를 절감하기 위해 전기 분해에 필요한 전압을 넘어서는 추가적인 전압(과전압)을 줄이는 것이 중요하다. 상기 과전압을 높이는 요인에는 분리막 저항, 산화 전극(양극), 환원 전극(음극), 전해질 저항 등이 있다.
상기 산화 전극 및 환원 전극에서는 다음과 같은 반응이 이루어진다.
산화 전극: 2NaCl → Cl2(g) + 2Na+ + 2e-
환원 전극: 2H20 + 2e- → 2OH- + H2(g)
산화 전극(양극)의 촉매물질로는 Ru와 Ti의 콤플렉스인 RuTiOx(RTO)가 사용되고 있는데, 기존의 열분해 방법에 의하여 이를 제조할 경우, 제조방법이 용이하지만, 균일한 조성을 갖는 촉매를 제조하기 어렵고, RuO2, TiO2 등의 부산물이 혼재하는 문제가 있다,
상업화된 RTO 촉매의 제조방법으로는 열분해(thermal decomposition) 방법이 사용되는데 Ru3 +, Ti4 + 이온이 포함된 전구체 용액을 Ti 메쉬 기판에 도포한 후, 건조/소성과정을 거쳐 금속 이온들을 산화시킴으로써 촉매를 코팅하는 방법이다. 상기 열분해 방법은 제작 과정이 용이하다는 장점이 있지만, 균일한 조성을 갖는 촉매를 제조하기가 어렵다는 단점이 있다. 열분해법으로 RTO 촉매를 코팅할 경우, RuO2와 TiO2의 결정화 온도가 상이한 까닭에 각각의 물질이 독립적으로 형성된다. 그로 인해 결과물은 균일한 고용체(solid solution) 상태인 RuTiO2보다는 RuO2, TiO2 등의 부산물이 RuTiO2와 혼재하게 되며, 이런 부산물들은 촉매의 활성도를 저해할 뿐 아니라 촉매 코팅층의 안정성까지도 위협할 수 있는 문제 요소로 작용한다.
따라서, 기존 상용 전극 대비 안정성이 우수하고 고효율을 나타내는 전극의 개발이 요구되고 있다.
본 발명의 해결하고자 하는 과제는, 금속 기재의 표면에 루테늄 원자, 티타늄 원자 및 산소 원자가 네트워크를 형성하고 있는 촉매층이 형성되어 있는 전기 분해용 전극을 제공하는 것이다.
본 발명의 다른 해결하고자 하는 과제는, 겔 코팅 방법을 통하여 상기 전기 분해용 전극을 제조하는 방법을 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명은
금속 기재; 및
루테늄(Ru) 원자 및 티타늄(Ti) 원자를 포함하며 상기 금속 기재의 표면에 형성된 촉매층을 포함하고,
상기 촉매층은 루테늄 원자, 티타늄 원자 및 산소 원자가 네트워크 구조를 형성하고 있는 고용체인, 전기 분해용 전극을 제공한다.
상기 다른 과제를 해결하기 위하여, 본 발명은
(1) 용매에 티타늄 알콕사이드 및 루테늄 전구체를 용해한 혼합물을 제조하고, 상기 혼합물에 산 및 물을 첨가하여 겔화하는 단계;
(2) 상기 단계 (1)에서 겔화된 혼합물을 금속 기재에 도포하는 단계;
(3) 상기 혼합물이 도포된 금속 기재를 건조하는 단계; 및
(4) 건조된 금속 기재를 소성하여 촉매층을 제조하는 단계
를 포함하는 전기분해용 전극의 제조방법을 제공한다.
본 발명의 전기 분해용 전극은 금속 기재의 표면에 루테늄 원자, 티타늄 원자 및 산소 원자가 네트워크를 형성하고 있는 촉매층이 형성되어 있어서 촉매 코팅층의 안정성이 우수하고 촉매의 활성도가 우수하며, 본 발명의 전기 분해용 전극의 제조방법은 겔화된 티타늄 알콕사이드 및 루테늄 전구체를 용해한 혼합물을 이용하여 상기 전기분해용 전극을 제조할 수 있다.
