KR20180046444A - Apparatus and method of slow DCI configuration in a short TTI frame structure - Google Patents
Apparatus and method of slow DCI configuration in a short TTI frame structure Download PDFInfo
- Publication number
- KR20180046444A KR20180046444A KR1020160141453A KR20160141453A KR20180046444A KR 20180046444 A KR20180046444 A KR 20180046444A KR 1020160141453 A KR1020160141453 A KR 1020160141453A KR 20160141453 A KR20160141453 A KR 20160141453A KR 20180046444 A KR20180046444 A KR 20180046444A
- Authority
- KR
- South Korea
- Prior art keywords
- dci
- slow dci
- short tti
- pdcch
- transmission
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1867—Arrangements specially adapted for the transmitter end
- H04L1/1887—Scheduling and prioritising arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1867—Arrangements specially adapted for the transmitter end
- H04L1/1893—Physical mapping arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1867—Arrangements specially adapted for the transmitter end
- H04L1/1896—ARQ related signaling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0032—Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
- H04L5/0035—Resource allocation in a cooperative multipoint environment
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
본 실시예들은 3GPP LTE/LTE-A 시스템에서 legacy PDCCH를 통해 전송되는 DCI 의 유효 주기를 설정하는 방법에 관한 것이다.The present embodiments relate to a method for setting a valid period of a DCI transmitted over a legacy PDCCH in a 3GPP LTE / LTE-A system.
일 실시예는, Short TTI 프레임 구조에서 slow DCI 설정 방법에 있어서, legacy PDCCH를 통해 유효 주기가 설정된 slow DCI를 수신하는 단계와, slow DCI의 유효 주기가 하나의 서브프레임인 경우 slow DCI를 처음 수신한 서브프레임 내에서만 slow DCI에 기초한 short TTI 서비스를 수행하는 단계와, slow DCI의 유효 주기가 복수의 서브프레임인 경우 RRC message를 통해 수신한 slow DCI의 유효 범위에 기초하여 short TTI 서비스를 수행하는 단계를 포함하는 방법을 제공한다.According to an embodiment of the present invention, there is provided a method of setting a slow DCI in a Short TTI frame structure, the method comprising: receiving a slow DCI having a validity period set via a legacy PDCCH; receiving a slow DCI when the effective DCI period is one subframe; Performing a short TTI service based on a slow DCI only in one subframe; and performing a short TTI service based on an effective range of a slow DCI received through an RRC message when the effective period of the slow DCI is a plurality of subframes The method comprising the steps of:
도 1은 eNB and UE processing delays and HARQ RTT 를 나타낸 도면이다.
도 2는 resource mapping per PRB in one subframe 를 나타낸 도면이다.
도 3은 Search space 정의 개념도이다.
도 4는 Common search space 정의 개념도이다.
도 5는 UE-specific search space 정의 개념도이다.
도 6은 방안 1에 의한 in-subframe level slow-DCI 적용 개념도이다.
도 7은 방안 2에 의한 multi-subframe level slow-DCI 적용 개념도이다.
도 8은 또 다른 실시예에 의한 기지국의 구성을 보여주는 도면이다.
도 9는 또 다른 실시예에 의한 사용자 단말의 구성을 보여주는 도면이다.1 is a diagram illustrating eNB and UE processing delays and HARQ RTT.
2 shows a resource mapping per PRB in one subframe.
3 is a conceptual diagram of a definition of a search space.
4 is a conceptual diagram of a common search space definition.
5 is a conceptual diagram of definition of a UE-specific search space.
FIG. 6 is a conceptual diagram of application of in-subframe level slow-DCI according to
FIG. 7 is a conceptual diagram of application of multi-subframe level slow-DCI according to
8 is a diagram illustrating a configuration of a base station according to another embodiment of the present invention.
9 is a diagram illustrating a configuration of a user terminal according to another embodiment of the present invention.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments of the present invention will be described in detail with reference to exemplary drawings. It should be noted that, in adding reference numerals to the constituent elements of the drawings, the same constituent elements are denoted by the same reference symbols as possible even if they are shown in different drawings. In the following description of the present invention, a detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear.
본 명세서에서 MTC 단말은 low cost(또는 low complexity)를 지원하는 단말 또는 coverage enhancement를 지원하는 단말 등을 의미할 수 있다. 본 명세서에서 MTC 단말은 low cost(또는 low complexity) 및 coverage enhancement를 지원하는 단말 등을 의미할 수 있다. 또는 본 명세서에서 MTC 단말은 low cost(또는 low complexity) 및/또는 coverage enhancement를 지원하기 위한 특정 카테고리로 정의된 단말을 의미할 수 있다.Herein, the MTC terminal may mean a terminal supporting low cost (or low complexity) or a terminal supporting coverage enhancement. In this specification, the MTC terminal may mean a terminal supporting low cost (or low complexity) and coverage enhancement. Alternatively, the MTC terminal may refer to a terminal defined in a specific category for supporting low cost (or low complexity) and / or coverage enhancement.
다시 말해 본 명세서에서 MTC 단말은 LTE 기반의 MTC 관련 동작을 수행하는 새롭게 정의된 3GPP Release-13 low cost(또는 low complexity) UE category/type을 의미할 수 있다. 또는 본 명세서에서 MTC 단말은 기존의 LTE coverage 대비 향상된 coverage를 지원하거나, 혹은 저전력 소모를 지원하는 기존의 3GPP Release-12 이하에서 정의된 UE category/type, 혹은 새롭게 정의된 Release-13 low cost(또는 low complexity) UE category/type을 의미할 수 있다.In other words, the MTC terminal in this specification may mean a newly defined 3GPP Release-13 low cost (or low complexity) UE category / type for performing LTE-based MTC-related operations. Alternatively, the MTC terminal may support enhanced coverage over the existing LTE coverage or a UE category / type defined in the existing 3GPP Release-12 or lower that supports low power consumption, or a newly defined Release-13 low cost low complexity UE category / type.
본 발명에서의 무선통신시스템은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치된다. 무선통신시스템은 사용자 단말(User Equipment, UE) 및 기지국(Base Station, BS, 또는 eNB)을 포함한다. 본 명세서에서의 사용자 단말은 무선 통신에서의 단말을 의미하는 포괄적 개념으로서, WCDMA 및 LTE, HSPA 등에서의 UE(User Equipment)는 물론, GSM에서의 MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), 무선기기(wireless device) 등을 모두 포함하는 개념으로 해석되어야 할 것이다.The wireless communication system in the present invention is widely deployed to provide various communication services such as voice, packet data and the like. A wireless communication system includes a user equipment (UE) and a base station (BS, or eNB). The user terminal in this specification is a comprehensive concept of a terminal in wireless communication. It is a comprehensive concept which means a mobile station (MS), a user terminal (UT), an SS (User Equipment) (Subscriber Station), a wireless device, and the like.
기지국 또는 셀(cell)은 일반적으로 사용자 단말과 통신하는 지점(station)을 말하며, 노드-B(Node-B), eNB(evolved Node-B), 섹터(Sector), 싸이트(Site), BTS(Base Transceiver System), 액세스 포인트(Access Point), 릴레이 노드(Relay Node), RRH(Remote Radio Head), RU(Radio Unit), small cell 등 다른 용어로 불릴 수 있다.A base station or a cell generally refers to a station that communicates with a user terminal and includes a Node-B, an evolved Node-B (eNB), a sector, a Site, a BTS A base transceiver system, an access point, a relay node, a remote radio head (RRH), a radio unit (RU), and a small cell.
즉, 본 명세서에서 기지국 또는 셀(cell)은 CDMA에서의 BSC(Base Station Controller), WCDMA의 NodeB, LTE에서의 eNB 또는 섹터(싸이트) 등이 커버하는 일부 영역 또는 기능을 나타내는 포괄적인 의미로 해석되어야 하며, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀 및 릴레이 노드(relay node), RRH, RU, small cell 통신범위 등 다양한 커버리지 영역을 모두 포괄하는 의미이다. That is, the base station or the cell in this specification is interpreted as a comprehensive meaning indicating a partial region or function covered by BSC (Base Station Controller) in CDMA, NodeB in WCDMA, eNB in LTE or sector (site) And covers various coverage areas such as megacell, macrocell, microcell, picocell, femtocell and relay node, RRH, RU, and small cell communication range.
상기 나열된 다양한 셀은 각 셀을 제어하는 기지국이 존재하므로 기지국은 두 가지 의미로 해석될 수 있다. i) 무선 영역과 관련하여 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀, 스몰 셀을 제공하는 장치 그 자체이거나, ii) 상기 무선영역 그 자체를 지시할 수 있다. i)에서 소정의 무선 영역을 제공하는 장치들이 동일한 개체에 의해 제어되거나 상기 무선 영역을 협업으로 구성하도록 상호작용하는 모든 장치들을 모두 기지국으로 지시한다. 무선 영역의 구성 방식에 따라 eNB, RRH, 안테나, RU, LPN, 포인트, 송수신포인트, 송신 포인트, 수신 포인트 등은 기지국의 일 실시예가 된다. ii)에서 사용자 단말의 관점 또는 이웃하는 기지국의 입장에서 신호를 수신하거나 송신하게 되는 무선 영역 그 자체를 기지국으로 지시할 수 있다.Since the various cells listed above exist in the base station controlling each cell, the base station can be interpreted into two meanings. i) the device itself providing a megacell, macrocell, microcell, picocell, femtocell, small cell in relation to the wireless region, or ii) indicating the wireless region itself. i indicate to the base station all devices that are controlled by the same entity or that interact to configure the wireless region as a collaboration. An eNB, an RRH, an antenna, an RU, an LPN, a point, a transmission / reception point, a transmission point, a reception point, and the like are exemplary embodiments of a base station according to a configuration method of a radio area. ii) may indicate to the base station the wireless region itself that is to receive or transmit signals from the perspective of the user terminal or from a neighboring base station.
따라서, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀, 스몰 셀, RRH, 안테나, RU, LPN(Low Power Node), 포인트, eNB, 송수신포인트, 송신 포인트, 수신 포인트를 통칭하여 기지국으로 지칭한다.Therefore, a base station is collectively referred to as a base station, collectively referred to as a megacell, macrocell, microcell, picocell, femtocell, small cell, RRH, antenna, RU, low power node do.
본 명세서에서 사용자 단말과 기지국은 본 명세서에서 기술되는 기술 또는 기술적 사상을 구현하는데 사용되는 두 가지 송수신 주체로 포괄적인 의미로 사용되며 특정하게 지칭되는 용어 또는 단어에 의해 한정되지 않는다. 사용자 단말과 기지국은, 본 발명에서 기술되는 기술 또는 기술적 사상을 구현하는데 사용되는 두 가지(Uplink 또는 Downlink) 송수신 주체로 포괄적인 의미로 사용되며 특정하게 지칭되는 용어 또는 단어에 의해 한정되지 않는다. 여기서, 상향링크(Uplink, UL, 또는 업링크)는 사용자 단말에 의해 기지국으로 데이터를 송수신하는 방식을 의미하며, 하향링크(Downlink, DL, 또는 다운링크)는 기지국에 의해 사용자 단말로 데이터를 송수신하는 방식을 의미한다.Herein, the user terminal and the base station are used in a broad sense as the two transmitting and receiving subjects used to implement the technical or technical idea described in this specification, and are not limited by a specific term or word. The user terminal and the base station are used in a broad sense as two (uplink or downlink) transmitting and receiving subjects used to implement the technology or technical idea described in the present invention, and are not limited by a specific term or word. Here, an uplink (UL, or uplink) means a method of transmitting / receiving data to / from a base station by a user terminal, and a downlink (DL or downlink) .
무선통신시스템에 적용되는 다중 접속 기법에는 제한이 없다. CDMA(Code Division Multiple Access), TDMA(Time Division Multiple Access), FDMA(Frequency Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA와 같은 다양한 다중 접속 기법을 사용할 수 있다. 본 발명의 일 실시예는 GSM, WCDMA, HSPA를 거쳐 LTE 및 LTE-advanced로 진화하는 비동기 무선통신과, CDMA, CDMA-2000 및 UMB로 진화하는 동기식 무선 통신 분야 등의 자원할당에 적용될 수 있다. 본 발명은 특정한 무선통신 분야에 한정되거나 제한되어 해석되어서는 아니 되며, 본 발명의 사상이 적용될 수 있는 모든 기술분야를 포함하는 것으로 해석되어야 할 것이다.There are no restrictions on multiple access schemes applied to wireless communication systems. Various multiple access schemes such as Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Orthogonal Frequency Division Multiple Access (OFDMA), OFDM-FDMA, OFDM- Can be used. An embodiment of the present invention can be applied to asynchronous wireless communication that evolves into LTE and LTE-advanced via GSM, WCDMA, and HSPA, and synchronous wireless communication that evolves into CDMA, CDMA-2000, and UMB. The present invention should not be construed as limited to or limited to a specific wireless communication field and should be construed as including all technical fields to which the idea of the present invention can be applied.
상향링크 전송 및 하향링크 전송은 서로 다른 시간을 사용하여 전송되는 TDD(Time Division Duplex) 방식이 사용될 수 있고, 또는 서로 다른 주파수를 사용하여 전송되는 FDD(Frequency Division Duplex) 방식이 사용될 수 있다.A TDD (Time Division Duplex) scheme in which uplink and downlink transmissions are transmitted using different time periods, or an FDD (Frequency Division Duplex) scheme in which they are transmitted using different frequencies can be used.
또한, LTE, LTE-advanced와 같은 시스템에서는 하나의 반송파 또는 반송파 쌍을 기준으로 상향링크와 하향링크를 구성하여 규격을 구성한다. 상향링크와 하향링크는, PDCCH(Physical Downlink Control CHannel), PCFICH(Physical Control Format Indicator CHannel), PHICH(Physical Hybrid ARQ Indicator CHannel), PUCCH(Physical Uplink Control CHannel), EPDCCH(Enhanced Physical Downlink Control CHannel) 등과 같은 제어채널을 통하여 제어정보를 전송하고, PDSCH(Physical Downlink Shared CHannel), PUSCH(Physical Uplink Shared CHannel) 등과 같은 데이터채널로 구성되어 데이터를 전송한다. In systems such as LTE and LTE-advanced, a standard is constructed by configuring uplink and downlink based on a single carrier or carrier pair. The uplink and the downlink are divided into a Physical Downlink Control Channel (PDCCH), a Physical Control Format Indicator CHannel (PCFICH), a Physical Hybrid ARQ Indicator CHannel, a Physical Uplink Control CHannel (PUCCH), an Enhanced Physical Downlink Control Channel (EPDCCH) Transmits control information through the same control channel, and is configured with data channels such as PDSCH (Physical Downlink Shared CHannel) and PUSCH (Physical Uplink Shared CHannel), and transmits data.
한편 EPDCCH(enhanced PDCCH 또는 extended PDCCH)를 이용해서도 제어 정보를 전송할 수 있다.On the other hand, control information can also be transmitted using EPDCCH (enhanced PDCCH or extended PDCCH).
본 명세서에서 셀(cell)은 송수신 포인트로부터 전송되는 신호의 커버리지 또는 송수신 포인트(transmission point 또는 transmission/reception point)로부터 전송되는 신호의 커버리지를 가지는 요소 반송파(component carrier), 그 송수신 포인트 자체를 의미할 수 있다. In this specification, a cell refers to a component carrier having a coverage of a signal transmitted from a transmission point or a transmission point or transmission / reception point of a signal transmitted from a transmission / reception point, and a transmission / reception point itself .