도 1은 실시예 1에서 제조된 전기분해용 전극의 표면 상태를 나타낸 SEM-EDS 사진이다.
도 2는 실시예 2에서 제조된 전기분해용 전극의 표면 상태를 나타낸 SEM-EDS 사진이다.
도 3은 비교예 1에서 제조된 전기분해용 전극의 표면 상태를 나타낸 SEM-EDS 사진이다.
도 4는 실시예 1 및 2에서 제조된 전기분해용 전극에 대한 선형 주사 전위법 측정 결과를 나타낸 그래프이다.
도 5는 비교예 1에서 제조된 전기분해용 전극에 대한 선형 주사 전위법 측정 결과를 나타낸 그래프이다.
도 2는 실시예 2에서 제조된 전기분해용 전극의 표면 상태를 나타낸 SEM-EDS 사진이다.
도 3은 비교예 1에서 제조된 전기분해용 전극의 표면 상태를 나타낸 SEM-EDS 사진이다.
도 4는 실시예 1 및 2에서 제조된 전기분해용 전극에 대한 선형 주사 전위법 측정 결과를 나타낸 그래프이다.
도 5는 비교예 1에서 제조된 전기분해용 전극에 대한 선형 주사 전위법 측정 결과를 나타낸 그래프이다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 전기 분해용 전극은 금속 기재; 및 루테늄(Ru) 원자 및 티타늄(Ti) 원자를 포함하며 상기 금속 기재의 표면에 형성된 촉매층을 포함하고, 상기 촉매층은 루테늄 원자, 티타늄 원자 및 산소 원자가 네트워크 구조를 형성하고 있는 고용체인 것이다. .
상기 촉매층은 상기 루테늄 원자, 티타늄 원자 및 산소 원자가 네트워크를 형성하고 있는 고용체로서, RuO2 및 TiO2 등의 상기 촉매층의 제조과정에서 발생할 수 있는 부산물을 포함하지 않거나, 최소화된 양으로 포함할 수 있다.
상기 촉매층의 루테늄(Ru) 원자와 티타늄(Ti) 원자의 몰비는 1:2 내지 1:5일 수 있고, 구체적으로 1:3 내지 1:5일 수 있다. 상기 촉매층의 루테늄(Ru) 원자와 티타늄(Ti) 원자의 몰비는 상기 촉매층의 모든 위치에서 만족될 수 있다.
상기 금속 기재는 티타늄, 탄탈륨, 니오븀, 니켈 및 이들 중 2종 이상의 합금으로 이루어진 군으로부터 선택된 1종일 수 있고, 구체적으로 티타늄일 수 있다.
본 발명의 일례에 따른 전기분해용 전극에 있어서, 상기 고용체는 하기 화학식 1로 표시될 수 있다.
[화학식 1]
RuaTibO2
상기 화학식 1에서 a 및 b는 0.2≤a≤0.5, 0.5≤b≤0.8을 만족한다.
상기 촉매층은 제조과정에서 형성된 크랙(crack)을 포함하는 것일 수 있으며, 상기 크랙을 포함할 경우 상기 촉매층의 비표면적이 극대화되어 상기 전극을 이용하여 전기분해를 실시할 경우 과전압을 감소시키는 효과를 발휘할 수 있다.
상기 전기 분해용 전극은 산화 전극, 즉 클로르-알칼리(Chlor-Alkali) 공정용 양극일 수 있다.
또한, 본 발명은 상기 전기 분해용 전극을 제조하는 제조방법을 제공한다.
본 발명의 전기 분해용 전극의 제조방법은 (1) 용매에 티타늄 알콕사이드 및 루테늄 전구체를 용해한 혼합물을 제조하고, 상기 혼합물에 산 및 물을 첨가하여 겔화하는 단계; (2) 상기 단계 (1)에서 겔화된 혼합물을 금속 기재에 도포하는 단계; (3) 상기 혼합물이 도포된 금속 기재를 건조하는 단계; 및 (4) 건조된 금속 기재를 소성하여 촉매층을 제조하는 단계를 포함한다.
(1) 용매에 티타늄 알콕사이드 및 루테늄 전구체를 용해한 혼합물을 제조하고, 상기 혼합물에 산 및 물을 첨가하여 겔화하는 단계
본 발명의 전기 분해용 전극의 제조방법은 티타늄 알콕사이드 및 루테늄 전구체를 용해한 혼합물을 겔화하여 이를 이용하여 촉매층을 제조하는 것에 특징이 있다.
이를 위하여, 우선 용매에 티타늄 알콕사이드 및 루테늄 전구체를 용해한 혼합물을 제조하고, 상기 혼합물에 산 및 물을 첨가한 다음 겔화하는 단계를 거치게 된다.
상기 용매는 탄소수 1 내지 8의 카르복실산, 탄소수 1 내지 8의 알코올, 탄소수 1 내지 8의 케톤 또는 이들의 혼합물일 수 있고, 구체적으로 메탄올, 에탄올, n-프로판올, 이소프로판올, 또는 부탄올 등일 수 있다.
상기 티타늄 알콕사이드는 티타늄 알콕사이드라면 특별히 제한되지 않지만, 예컨대 티타튬 이소프로폭사이드, 티타늄 부톡사이드, 티타늄산 테트라부틸 등을 들 수 있다.
상기 루테늄 전구체로는 플루오르화루테늄, 염화루테늄, 브롬화루테늄, 요오드화루테늄, 산화루테늄 수화물, 초산 루테늄 및 루테늄산 나트륨으로 이루어진 군에서 선택되는 1종 이상을 들 수 있다.
상기 티타늄 알콕사이드 및 루테늄 전구체의 양은 제조되는 촉매층에서 루테늄 원자와 티타늄 원자의 몰비가 1:2 내지 1:6, 구체적으로 1:3 내지 1:5를 만족할 수 있는 양으로 혼합될 수 있다. 예컨대, 상기 용매에 루테늄 전구체를 1 중량% 내지 15 중량%, 구체적으로 4 중량% 내지 10 중량%의 농도가 되도록 용해시킨 뒤, 목적하는 루테늄 원자와 티타늄 원자의 몰비를 만족하도록 계산된 양의 티타늄 알콕사이드를 용해시켜 혼합될 수 있다.
상기 산은 질산, 염산, 황산 등의 강산일 수 있다.
상기 단계 (1)의 겔화는 상기 산 및 물이 첨가된 혼합물을 18시간 내지 48시간, 구체적으로 20시간 내지 30시간 에이징하여 이루어지며, 상기 에이징은 상기 산 및 물이 첨가된 혼합물을 밀봉하여 상온에서 유지시켜 이루어질 수 있다
본 발명의 명세서에서 상기 "상온"은 20±5℃의 온도를 나타낸다.
(2) 상기 단계 (1)에서 겔화된 혼합물을 금속 기재에 도포하는 단계
단계 (2)에서는 상기 겔화된 혼합물을 금속 기재에 도포하게 된다. 상기 도포 방법은 특별히 제한되지 않으며, 예컨대 브러쉬를 이용하여 도포(brushing 법)하는 방법에 의해 이루어질 수 있다.
상기 금속 기재는 티타늄, 탄탈륨, 니오븀, 니켈 및 이들 중 2종 이상의 합금으로 이루어진 군으로부터 선택된 1종일 수 있고, 구체적으로 티타늄일 수 있고, 그 형상은 특별히 제한되지 않으며 막대, 시트, 또는 판재 형 등일 수 있다.
상기 금속 기재는 표면이 연마된 것일 수 있으며, 예컨대 물리적으로 표면이 연마된 것일 수 있고, 구체적으로 샌드 블래스팅에 의해 연마된 것일 수 있다. 상기 물리적 표면 연마를 통하여 상기 금속 기재의 표면을 매끄럽게 함으로써, 상기 혼합물이 금속 기재에 보다 잘 도포되게 하여 촉매층이 보다 균일하고 밀착력있게 형성되도록 할 수 있다.