실시예들이 적용되는 무선통신 시스템은 둘 이상의 송수신 포인트들이 협력하여 신호를 전송하는 다중 포인트 협력형 송수신 시스템(coordinated multi-point transmission/reception System; CoMP 시스템) 또는 협력형 다중 안테나 전송방식(coordinated multi-antenna transmission system), 협력형 다중 셀 통신시스템일 수 있다. CoMP 시스템은 적어도 두 개의 다중 송수신 포인트와 단말들을 포함할 수 있다. The wireless communication system to which the embodiments are applied may be a coordinated multi-point transmission / reception system (CoMP system) or a coordinated multi-point transmission / reception system in which two or more transmission / reception points cooperatively transmit signals. antenna transmission system, or a cooperative multi-cell communication system. A CoMP system may include at least two multipoint transmit and receive points and terminals.
다중 송수신 포인트는 기지국 또는 매크로 셀(macro cell, 이하 'eNB'라 함)과, eNB에 광케이블 또는 광섬유로 연결되어 유선 제어되는, 높은 전송파워를 갖거나 매크로 셀영역 내의 낮은 전송파워를 갖는 적어도 하나의 RRH일 수도 있다.The multi-point transmission / reception point includes a base station or a macro cell (hereinafter referred to as 'eNB'), and at least one mobile station having a high transmission power or a low transmission power in a macro cell area, Lt; / RTI >
이하에서 하향링크(downlink)는 다중 송수신 포인트에서 단말로의 통신 또는 통신 경로를 의미하며, 상향링크(uplink)는 단말에서 다중 송수신 포인트로의 통신 또는 통신 경로를 의미한다. 하향링크에서 송신기는 다중 송수신 포인트의 일부분일 수 있고, 수신기는 단말의 일부분일 수 있다. 상향링크에서 송신기는 단말의 일부분일 수 있고, 수신기는 다중 송수신 포인트의 일부분일 수 있다. Hereinafter, a downlink refers to a communication or communication path from a multipoint transmission / reception point to a terminal, and an uplink refers to a communication or communication path from a terminal to a multiple transmission / reception point. In the downlink, a transmitter may be a part of a multipoint transmission / reception point, and a receiver may be a part of a terminal. In the uplink, the transmitter may be a part of the terminal, and the receiver may be a part of multiple transmission / reception points.
이하에서는 PUCCH, PUSCH, PDCCH, EPDCCH 및 PDSCH 등과 같은 채널을 통해 신호가 송수신되는 상황을 ‘PUCCH, PUSCH, PDCCH, EPDCCH 및 PDSCH를 전송, 수신한다’는 형태로 표기하기도 한다.Hereinafter, a situation in which a signal is transmitted / received through a channel such as PUCCH, PUSCH, PDCCH, EPDCCH, and PDSCH is expressed as 'PUCCH, PUSCH, PDCCH, EPDCCH and PDSCH are transmitted and received'.
또한 이하에서는 PDCCH를 전송 또는 수신하거나 PDCCH를 통해서 신호를 전송 또는 수신한다는 기재는 EPDCCH를 전송 또는 수신하거나 EPDCCH를 통해서 신호를 전송 또는 수신하는 것을 포함하는 의미로 사용될 수 있다.In the following description, an indication that a PDCCH is transmitted or received or a signal is transmitted or received via a PDCCH may be used to mean transmitting or receiving an EPDCCH or transmitting or receiving a signal through an EPDCCH.
즉, 이하에서 기재하는 물리 하향링크 제어채널은 PDCCH를 의미하거나, EPDCCH를 의미할 수 있으며, PDCCH 및 EPDCCH 모두를 포함하는 의미로도 사용된다.That is, the physical downlink control channel described below may mean a PDCCH, an EPDCCH, or a PDCCH and an EPDCCH.
또한, 설명의 편의를 위하여 PDCCH로 설명한 부분에도 본 발명의 일 실시예인 EPDCCH를 적용할 수 있으며, EPDCCH로 설명한 부분에도 본 발명의 일 실시예로 EPDCCH를 적용할 수 있다.Also, for convenience of description, EPDCCH, which is an embodiment of the present invention, may be applied to the portion described with PDCCH, and EPDCCH may be applied to the portion described with EPDCCH according to an embodiment of the present invention.
한편, 이하에서 기재하는 상위계층 시그널링(High Layer Signaling)은 RRC 파라미터를 포함하는 RRC 정보를 전송하는 RRC시그널링을 포함한다.Meanwhile, the High Layer Signaling described below includes RRC signaling for transmitting RRC information including RRC parameters.
eNB은 단말들로 하향링크 전송을 수행한다. eNB은 유니캐스트 전송(unicast transmission)을 위한 주 물리 채널인 물리 하향링크 공유채널(Physical Downlink Shared Channel, PDSCH), 그리고 PDSCH의 수신에 필요한 스케줄링 등의 하향링크 제어 정보 및 상향링크 데이터 채널(예를 들면 물리 상향링크 공유채널(Physical Uplink Shared Channel, PUSCH))에서의 전송을 위한 스케줄링 승인 정보를 전송하기 위한 물리 하향링크 제어채널(Physical Downlink Control Channel, PDCCH)을 전송할 수 있다. 이하에서는, 각 채널을 통해 신호가 송수신 되는 것을 해당 채널이 송수신되는 형태로 기재하기로 한다.The eNB performs downlink transmission to the UEs. The eNB includes a physical downlink shared channel (PDSCH) as a main physical channel for unicast transmission, downlink control information such as scheduling required for reception of PDSCH, and uplink data channel A physical downlink control channel (PDCCH) for transmitting scheduling grant information for transmission in a Physical Uplink Shared Channel (PUSCH). Hereinafter, the transmission / reception of a signal through each channel will be described in a form in which the corresponding channel is transmitted / received.
[Latency reduction in RAN1][Latency reduction in RAN1]
Latency reduction Study Item은 RAN plenary #69 회의에서 승인되었다 [1]. Latency reduction의 주요 목적은 TCP throughput을 행상시키기 위해서 보다 짧은 TTI 운영을 규격화하는 것이다[2]. 이를 위해 RAN2에서는 이미 short TTI에 대한 성능 검증을 수행하였다[2]..The Latency reduction Study Item was approved at RAN plenary # 69 meeting [1]. The main purpose of latency reduction is to standardize shorter TTI operations to foster TCP throughput [2]. For this purpose, performance verification for short TTI has already been performed in RAN2 [2].
아래와 같은 범위에서 RAN1에 관계된 potential impact들과 study를 수행한다[1]:Potential impacts and studies related to RAN1 are performed in the following ranges [1]:
o Assess specification impact and study feasibility and performance of TTI lengths between 0.5ms and one OFDM symbol, taking into account impact on reference signals and physical layer control signalingo TTI lengths between 0.5ms and one OFDM symbol, taking into account the impact on reference signals and physical layer control signaling
o backwards compatibility shall be preserved (thus allowing normal operation of pre-Rel 13 UEs on the same carrier);o backwards compatibility shall be preserved (thus allowing normal operation of pre-Rel 13 UEs on the same carrier);
Latency reduction can be achieved by the following physical layer techniques:Latency reduction can be achieved by the following physical layer techniques:
- short TTI- short TTI
- reduced processing time in implementation- reduced processing time in implementation
- new frame structure of TDD- new frame structure of TDD
3GPP RAN WG1#84회의에서 추가적으로 합의된 사항은 아래와 같다.Additional agreements at the 3GPP RAN WG1 # 84 meeting are as follows.