상기 금속 기재는 상기 표면 연마 이후, 추가적으로 에칭이 이루어진 것일 수 있다. 상기 에칭은 강염기 및/또는 강산을 이용한 화학적 에칭일 수 있다. 에칭 방법은 특별히 제한되지 않지만 예컨대, 상기 금속 기재를 NaOH, KOH 등의 알칼리 수산화물 또는 알칼리토금속의 수산화물 등의 강염기를 이용하여 40℃ 내지 100℃의 온도에서 10분 내지 120분간 에칭하거나, HCl, HF, HBr, 옥살산 등의 산을 이용하여 40℃ 내지 100℃의 온도에서 10분 내지 120분간 에칭하는 방법으로 이루어질 수 있으며, 상기 강염기를 이용한 에칭 및 산을 이용한 에칭이 순차적으로 모두 이루어질 수도 있다.
(3) 상기 혼합물이 도포된 금속 기재를 건조하는 단계
그 다음으로는 상기 혼합물이 도포된 금속 기재를 건조하게 된다.
상기 단계 (3)의 건조는 25℃ 내지 100℃의 온도에서 이루어질 수 있고, 구체적으로 70℃ 내지 100℃의 온도에서 이루어질 수 있다. 상기 건조 온도가 올라갈수록 제조되는 촉매 층에 크랙(crack)이 형성되는 양이 늘어나게 되므로, 목적하는 크랙의 양에 따라 상기 건조 온도를 조절할 수 있다. 상기 크랙이 증가할 경우 상기 촉매층의 비표면적이 증가하며, 제조되는 전기분해용 전극을 이용하여 전기분해를 실시할 때 과전압을 감소시키는 효과를 나타낼 수 있다.
(4) 건조된 금속 기재를 소성하여 촉매층을 제조하는 단계
상기 건조가 완료되면, 도포된 혼합물이 건조된 금속 기재를 소성하여 이를 촉매층으로 전환시키게 되며, 상기 루테늄 원자, 티타늄 원자 및 산소 원자가 네트워크를 형성하고 있는 고용체가 된다.
상기 단계 (4)의 소성은 400℃ 내지 600℃의 온도에서 이루어질 수 있으며, 1분 내지 30분간 이루어질 수 있다.
상기 단계 (2) 내지 (4)의 과정은 수회, 예컨대 2회 내지 20회 반복될 수 있으며, 구체적으로 상기 촉매층이 1 mg/cm2 내지 3 mg/cm2의 범위, 더욱 구체적으로 2 mg/cm2에 도달할 때까지 반복될 수 있다.
본 발명의 일례에 따른 전기 분해용 전극의 제조방법은, 상기 단계 (4) 이후, 추가로 (5) 400 내지 600℃에서 30분 내지 120분간 재소성을 수행하는 단계를 포함할 수 있다. 상기 단계 (5)는 최종 소성 과정으로 이를 통해 전기 분해용 전극의 제조를 완성할 수 있다.
이와 같이 제조된 상기 전기 분해용 전극은 산화 전극, 즉 클로르-알칼리(Chlor-Alkali) 공정용 양극으로 사용될 수 있다.
실시예
이하, 본 발명을 구체적으로 설명하기 위해 실시예 및 실험예를 들어 더욱 상세하게 설명하나, 본 발명이 이들 실시예 및 실험예에 의해 제한되는 것은 아니다. 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예 1
1-부탄올 용매에 RuCl33H2O 전구체를 7.3 중량%의 양이 되도록 용해시켰다. 별도의 1-부탄올 용매 8.1 mL에 상기 RuCl33H2O 전구체가 용해된 용액 4.1 g, 티타늄 이소프로폭사이드 1.0 mL, 질산 0.36 mL를 첨가하여 용해시킨 후, 증류수 0.3 mL를 첨가하여 혼합액을 제조하였다. 상기 혼합액을 밀봉하여 25℃에서 24시간 동안 에이징을 진행하여 혼합액을 겔화를 시켰다.
20 mm×20 mm 크기의 티타늄 메쉬 기판을 샌드 블라스팅 처리한 다음, 90℃의 10 wt% 옥살산에 2시간 동안 담궈 에칭하였다.
에칭된 상기 티타늄 메쉬 기판 상에 상기 겔화된 혼합액을 브러슁(brushing) 법으로 고르게 도포하고, 이를 25℃에서 20분간 건조하였다.