Agreements:Agreements:
● Following design assumptions are considered:● Following design assumptions are considered:
o No shortened TTI spans over subframe boundaryo No shortened TTI spans over subframe boundary
o At least for SIBs and paging, PDCCH and legacy PDSCH are used for schedulingo At least for SIBs and paging, PDCCH and legacy PDSCH are used for scheduling
● The potential specific impacts for the followings are studied ● The potential specific impacts for the followings are studied
o UE is expected to receive a sPDSCH at least for downlink unicast o UE is expected to receive a SDSCH at least for downlink unicast
■ sPDSCH refers PDSCH carrying data in a short TTI ■ sPDSCH refers PDSCH carrying data in a short TTI
o UE is expected to receive PDSCH for downlink unicasto UE is expected to receive PDSCH for downlink unicast
■ FFS whether a UE is expected to receive both sPDSCH and PDSCH for downlink unicast simultaneously ■ FFS whether a UE is expected to receive both PDSCH and PDSCH for downlink unicast simultaneously
o FFS: The number of supported short TTIso FFS: The number of supported short TTIs
o If the number of supported short TTIs is more than one,o If the number of supported TTIs is more than one,
Agreements:Agreements:
● Following design assumptions are used for the study● Following design assumptions are used for the study
o From eNB perspective, existing non-sTTI and sTTI can be FDMed in the same subframe in the same carriero From eNB perspective, existing non-sTTI and sTTI can be FDMed in the same subframe in the same carrier
■ FFS: Other multiplexing method(s) with existing non-sTTI for UE supporting latency reduction features ■ FFS: Other multiplexing method (s) with existing non-sTTI for UE supporting latency reduction features
Agreements:Agreements:
● In this study, following aspects are assumed in RAN1.● In this study, the following aspects are assumed in RAN1.
o PSS/SSS, PBCH, PCFICH and PRACH, Random access, SIB and Paging procedures are not modified.o PSS / SSS, PBCH, PCFICH and PRACH, Random access, SIB and Paging procedures are not modified.
● Following aspects are further studied in the next RAN1 meeting● Following aspects are further studied in the next RAN1 meeting
o Note: But the study is not limited to them.o Note: The study is not limited to them.
o Design of sPUSCH DM-RSo Design of sPUSCH DM-RS
■ Alt.1: DM-RS symbol shared by multiple short-TTIs within the same subframe ■ Alt.1: DM-RS symbol shared by multiple short-TTIs within the same subframe
■ Alt.2: DM-RS contained in each sPUSCH ■ Alt.2: DM-RS contained in each sPUSCH
o HARQ for sPUSCHo HARQ for SPUSCH
■ Whether/how to realize asynchronous and/or synchronous HARQ ■ Whether / how to realize asynchronous and / or synchronous HARQ
o sTTI operation for Pcell and/or SCells by (e)CA in addition to non-(e)CA caseo sTTI operation for Pcell and / or SCells by (e) CA in addition to non (e) CA case
3GPP RAN WG1#84bis회의에서 추가적으로 합의된 사항은 아래와 같다.Additional agreements at the 3GPP RAN WG1 # 84bis meeting are as follows.
Working Assumption: Working Assumption:
- 1-OFDM-symbol sTTI length will not be further studied- 1-OFDM-symbol sTTI length will not be further studied
Agreement:Agreement:
● sPDCCH (PDCCH for short TTI) needs to be introduced for short TTI.● s PDCCH (short PDCCH) needs to be short for TTI.
- Each short TTI on DL may contain sPDCCH decoding candidates - Each short TTI on DL may contain sPDCCH decoding candidates
Working Assumption:Working Assumption:
● CRS-based sPDCCH is recommended to be supported ● CRS-based sPDCCH is recommended to be supported
- FFS whether CRS-based sPDCCH can be transmitted in the legacy PDCCH region - FFS whether CRS-based sPDCCH can be transmitted in the legacy PDCCH region
● DMRS-based sPDCCH is recommended to be supported ● DMRS-based sPDCCH is recommended to be supported
● Design of both CRS-based sPDCCH and DMRS-based sPDCCH will be studied further. ● Design of both CRS-based sPDCCH and DMRS-based sPDCCH will be studied further.
Conclusions:Conclusions:
● A maximum number of BDs will be defined for sPDCCH in USS● A maximum number of BDs will be defined for sPDCCH in USS
- In case 2-level DCI is adopted, any DCI for sTTI scheduling carried on PDCCH may be taken into account in the maximum total number of BDs - In case 2-level DCI is adopted, any DCI for sTTI scheduling carried on PDCCH may be taken into account in the maximum total number of BDs
● FFS whether the maximum number is dependent on the sTTI length● FFS whether the maximum number is dependent on the sTTI length
● FFS whether the maximum number of blind decodes for (E)PDCCH is reduced in subframes in which the UE is expected to perform blind decodes for sPDCCH● FFS whether the maximum number of blind decodes for (E) PDCCH is reduced in subframes in which the UE is expected to perform blind decodes for sPDCCH
● FFS whether a UE may be expected to monitor both EPDCCH and sPDCCH in the same subframe● FFS whether a UE may be expected to monitor both EPDCCH and sPDCCH in the same subframe
● FFS whether the maximum number of BDs on PDCCH is changed from the legacy number● FFS whether the maximum number of BDs on PDCCH is changed from the legacy number
● if DCI on PDCCH is for sTTI scheduling● if DCI on PDCCH is for sTTI scheduling
Conclusion for study till RAN1#85: Conclusion for study till RAN1 # 85:
● Two-level DCI can be studied for sTTI scheduling, whereby:● Two-level DCI can be studied for sTTI scheduling, where:
- DCI for sTTI scheduling can be divided into two types: - DCI for sTTI scheduling can be divided into two types:
● “Slow DCI”: DCI content which applies to more than 1 sTTI is carried on either legacy PDCCH, or sPDCCH transmitted not more than once per subframe ● &Quot; Slow DCI ": DCI content is applied to more than 1 < RTI ID = 0.0 >
● FFS whether “Slow DCI” is UE-specific or common for multiple UEs ● FFS whether "Slow DCI" is UE-specific or common for multiple UEs
● “Fast DCI”: DCI content which applies to a specific sTTI is carried on sPDCCH ● &Quot; Fast DCI ": DCI content is applied to a specific < RTI ID = 0.0 >
● For a sPDSCH in a given sTTI, the scheduling information is obtained from either: ● For a sPDSCH in a given sTTI, the scheduling information is obtained from either:
● a combination of slow DCI and fast DCI, or ● a combination of slow DCI and fast DCI, or
● fast DCI only, overriding the slow DCI for that sTTI ● fast DCI only, overriding the slow DCI for that sTTI
- Compare with single-level DCI carried on one sPDCCH or one legacy PDCCH.- Compare with single-level DCI carried on one sPDCCH or one legacy PDCCH.
- It is not precluded to consider schemes in which the slow DCI also includes some resource allocation information for the sPDCCH.- DCI also includes some resource allocation information for the sPDCCH.
● Methods for reducing the overhead of single-level DCI can also be studied● Methods for reducing the overhead of single-level DCI can also be studied
- Single-level DCI multi-sTTI scheduling for a variable number of sTTIs may be included - Single-level DCI multi-sTTI scheduling for a variable number of sTTIs may be included
Aim to reduce the number of schemes under consideration at RAN1#85.Aim to reduce the number of schemes under consideration at RAN1 # 85.
Agreements:Agreements:
● Both CRS based TMs and DMRS based TMs are recommended to be supported for DL sTTI transmission● Both CRS based and DMRS based TMs are recommended for DL sTTI transmission
- No change for CRS definition - No change for CRS definition
● FFS: Supporting more than 2 layers for sPDSCHs ● FFS: Supporting more than 2 layers for sPDSCHs
- Further study is needed about DMRS design(s) for sPDSCH demodulation - Further study is needed about DMRS design (s) for sPDSCH demodulation
● For a certain TTI length, increased PRB bundling sizes may be necessary to achieve sufficient channel estimation accuracy. ● For a certain TTI length, increased PRB bundling sizes may be necessary to achieve sufficient channel estimation accuracy.
● FFS: the number of DMRS antenna ports that can be supported for a given short-TTI length. ● FFS: the number of DMRS antenna ports that can be supported for a given short-TTI length.
● For a certain TTI length, new DMRS design(s) may be needed ● For a certain TTI length, the new DMRS design (s) may be needed
Agreements:Agreements:
● A UE is expected to handle the following cases in the same carrier in a subframe ● A UE is expected to handle the following cases in the same carrier in a subframe
- Receiving legacy TTI non-unicast PDSCH (except FFS for SC-PTM) and short TTI unicast PDSCH- Receiving legacy TTI non-unicast PDSCH (except FFS for SC-PTM) and short TTI unicast PDSCH
- Receiving legacy TTI non-unicast PDSCH (except FFS for SC-PTM) and legacy TTI unicast PDSCH(s)- Receiving legacy TTI non-unicast PDSCH (except FFS for SC-PTM) and legacy TTI unicast PDSCH (s)
● FFS between:● FFS between:
- Alt 1: A UE is not expected to receive legacy TTI unicast PDSCH and short TTI unicast PDSCH simultaneously on one carrier- Alt 1: A UE is not expected to receive legacy TTI unicast PDSCH and short TTI unicast PDSCH simultaneously on one carrier
- Alt 2: If the UE is scheduled with legacy TTI unicast PDSCH and short TTI unicast PDSCH simultaneously on one carrier, then it may skip the decoding of one of them (FFS rules for determining which one)- TTI unicast PDSCH and short TTI Unicast PDSCH simultaneously on one carrier, then it may skip the decoding of one of them (FFS rules for determining which one)
- Alt 3: A UE is expected to receive legacy TTI unicast PDSCH and short TTI unicast PDSCH simultaneously on one carrier- Sub 3: A UE is expected to receive legacy TTI unicast PDSCH and short TTI unicast PDSCH simultaneously on one carrier
● FFS UE behaviour in case of being scheduled with legacy TTI unicast PDSCH and short TTI unicast PDSCH simultaneously with legacy TTI non-unicast PDSCH (except FFS for SC-PTM) on the same carrier ● FFS UE behaviors in case of being scheduled with legacy TTI unicast PDSCH and short TTI unicast PDSCH simultaneously with legacy TTI non-unicast PDSCH (except FFS for SC-PTM) on the same carrier
● A UE can be dynamically (with a subframe to subframe granularity) scheduled with legacy TTI unicast PDSCH and/or (depends on outcome of FFS above) short TTI PDSCH unicast● A UE can be dynamically (with a subframe to subframe granularity) scheduled with legacy TTI unicast PDSCH and / or (on on outcome of FFS above) short TTI PDSCH unicast
Agreements:Agreements:
● A UE can be dynamically (with a subframe to subframe granularity) scheduled with PUSCH and/or sPUSCH● A UE can be dynamically (with a subframe to subframe granularity) scheduled with PUSCH and / or sPUSCH
- A UE is not expected to transmit PUSCH and short TTI sPUSCH simultaneously on the same REs, i.e. by superposition- A UE is not expected to transmit PUSCH and short TTI sPUSCH are same on the same REs, i.e. by superposition
- FFS whether a UE may transmit PUSCH and short TTI sPUSCH in the same subframe on one carrier by puncturing PUSCH- FFS whether a UE may transmit PUSCH and short TTI sPUSCH in the same subframe on one carrier by puncturing PUSCH
- FFS whether a UE may transmit PUSCH and short TTI sPUSCH in different PRBs on the same symbol(s)- FFS whether a UE may transmit PUSCH and short TTI sPUSCH in different PRBs on the same symbol (s)
- Dropping/prioritization rules (if any) are FFS - Dropping / prioritization rules (if any) are FFS
Agreements:Agreements:
● It is recommended to support PHICH-less asynchronous UL HARQ for PUSCH scheduled in a short TTI (i.e. for sPUSCH)● It is recommended to support PHICH-less asynchronous UL HARQ for PUSCH scheduled in a short TTI (i.e. for SPUSCH)
● If DL data transmission is scheduled in a short TTI, the processing time for preparing the HARQ feedback by UE and the processing time for preparing a potential retransmission by eNB are assumed to be reduced● If DL data transmission is scheduled in a short TTI, the processing time for the HARQ feedback by UE and the processing time for preparing a potential retransmission by eNB are assumed to be reduced
- FFS: the extent of processing time reduction- FFS: the extent of processing time reduction
● If UL data transmission is scheduled in a short TTI, the processing time for preparing UL data transmission upon UL grant reception at UE and the processing time for scheduling a potential retransmission by eNB are assumed to be reduced● If UL data transmission is scheduled in a short TTI, the processing time for preparing UL data transmission on UL is delayed by a UE and the processing time for scheduling a potential retransmission by eNB is assumed to be reduced
- FFS: the extent of processing time reduction- FFS: the extent of processing time reduction
● Study whether it is beneficial to limit the maximum TA value supported in conjunction with latency reduction● Study whether it is beneficial to limit TA value supported in conjunction with latency reduction
- Note that this would restrict the deployment scenarios for latency reduction. - Note that this would restrict the deployment scenarios for latency reduction.
● FFS whether processing time reductions can also be applied to legacy TTI transmissions for UEs that support short TTI● FFS processing time reductions can also be applied to legacy TTI transmissions for UEs that support short TTI
기본적으로 Average down-link latency calculation에서는 아래의 절차를 따라 latency를 계산하게 된다 [3].Basically, in the average down-link latency calculation, the latency is calculated according to the following procedure [3].
Following the same approach as in section B.2.1 in 3GPP TR 36.912, the LTE U-plane one-way latency for a scheduled UE consists of the fixed node processing delays and 1 TTI duration for transmission, as shown in Figure 1. Assuming the processing times can be scaled by the same factor of TTI reduction keeping the same number of HARQ processes, the one way latency can be calculated asFigure 1: Assuming the 3GPP TR 36.912, the LTE U-plane one-way latency for a scheduled UE consists of fixed node processing delays and 1 TTI duration for transmission. processing times can be scaled by the same factor of TTI reduction keeping the same number of HARQ processes, the one way latency can be calculated as
D = 1.5 TTI (eNB processing and scheduling) + 1 TTI (transmission) + 1.5 TTI (UE processing) + n*8 TTI (HARQ retransmissions)D = 1.5 TTI + 1 TTI + 1.5 TTI UE + n * 8 TTI (HARQ retransmissions)
= (4 + n*8) TTI. = (4 + n * 8) TTI.
Considering a typical case where there would be 0 or 1 retransmission, and assuming error probability of the first transmission to be p, the delay is given byConsidering a typical case where there would be 0 or 1 retransmission, and assuming error probability of the first transmission to be p, the delay is given by
D = (4 + p*8) TTI.D = (4 + p * 8) TTI.
So, for 0% BLER, D = 4 * TTI,So, for 0% BLER, D = 4 * TTI,
And for 10% BLER, D = 4.8 * TTI.And for 10% BLER, D = 4.8 * TTI.
Average Average UEUE initiated UL transmission latency calculation initiated UL transmission latency calculation
Assume UE is in connected/synchronized mode and wants to do UL transmission, e.g., to send TCP ACK. Following table shows the steps and their corresponding contribution to the UL transmission latency. To be consistent in comparison of DL and UL, we add the eNB processing delay in the UL after the UL data is received by the eNB (step 7). Assume UE is in connected / synchronized mode and wants to do UL transmission, e.g., send to TCP ACK. The following table shows the steps and their corresponding contribution to the UL transmission latency. To be consistent in comparison of DL and UL, we add the eNB processing delay in the UL after the UL data is received by the eNB (step 7).
In the table above, steps 1-4 and half delay of step 5 is assumed to be due to SR, and rest is assumed for UL data transmission in values shown in Table 4In the table above, steps 1 and 4 and half of the
Resource mapping of short Resource mapping of short TTITTI [3] [3]
In Figure 2 the resource map above is the legacy resource mapping per PRB in one subframe, considering 2 Antenna ports and 2 OFDM symbols control field. In Figure 2 the resource map below is the short TTI resource mapping, considering 2 OFDM symbols used for the control field in order to ensure the backward compatibility. The loss rates (Llegacy, e.g. 5% - 50%) of the PHY layer in short TTI duration are assumed.In Figure 2 the resource map above is the legacy resource mapping per PRB in one subframe, considering 2 Antenna ports and 2 OFDM symbols control field. In Figure 2 the resource map below is the short TTI resource mapping, considering 2 OFDM symbols used for the control field in order to ensure the backward compatibility. The loss rates (L legacy , eg 5% - 50%) of the PHY layer are short TTI duration are assumed.