건조된 기판을 480℃의 오븐에서 10분간 소성하여 촉매층을 제조하였다.
상기 촉매층 상에 상기 겔화된 혼합액을 브러슁 법으로 고르게 도포하고, 건조하여 소성하는 과정을 상기와 마찬가지의 방법으로 반복하였다. 상기 티타늄 메쉬 기판 상에 형성된 상기 촉매층의 증착 질량이 2 mg/cm2에 도달하면 상기 반복(총 10회)을 중단하고, 480℃의 오븐에서 60분간 소성하여 전기분해용 전극의 제조를 완성하였다.
실시예 2
상기 실시예 1에서 상기 겔화된 혼합액을 도포하고 건조할 때, 25℃가 아닌 100℃의 오븐에서 진행한 것을 제외하고는, 실시예 1과 마찬가지의 방법으로 전기분해용 전극의 제조를 완성하였다.
비교예 1
18% 염산 수용액에 이소프로필알코올을 5 부피%가 되도록 첨가한 후, RuCl33H2O 전구체 3.09 g 및 티타늄 이소프로폭사이드 8.83 g(9.43 mL)을 35% HCl 45 mL, 증류수 41 mL 및 이소프로필알코올 5 mL가 혼합된 용액에 용해하였다.
20 mm×20 mm 크기의 티타늄 메쉬 기판을 샌드 블라스팅 처리한 다음, 90℃의 10 wt% 옥살산에 2시간 동안 담궈 에칭하였다.
에칭된 상기 티타늄 메쉬 기판 상에 상기 혼합액을 브러슁(brushing) 법으로 고르게 도포하고, 이를 70℃의 오븐에서 10분간 건조하였다.
건조된 기판을 480℃의 오븐에서 10분간 소성하여 촉매층을 제조하였다.
상기 촉매층 상에 상기 혼합액을 브러슁 법으로 고르게 도포하고, 건조하여 소성하는 과정을 상기와 마찬가지의 방법으로 반복하였다. 상기 티타늄 메쉬 기판 상에 형성된 상기 촉매층의 증착 질량이 2 mg/cm2에 도달하면 상기 반복(총 10회)을 중단하고, 480℃의 오븐에서 60분간 소성하여 전기분해용 전극의 제조를 완성하였다.
실험예 1 : SEM 현미경 사진
상기 실시예 1 및 2, 및 비교예 1에서 제조된 전기분해용 전극의 표면 상태 및 상기 전기분해용 전극의 촉매층의 성분들의 균일성을 비교 분석하기 위하여, SEM-EDS(Scanning Electron Microscope/Energy Disperse X-ray Spectrometer, Hitachi S-4800)를 이용하여 표면 형상 및 조성을 확인하였다. 표면 형상을 각각 도 1 내지 3에 나타내고, 실시예 2 및 비교예 1의 전극의 조성을 표 1에 나타내었다.