TBS Calculation of short TBS Calculation of short TTITTI
According to the resource mapping and the TBS calculation formula given above, the loss rate of PHY layer for legacy PDSCH is calculated as follows:According to the present invention, the PDSCH is calculated as follows:
For different short TTI duration, The TBS of short TTI PDSCH is calculated as the following table:For different short TTI duration, The TBS of short TTI PDSCH is calculated as the following table:
최근 shortened TTI Work item 관련 Work scope및 3GPP RAN WG1#86회의에서 추가적으로 합의된 사항은 아래와 같다.The work scope of the recently shortened TTI Work item and the 3GPP RAN WG1 # 86 meeting were further agreed upon as follows.
For Frame structure type 1: [RAN1, RAN2, RAN4]For Frame structure type 1: [RAN1, RAN2, RAN4]
● Specify support for a transmission duration based on 2-symbol sTTI and 1-slot sTTI for sPDSCH/sPDCCH ● Specify support for a transmission duration based on 2-symbol sTTI and 1-slot sTTI for sPDSCH / sPDCCH
● Specify support for a transmission duration based on 2-symbol sTTI, 4-symbol sTTI, and 1-slot sTTI for sPUCCH/sPUSCH ● 2-symbol sTTI, 4-symbol sTTI, and 1-slot sTTI for sPTICH / sPTCH
o Down-selection is not precluded o Down-selection is not precluded
● Study any impact on CSI feedback and processing time, and if needed, specify necessary modifications (not before RAN1 #86bis) ● Study any impact on CSI feedback and processing time, and if necessary, specify necessary modifications (not before RAN1 # 86bis)
Agreement:Agreement:
● For FS1,2&3, a minimum timing n+3 is supported for UL grant to UL data and for DL data to DL HARQ for UEs capable of operating with reduced processing time with only the following conditions: ● For FS1, 2 & 3, a minimum timing n + 3 is supported for UL grant to UL data and DL data to DL HARQ for UEs capable of operating with reduced processing time with only the following conditions:
● A maximum TA is reduced to x ms, where x <= 0.33ms (exact value FFS); ● A maximum TA is reduced to x ms, where x < = 0.33ms (exact value FFS);
● At least when scheduled by PDCCH ● At least when scheduled by PDCCH
● For FS2, new DL HARQ and UL scheduling timing relations will be defined ● For FS2, new DL HARQ and UL scheduling timing relations will be defined
● Details FFS ● Details FFS
● FFS: ● FFS:
● Possible minimum timing of n+2 TTI ● Possible minimum timing of n + 2 TTI
● FFS max TA in this case ● FFS max TA in this case
● FFS what other restrictions (if any) on when reduced processing times of n+2 could be applied ● FFS what other restrictions (if any) on when reduced processing times of n + 2 could be applied
● Possibility of scheduling by EPDCCH. ● Possibility of scheduling by EPDCCH.
Agreement:Agreement:
● Reduced processing time(s) are RRC configured for the UE ● Reduced processing time (s) are RRC configured for the UE
● Working assumption: A mechanism for dynamic fallback to legacy processing timings (n+4) is supported ● Working assumption: A mechanism for dynamic fallback to legacy processing timings (n + 4) is supported
- Details FFS- Details FFS
Working assumption can be revisited if it is not found to be feasibleWorking assumption can be revised if it is not found to be feasible
DL-RS 관련 3GPP RAN1 #85 미팅에서 아래와 같은 사항을 결정하였다. In the 3GPP RAN1 # 85 meeting related to the DL-RS, the following matters were decided.
Agreement:Agreement:
● For sPDSCH based on a CRS based transmission scheme the maximum number of supported layers is 4 ● For sPDSCH based on a CRS based transmission scheme the maximum number of supported layers is 4
● For sPDSCH based on a DM-RS based transmission scheme shall be down-selected among the following options ● For sPDSCH based on a DM-RS based transmission scheme,
- the maximum number of supported layers is 2- the maximum number of supported layers is 2
- the maximum number of supported layers is 4- the maximum number of supported layers is 4
- the maximum number of supported layers is 8- the maximum number of supported layers is 8
● FFS for sPDSCH based on a DM-RS based transmission scheme it is recommended to increased PRB bundling size compared to PDSCH for at least sTTI lengths shorter than 1-slot ● FFS for PDSCH based on a DM-RS based transmission scheme it is recommended to increase PRB bundling size compared to PDSCH for at least sTTI lengths shorter than 1-slot
상기와 같이 short TTI에 대한 Physical layer에 대한 연구가 진행 중이며, 제어 채널 설계에 대한 구체적인 논의가 진행 중에 있다. 구체적으로는 sPDCCH와 legacy PDCCH의 검출에 대한 전송 및 검출에 대한 구체적인 단말 동작이 부재되어 있다.As described above, the study on the physical layer for the short TTI is ongoing, and a detailed discussion on the control channel design is underway. Specifically, there is no specific terminal operation for transmission and detection for detection of sPDCCH and legacy PDCCH.
본 발명에서는 legacy PDCCH를 전송되는 DCI의 유효 주기를 고려한 단말의 short DCI 획득 동작에 대한 구체적인 절차를 제시한다.In the present invention, a specific procedure for acquiring a short DCI of a terminal considering a valid period of a DCI transmitted through a legacy PDCCH is presented.
기본적으로 PDCCH 검출에는 아래의 Aggregation level, PDCCH candidate를 기반으로 주어진 Hashing function에 기반한 blind decoding을 수행한다.Basically, for PDCCH detection, blind decoding is performed based on a given hashing function based on the following aggregation level, PDCCH candidate.
여기에서 주어진 hashing function을 이용한 Search space 정의 및 Blind decoding procedure는 아래와 같다.The search space definition and blind decoding procedure using the hashing function given below are as follows.
1) Search space 정의One) Search space definition
◆ Search Space (Cont'd)◆ Search Space (Cont'd)
● The variable Y k ● The variable Y k
√ For the COMMON search space √ For the COMMON search space
√ For the UE-specific search space √ For the UE-specific search space
◆ Size of search space◆ Size of search space
● CCE units ● CCE units
● The size depends on the type and aggregation level of search space ● The size depends on the type and the aggregation level of the search space
● 4 kinds of size: 6, 8, 12, 16 [CCEs] ● 4 kinds of size: 6, 8, 12, 16 [CCEs]
◆ Number of PDCCH candidates M (L) Number of PDCCH candidates M (L)
● The set of PDCCH candidates to monitor are defined in terms of search spaces ● The set of PDCCH candidates are defined in terms of search spaces
● Mainly connected to the aggregation level ● Mainly connected to the aggregation level
2) Relationship between Y k and search space2) Relationship between Y k and search space
■ Offset of starting-point of search space■ Offset of starting-point of search space
■ Offset(Y k ) has UE-specific value within UE-specific search space■ Offset ( Y k ) has UE-specific value within UE-specific search space
■ Offset(Y k ) is fixed by zero in common search space■ Offset ( Y k ) is fixed by zero in common search space
■ Example: Common Search Space Example: Common Search Space
√ Aggregation level (L): 4, N CCE = 35√ Aggregation level ( L ): 4, N CCE = 35
√ Size of Search space: 16 CCEs √ Size of Search space: 16 CCEs
√ Number of candidate ( M (L) ): 4√ Number of candidates ( M (L) ): 4
√ Y k = 0 (Y k does not get affected by n RNTI )√ Y k = 0 ( Y k does not get affected by n RNTI )
■ Example: UE -specific Search Space Example: UE -specific Search Space
√ Aggregation level (L): 4, N CCE = 35√ Aggregation level ( L ): 4, N CCE = 35
√ Size of Search space: 8 CCEs √ Size of Search space: 8 CCEs
√ Number of candidate ( M (L) ): 2√ Number of candidates ( M (L) ): 2
결국 정의된 search space 를 기반으로 단말이 자신의 PDCC를 찾기 위해서는 아래와 같은 최대 Blind decoding 수가 결정된다. 즉 전체 aggregation level 1,2,4,8에 대해서 PDCCH 후보가 UESS=16, CSS=6이 존재한다. 따라서 각 Transmission mode에서 찾아야 하는 PDCCH format은 DCI format 1A + α'로 2개가 존재하기 때문에 총 Blind decoding 수는 44가 된다(Legacy PDCCH 기준).Finally, based on the defined search space, the terminal determines the maximum number of blind decoding as follows to find its PDCC. That is, for the
본 제안에서는 sTTI 단말이 legacy PDCCH로부터 획득한 DCI의 적용 범위에 따른 sTTI 서비스 단말의 구체적인 동작을 제시한다.In this proposal, the concrete operation of the sTTI service terminal according to the coverage of the DCI obtained from the legacy PDCCH is presented by the sTTI terminal.
방안 1.
본 제안에서는 Slow DCI의 유효 주기를 설정하는 구체적인 방안을 제안한다. 즉 sTTI가 legacy subframe안에 구성될 경우, slow DCI는 in-subframe legacy PDCCH를 통해서 수신한 것만 유효하다. 즉 단말은 매 서브프레임마다 legacy PDCCH를 통해서 sTTI 서비스 관련 스케줄링 또는 제어 정보를 수신하여 한다.In this proposal, we propose a concrete method of setting the effective period of the slow DCI. That is, when the sTTI is configured in the legacy subframe, only the slow DCI received through the in-subframe legacy PDCCH is valid. That is, the UE receives the sTTI service-related scheduling or control information through the legacy PDCCH every subframe.
결과적으로 해당 방법을 통해서 기존의 1ms 기반 dynamic 스케줄링 테두리 안에서 sTTI 서비스가 수행하게 된다. As a result, the sTTI service is performed within the existing 1ms-based dynamic scheduling frame through the corresponding method.
sTTI는 그 구성에 따라 1ms내에 구성되는 sTTI 길이, 개수 등이 다르게 된다. 예를 들어 DL sTTI는 2-symbol/7-symbol만 존재한다. 7-symbol sTTI는 1ms에 2 sTTI가 존재하기 때문에 단말은 2 sTTI의 스케줄링에만 legacy PDCCH를 유효하게 이용할 수 있다. 만일 '2-symbol sTTI'의 경우 7 sTTI 가 1ms에 구성됐다고 가정하며, legacy PDCCH를 통해서 획득한 DCI는 7 sTTI에 공통적으로 활용될 수 있다.The sTTI has a different sTTI length, number, etc., which are configured within 1 ms depending on its configuration. For example, DL sTTI has only 2-symbol / 7-symbol. Since the 7-symbol sTTI has 2 sTTIs in 1 ms, the UE can effectively use the legacy PDCCH only for scheduling of 2 sTTIs. If '2-symbol sTTI', 7 sTTI is assumed to be configured at 1 ms, and DCI obtained through legacy PDCCH can be commonly used for 7 sTTI.
방안 2.
방안 2-1. Legacy Solution 2-1. Legacy PDCCH의PDCCH 유효 주기는 상위 The validity period is 레이어Layer 시그널링으로With signaling 단말에게To the terminal 전송한다. send.
본 제안에서는 Slow DCI의 유효 주기를 1 subframe 이상으로 설정하는 구체적인 방안을 제안한다. 즉 sTTI가 구성될 경우 legacy PDCCH를 통해서 한번 얻은 slow DCI는 multiple subframe (>1 subframe)에 유효하게 된다. 즉 단말은 일정 주기에 맞춰 slow DCI를 업데이트 하게 된다.In this proposal, we propose a concrete method of setting the effective period of slow DCI to 1 subframe or more. That is, when the sTTI is configured, the slow DCI obtained through the legacy PDCCH is valid for multiple subframes (> 1 subframe). That is, the UE updates the slow DCI in a predetermined period.
이때 기지국은 단말에게 Legacy PDCCH의 수신을 위한 아래와 같은 정보를 상위 시그널링으로 설정할 수 있다. At this time, the BS may set the following information for receiving the Legacy PDCCH to the MS as higher signaling.
- Slow DCI를 수신할 수 있는 Legacy PDCCH의 전송 위치- Transmission position of Legacy PDCCH capable of receiving slow DCI
- Slow DCI의 전송 주기/업데이트 주기- Slow DCI transmission cycle / update cycle
구체적으로는 RRC message에 slow DCI의 유효 범위, 전송 주기, 위치 정보 등이 기재될 수 있다.Specifically, the effective range of the slow DCI, the transmission period, and the location information may be described in the RRC message.
방안 3. 기지국은 일정 주기로
본 제안에서는 slow DCI의 전송에 대한 정보를 보내는 구체적인 방안을 제시한다.In this proposal, a concrete method of sending information about slow DCI transmission is presented.
즉 단말이 획득한 slow DCI를 어느 주기로 전송할 것인가에 대한 구성 정보를 포함한다. 이것은 다른 의미로 sTTI 전송을 위한 PDCCH monitoring 파라미터를 설정과도 직접으로 관련 있다. 단말은 이러한 legacy PDCCH에 포함되어 전송되는 slow DCI의 monitoring 주기적으로 실시하게 되며, 해당 구성 정보는 상위 레이어 시그널링으로 sTTI 단말에게 전송될 수 있다.That is, configuration information on how long to transmit the slow DCI acquired by the UE. This is directly related to setting the PDCCH monitoring parameter for sTTI transmission in other words. The UE periodically monitors the slow DCI transmitted in the legacy PDCCH, and the corresponding configuration information can be transmitted to the sTTI UE through upper layer signaling.
예를 들어 상위 레이어 시그널링은 RRC message로 구성될 수 있으며, sPDCCH-config 또는 sTTI-config 등의 이름으로 정의될 수 있다.For example, upper layer signaling can be configured as an RRC message and can be defined as sPDCCH-config or sTTI-config.
예를 들어 slow DCI의 전송 주기에 대한 설정 정보를 아래와 같이 정의할 수 있다.For example, the setting information for the transmission period of the slow DCI can be defined as follows.
- Slow DCI 전송 주기 (period)- Slow DCI transmission period
- Slow DCI 전송 서브프레임- Slow DCI transmission subframe
- Slow DCI 전송 서브프레임 offset 등- Slow DCI transmission sub-frame offset etc.
우선 Legacy PDCCH의 전송 위치는 특정 서브프레임을 기준으로 offset을 값을 설정하여 전송할 수 있다. 예를 들어 '시작 위치 정보=0', 'offset=3'이면 단말은 네번째 서브프레임에서 slow DCI를 얻기 위한 legacy PDCCH 검출 동작을 수행한다. The transmission position of the Legacy PDCCH can be transmitted by setting a value of offset based on a specific subframe. For example, if 'start position information = 0' and 'offset = 3', the UE performs a legacy PDCCH detection operation to obtain a slow DCI in a fourth subframe.
업데이트 주기는 slow DCI의 유효 시간 또는 주기를 말한다. 예를 들어 5ms 단위로 slow DCI가 전송되더라도 단말의 slow DCI 업데이트 주기를 10ms 로 설정하면 단말은 10ms 단위로 legacy PDCCH를 검출하여 slow DCI를 획득하게 된다.The update period refers to the effective time or period of the slow DCI. For example, if the slow DCI update period of the UE is set to 10 ms even if the slow DCI is transmitted in 5 ms units, the UE detects the legacy PDCCH in 10 ms units and acquires the slow DCI.
본 발명에서는 3GPP LTE/LTE-A 시스템에서 legacy PDCCH를 통해 전송되는 DCI 의 유효 주기를 설정함으로써 short TTI 단말에 대한 DCI/sDCI 검출을 위한 구체적인 동작을 정의할 수 있다.In the present invention, a specific operation for DCI / sDCI detection for a short TTI terminal can be defined by setting the valid period of the DCI transmitted through the legacy PDCCH in the 3GPP LTE / LTE-A system.
도 8은 또 다른 실시예에 의한 기지국의 구성을 보여주는 도면이다. 8 is a diagram illustrating a configuration of a base station according to another embodiment of the present invention.
도 8을 참조하면, 또 다른 실시예에 의한 기지국(1000)은 제어부(1010)과 송신부(1020), 수신부(1030)을 포함한다.Referring to FIG. 8, a
제어부(1010)는 전술한 본 발명에 따라 short TTI 프레임 구조에서 slow DCI의 유효 주기를 설정함에 따른 전반적인 기지국(1000)의 동작을 제어한다.The
송신부(1020)와 수신부(1030)는 전술한 본 발명을 수행하기에 필요한 신호나 메시지, 데이터를 단말과 송수신하는데 사용된다. The
도 9는 또 다른 실시예에 의한 사용자 단말의 구성을 보여주는 도면이다.9 is a diagram illustrating a configuration of a user terminal according to another embodiment of the present invention.
도 9를 참조하면, 또 다른 실시예에 의한 사용자 단말(1100)은 수신부(1110) 및 제어부(1120), 송신부(1130)을 포함한다.9, a
수신부(1110)는 기지국으로부터 하향링크 제어정보 및 데이터, 메시지를 해당 채널을 통해 수신한다.The receiving
또한 제어부(1120)는 전술한 본 발명에 따라 short TTI 프레임 구조에서 slow DCI의 유효 주기를 설정함에 따른 전반적인 사용자 단말(1100)의 동작을 제어한다.In addition, the
송신부(1130)는 기지국에 상향링크 제어정보 및 데이터, 메시지를 해당 채널을 통해 전송한다.The
전술한 실시예에서 언급한 표준내용 또는 표준문서들은 명세서의 설명을 간략하게 하기 위해 생략한 것으로 본 명세서의 일부를 구성한다. 따라서, 위 표준내용 및 표준문서들의 일부의 내용을 본 명세서에 추가하거나 청구범위에 기재하는 것은 본 발명의 범위에 해당하는 것으로 해석되어야 한다.The standard content or standard documents referred to in the above-mentioned embodiments constitute a part of this specification, for the sake of simplicity of description of the specification. Therefore, it is to be understood that the content of the above standard content and some of the standard documents is added to or contained in the scope of the present invention, as falling within the scope of the present invention.
AppendixAppendix
[1] Ericsson, Huawei, "New SI proposal Study on Latency reduction techniques for LTE", RP-150465, Shanghai, China, March 9-12, 2015.[One] Ericsson, Huawei, "New SI proposal Study on Latency reduction techniques for LTE ", RP-150465, Shanghai, China, March 9-12, 2015.
[2] R2-155008, "TR 36.881 v0.4.0 on Study on Latency reduction techniques for LTE" , Ericsson (Rapporteur)[2] R2-155008, "TR 36.881 v0.4.0 on Study Latency reduction techniques for LTE ", Ericsson (Rapporteur)
[3] R1-160927, "TR 36.881-v0.5.0 on Study on Latency reduction techniques for LTE" , Ericsson (Rapporteur)[3] R1-160927, "TR 36.881-v0.5.0 on Study Latency reduction techniques for LTE ", Ericsson (Rapporteur)
[4] 3GPP TS 36.331 v13.0.0 R1-160927, "Radio Resource Control (RRC)"[4] 3GPP TS 36.331 v13.0.0 R1-160927, "Radio Resource Control (RRC)"
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The foregoing description is merely illustrative of the technical idea of the present invention, and various changes and modifications may be made by those skilled in the art without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are intended to illustrate rather than limit the scope of the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The scope of protection of the present invention should be construed according to the following claims, and all technical ideas within the scope of equivalents should be construed as falling within the scope of the present invention.
Claims (1)
legacy PDCCH를 통해 유효 주기가 설정된 slow DCI를 수신하는 단계;
상기 slow DCI의 유효 주기가 하나의 서브프레임인 경우 상기 slow DCI를 처음 수신한 서브프레임 내에서만 상기 slow DCI에 기초한 short TTI 서비스를 수행하는 단계; 및
상기 slow DCI의 유효 주기가 복수의 서브프레임인 경우 RRC message를 통해 수신한 상기 slow DCI의 유효 범위에 기초하여 상기 short TTI 서비스를 수행하는 단계를 포함하는 방법.
A method for setting a slow DCI in a short TTI frame structure,
receiving a slow DCI having a validity period set via a legacy PDCCH;
Performing a short TTI service based on the slow DCI only in a subframe in which the slow DCI is first received if the effective period of the slow DCI is one subframe; And
And performing the short TTI service based on the effective range of the slow DCI received through the RRC message when the effective period of the slow DCI is a plurality of subframes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160141453A KR20180046444A (en) | 2016-10-27 | 2016-10-27 | Apparatus and method of slow DCI configuration in a short TTI frame structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160141453A KR20180046444A (en) | 2016-10-27 | 2016-10-27 | Apparatus and method of slow DCI configuration in a short TTI frame structure |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20180046444A true KR20180046444A (en) | 2018-05-09 |
Family
ID=62200723
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020160141453A KR20180046444A (en) | 2016-10-27 | 2016-10-27 | Apparatus and method of slow DCI configuration in a short TTI frame structure |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20180046444A (en) |
-
2016
- 2016-10-27 KR KR1020160141453A patent/KR20180046444A/en unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10616916B2 (en) | Methods for multiplexing scheduling request information and HARQ ACK/NACK information while transmitting and receiving PUCCH and apparatuses thereof | |
CN109547182B (en) | Method and apparatus for transmitting and receiving control information and data in a frame structure of a short transmission time interval | |
US20140153453A1 (en) | Method and apparatus for limiting a downlink subframe in a tdd mode | |
KR102161473B1 (en) | Method for multi sTTI based scheduling for transmitting and receiving data channel in LTE and Apparatuses thereof | |
KR20180046358A (en) | Apparatus and method of scheduling for NR(New Radio) | |
US11115976B2 (en) | Method for transmitting/receiving uplink control channel in frame structure of short transmission time interval and device therefor | |
US10849111B2 (en) | Method and apparatus for transmitting channel state information in frame structure of short transmission time interval | |
KR102237525B1 (en) | Methods of frame structure configuration and information transmission for short tti and apparatuses thereof | |
KR20170114243A (en) | Methods of uplink data channel configuration by a shared demodulation reference signal and apparatuses thereof | |
KR102120976B1 (en) | Method and apparatus for transmitting uplink channel in a short tti frame structure | |
US20180270797A1 (en) | Method of transmitting and receiving downlink channel in short tti frame structure and apparatus thereof | |
KR20180046445A (en) | Apparatus and method of DCI detection considering legacy PDCCH in a short TTI frame structure | |
KR102121009B1 (en) | Method and apparatus for detecting downlink control information in a short tti frame structure | |
KR20180088568A (en) | Apparatus and method of PUSCH scheduling considering PUSCH processing time in a short TTI frame structure | |
KR20170131807A (en) | Apparatus and method of scheduling legacy PUSCH and short PUSCH in a short TTI frame structure | |
KR20190086314A (en) | Apparatus and method of multi-level CQI reporting in URLLC for LTE | |
KR20180016688A (en) | Apparatus and method of short PUCCH design based on the partially overlapped DMRS in a short TTI frame structure | |
KR20180029180A (en) | Apparatus and method of Ack/Nack linkage configuration considering sPDSCH processing time in a short TTI frame structure | |
KR20190086310A (en) | Apparatus and method of legacy data channel multiplexing in URLLC for LTE | |
KR20180046444A (en) | Apparatus and method of slow DCI configuration in a short TTI frame structure | |
KR20170114071A (en) | Apparatus and method of Ack/Nack linkage configuration corresponding sPUSCH in a short TTI frame structure | |
KR20180112214A (en) | Apparatus and method of prevention of Ack/Nack collision corresponding DL data channel for processing time reduction | |
KR20180036909A (en) | Methods for transmitting and receiving pusch for coverage enhancement and apparatuses thereof | |
CN108781154B (en) | Method and apparatus for frame structure configuration and information transmission for short TTI | |
KR20170108202A (en) | Apparatus and method of resource allocation based on short TTI frame structure |