O | Ti | Ru | Ti/Ru | ||
실시예 2 | 지점 1 | 71.39 | 23.12 | 5.49 | 4.2 |
지점 2 | 75.53 | 19.27 | 5.21 | 3.7 | |
지점 3 | 75.96 | 19.38 | 4.66 | 4.2 | |
지점 4 | 75.58 | 19.03 | 5.38 | 3.6 | |
지점 5 | 69.19 | 25.51 | 5.30 | 4.8 | |
지점 6 | 73.42 | 21.98 | 4.60 | 4.8 | |
지점 7 | 75.27 | 19.23 | 5.50 | 3.5 | |
비교예 1 | 지점 1 (spectrum 3) |
70.9 | 24.5 | 4.6 | 5.3 |
지점 2 (spectrum 4) |
75.7 | 7.0 | 17.3 | 0.4 |
상기 표 1을 참조하면, 실시예 2에서 제조된 전기분해용 전극은 촉매층 내에서 일정 범위 내(3.5 내지 4.8)의 균일한 원소 성분비를 나타냈지만, 비교예 1에서 제조된 전기분해용 전극은 촉매층 내에서 불균일한 원소 성분비 분포(0.4 및 5.3)를 나타냈음을 알 수 있다. 구체적으로, 비교예 1과 같이 [Ti 원자의 몰수/Ru 원자의 몰수] 값이 5.3을 나타내는 지점(지점 1)에서는 Ru 원자에 비해 Ti 원자의 함량이 적정량에 비해 많으며, 이 지점에서는 과량의 Ti가 TiO2 형태로 존재하는 것으로 판단할 수 있고, [Ti 원자의 몰수/Ru 원자의 몰수] 값이 0.4를 나타내는 지점(지점 2)에서는 Ti 원자에 비해 Ru 원자의 함량이 적정량에 비해 많으며, 이 지점에서는 과량의 Ru가 RuO2 형태로 존재하는 것으로 판단할 수 있다. 즉, 도 3의 (b)에 있어서, spectrum 3(스펙트럼 3, 지점 1)로 표시된 지점에서 관찰되는 흰색 결정은 TiO2이고, spectrum 4(스펙트럼 4, 지점 2)로 표시된 지점에서 관찰되는 흰색 결정은 RuO2이다(이러한 흰색 결정은 비교예 1의 전극의 또 다른 SEM 사진인 도 3의 (a)에서도 확인할 수 있다).
반면, 3.5 내지 4.8의 편차가 크지 않은 [Ti 원자의 몰수/Ru 원자의 몰수] 값을 가지는 실시예 2의 경우, 도 1에서 확인할 수 있는 바와 같이 표면에 대한 SEM 사진에서 흰색 결정이 관찰되지 않으며, 이를 통해 실시예 2의 전극은 TiO2 및 RuO2 등의 상기 촉매층의 제조과정에서 발생할 수 있는 부산물을 포함하지 않거나 최소화된 양으로 포함하며, 안정적으로 루테늄 원자, 티타늄 원자 및 산소 원자가 네트워크 구조를 형성하여 고용체를 이루고 있음을 확인할 수 있다.
한편, 도 1 및 2를 참조하면, 겔의 도포 후 건조가 25℃에서 이루어진 실시예 1의 전기분해용 전극에 비해, 겔의 도포 후 건조가 100℃에서 이루어진 실시예 2의 전기분해용 전극은 촉매층의 표면에 다수의 깊은 크랙이 형성되어 있음을 확인할 수 있다.
실험예 2: 선형 주사 전위법
상기 실시예 1 및 2, 및 비교예 1에서 제조된 전기분해용 전극을 양극으로 하여 Pt 카운터 전극, SCE 레퍼런스 전극을 연결하여 전해셀을 구성한 후, 선형 주사 전위법(Linear sweep voltammetry, LSV)을 사용하여 0.5 V 내지 1.5 V 범위에서 23% NaCl 용액 중에서 수행하였다. 그 결과를 각각 도 4 및 5에 나타내었다.
도 4를 참조하면, 실시예 1에서 제조된 전기분해용 전극은 전류밀도 0.44 A/cm2에서 1.262 V의 전위를 나타내었으며, 실시예 2에서 제조된 전기분해용 전극은 전류밀도 0.44 A/cm2에서 1.253 V의 전위를 나타내었다. 한편, 도 5를 참조하면, 비교예 1에서 제조된 전기분해용 전극은 전류밀도 0.44 A/cm2에서 1.267 V의 전위를 나타내었다.
즉, 실시예 1은 146 mV, 실시예 2는 137 mV의 과전압을 형성하였으며, 모두 비교예 1의 151mV의 과전압에 비해서 개선된 것으로 확인되었다. 실시예 1에 비해 실시예 2의 과전압이 더욱 개선된 이유는 실시예 2의 전기분해용 전극의 촉매층이 크랙으로 인해 보다 넓은 표면적을 갖기 때문인 것으로 판단된다.
Claims (13)
- 금속 기재; 및
루테늄(Ru) 원자 및 티타늄(Ti) 원자를 포함하며 상기 금속 기재의 표면에 형성된 촉매층을 포함하고,
상기 촉매층은 루테늄 원자, 티타늄 원자 및 산소 원자가 네트워크 구조를 형성하고 있는 고용체인, 전기 분해용 전극.
- 제 1 항에 있어서,
상기 루테늄(Ru) 원자와 티타늄(Ti) 원자의 몰비는 1:2 내지 1:5인, 전기 분해용 전극.
- 제 1 항에 있어서,
상기 전기 분해용 전극은 클로르-알칼리(Chlor-Alkali) 공정용 양극인, 전기분해용 전극.
- 제 1 항에 있어서,
상기 고용체는 하기 화학식 1로 표시되는, 전기분해용 전극:
[화학식 1]
RuaTibO2
상기 화학식 1에서 a 및 b는 0.2≤a≤0.5, 0.5≤b≤0.8을 만족한다.
- (1) 용매에 티타늄 알콕사이드 및 루테늄 전구체를 용해한 혼합물을 제조하고, 상기 혼합물에 산 및 물을 첨가하여 겔화하는 단계;
(2) 상기 단계 (1)에서 겔화된 혼합물을 금속 기재에 도포하는 단계;
(3) 상기 혼합물이 도포된 금속 기재를 건조하는 단계; 및
(4) 건조된 금속 기재를 소성하여 촉매층을 제조하는 단계
를 포함하는 전기분해용 전극의 제조방법.
- 제 5 항에 있어서,
상기 단계 (1)의 겔화는 상기 산 및 물이 첨가된 혼합물을 18시간 내지 48시간 에이징하여 이루어지는, 전기 분해용 전극의 제조방법.
- 제 6 항에 있어서,
상기 에이징은 상기 산 및 물이 첨가된 혼합물을 밀봉하여 상온에서 유지시켜 이루어지는, 전기 분해용 전극의 제조방법.
- 제 5 항에 있어서,
상기 단계 (1)의 용매는 탄소수 1 내지 8의 카르복실산, 탄소수 1 내지 8의 알코올, 탄소수 1 내지 8의 케톤 또는 이들의 혼합물인, 전기 분해용 전극의 제조방법.
- 제 5 항에 있어서,
상기 단계 (3)의 건조는 25℃ 내지 100℃의 온도에서 이루어지는, 전기 분해용 전극의 제조방법.
- 제 5 항에 있어서,
상기 단계 (4)의 소성은 400 내지 600℃의 온도에서 이루어지는, 전기 분해용 전극의 제조방법.
- 제 5 항에 있어서,
상기 단계 (2) 내지 (4)는 상기 촉매층이 1 mg/cm2 내지 3 mg/cm2에 도달할 때까지 반복되는, 전기 분해용 전극의 제조방법.
- 제 5 항에 있어서,
상기 단계 (4) 이후,
(5) 400 내지 600℃에서 30분 내지 120분간 재소성을 수행하는 단계를 더 포함하는, 전기 분해용 전극의 제조방법.
- 제 5 항에 있어서,
상기 전기분해용 전극은 클로르-알칼리(Chlor-Alkali) 공정용 양극인, 전기 분해용 전극의 제조방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160160679A KR102260891B1 (ko) | 2016-11-29 | 2016-11-29 | 전기 분해용 전극 및 전기 분해용 전극의 제조방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160160679A KR102260891B1 (ko) | 2016-11-29 | 2016-11-29 | 전기 분해용 전극 및 전기 분해용 전극의 제조방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20180060785A true KR20180060785A (ko) | 2018-06-07 |
KR102260891B1 KR102260891B1 (ko) | 2021-06-07 |
Family
ID=62621626
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020160160679A KR102260891B1 (ko) | 2016-11-29 | 2016-11-29 | 전기 분해용 전극 및 전기 분해용 전극의 제조방법 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102260891B1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010011170A (ko) * | 1999-07-26 | 2001-02-15 | 이종학 | 전해 콘덴서용 전극의 제조방법 |
KR20010041499A (ko) * | 1998-03-02 | 2001-05-25 | 아토피나 | 알칼리 금속 염소산염의 제조에 사용되는 특이 캐쏘드 및그의 제조 방법 |
KR20040002809A (ko) * | 2003-07-21 | 2004-01-07 | 주식회사 펜솔 | 전기 분해 전극용 코팅 용액 및 이를 이용하여 코팅된금속 산화물 전극의 제조 방법 |
KR20110139126A (ko) * | 2010-06-21 | 2011-12-28 | 바이엘 머티리얼사이언스 아게 | 전해에 의한 염소 제조용 전극 |
KR101645198B1 (ko) | 2008-11-12 | 2016-08-03 | 인두스트리에 데 노라 에스.피.에이. | 전해 전지용 전극 |
-
2016
- 2016-11-29 KR KR1020160160679A patent/KR102260891B1/ko active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010041499A (ko) * | 1998-03-02 | 2001-05-25 | 아토피나 | 알칼리 금속 염소산염의 제조에 사용되는 특이 캐쏘드 및그의 제조 방법 |
KR20010011170A (ko) * | 1999-07-26 | 2001-02-15 | 이종학 | 전해 콘덴서용 전극의 제조방법 |
KR20040002809A (ko) * | 2003-07-21 | 2004-01-07 | 주식회사 펜솔 | 전기 분해 전극용 코팅 용액 및 이를 이용하여 코팅된금속 산화물 전극의 제조 방법 |
KR101645198B1 (ko) | 2008-11-12 | 2016-08-03 | 인두스트리에 데 노라 에스.피.에이. | 전해 전지용 전극 |
KR20110139126A (ko) * | 2010-06-21 | 2011-12-28 | 바이엘 머티리얼사이언스 아게 | 전해에 의한 염소 제조용 전극 |
Also Published As
Publication number | Publication date |
---|---|
KR102260891B1 (ko) | 2021-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5250663B2 (ja) | 電解用陽極及び電解用陽極の製造方法 | |
JP5037133B2 (ja) | 電極の調製方法及び電極 | |
KR20190022333A (ko) | 전기분해용 양극 및 이의 제조방법 | |
JP2015206125A (ja) | 電解用途用の電極 | |
KR20160133936A (ko) | 불용성 산화티타늄 복합 전극 및 이의 제조 방법 | |
KR101931505B1 (ko) | 고전류 밀도 운전용 전극 | |
JP2023500091A (ja) | 水素の電気化学的発生のための電極 | |
Bu et al. | Al 2 O 3-TiO 2 composite oxide films on etched aluminum foil fabricated by electrodeposition and anodization | |
KR102260891B1 (ko) | 전기 분해용 전극 및 전기 분해용 전극의 제조방법 | |
KR102320011B1 (ko) | 전기분해용 전극의 촉매 조성물, 이의 제조방법 및 이를 이용한 전기분해용 전극의 제조방법 | |
JP5317012B2 (ja) | 低水素過電圧陰極の製法 | |
KR102605336B1 (ko) | 전기 분해용 전극 및 이의 제조방법 | |
KR102503040B1 (ko) | 복합 금속 인화물을 포함하는 산화 전극 및 이의 제조방법 | |
KR102358447B1 (ko) | 전기분해 양극용 코팅액 조성물 | |
KR20040002809A (ko) | 전기 분해 전극용 코팅 용액 및 이를 이용하여 코팅된금속 산화물 전극의 제조 방법 | |
KR102472146B1 (ko) | 전해용 전극의 제조방법 및 이를 사용하여 제조된 전해용 전극 | |
KR100770736B1 (ko) | 수처리용 세라믹 전극 및 그 제조방법 그리고 이를 이용한전극구성체 | |
KR102405287B1 (ko) | 염수 전기 분해용 애노드 전극의 제조방법 | |
KR102393900B1 (ko) | 전기분해 음극용 코팅액 조성물 | |
US20220259062A1 (en) | Tin Oxide Forming Composition | |
EP2450475B1 (en) | A method for a metal electrowinning | |
KR102664290B1 (ko) | 전기분해용 전극의 제조방법 | |
KR20180059354A (ko) | 전기 분해용 전극 및 전기 분해용 전극의 제조방법 | |
KR102161672B1 (ko) | 염수 전기 분해용 음극의 제조방법 | |
TW202428943A (zh) | 產氯電解用陽極 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |