KR102120976B1 - Method and apparatus for transmitting uplink channel in a short tti frame structure - Google Patents

Method and apparatus for transmitting uplink channel in a short tti frame structure Download PDF

Info

Publication number
KR102120976B1
KR102120976B1 KR1020170056206A KR20170056206A KR102120976B1 KR 102120976 B1 KR102120976 B1 KR 102120976B1 KR 1020170056206 A KR1020170056206 A KR 1020170056206A KR 20170056206 A KR20170056206 A KR 20170056206A KR 102120976 B1 KR102120976 B1 KR 102120976B1
Authority
KR
South Korea
Prior art keywords
time interval
transmission time
short transmission
uplink
ack
Prior art date
Application number
KR1020170056206A
Other languages
Korean (ko)
Other versions
KR20170126100A (en
Inventor
김기태
최우진
Original Assignee
주식회사 케이티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이티 filed Critical 주식회사 케이티
Priority to US16/098,812 priority Critical patent/US11431460B2/en
Priority to PCT/KR2017/004702 priority patent/WO2017192014A2/en
Publication of KR20170126100A publication Critical patent/KR20170126100A/en
Priority to US16/179,863 priority patent/US11431461B2/en
Application granted granted Critical
Publication of KR102120976B1 publication Critical patent/KR102120976B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 실시예들은 3GPP LTE/LTE-Advanced 시스템에서 short TTI 기반의 프레임 구조에서 상향링크 채널을 전송 및 수신하는 단말과 기지국의 구체적인 동작에 관한 것이다. 본 실시예들에 의하면, 두 개의 개별적인 CS 값을 단말별로 할당하는 방식을 통해 sPUCCH를 구성하여 sPUCCH에 RS를 포함하지 않고 Ack/Nack 메시지를 전송할 수 있도록 하며, sPUSCH와 SRS가 sTTI 내 동일 심볼에서 중첩될 경우 구체적인 동작 방식을 제공함으로써 sTTI 프레임 구조에서 sPUSCH와 SRS의 동시 전송시 단말과 기지국의 구체적인 동작 방식을 제공한다.The present embodiments relate to specific operations of a terminal and a base station that transmit and receive an uplink channel in a short TTI based frame structure in a 3GPP LTE/LTE-Advanced system. According to the present embodiments, sPUCCH is configured through a method of assigning two separate CS values for each UE so that an Ack/Nack message can be transmitted without including RS in sPUCCH, and sPUSCH and SRS are in the same symbol in sTTI. By providing a specific operation method when overlapping, a specific operation method of a terminal and a base station is provided when sPUSCH and SRS are simultaneously transmitted in an sTTI frame structure.

Description

짧은 전송 시간 간격의 프레임 구조에서 상향링크 채널을 전송하는 방법 및 장치{METHOD AND APPARATUS FOR TRANSMITTING UPLINK CHANNEL IN A SHORT TTI FRAME STRUCTURE}Method and apparatus for transmitting an uplink channel in a frame structure with a short transmission time interval {METHOD AND APPARATUS FOR TRANSMITTING UPLINK CHANNEL IN A SHORT TTI FRAME STRUCTURE}

본 실시예들은 3GPP LTE/LTE-Advanced 시스템에서 상향링크 채널의 전송 및 수신에 대한 단말 및 기지국의 동작에 관한 것이다.The present embodiments relate to operations of a terminal and a base station for transmission and reception of an uplink channel in a 3GPP LTE/LTE-Advanced system.

3GPP LTE/LTE-Advanced 시스템에서 latency reduction을 위한 연구와 논의가 진행되고 있다. Latency reduction의 주요 목적은 TCP throughput을 향상시키기 위해서 보다 짧은 TTI(이하, 'short TTI' 또는 'sTTI'라 함) 운영을 규격화하는 것이다.Research and discussion for latency reduction in 3GPP LTE/LTE-Advanced systems are underway. The main purpose of latency reduction is to standardize the operation of shorter TTI (hereinafter referred to as'short TTI' or'sTTI') to improve TCP throughput.

이를 위해 RAN2에서는 short TTI에 대한 성능 검증을 수행하고 있으며, 0.5ms와 하나의 OFDM 심볼 사이에서 TTI 길이의 실현 가능성과 성능, 백워드 호환성 유지 등에 대한 논의가 진행 중이다.To this end, RAN2 performs performance verification for short TTI, and discussions on the feasibility and performance of TTI length between 0.5ms and one OFDM symbol and maintaining backward compatibility are ongoing.

이러한 short TTI에 대한 Physical layer에 대한 연구가 진행 중이나, short TTI 기반 PUCCH 설정, sPUSCH와 legacy SRS의 전송 및 수신에 관한 구체적인 절차가 부재되어 있다.Although studies on the physical layer for such a short TTI are in progress, specific procedures for setting a short TTI-based PUCCH and transmitting and receiving sPUSCH and legacy SRS are absent.

본 실시예들의 목적은, short TTI 기반의 프레임 구조에서 상향링크 제어 채널과 상향링크 데이터 채널의 송수신 방식 및 상향링크 데이터 채널과 사운딩 참조 신호의 동시 전송시 단말과 기지국의 구체적인 동작 방식을 제공하는 데 있다.The purpose of the present embodiments is to provide a specific operation method of a UE and a base station when transmitting/receiving an uplink control channel and an uplink data channel in a short TTI-based frame structure and simultaneously transmitting an uplink data channel and a sounding reference signal. Having

일 측면에서, 본 실시예들은, 단말이 짧은 전송 시간 간격의 프레임 구조에서 상향링크 채널을 전송하는 방법에 있어서, 기지국으로부터 짧은 전송 시간 간격의 하향링크 데이터 채널을 통해 하향링크 데이터를 수신하는 단계와, 하향링크 데이터에 대한 Ack/Nack을 짧은 전송 시간 간격의 상향링크 제어 채널을 통해 기지국으로 전송하는 단계와, 기지국으로 짧은 전송 시간 간격의 상향링크 데이터 채널을 통해 상향링크 데이터와 사운딩 참조 신호를 전송하는 단계를 포함하고, 하나의 서브프레임에 포함된 짧은 전송 시간 간격의 상향링크 데이터 채널 중 적어도 하나를 통해 상향링크 데이터 및 사운딩 참조 신호 중 적어도 하나를 전송하는 방법을 제공한다.In one aspect, the present embodiments, in a method for a terminal to transmit an uplink channel in a frame structure with a short transmission time interval, receiving a downlink data from a base station through a downlink data channel with a short transmission time interval, , Transmitting the Ack/Nack for the downlink data to the base station through the uplink control channel with a short transmission time interval, and transmitting the uplink data and the sounding reference signal to the base station through the uplink data channel with a short transmission time interval. It provides a method for transmitting at least one of uplink data and a sounding reference signal through at least one of uplink data channels having a short transmission time interval included in one subframe.

다른 측면에서, 본 실시예들은, 기지국이 짧은 전송 시간 간격의 프레임 구조에서 상향링크 채널을 수신하는 방법에 있어서, 단말로 짧은 전송 시간 간격의 하향링크 데이터 채널을 통해 하향링크 데이터를 전송하는 단계와, 하향링크 데이터에 대한 Ack/Nack을 짧은 전송 시간 간격의 상향링크 제어 채널을 통해 수신하는 단계와, 단말로부터 짧은 전송 시간 간격의 상향링크 데이터 채널을 통해 상향링크 데이터와 사운딩 참조 신호를 수신하는 단계를 포함하고, 하나의 서브프레임에 포함된 짧은 전송 시간 간격의 상향링크 데이터 채널 중 적어도 하나를 통해 상향링크 데이터 및 사운딩 참조 신호 중 적어도 하나를 수신하는 방법을 제공한다.In another aspect, the present embodiments provide a method in which a base station receives an uplink channel in a frame structure with a short transmission time interval, transmitting downlink data to a terminal through a downlink data channel with a short transmission time interval. , Ack/Nack for downlink data is received through an uplink control channel having a short transmission time interval, and receiving uplink data and a sounding reference signal from the terminal through an uplink data channel having a short transmission time interval. It includes a step, and provides a method for receiving at least one of uplink data and a sounding reference signal through at least one of a short transmission time interval uplink data channel included in one subframe.

다른 측면에서, 본 실시예들은, 단말이 짧은 전송 시간 간격의 프레임 구조에서 상향링크 채널을 전송하는 방법에 있어서, 기지국으로부터 짧은 전송 시간 간격의 하향링크 데이터 채널을 통해 하향링크 데이터를 수신하는 단계와, 개별적인 순환 시프트 값을 Ack/Nack에 각각 할당하는 방식으로 Ack/Nack을 포함하는 짧은 전송 시간 간격의 상향링크 제어 채널을 구성하는 단계와, 짧은 전송 시간 간격의 상향링크 제어 채널을 통해 하향링크 데이터에 대한 Ack/Nack을 기지국으로 전송하는 단계를 포함하는 방법을 제공한다.In another aspect, the present embodiments include a method in which a terminal transmits an uplink channel in a frame structure with a short transmission time interval, receiving downlink data from a base station through a downlink data channel with a short transmission time interval; , Configuring the uplink control channel of the short transmission time interval including the Ack/Nack by assigning individual cyclic shift values to the Ack/Nack, and downlink data through the uplink control channel of the short transmission time interval. It provides a method comprising the step of transmitting the Ack / Nack for the base station.

다른 측면에서, 본 실시예들은, 기지국이 짧은 전송 시간 간격의 프레임 구조에서 상향링크 채널을 수신하는 방법에 있어서, 단말로 짧은 전송 시간 간격의 하향링크 데이터 채널을 통해 하향링크 데이터를 전송하는 단계와, 단말로부터 짧은 전송 시간 간격의 상향링크 제어 채널을 통해 하향링크 데이터에 대한 Ack/Nack을 수신하는 단계를 포함하고, 짧은 전송 시간 간격의 상향링크 제어 채널은 개별적인 순환 시프트 값을 Ack/Nack에 각각 할당하는 방식으로 구성되는 방법을 제공한다.In another aspect, the present embodiments provide a method in which a base station receives an uplink channel in a frame structure with a short transmission time interval, transmitting downlink data to a terminal through a downlink data channel with a short transmission time interval. , Ack/Nack for the downlink data is received through the uplink control channel of the short transmission time interval from the terminal, and the uplink control channel of the short transmission time interval assigns the individual cyclic shift values to the Ack/Nack respectively. It provides a method that is configured in an allocation manner.

본 실시예들에 의하면, short TTI 기반의 프레임 구조에서 sPUCCH 설정 및 송수신을 위한 구체적인 방안과 sPUSCH와 SRS 심볼 구간의 중첩 문제를 해결할 수 있는 상향링크 채널 송수신 방식을 제공한다.According to the present embodiments, a specific scheme for setting and transmitting and receiving sPUCCH in a short TTI-based frame structure and an uplink channel transmission and reception scheme capable of solving an overlapping problem between sPUSCH and SRS symbol intervals are provided.

도 1은 eNB and UE processing delays and HARQ RTT를 나타낸 도면이다.
도 2는 resource mapping per PRB in one subframe을 나타낸 도면이다.
도 3은 sTTI 기반의 프레임 구조에서 상향링크 채널 전송 방식의 예시를 나타낸 도면이다.
도 4는 sPUSCH와 SRS의 전송 개념도를 나타낸 도면이다.
도 5는 SRS와 legacy PUSCH 할당의 개념도를 나타낸 도면이다.
도 6은 sPUSCH drop을 통한 SRS protection 개념도를 나타낸 도면이다.
도 7은 sTTI bundling 개념도를 나타낸 도면이다.
도 8은 본 실시예들에 따른 기지국의 구성을 나타낸 도면이다.
도 9는 본 실시예들에 따른 사용자 단말의 구성을 나타낸 도면이다.
1 is a diagram showing eNB and UE processing delays and HARQ RTT.
2 is a diagram showing a resource mapping per PRB in one subframe.
3 is a diagram illustrating an example of an uplink channel transmission method in an sTTI-based frame structure.
4 is a diagram illustrating a conceptual diagram of transmission of sPUSCH and SRS.
5 is a diagram illustrating a conceptual diagram of SRS and legacy PUSCH allocation.
6 is a view showing a conceptual diagram of SRS protection through sPUSCH drop.
7 is a view showing a conceptual diagram of sTTI bundling.
8 is a diagram showing the configuration of a base station according to the present embodiments.
9 is a diagram showing the configuration of a user terminal according to the present embodiments.

이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments of the present invention will be described in detail through exemplary drawings. It should be noted that in adding reference numerals to the components of each drawing, the same components have the same reference numerals as possible even though they are displayed on different drawings. In addition, in describing the present invention, when it is determined that detailed descriptions of related well-known structures or functions may obscure the subject matter of the present invention, detailed descriptions thereof will be omitted.

본 명세서에서 MTC 단말은 low cost(또는 low complexity)를 지원하는 단말 또는 coverage enhancement를 지원하는 단말 등을 의미할 수 있다. 본 명세서에서 MTC 단말은 low cost(또는 low complexity) 및 coverage enhancement를 지원하는 단말 등을 의미할 수 있다. 또는 본 명세서에서 MTC 단말은 low cost(또는 low complexity) 및/또는 coverage enhancement를 지원하기 위한 특정 카테고리로 정의된 단말을 의미할 수 있다.In this specification, the MTC terminal may mean a terminal supporting low cost (or low complexity) or a terminal supporting coverage enhancement. In this specification, the MTC terminal may mean a terminal that supports low cost (or low complexity) and coverage enhancement. Alternatively, in this specification, the MTC terminal may mean a terminal defined as a specific category to support low cost (or low complexity) and/or coverage enhancement.

다시 말해 본 명세서에서 MTC 단말은 LTE 기반의 MTC 관련 동작을 수행하는 새롭게 정의된 3GPP Release-13 low cost(또는 low complexity) UE category/type을 의미할 수 있다. 또는 본 명세서에서 MTC 단말은 기존의 LTE coverage 대비 향상된 coverage를 지원하거나, 혹은 저전력 소모를 지원하는 기존의 3GPP Release-12 이하에서 정의된 UE category/type, 혹은 새롭게 정의된 Release-13 low cost(또는 low complexity) UE category/type을 의미할 수 있다.In other words, in this specification, the MTC terminal may mean a newly defined 3GPP Release-13 low cost (or low complexity) UE category/type that performs LTE-based MTC-related operations. Or, in this specification, the MTC terminal supports enhanced coverage compared to the existing LTE coverage, or UE category/type defined under the existing 3GPP Release-12 or lower supporting low power consumption, or the newly defined Release-13 low cost (or low complexity) UE category/type.

본 발명에서의 무선통신시스템은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치된다. 무선통신시스템은 사용자 단말(User Equipment, UE) 및 기지국(Base Station, BS, 또는 eNB)을 포함한다. 본 명세서에서의 사용자 단말은 무선 통신에서의 단말을 의미하는 포괄적 개념으로서, WCDMA 및 LTE, HSPA 등에서의 UE(User Equipment)는 물론, GSM에서의 MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), 무선기기(wireless device) 등을 모두 포함하는 개념으로 해석되어야 할 것이다.The wireless communication system in the present invention is widely deployed to provide various communication services such as voice and packet data. The wireless communication system includes a user equipment (UE) and a base station (Base Station, BS, or eNB). The user terminal in the present specification is a comprehensive concept that means a terminal in wireless communication, as well as UE (User Equipment) in WCDMA and LTE, HSPA, MS (Mobile Station) in GSM, UT (User Terminal), SS It should be interpreted as a concept including (Subscriber Station) and wireless devices.

기지국 또는 셀(cell)은 일반적으로 사용자 단말과 통신하는 지점(station)을 말하며, 노드-B(Node-B), eNB(evolved Node-B), 섹터(Sector), 싸이트(Site), BTS(Base Transceiver System), 액세스 포인트(Access Point), 릴레이 노드(Relay Node), RRH(Remote Radio Head), RU(Radio Unit), small cell 등 다른 용어로 불릴 수 있다.Base station or cell (cell) generally refers to a station (station) to communicate with the user terminal, Node-B (Node-B), eNB (evolved Node-B), Sector (Sector), Site (Site), BTS ( Base Transceiver System), an access point (Access Point), a relay node (Relay Node), RRH (Remote Radio Head), RU (Radio Unit), can be called in other terms such as small cells.

즉, 본 명세서에서 기지국 또는 셀(cell)은 CDMA에서의 BSC(Base Station Controller), WCDMA의 NodeB, LTE에서의 eNB 또는 섹터(싸이트) 등이 커버하는 일부 영역 또는 기능을 나타내는 포괄적인 의미로 해석되어야 하며, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀 및 릴레이 노드(relay node), RRH, RU, small cell 통신범위 등 다양한 커버리지 영역을 모두 포괄하는 의미이다.That is, in this specification, the base station or cell (cell) is interpreted in a comprehensive sense indicating some areas or functions covered by a base station controller (BSC) in CDMA, a NodeB in WCDMA, an eNB or sector (site) in LTE, and the like. This means that it covers all of the various coverage areas such as megacell, macrocell, microcell, picocell, femtocell and relay node, RRH, RU, and small cell communication range.

상기 나열된 다양한 셀은 각 셀을 제어하는 기지국이 존재하므로 기지국은 두 가지 의미로 해석될 수 있다. i) 무선 영역과 관련하여 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀, 스몰 셀을 제공하는 장치 그 자체이거나, ii) 상기 무선영역 그 자체를 지시할 수 있다. i)에서 소정의 무선 영역을 제공하는 장치들이 동일한 개체에 의해 제어되거나 상기 무선 영역을 협업으로 구성하도록 상호작용하는 모든 장치들을 모두 기지국으로 지시한다. 무선 영역의 구성 방식에 따라 eNB, RRH, 안테나, RU, LPN, 포인트, 송수신포인트, 송신 포인트, 수신 포인트 등은 기지국의 일 실시예가 된다. ii)에서 사용자 단말의 관점 또는 이웃하는 기지국의 입장에서 신호를 수신하거나 송신하게 되는 무선 영역 그 자체를 기지국으로 지시할 수 있다.Since the various cells listed above have a base station that controls each cell, the base station can be interpreted in two ways. It may be i) a device providing a megacell, a macrocell, a microcell, a picocell, a femtocell, or a small cell in relation to the radio area, or ii) the radio area itself may be indicated. In i), all devices that provide a predetermined wireless area are controlled by the same entity, or all devices that interact to configure the wireless area in a collaborative manner are directed to the base station. ENB, RRH, antenna, RU, LPN, point, transmit/receive point, transmit point, receive point, etc., according to the configuration method of the radio area, are an embodiment of the base station. In ii), the radio area itself, which receives or transmits a signal from the perspective of the user terminal or the neighboring base station, may indicate to the base station itself.

따라서, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀, 스몰 셀, RRH, 안테나, RU, LPN(Low Power Node), 포인트, eNB, 송수신포인트, 송신 포인트, 수신 포인트를 통칭하여 기지국으로 지칭한다.Accordingly, megacell, macrocell, microcell, picocell, femtocell, small cell, RRH, antenna, RU, low power node (LPN), point, eNB, transmit/receive point, transmit point, receive point are collectively referred to as base stations. do.

본 명세서에서 사용자 단말과 기지국은 본 명세서에서 기술되는 기술 또는 기술적 사상을 구현하는데 사용되는 두 가지 송수신 주체로 포괄적인 의미로 사용되며 특정하게 지칭되는 용어 또는 단어에 의해 한정되지 않는다. 사용자 단말과 기지국은, 본 발명에서 기술되는 기술 또는 기술적 사상을 구현하는데 사용되는 두 가지(Uplink 또는 Downlink) 송수신 주체로 포괄적인 의미로 사용되며 특정하게 지칭되는 용어 또는 단어에 의해 한정되지 않는다. 여기서, 상향링크(Uplink, UL, 또는 업링크)는 사용자 단말에 의해 기지국으로 데이터를 송수신하는 방식을 의미하며, 하향링크(Downlink, DL, 또는 다운링크)는 기지국에 의해 사용자 단말로 데이터를 송수신하는 방식을 의미한다.In this specification, the user terminal and the base station are two transmission/reception subjects used to implement the technology or technical idea described herein, and are used in a comprehensive sense and are not limited by terms or words specifically referred to. The user terminal and the base station are two (Uplink or Downlink) transmitting and receiving subjects used in realizing the technology or technical idea described in the present invention and are used in a comprehensive sense and are not limited by terms or words specifically referred to. Here, the uplink (Uplink, UL, or uplink) means a method of transmitting and receiving data to the base station by the user terminal, the downlink (Downlink, DL, or downlink) transmits and receives data to the user terminal by the base station Means the way.

무선통신시스템에 적용되는 다중 접속 기법에는 제한이 없다. CDMA(Code Division Multiple Access), TDMA(Time Division Multiple Access), FDMA(Frequency Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA와 같은 다양한 다중 접속 기법을 사용할 수 있다. 본 발명의 일 실시예는 GSM, WCDMA, HSPA를 거쳐 LTE 및 LTE-advanced로 진화하는 비동기 무선통신과, CDMA, CDMA-2000 및 UMB로 진화하는 동기식 무선 통신 분야 등의 자원할당에 적용될 수 있다. 본 발명은 특정한 무선통신 분야에 한정되거나 제한되어 해석되어서는 아니 되며, 본 발명의 사상이 적용될 수 있는 모든 기술분야를 포함하는 것으로 해석되어야 할 것이다.There are no restrictions on the multiple access technique applied to the wireless communication system. Various multiple access techniques such as Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Orthogonal Frequency Division Multiple Access (OFDMA), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA Can be used. One embodiment of the present invention can be applied to resource allocation such as asynchronous wireless communication evolving to LTE and LTE-advanced through GSM, WCDMA, HSPA, and synchronous wireless communication evolving to CDMA, CDMA-2000 and UMB. The present invention should not be interpreted as being limited or limited to a specific wireless communication field, and should be interpreted as including all technical fields to which the spirit of the present invention can be applied.

상향링크 전송 및 하향링크 전송은 서로 다른 시간을 사용하여 전송되는 TDD(Time Division Duplex) 방식이 사용될 수 있고, 또는 서로 다른 주파수를 사용하여 전송되는 FDD(Frequency Division Duplex) 방식이 사용될 수 있다.For uplink transmission and downlink transmission, a time division duplex (TDD) method transmitted using different times may be used, or a frequency division duplex (FDD) method transmitted using different frequencies may be used.

또한, LTE, LTE-advanced와 같은 시스템에서는 하나의 반송파 또는 반송파 쌍을 기준으로 상향링크와 하향링크를 구성하여 규격을 구성한다. 상향링크와 하향링크는, PDCCH(Physical Downlink Control CHannel), PCFICH(Physical Control Format Indicator CHannel), PHICH(Physical Hybrid ARQ Indicator CHannel), PUCCH(Physical Uplink Control CHannel), EPDCCH(Enhanced Physical Downlink Control CHannel) 등과 같은 제어채널을 통하여 제어정보를 전송하고, PDSCH(Physical Downlink Shared CHannel), PUSCH(Physical Uplink Shared CHannel) 등과 같은 데이터채널로 구성되어 데이터를 전송한다.In addition, in systems such as LTE and LTE-advanced, a standard is configured by configuring uplink and downlink based on one carrier or a pair of carriers. The uplink and downlink are PDCCH (Physical Downlink Control CHannel), PCFICH (Physical Control Format Indicator CHannel), PHICH (Physical Hybrid ARQ Indicator CHannel), PUCCH (Physical Uplink Control CHannel), EPDCCH (Enhanced Physical Downlink Control CHannel), etc. Control information is transmitted through the same control channel, and is composed of data channels such as a physical downlink shared channel (PDSCH) and a physical uplink shared channel (PUSCH) to transmit data.

한편 EPDCCH(enhanced PDCCH 또는 extended PDCCH)를 이용해서도 제어 정보를 전송할 수 있다.Meanwhile, control information may also be transmitted using an enhanced PDCCH (EPDCCH) or an extended PDCCH.

본 명세서에서 셀(cell)은 송수신 포인트로부터 전송되는 신호의 커버리지 또는 송수신 포인트(transmission point 또는 transmission/reception point)로부터 전송되는 신호의 커버리지를 가지는 요소 반송파(component carrier), 그 송수신 포인트 자체를 의미할 수 있다.In this specification, a cell is a component carrier having a coverage of a signal transmitted from a transmission/reception point or a signal transmitted from a transmission/reception point or a transmission/reception point itself. Can be.

실시예들이 적용되는 무선통신 시스템은 둘 이상의 송수신 포인트들이 협력하여 신호를 전송하는 다중 포인트 협력형 송수신 시스템(coordinated multi-point transmission/reception System; CoMP 시스템) 또는 협력형 다중 안테나 전송방식(coordinated multi-antenna transmission system), 협력형 다중 셀 통신시스템일 수 있다. CoMP 시스템은 적어도 두 개의 다중 송수신 포인트와 단말들을 포함할 수 있다.A wireless communication system to which embodiments are applied is a multi-point transmission/reception system (CoMP system) in which two or more transmission/reception points cooperate to transmit a signal, or a coordinated multi-antenna transmission method. antenna transmission system), and a cooperative multi-cell communication system. The CoMP system may include at least two multiple transmission/reception points and terminals.

다중 송수신 포인트는 기지국 또는 매크로 셀(macro cell, 이하 'eNB'라 함)과, eNB에 광케이블 또는 광섬유로 연결되어 유선 제어되는, 높은 전송파워를 갖거나 매크로 셀영역 내의 낮은 전송파워를 갖는 적어도 하나의 RRH일 수도 있다.The multiple transmission/reception points include at least one of a base station or a macro cell (hereinafter referred to as'eNB') and a high transmission power, which is wired and controlled by an optical cable or an optical fiber to the eNB, or a low transmission power in the macro cell area. It may be RRH.

이하에서 하향링크(downlink)는 다중 송수신 포인트에서 단말로의 통신 또는 통신 경로를 의미하며, 상향링크(uplink)는 단말에서 다중 송수신 포인트로의 통신 또는 통신 경로를 의미한다. 하향링크에서 송신기는 다중 송수신 포인트의 일부분일 수 있고, 수신기는 단말의 일부분일 수 있다. 상향링크에서 송신기는 단말의 일부분일 수 있고, 수신기는 다중 송수신 포인트의 일부분일 수 있다.Hereinafter, downlink means a communication or communication path from a multiple transmission/reception point to a terminal, and uplink refers to a communication or communication path from a terminal to a multiple transmission/reception point. In the downlink, the transmitter may be a part of multiple transmission/reception points, and the receiver may be a part of the terminal. In the uplink, the transmitter may be a part of the terminal, and the receiver may be a part of multiple transmission/reception points.

이하에서는 PUCCH, PUSCH, PDCCH, EPDCCH 및 PDSCH 등과 같은 채널을 통해 신호가 송수신되는 상황을 'PUCCH, PUSCH, PDCCH, EPDCCH 및 PDSCH를 전송, 수신한다'는 형태로 표기하기도 한다.Hereinafter, a situation in which signals are transmitted/received through channels such as PUCCH, PUSCH, PDCCH, EPDCCH, and PDSCH is also described in the form of'transmit and receive PUCCH, PUSCH, PDCCH, EPDCCH and PDSCH'.

또한 이하에서는 PDCCH를 전송 또는 수신하거나 PDCCH를 통해서 신호를 전송 또는 수신한다는 기재는 EPDCCH를 전송 또는 수신하거나 EPDCCH를 통해서 신호를 전송 또는 수신하는 것을 포함하는 의미로 사용될 수 있다.In addition, hereinafter, description of transmitting or receiving a PDCCH or transmitting or receiving a signal through the PDCCH may be used in a sense including transmitting or receiving an EPDCCH or transmitting or receiving a signal through the EPDCCH.

즉, 이하에서 기재하는 물리 하향링크 제어채널은 PDCCH를 의미하거나, EPDCCH를 의미할 수 있으며, PDCCH 및 EPDCCH 모두를 포함하는 의미로도 사용된다.That is, the physical downlink control channel described below may mean PDCCH or EPDCCH, and are also used to include both PDCCH and EPDCCH.

또한, 설명의 편의를 위하여 PDCCH로 설명한 부분에도 본 발명의 일 실시예인 EPDCCH를 적용할 수 있으며, EPDCCH로 설명한 부분에도 본 발명의 일 실시예로 PDCCH를 적용할 수 있다.In addition, for convenience of description, the EPDCCH, which is an embodiment of the present invention, may be applied to the part described with PDCCH, and the PDCCH may be applied to the part, described with EPDCCH, as an embodiment of the present invention.

한편, 이하에서 기재하는 상위계층 시그널링(High Layer Signaling)은 RRC 파라미터를 포함하는 RRC 정보를 전송하는 RRC 시그널링을 포함한다.Meanwhile, High Layer Signaling described below includes RRC signaling for transmitting RRC information including RRC parameters.

eNB은 단말들로 하향링크 전송을 수행한다. eNB은 유니캐스트 전송(unicast transmission)을 위한 주 물리 채널인 물리 하향링크 공유채널(Physical Downlink Shared Channel, PDSCH), 그리고 PDSCH의 수신에 필요한 스케줄링 등의 하향링크 제어 정보 및 상향링크 데이터 채널(예를 들면 물리 상향링크 공유채널(Physical Uplink Shared Channel, PUSCH))에서의 전송을 위한 스케줄링 승인 정보를 전송하기 위한 물리 하향링크 제어채널(Physical Downlink Control Channel, PDCCH)을 전송할 수 있다. 이하에서는, 각 채널을 통해 신호가 송수신 되는 것을 해당 채널이 송수신되는 형태로 기재하기로 한다.The eNB performs downlink transmission to terminals. The eNB has a downlink control information and an uplink data channel such as a physical downlink shared channel (PDSCH), which is a main physical channel for unicast transmission, and scheduling required for receiving the PDSCH (eg For example, a physical downlink control channel (PDCCH) for transmitting scheduling grant information for transmission on a physical uplink shared channel (PUSCH) may be transmitted. Hereinafter, the transmission and reception of signals through each channel will be described as a form in which the corresponding channel is transmitted and received.

본 발명에서는 3GPP LTE/LTE-Advanced 시스템에서 short TTI 기반 상향링크 채널의 전송 및 수신에 대한 단말 및 기지국의 동작에 대한 구체적인 방안을 제안한다. 특히, sPUCCH의 설정 및 송수신 방식과, sPUSCH와 SRS의 동시 전송 및 수신에 대한 단말 및 기지국의 구체적인 동작을 제안한다.In the present invention, a specific method for the operation of a terminal and a base station for transmission and reception of a short TTI-based uplink channel in a 3GPP LTE/LTE-Advanced system is proposed. In particular, it proposes a specific operation of a terminal and a base station for setting and transmitting and receiving sPUCCH and simultaneous transmission and reception of sPUSCH and SRS.

[Latency reduction in RAN1][Latency reduction in RAN1]

Latency reduction Study Item은 3GPP RAN plenary #69 회의에서 승인되었다. Latency reduction의 주요 목적은 TCP throughput을 향상시키기 위해서 보다 짧은 TTI 운영을 규격화하는 것이다. 이를 위해 RAN2에서는 이미 short TTI에 대한 성능 검증을 수행하였다.The Latency reduction Study Item was approved at the 3GPP RAN plenary #69 meeting. The main purpose of latency reduction is to standardize shorter TTI operations to improve TCP throughput. To this end, RAN2 has already performed performance verification for short TTI.

아래와 같은 범위에서 RAN1에 관계된 potential impact들과 study를 수행한다:Conduct the study and potential impacts related to RAN1 in the following range:

o Assess specification impact and study feasibility and performance of TTI lengths between 0.5ms and one OFDM symbol, taking into account impact on reference signals and physical layer control signalingo Assess specification impact and study feasibility and performance of TTI lengths between 0.5ms and one OFDM symbol, taking into account impact on reference signals and physical layer control signaling

o backwards compatibility shall be preserved (thus allowing normal operation of pre-Rel 13 UEs on the same carrier);o backwards compatibility shall be preserved (thus allowing normal operation of pre-Rel 13 UEs on the same carrier);

Latency reduction can be achieved by the following physical layer techniques:Latency reduction can be achieved by the following physical layer techniques:

- short TTI-short TTI

- reduced processing time in implementation-reduced processing time in implementation

- new frame structure of TDD-new frame structure of TDD

3GPP RAN WG1#84회의에서 추가적으로 합의된 사항은 아래와 같다.Additional agreements at the 3GPP RAN WG1#84 meeting are as follows.

Agreements:Agreements:

- Following design assumptions are considered:-Following design assumptions are considered:

o No shortened TTI spans over subframe boundary o No shortened TTI spans over subframe boundary

o At least for SIBs and paging, PDCCH and legacy PDSCH are used for scheduling o At least for SIBs and paging, PDCCH and legacy PDSCH are used for scheduling

- The potential specific impacts for the followings are studied -The potential specific impacts for the followings are studied

o UE is expected to receive a sPDSCH at least for downlink unicast o UE is expected to receive a sPDSCH at least for downlink unicast

● sPDSCH refers PDSCH carrying data in a short TTI● sPDSCH refers to PDSCH carrying data in a short TTI

o UE is expected to receive PDSCH for downlink unicast o UE is expected to receive PDSCH for downlink unicast

● FFS whether a UE is expected to receive both sPDSCH and PDSCH for downlink unicast simultaneously● FFS whether a UE is expected to receive both sPDSCH and PDSCH for downlink unicast simultaneously

o FFS: The number of supported short TTIs o FFS: The number of supported short TTIs

o If the number of supported short TTIs is more than one, o If the number of supported short TTIs is more than one,

Agreements:Agreements:

- Following design assumptions are used for the study-Following design assumptions are used for the study

o From eNB perspective, existing non-sTTI and sTTI can be FDMed in the same subframe in the same carrier o From eNB perspective, existing non-sTTI and sTTI can be FDMed in the same subframe in the same carrier

● FFS: Other multiplexing method(s) with existing non-sTTI for UE supporting latency reduction features● FFS: Other multiplexing method(s) with existing non-sTTI for UE supporting latency reduction features

Agreements:Agreements:

- In this study, following aspects are assumed in RAN1.-In this study, following aspects are assumed in RAN1.

o PSS/SSS, PBCH, PCFICH and PRACH, Random access, SIB and Paging procedures are not modified. o PSS/SSS, PBCH, PCFICH and PRACH, Random access, SIB and Paging procedures are not modified.

- Following aspects are further studied in the next RAN1 meeting-Following aspects are further studied in the next RAN1 meeting

o Note: But the study is not limited to them. o Note: But the study is not limited to them.

o Design of sPUSCH DM-RS o Design of sPUSCH DM-RS

● Alt.1: DM-RS symbol shared by multiple short-TTIs within the same subframe● Alt.1: DM-RS symbol shared by multiple short-TTIs within the same subframe

● Alt.2: DM-RS contained in each sPUSCH● Alt.2: DM-RS contained in each sPUSCH

o HARQ for sPUSCH o HARQ for sPUSCH

● Whether/how to realize asynchronous and/or synchronous HARQ● Whether/how to realize asynchronous and/or synchronous HARQ

o sTTI operation for Pcell and/or SCells by (e)CA in addition to non-(e)CA case o sTTI operation for Pcell and/or SCells by (e)CA in addition to non-(e)CA case

3GPP RAN WG1#84bis회의에서 추가적으로 합의된 사항은 아래와 같다.Additional agreements at the 3GPP RAN WG1#84bis meeting are as follows.

Working Assumption: Working Assumption:

- 1-OFDM-symbol sTTI length will not be further studied-1-OFDM-symbol sTTI length will not be further studied

Agreement:Agreement:

- sPDCCH (PDCCH for short TTI) needs to be introduced for short TTI.-sPDCCH (PDCCH for short TTI) needs to be introduced for short TTI.

● Each short TTI on DL may contain sPDCCH decoding candidates● Each short TTI on DL may contain sPDCCH decoding candidates

Working Assumption:Working Assumption:

- CRS-based sPDCCH is recommended to be supported -CRS-based sPDCCH is recommended to be supported

● FFS whether CRS-based sPDCCH can be transmitted in the legacy PDCCH region● FFS whether CRS-based sPDCCH can be transmitted in the legacy PDCCH region

- DMRS-based sPDCCH is recommended to be supported -DMRS-based sPDCCH is recommended to be supported

- Design of both CRS-based sPDCCH and DMRS-based sPDCCH will be studied further.-Design of both CRS-based sPDCCH and DMRS-based sPDCCH will be studied further.

Conclusions:Conclusions:

Figure 112017042759762-pat00001
A maximum number of BDs will be defined for sPDCCH in USS
Figure 112017042759762-pat00001
A maximum number of BDs will be defined for sPDCCH in USS

- In case 2-level DCI is adopted, any DCI for sTTI scheduling carried on PDCCH may be taken into account in the maximum total number of BDs -In case 2-level DCI is adopted, any DCI for sTTI scheduling carried on PDCCH may be taken into account in the maximum total number of BDs

Figure 112017042759762-pat00002
FFS whether the maximum number is dependent on the sTTI length
Figure 112017042759762-pat00002
FFS whether the maximum number is dependent on the sTTI length

Figure 112017042759762-pat00003
FFS whether the maximum number of blind decodes for (E)PDCCH is reduced in subframes in which the UE is expected to perform blind decodes for sPDCCH
Figure 112017042759762-pat00003
FFS whether the maximum number of blind decodes for (E)PDCCH is reduced in subframes in which the UE is expected to perform blind decodes for sPDCCH

Figure 112017042759762-pat00004
FFS whether a UE may be expected to monitor both EPDCCH and sPDCCH in the same subframe
Figure 112017042759762-pat00004
FFS whether a UE may be expected to monitor both EPDCCH and sPDCCH in the same subframe

Figure 112017042759762-pat00005
FFS whether the maximum number of BDs on PDCCH is changed from the legacy number
Figure 112017042759762-pat00005
FFS whether the maximum number of BDs on PDCCH is changed from the legacy number

if DCI on PDCCH is for sTTI schedulingif DCI on PDCCH is for sTTI scheduling

Conclusion for study till RAN1#85: Conclusion for study till RAN1#85:

Figure 112017042759762-pat00006
Two-level DCI can be studied for sTTI scheduling, whereby:
Figure 112017042759762-pat00006
Two-level DCI can be studied for sTTI scheduling, whereby:

- DCI for sTTI scheduling can be divided into two types:-DCI for sTTI scheduling can be divided into two types:

Figure 112017042759762-pat00007
"Slow DCI": DCI content which applies to more than 1 sTTI is carried on either legacy PDCCH, or sPDCCH transmitted not more than once per subframe
Figure 112017042759762-pat00007
"Slow DCI": DCI content which applies to more than 1 sTTI is carried on either legacy PDCCH, or sPDCCH transmitted not more than once per subframe

Figure 112017042759762-pat00008
FFS whether "Slow DCI" is UE-specific or common for multiple UEs
Figure 112017042759762-pat00008
FFS whether "Slow DCI" is UE-specific or common for multiple UEs

Figure 112017042759762-pat00009
"Fast DCI": DCI content which applies to a specific sTTI is carried on sPDCCH
Figure 112017042759762-pat00009
"Fast DCI": DCI content which applies to a specific sTTI is carried on sPDCCH

Figure 112017042759762-pat00010
For a sPDSCH in a given sTTI, the scheduling information is obtained from either:
Figure 112017042759762-pat00010
For a sPDSCH in a given sTTI, the scheduling information is obtained from either:

Figure 112017042759762-pat00011
a combination of slow DCI and fast DCI, or
Figure 112017042759762-pat00011
a combination of slow DCI and fast DCI, or

Figure 112017042759762-pat00012
fast DCI only, overriding the slow DCI for that sTTI
Figure 112017042759762-pat00012
fast DCI only, overriding the slow DCI for that sTTI

- Compare with single-level DCI carried on one sPDCCH or one legacy PDCCH.-Compare with single-level DCI carried on one sPDCCH or one legacy PDCCH.

- It is not precluded to consider schemes in which the slow DCI also includes some resource allocation information for the sPDCCH.-It is not precluded to consider schemes in which the slow DCI also includes some resource allocation information for the sPDCCH.

Figure 112017042759762-pat00013
Methods for reducing the overhead of single-level DCI can also be studied
Figure 112017042759762-pat00013
Methods for reducing the overhead of single-level DCI can also be studied

- Single-level DCI multi-sTTI scheduling for a variable number of sTTIs may be included-Single-level DCI multi-sTTI scheduling for a variable number of sTTIs may be included

Aim to reduce the number of schemes under consideration at RAN1#85.Aim to reduce the number of schemes under consideration at RAN1#85.

Agreements:Agreements:

Figure 112017042759762-pat00014
Both CRS based TMs and DMRS based TMs are recommended to be supported for DL sTTI transmission
Figure 112017042759762-pat00014
Both CRS based TMs and DMRS based TMs are recommended to be supported for DL sTTI transmission

- No change for CRS definition-No change for CRS definition

Figure 112017042759762-pat00015
FFS: Supporting more than 2 layers for sPDSCHs
Figure 112017042759762-pat00015
FFS: Supporting more than 2 layers for sPDSCHs

- Further study is needed about DMRS design(s) for sPDSCH demodulation-Further study is needed about DMRS design(s) for sPDSCH demodulation

Figure 112017042759762-pat00016
For a certain TTI length, increased PRB bundling sizes may be necessary to achieve sufficient channel estimation accuracy.
Figure 112017042759762-pat00016
For a certain TTI length, increased PRB bundling sizes may be necessary to achieve sufficient channel estimation accuracy.

Figure 112017042759762-pat00017
FFS: the number of DMRS antenna ports that can be supported for a given short-TTI length.
Figure 112017042759762-pat00017
FFS: the number of DMRS antenna ports that can be supported for a given short-TTI length.

Figure 112017042759762-pat00018
For a certain TTI length, new DMRS design(s) may be needed
Figure 112017042759762-pat00018
For a certain TTI length, new DMRS design(s) may be needed

Agreements:Agreements:

Figure 112017042759762-pat00019
A UE is expected to handle the following cases in the same carrier in a subframe
Figure 112017042759762-pat00019
A UE is expected to handle the following cases in the same carrier in a subframe

- Receiving legacy TTI non-unicast PDSCH (except FFS for SC-PTM) and short TTI unicast PDSCH-Receiving legacy TTI non-unicast PDSCH (except FFS for SC-PTM) and short TTI unicast PDSCH

- Receiving legacy TTI non-unicast PDSCH (except FFS for SC-PTM) and legacy TTI unicast PDSCH(s)-Receiving legacy TTI non-unicast PDSCH (except FFS for SC-PTM) and legacy TTI unicast PDSCH(s)

Figure 112017042759762-pat00020
FFS between:
Figure 112017042759762-pat00020
FFS between:

- Alt 1: A UE is not expected to receive legacy TTI unicast PDSCH and short TTI unicast PDSCH simultaneously on one carrier-Alt 1: A UE is not expected to receive legacy TTI unicast PDSCH and short TTI unicast PDSCH simultaneously on one carrier

- Alt 2: If the UE is scheduled with legacy TTI unicast PDSCH and short TTI unicast PDSCH simultaneously on one carrier, then it may skip the decoding of one of them (FFS rules for determining which one)-Alt 2: If the UE is scheduled with legacy TTI unicast PDSCH and short TTI unicast PDSCH simultaneously on one carrier, then it may skip the decoding of one of them (FFS rules for determining which one)

- Alt 3: A UE is expected to receive legacy TTI unicast PDSCH and short TTI unicast PDSCH simultaneously on one carrier-Alt 3: A UE is expected to receive legacy TTI unicast PDSCH and short TTI unicast PDSCH simultaneously on one carrier

Figure 112017042759762-pat00021
FFS UE behaviour in case of being scheduled with legacy TTI unicast PDSCH and short TTI unicast PDSCH simultaneously with legacy TTI non-unicast PDSCH (except FFS for SC-PTM) on the same carrier
Figure 112017042759762-pat00021
FFS UE behavior in case of being scheduled with legacy TTI unicast PDSCH and short TTI unicast PDSCH simultaneously with legacy TTI non-unicast PDSCH (except FFS for SC-PTM) on the same carrier

Figure 112017042759762-pat00022
A UE can be dynamically (with a subframe to subframe granularity) scheduled with legacy TTI unicast PDSCH and/or (depends on outcome of FFS above) short TTI PDSCH unicast
Figure 112017042759762-pat00022
A UE can be dynamically (with a subframe to subframe granularity) scheduled with legacy TTI unicast PDSCH and/or (depends on outcome of FFS above) short TTI PDSCH unicast

Agreements:Agreements:

Figure 112017042759762-pat00023
A UE can be dynamically (with a subframe to subframe granularity) scheduled with PUSCH and/or sPUSCH
Figure 112017042759762-pat00023
A UE can be dynamically (with a subframe to subframe granularity) scheduled with PUSCH and/or sPUSCH

- A UE is not expected to transmit PUSCH and short TTI sPUSCH simultaneously on the same REs, i.e. by superposition-A UE is not expected to transmit PUSCH and short TTI sPUSCH simultaneously on the same REs, i.e. by superposition

- FFS whether a UE may transmit PUSCH and short TTI sPUSCH in the same subframe on one carrier by puncturing PUSCH-FFS whether a UE may transmit PUSCH and short TTI sPUSCH in the same subframe on one carrier by puncturing PUSCH

- FFS whether a UE may transmit PUSCH and short TTI sPUSCH in different PRBs on the same symbol(s)-FFS whether a UE may transmit PUSCH and short TTI sPUSCH in different PRBs on the same symbol(s)

- Dropping/prioritization rules (if any) are FFS -Dropping/prioritization rules (if any) are FFS

Agreements:Agreements:

Figure 112017042759762-pat00024
It is recommended to support PHICH-less asynchronous UL HARQ for PUSCH scheduled in a short TTI (i.e. for sPUSCH)
Figure 112017042759762-pat00024
It is recommended to support PHICH-less asynchronous UL HARQ for PUSCH scheduled in a short TTI (ie for sPUSCH)

Figure 112017042759762-pat00025
If DL data transmission is scheduled in a short TTI, the processing time for preparing the HARQ feedback by UE and the processing time for preparing a potential retransmission by eNB are assumed to be reduced
Figure 112017042759762-pat00025
If DL data transmission is scheduled in a short TTI, the processing time for preparing the HARQ feedback by UE and the processing time for preparing a potential retransmission by eNB are assumed to be reduced

- FFS: the extent of processing time reduction-FFS: the extent of processing time reduction

Figure 112017042759762-pat00026
If UL data transmission is scheduled in a short TTI, the processing time for preparing UL data transmission upon UL grant reception at UE and the processing time for scheduling a potential retransmission by eNB are assumed to be reduced
Figure 112017042759762-pat00026
If UL data transmission is scheduled in a short TTI, the processing time for preparing UL data transmission upon UL grant reception at UE and the processing time for scheduling a potential retransmission by eNB are assumed to be reduced

- FFS: the extent of processing time reduction-FFS: the extent of processing time reduction

Figure 112017042759762-pat00027
Study whether it is beneficial to limit the maximum TA value supported in conjunction with latency reduction
Figure 112017042759762-pat00027
Study whether it is beneficial to limit the maximum TA value supported in conjunction with latency reduction

- Note that this would restrict the deployment scenarios for latency reduction. -Note that this would restrict the deployment scenarios for latency reduction.

Figure 112017042759762-pat00028
FFS whether processing time reductions can also be applied to legacy TTI transmissions for UEs that support short TTI
Figure 112017042759762-pat00028
FFS whether processing time reductions can also be applied to legacy TTI transmissions for UEs that support short TTI

기본적으로 Average down-link latency calculation에서는 아래의 절차를 따라 latency를 계산하게 된다.Basically, in the average down-link latency calculation, latency is calculated according to the following procedure.

Following the same approach as in section B.2.1 in 3GPP TR 36.912, the LTE U-plane one-way latency for a scheduled UE consists of the fixed node processing delays and 1 TTI duration for transmission, as shown in Figure 1 below. Assuming the processing times can be scaled by the same factor of TTI reduction keeping the same number of HARQ processes, the one way latency can be calculated asFollowing the same approach as in section B.2.1 in 3GPP TR 36.912, the LTE U-plane one-way latency for a scheduled UE consists of the fixed node processing delays and 1 TTI duration for transmission, as shown in Figure 1 below. Assuming the processing times can be scaled by the same factor of TTI reduction keeping the same number of HARQ processes, the one way latency can be calculated as

D = 1.5 TTI (eNB processing and scheduling) + 1 TTI (transmission) + 1.5 TTI (UE processing) + n*8 TTI (HARQ retransmissions)D = 1.5 TTI (eNB processing and scheduling) + 1 TTI (transmission) + 1.5 TTI (UE processing) + n*8 TTI (HARQ retransmissions)

= (4 + n*8) TTI. = (4 + n*8) TTI.

Considering a typical case where there would be 0 or 1 retransmission, and assuming error probability of the first transmission to be p, the delay is given byConsidering a typical case where there would be 0 or 1 retransmission, and assuming error probability of the first transmission to be p, the delay is given by

D = (4 + p*8) TTI.D = (4 + p*8) TTI.

So, for 0% BLER, D = 4 * TTI,So, for 0% BLER, D = 4 * TTI,

And for 10% BLER, D = 4.8 * TTI.And for 10% BLER, D = 4.8 * TTI.

Average UE initiated UL transmission latency calculationAverage UE initiated UL transmission latency calculation

도 1은 eNB and UE processing delays and HARQ RTT를 설명하기 위한 도면이다. 1 is a diagram for describing eNB and UE processing delays and HARQ RTT.

Assume UE is in connected/synchronized mode and wants to do UL transmission, e.g., to send TCP ACK. Following table shows the steps and their corresponding contribution to the UL transmission latency. To be consistent in comparison of DL and UL, we add the eNB processing delay in the UL after the UL data is received by the eNB (step 7). Assume UE is in connected/synchronized mode and wants to do UL transmission, e.g., to send TCP ACK. Following table shows the steps and their corresponding contribution to the UL transmission latency. To be consistent in comparison of DL and UL, we add the eNB processing delay in the UL after the UL data is received by the eNB (step 7).

UL transmission latency calculationUL transmission latency calculation StepStep DescriptionDescription DelayDelay 1.One. Average delay to next SR opportunityAverage delay to next SR opportunity SR periodicity/2SR periodicity/2 2.2. UE sends SRUE sends SR 1 TTI1 TTI 3.3. eNB decodes SR and generates scheduling granteNB decodes SR and generates scheduling grant 3 TTI3 TTI 4.4. Transmission of scheduling grant (assumed always error free)Transmission of scheduling grant (assumed always error free) 1 TTI1 TTI 5.5. UE processing delay (decoding Scheduling grant + L1 encoding of data)UE processing delay (decoding Scheduling grant + L1 encoding of data) 3 TTI3 TTI 6.6. UE sends UL transmissionUE sends UL transmission (1 + p*8) TTI where p is initial BLER.(1 + p*8) TTI where p is initial BLER. 7.7. eNB receives and decodes the UL dataeNB receives and decodes the UL data 1.5 TTI1.5 TTI

In the table 1 above, steps 1-4 and half delay of step 5 is assumed to be due to SR, and rest is assumed for UL data transmission in values shown in Table 4In the table 1 above, steps 1-4 and half delay of step 5 is assumed to be due to SR, and rest is assumed for UL data transmission in values shown in Table 4

Resource mapping of short TTIResource mapping of short TTI

도 2는 resource mapping per PRB in one subframe을 도시한 도면이다. 2 is a diagram illustrating a resource mapping per PRB in one subframe.

In Figure 2 the resource map above is the legacy resource mapping per PRB in one subframe, considering 2 Antenna ports and 2 OFDM symbols control field. In Figure 2 the resource map below is the short TTI resource mapping, considering 2 OFDM symbols used for the control field in order to ensure the backward compatibility. The loss rates (Llegacy, e.g. 5% - 50%) of the PHY layer in short TTI duration are assumed.In Figure 2 the resource map above is the legacy resource mapping per PRB in one subframe, considering 2 Antenna ports and 2 OFDM symbols control field. In Figure 2 the resource map below is the short TTI resource mapping, considering 2 OFDM symbols used for the control field in order to ensure the backward compatibility. The loss rates (Llegacy, e.g. 5%-50%) of the PHY layer in short TTI duration are assumed.

TBS Calculation of short TTITBS Calculation of short TTI

According to the resource mapping and the TBS calculation formula given above, the loss rate of PHY layer for legacy PDSCH is calculated as follows:According to the resource mapping and the TBS calculation formula given above, the loss rate of PHY layer for legacy PDSCH is calculated as follows:

Figure 112017042759762-pat00029
Figure 112017042759762-pat00029

For different short TTI duration, The TBS of short TTI PDSCH is calculated as the following table:For different short TTI duration, The TBS of short TTI PDSCH is calculated as the following table:

TBS calculation for different TTI durationTBS calculation for different TTI duration TTI DurationTTI Duration TBS of short TTI PDSCH (TBSshort)TBS of short TTI PDSCH (TBS short ) 7 OFDM symbol7 OFDM symbol First time slot:

Figure 112017042759762-pat00030
First time slot:
Figure 112017042759762-pat00030
Second time slot:
Figure 112017042759762-pat00031
Second time slot:
Figure 112017042759762-pat00031
2 OFDM symbol2 OFDM symbol
Figure 112017042759762-pat00032
Figure 112017042759762-pat00032
1 OFDM symbol1 OFDM symbol
Figure 112017042759762-pat00033
Figure 112017042759762-pat00033

상기와 같이 short TTI에 대한 Physical layer에 대한 연구가 진행 중이며, sPUCCH의 설정, sPUSCH와 legacy SRS 전송 및 수신에 대한 구체적인 절차가 부재되어 있다. As described above, research on a physical layer for a short TTI is ongoing, and specific procedures for setting sPUCCH, transmitting and receiving sPUSCH and legacy SRS are absent.

본 발명에서는 short TTI 기반의 프레임 구조에서 sPUCCH, sPUSCH(short TTI based PUSCH)와 SRS 전송을 위한 단말 동작 및 기지국 동작 방법을 제시한다.In the present invention, a terminal operation and a base station operation method for transmitting sPUCCH, short TTI based PUSCH (sPUSCH) and SRS in a short TTI-based frame structure are presented.

도 3은 short TTI 기반의 프레임 구조에서 단말과 기지국 간의 신호 송수신 방식을 나타낸 것이다.3 shows a signal transmission and reception method between a terminal and a base station in a short TTI-based frame structure.

Short TTI 기반의 프레임 구조에서 sTTI는 2개 또는 3개의 심볼로 구성된다. 단말은 기지국으로부터 하향링크 데이터 채널을 통해 sTTI 기반의 sPDSCH를 수신한다.In a short TTI-based frame structure, sTTI is composed of 2 or 3 symbols. The UE receives the sTTI-based sPDSCH through the downlink data channel from the base station.

단말은 sPDSCH를 수신하면 수신한 sPDSCH에 대한 Ack/Nack을 sTTI 기반의 sPUCCH를 통해 전송하고, sPUDSH를 통해 상향링크 데이터와 사운딩 참조 신호를 전송한다.When the UE receives the sPDSCH, it transmits the Ack/Nack for the received sPDSCH through sTTI-based sPUCCH, and transmits uplink data and sounding reference signals through sPUDSH.

여기서, 단말은 2개 또는 3개의 심볼로 구성된 sTTI를 통해 Ack/Nack을 전송하기 위한 sPUCCH를 설정한다.Here, the UE configures sPUCCH for transmitting Ack/Nack through sTTI composed of 2 or 3 symbols.

기존의 PUCCH에서 Ack/Nack을 전송하기 위해서는 format 1a, 1b를 기준으로 OCC(spreading) + CS(cyclic shift)로 자원 할당을 적용한다. 그러나, sPUCCH는 심볼의 수가 적어지므로 기존의 OCC를 제외한 Zadoff-Chu(ZC) 시퀀스의 CS 기반 Ack/Nack multiplexing 자원 할당 방식을 제안한다. 즉, 기존 구조와 달리 OCC spreading을 사용하지 않고 Ack/Nack 전송을 위한 sPUCCH를 설정한다.In order to transmit Ack/Nack in the existing PUCCH, resource allocation is applied by spreading (OCC) + cyclic shift (CS) based on formats 1a and 1b. However, since sPUCCH has fewer symbols, we propose a CS-based Ack/Nack multiplexing resource allocation scheme of Zadoff-Chu (ZC) sequences excluding the existing OCC. That is, unlike the existing structure, sPUCCH for Ack/Nack transmission is set without using OCC spreading.

일 예로, 기존의 PUCCH의 Ack/Nack 방식과는 다르게 sPUCCH 구조에 RS를 포함하지 않고, sPUCCH 내 모든 심볼이 Ack/Nack 메시지를 포함하는 데이터 심볼이 되도록 sPUCCH를 구성할 수 있다.For example, unlike the existing Ack/Nack method of PUCCH, the sPUCCH can be configured such that the RS does not include RS in the sPUCCH structure and all symbols in the sPUCCH are data symbols including the Ack/Nack message.

따라서, eNB에서 sPUCCH를 검출하기 위해서는 RS를 통한 채널 추정 후 Ack/Nack 메시지를 복호하는 기존 방식과 달리, On/off 시그널링만 검출하면 된다.Therefore, in order to detect the sPUCCH at the eNB, unlike the conventional method of decoding the Ack/Nack message after channel estimation through RS, only the on/off signaling needs to be detected.

이때, On/off 시그널링은 채널 추정의 과정이 없는만큼 한 심볼에서 Ack/Nack을 동시에 표현할 수 없으므로, 단말이 두 개 이상의 멀티 CS 자원을 사용하여 Ack/Nack 메시지를 표현하도록 한다. 다시 말해, 단말이 Ack 또는 Nack을 표현하기 위해 2개의 개별적인 CS 값이 필요하게 되며, 단말별로 2개의 CS 값을 할당하여 Ack/Nack 메시지를 구성한다.At this time, since the on/off signaling cannot express Ack/Nack simultaneously in one symbol because there is no process of channel estimation, the UE uses two or more multi-CS resources to express the Ack/Nack message. In other words, the UE needs two separate CS values to represent the Ack or Nack, and allocates two CS values for each UE to construct an Ack/Nack message.

sPUCCH에서는 기본적으로 기존의 PUCCH보다 적은 단말이 존재할 것이라는 가정이 가능하며, 모든 단말이 latency reduction 기반 서비스를 요구하는 것은 아니므로, 한 단말에 2개의 개별적인 CS 값을 할당하여 sPUCCH를 구성할 수 있다.In sPUCCH, it is basically possible to assume that there will be fewer terminals than the existing PUCCH, and since not all terminals require latency reduction based services, two individual CS values can be allocated to one terminal to configure sPUCCH.

한편, Short TTI 기반의 sPUSCH 전송시 단말은 해당 SRS(Sounding Reference Signal)와 동시 전송 구간이 발생할 수 있다. 이때 기존의 현재 Low-latency 관련 동작에서 하향링크에서 아래와 같은 동작을 alternative로 고려하고 있다.Meanwhile, when a Short TTI-based sPUSCH is transmitted, the UE may simultaneously generate a corresponding SRS (Sounding Reference Signal) and a simultaneous transmission section. At this time, the following operations are considered as alternatives in the downlink from the existing low-latency related operations.

- Alt 1: A UE is not expected to receive legacy TTI unicast PDSCH and short TTI unicast PDSCH simultaneously on one carrier-Alt 1: A UE is not expected to receive legacy TTI unicast PDSCH and short TTI unicast PDSCH simultaneously on one carrier

- Alt 2: If the UE is scheduled with legacy TTI unicast PDSCH and short TTI unicast PDSCH simultaneously on one carrier, then it may skip the decoding of one of them (FFS rules for determining which one)-Alt 2: If the UE is scheduled with legacy TTI unicast PDSCH and short TTI unicast PDSCH simultaneously on one carrier, then it may skip the decoding of one of them (FFS rules for determining which one)

- Alt 3: A UE is expected to receive legacy TTI unicast PDSCH and short TTI unicast PDSCH simultaneously on one carrier-Alt 3: A UE is expected to receive legacy TTI unicast PDSCH and short TTI unicast PDSCH simultaneously on one carrier

여기에서 현재 다루어지지 않는 사항인 SRS와 sPUSCH의 동시 전송에 대한 단말의 동작 및 기지국의 스케줄링 방법에 대해서 기술한다.Here, the operation of the UE and the scheduling method of the base station for simultaneous transmission of SRS and sPUSCH, which are not currently covered, are described.

도 4는 sPUSCH와 SRS의 전송 개념도를 나타낸 것이고, 도 5는 SRS와 legacy PUSCH 할당의 개념도를 나타낸 것이다.FIG. 4 shows a conceptual diagram of transmission of sPUSCH and SRS, and FIG. 5 shows a conceptual diagram of SRS and legacy PUSCH allocation.

앞서 언급한 sPUSCH와 SRS 전송을 다루는 전송 개념도는 도 4와 같다.4 is a conceptual diagram illustrating transmission of the aforementioned sPUSCH and SRS transmissions.

즉, 기존의 SRS는 상향 서브프레임 가장 마지막 심볼에 할당될 수 있다. 기존의 PUSCH와 SRS는 이러한 문제를 해결하기 위해서 아래와 같은 방법을 적용하였다.That is, the existing SRS can be allocated to the last symbol of the uplink subframe. Conventional PUSCH and SRS have applied the following method to solve this problem.

기본적으로 도 5와 같이 SRS가 전송이 configuration 되어있는 서브프레임에서는 legacy PUSCH 할당 시 SRS가 겹치는 영역에 할당되는 PUSCH는 SRS와 overlapping을 고려해야 한다. 일반적으로 SRS가 더 보호해야 할 신호이기 때문에 전송의 우선권을 갖게 되기 때문에, PUSCH가 multiplexing을 통해서 information 크기를 adjusting하게 된다. 즉, SRS와 심볼이 겹치는 PUSCH는 해당 심볼 구간의 자원을 제외한 영역에만 데이터 전송이 이루어지게 된다.Basically, in the subframe in which SRS transmission is configured as shown in FIG. 5, when the legacy PUSCH is allocated, the PUSCH allocated to the region where the SRS overlaps should consider overlapping with the SRS. In general, since SRS is a signal to be further protected, it has priority of transmission, so PUSCH adjusts information size through multiplexing. That is, in the PUSCH where the symbols overlap with the SRS, data transmission is performed only in an area excluding resources of the corresponding symbol period.

그러나 sPUSCH에서는 이러한 legacy PUSCH와 SRS overlapping 해결책을 그대로 적용하기 어렵다.However, it is difficult to apply such legacy PUSCH and SRS overlapping solution in sPUSCH.

예를 들어 2개의 심볼 구간으로 sTTI가 정의되어 있다면, SRS와 overlapping이 되는 1개 심볼 구간을 제외하면 DMRS 전송 심볼 구간만 남아 해당 sTTI에서는 sPUSCH를 통한 데이터 전송이 불가능하게 된다.For example, if sTTI is defined as two symbol intervals, except for one symbol interval overlapping with SRS, only the DMRS transmission symbol interval remains, and data transmission through sPUSCH is impossible in the corresponding sTTI.

또 다른 예로 3개의 OFDM 심볼 구간으로 sTTI를 정의할 경우, DMRS 1 심볼을 제외한 2개 심볼만이 sPUSCH를 전송할 수 있는데, 이때 SRS 심볼 구간이 1 심볼 구간을 제외하면 결과적으로 1개의 심볼 구간에 sPUSCH를 전송할 수 있다.As another example, when defining sTTI with 3 OFDM symbol periods, only 2 symbols except for the DMRS 1 symbol can transmit sPUSCH, and when the SRS symbol period excludes 1 symbol period, as a result, sPUSCH in 1 symbol period. Can send.

따라서 경우에 따라서는 이용할 수 있는 data RE의 수가 모자라서 데이터 전송이 불가능하거나, 극단적으로 너무 작은 크기의 정보 비트만이 전송하게 되어 latency reduction을 통한 이득을 취함에 있어 그 범위가 한정적이게 된다. 따라서 본 발명에서는 이러한 sPUSCH와 SRS의 overlapping 구간에 발생할 수 있는 문제를 해결하기 위해서 아래와 같은 방법을 제안한다.Therefore, in some cases, the number of available data REs is insufficient, and thus data transmission is impossible or only information bits of an extremely small size are transmitted. Therefore, the range is limited in taking advantage of latency reduction. Therefore, the present invention proposes the following method to solve the problem that may occur in the overlapping section of the sPUSCH and SRS.

방안 1. 서브프레임 내 마지막 Option 1. Last in the subframe sTTI에to sTTI 정의된 Defined sPUSCH가sPUSCH SRSSRS 자원과 중첩될 경우 무조건 sPUSCH 전송을 drop한다. 또는 sPUSCH 전송을 skip한다. When overlapping with a resource, sPUSCH transmission is unconditionally dropped. Or, skip sPUSCH transmission.

도 6은 sPUSCH drop을 통한 SRS protection 개념도를 나타낸 것이다.6 shows a conceptual diagram of SRS protection through sPUSCH drop.

SRS 전송 구간과 sPUSCH의 자원이 중첩될 경우, 해당 sTTI에서 sPUSCH는 전송을 생략한다. 해당 경우에는 SRS 전송에 대한 configuration이 RRC와 SIB2를 통해서 미리 정의되고, semi-static한 방법으로 sTTI가 configuration 된다고 가정한다. 이때 단말은 해당 sTTI를 통한 sPUSCH전송을 할당 받았더라도 해당 데이터 전송을 수행하지 않는다. 이때 sTTI에서 sPUSCH 전송은 아래와 같은 방법을 통해 단말의 동작을 정의할 수 있다.When the SRS transmission interval and the resource of the sPUSCH overlap, the sPUSCH is omitted from the corresponding sTTI. In this case, it is assumed that the configuration for SRS transmission is predefined through RRC and SIB2, and sTTI is configured in a semi-static method. At this time, the terminal does not perform the corresponding data transmission even if the sPUSCH transmission through the corresponding sTTI is allocated. At this time, in sTTI, sPUSCH transmission may define the operation of the terminal through the following method.

① SRS 전송이 이루어지지 않는 다음 서브프레임의 동일 sTTI에서 다시 전송을 수행한다.① Transmission is performed again in the same sTTI of the next subframe in which SRS transmission is not performed.

■ 예: 마지막 sTTI#N에서 다시 전송 (subframe#0에서 SRS 전송 가정)■ Example: Retransmit from the last sTTI#N (assuming SRS transmission from subframe#0)

Subframe#0(sTTI#0, sTTI#1, ..., sTTI#N) → subframe#1(sTTI#0, sTTI#1,..., sTTI#N)Subframe#0(sTTI#0, sTTI#1, ..., sTTI#N) → subframe#1(sTTI#0, sTTI#1,..., sTTI#N)

② SRS 전송이 이루어지지 않는 다음 서브프레임의 첫번째 sTTI에서 다시 전송을 수행한다.② Transmission is performed again in the first sTTI of the next subframe in which SRS transmission is not performed.

■ 예: 마지막 sTTI#N에서 다시 전송 (subframe#0에서 SRS 전송 가정)■ Example: Retransmit from the last sTTI#N (assuming SRS transmission from subframe#0)

Subframe#0(sTTI#0, sTTI#1, ..., sTTI#N) → subframe#1(sTTI#0, sTTI#1,..., sTTI#N)Subframe#0(sTTI#0, sTTI#1, ..., sTTI#N) → subframe#1(sTTI#0, sTTI#1,..., sTTI#N)

③ 해당 sPUSCH 데이터는 buffer에서 삭제하고 sPUSCH 재할당을 기다린다.③ The sPUSCH data is deleted from the buffer and awaits reassignment of sPUSCH.

방안 2. 서브프레임 내 마지막 Option 2. Last in subframe sTTI에to sTTI 정의된 Defined sPUSCH가sPUSCH SRSSRS 자원과 중첩될 경우 shortened data 기반의 sPUSCH 전송을 수행한다. When overlapped with a resource, sPUSCH transmission based on shortened data is performed.

SRS 전송 구간과 sPUSCH의 자원이 중첩될 경우, 해당 sTTI에서 기존과 동일한 shortened sPUSCH는 전송을 수행한다. 해당 방법은 기존의 SRS와 legacy PUSCH 가 중첩될 때 사용하는 방법과 동일하게 적용한다. 또한 단말 역시 available RE 수를 산정할 경우 SRS 중첩 영역을 제외한다. 그러나, sTTI 영역에서 SRS 심볼 구간을 제외하고 남는 available RE가 너무 적어서 사용이 불가능할 경우 해당 sTTI를 통한 sPUSCH 전송은 생략된다. 따라서 아래 criterion을 고려하여 sPUSCH 전송을 결정한다.When the SRS transmission interval and the resource of the sPUSCH overlap, the same shortened sPUSCH in the corresponding sTTI performs transmission. This method is applied in the same way as when the existing SRS and legacy PUSCH overlap. In addition, the UE also excludes the SRS overlapping region when calculating the number of available REs. However, if there are too few available REs remaining except for the SRS symbol period in the sTTI region, and thus cannot be used, sPUSCH transmission through the corresponding sTTI is omitted. Therefore, sPUSCH transmission is determined by considering the criterion below.

① No. of available REs > Nthreshold ① No. of available REs> N threshold

■ SRS 심볼 구간을 제외한 sPUSCH 전송을 수행한다.■ sPUSCH transmission is performed except for the SRS symbol period.

■ 이때 information size는 available RE들을 고려해서 재계산한다.■ At this time, information size is recalculated considering available REs.

② No. of available REs ≤≤ Nthreshold ② No. of available REs ≤≤ N threshold

■ sPUSCH 전송을 수행하지 않는다.■ sPUSCH transmission is not performed.

방안 3. 서브프레임 내 마지막 Option 3. Last in subframe sTTI에to sTTI 정의된 Defined sPUSCH가sPUSCH SRSSRS 자원과 중첩되더라도 sPUSCH 전송을 수행한다. SPUSCH transmission is performed even if it overlaps with a resource.

SRS 전송 구간과 sPUSCH의 자원이 중첩될 경우, 해당 sTTI에서 SRS configuration에 관계 없이sPUSCH는 전송을 수행한다. 이때에 SRS 심볼 영역에 간섭을 유발할 수 있기 때문에 아래와 같은 가이드에 따라 sPUSCH 전송을 수행한다.When the SRS transmission interval and the resource of the sPUSCH overlap, the sPUSCH performs transmission regardless of the SRS configuration in the corresponding sTTI. At this time, since it may cause interference in the SRS symbol region, sPUSCH transmission is performed according to the following guide.

① 동일한 UE의 sPUSCH와 SRS 구간이 중첩될 경우① When the sPUSCH and SRS section of the same UE overlap

■ 단말은 자신의 SRS 전송을 생략하고 모든 sTTI에 심볼 구간에 sPUSCH를 mapping하여 전송한다.■ The UE omits its own SRS transmission and transmits by mapping sPUSCH to symbol intervals in all sTTIs.

■ 이때 기지국은 SRS 구간이 설정된 심볼 구간이더라도, 주파수 영역의 SRS 자원과 sPUSCH 구간이 중첩되는 것을 미리 알 수 있기 때문에 해당 영역의 SRS 검출은 수행하지 않고, sPUSCH 검출을 수행한다.■ At this time, even if the SRS period is a symbol period, the SRS resource in the frequency domain and the sPUSCH period are known to overlap, so SRS detection of the corresponding region is not performed and sPUSCH detection is performed.

② 서로 다른 UE의 sPUSCH와 SRS 구간이 중첩될 경우② When sPUSCH and SRS sections of different UEs overlap

■ SRS configuration 영역에 타 단말이 SRS 전송을 수행할 수 있기 때문에 sPUSCH 전송을 수행하지 않는다.■ Since another terminal can perform SRS transmission in the SRS configuration area, sPUSCH transmission is not performed.

■ 만일 해당 sPUSCH를 통한 정보의 중요성으로 인해 반드시 전송을 해야한다면, SRS 구간에 간섭을 최소화하기 위해서 낮은 전력으로 전송을 수행한다.■ If transmission must be performed due to the importance of information on the corresponding sPUSCH, transmission is performed at low power to minimize interference in the SRS section.

방안 4. 서브프레임 내 마지막 Option 4. Last in subframe sTTI에to sTTI 정의된 Defined sPUSCH가sPUSCH SRSSRS 자원과 중첩될 경우 앞서 인접한 sTTI를 번들링하여 데이터 전송을 수행한다. When overlapping with a resource, data transmission is performed by bundling an adjacent sTTI.

도 7은 sTTI bundling 개념도를 나타낸 것이다.7 shows a conceptual diagram of sTTI bundling.

본 제안에서는 sTTI가 SRS 심볼 구간과 중첩되어 해당 sTTI의 available RE 수가 일정 수 이하일 경우, 데이터 전송으로 사용하지 못할 수 있다. 따라서 이러한 경우에는 기본적으로 인접 sTTI와 bundling을 수행하여 sPUSCH 전송을 수행한다.In this proposal, if the number of available REs of the corresponding sTTI is less than a certain number because the sTTI overlaps with the SRS symbol period, it may not be used for data transmission. Therefore, in this case, basically, sPUSCH transmission is performed by bundling with an adjacent sTTI.

이때 SRS 심볼과 중첩 여부는 기지국이 미리 알고 있기 때문에 단말은 해당 sTTI 전송을 수행함에 있어 미리 정해진 패턴에 따라 sTTI bundling을 수행하고, available RE를 다시 산정하여 데이터 전송을 수행한다.At this time, since the base station knows in advance whether to overlap with the SRS symbol, the terminal performs sTTI bundling according to a predetermined pattern in performing the corresponding sTTI transmission, and calculates available RE again to perform data transmission.

예를 들어 도 7은 sTTI#3, #4를 번들링하여 sPUSCH#3을 전송하는 예를 나타내고 있다. 이때 동일 단말이 연속적인 sTTI 할당을 받았고, sTTI 각각에 DMRS가 포함되어 있다면 아래의 동작을 추가로 정의할 수 있다.For example, FIG. 7 shows an example of transmitting sPUSCH#3 by bundling sTTI#3 and #4. In this case, if the same terminal has been continuously allocated sTTI and DMRSs are included in each of the sTTIs, the following operation may be additionally defined.

① 단말은 번들링 대상의 앞선 sTTI에서만 DMRS를 전송하고 SRS 전송 심볼을 제외한 나머지 모든 심볼에 sPUSCH를 통한 데이터 전송을 수행한다.① The terminal transmits DMRS only in the preceding sTTI of the bundling target and performs data transmission through sPUSCH on all symbols except the SRS transmission symbol.

■ 이때 기지국은 단말의 sTTI 번들링 기반 전송을 미리 알고 있어 앞선 sTTI의 DMRS만 이용하여 sPUSCH 검출을 수행한다.■ At this time, the base station knows in advance the sTTI bundling-based transmission of the terminal and performs sPUSCH detection using only the DMRS of the preceding sTTI.

② 단말은 번들링 대상의 모든 sTTI에서 DMRS를 전송하고 SRS 전송 심볼을 제외한 나머지 모든 심볼에 sPUSCH를 통한 데이터 전송을 수행한다.② The terminal transmits DMRS in all sTTIs to be bundled and performs data transmission through sPUSCH on all symbols except the SRS transmission symbol.

■ 이때 기지국은 단말의 번들링된 sTTI 번들링 기반 전송을 미리 알고 있어 sTTI 각각에 위치하고 있는 DMRS를 모두 이용하여 sPUSCH 검출을 수행한다.■ At this time, the base station knows in advance the bundled sTTI bundling-based transmission of the terminal and performs sPUSCH detection using all of the DMRS located in each sTTI.

방안 5. Method 5. sTTIsTTI configuration 시 configuration SRSSRS 전송이 일어나는 Transmission takes place subframe의subframe 마지막 Last 심볼을Symbol 제외한 sTTI들을 정의한다. STTIs excluded are defined.

본 제안에서는 semi-static한 방법으로 sTTI를 정의할 경우, 해당 서브프레임에 SRS configuration이 되어 있으면, 해당 서브프레임에서는 SRS 심볼 구간을 무조건 제외하고, sTTI를 정의한다. 이러한 경우에는 sTTI configuration시에 SRS 중첩 이슈를 제거하기 때문에 이러한 SRS 중첩 문제를 해결할 수 있다.In this proposal, when sTTI is defined in a semi-static method, if SRS configuration is configured in a corresponding subframe, sTTI is defined in the corresponding subframe without excluding the SRS symbol period. In this case, since the SRS overlapping issue is removed during sTTI configuration, the SRS overlapping problem can be solved.

본 발명에서는 sTTI 기반 sPUSCH 와 SRS 심볼 구간의 중첩 문제를 해결하기 위한 구체적인 방법에 대해 기술하였으며, 해당 방법은 유사 시그널 및 채널에 그 원리가 그대로 적용할 수 있다.In the present invention, a specific method for solving the overlapping problem between the sTTI-based sPUSCH and SRS symbol intervals has been described, and the principle can be applied to similar signals and channels as it is.

도 8은 본 실시예들에 따른 기지국(800)의 구성을 나타낸 것이다.8 shows the configuration of a base station 800 according to the present embodiments.

도 8을 참조하면, 본 실시예들에 따른 기지국(800)은 제어부(810)과 송신부(820), 수신부(830)를 포함한다.Referring to FIG. 8, the base station 800 according to the present exemplary embodiment includes a control unit 810, a transmitter 820, and a receiver 830.

제어부(810)는, 전술한 본 발명에 따라 sPUCCH 설정 및 전송, sPUSCH와 SRS 전송을 수행함에 따른 전반적인 기지국(800)의 동작을 제어한다.The control unit 810 controls the overall operation of the base station 800 by performing sPUCCH setup and transmission, and sPUSCH and SRS transmission according to the present invention described above.

송신부(820)와 수신부(830)는, 전술한 본 발명을 수행하기에 필요한 신호나 메시지, 데이터를 단말과 송수신하는데 사용된다.The transmitting unit 820 and the receiving unit 830 are used to transmit and receive signals, messages, and data necessary to perform the present invention described above.

도 9는 본 실시예들에 따른 사용자 단말(900)의 구성을 나타낸 것이다.9 shows the configuration of the user terminal 900 according to the present embodiments.

도 9를 참조하면, 본 실시예들에 따른 사용자 단말(900)은, 수신부(910) 및 제어부(920), 송신부(930)를 포함한다.Referring to FIG. 9, the user terminal 900 according to the present exemplary embodiment includes a receiver 910, a controller 920, and a transmitter 930.

수신부(910)는, 기지국으로부터 하향링크 제어 정보 및 데이터, 메시지를 해당 채널을 통해 수신한다.The receiving unit 910 receives downlink control information, data, and messages from a base station through a corresponding channel.

또한, 제어부(920)는, 전술한 본 발명에 따라 sPUSCH 설정 및 전송, sPUSCH와 SRS 전송을 수행함에 따른 전반적인 사용자 단말(900)의 동작을 제어한다.In addition, the control unit 920 controls the overall operation of the user terminal 900 according to the above-described present invention by performing sPUSCH setup and transmission, and sPUSCH and SRS transmission.

송신부(930)는, 기지국에 상향링크 제어 정보 및 데이터, 메시지를 해당 채널을 통해 전송한다.The transmitter 930 transmits uplink control information, data, and messages to the base station through a corresponding channel.

전술한 실시예에서 언급한 표준내용 또는 표준문서들은 명세서의 설명을 간략하게 하기 위해 생략한 것으로 본 명세서의 일부를 구성한다. 따라서, 위 표준내용 및 표준문서들의 일부의 내용을 본 명세서에 추가하거나 청구범위에 기재하는 것은 본 발명의 범위에 해당하는 것으로 해석되어야 한다.The standard contents or standard documents mentioned in the above-described embodiments are omitted to simplify the description of the specification and constitute a part of the specification. Therefore, it is to be construed that adding the contents of the above standard contents and a part of the standard documents to the present specification or in the claims falls within the scope of the present invention.

AppendixAppendix

[1] Ericsson, Huawei, "New SI proposal Study on Latency reduction techniques for LTE", RP-150465, Shanghai, China, March 9-12, 2015.[1] Ericsson, Huawei, "New SI proposal Study on Latency reduction techniques for LTE", RP-150465, Shanghai, China, March 9-12, 2015.

[2] R2-155008, "TR 36.881 v0.4.0 on Study on Latency reduction techniques for LTE", Ericsson (Rapporteur)[2] R2-155008, "TR 36.881 v0.4.0 on Study on Latency reduction techniques for LTE", Ericsson (Rapporteur)

[3] R1-160927, "TR 36.881-v0.5.0 on Study on Latency reduction techniques for LTE", Ericsson (Rapporteur)[3] R1-160927, "TR 36.881-v0.5.0 on Study on Latency reduction techniques for LTE", Ericsson (Rapporteur)

이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those of ordinary skill in the art to which the present invention pertains may make various modifications and variations without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical spirit of the present invention, but to explain, and the scope of the technical idea of the present invention is not limited by these embodiments. The scope of protection of the present invention should be interpreted by the following claims, and all technical spirits within the equivalent range should be interpreted as being included in the scope of the present invention.

Claims (20)

단말이 짧은 전송 시간 간격의 프레임 구조에서 상향링크 채널을 전송하는 방법에 있어서,
기지국으로부터 짧은 전송 시간 간격의 하향링크 데이터 채널을 통해 하향링크 데이터를 수신하는 단계;
상기 하향링크 데이터에 대한 Ack/Nack을 짧은 전송 시간 간격의 상향링크 제어 채널을 통해 상기 기지국으로 전송하는 단계; 및
상기 기지국으로 짧은 전송 시간 간격의 상향링크 데이터 채널을 통해 상향링크 데이터와 사운딩 참조 신호를 전송하는 단계를 포함하고,
하나의 서브프레임에 포함된 상기 짧은 전송 시간 간격의 상향링크 데이터 채널 중 적어도 하나를 통해 상기 상향링크 데이터 및 상기 사운딩 참조 신호 중 적어도 하나를 전송하되,
상기 상향링크 데이터와 상기 사운딩 참조 신호가 상기 짧은 전송 시간 간격의 상향링크 데이터 채널의 동일한 심볼에 중첩되면 인접한 상기 짧은 전송 시간 간격의 상향링크 데이터 채널과 번들링하여 상기 상향링크 데이터를 전송하는 방법.
In a method for a terminal to transmit an uplink channel in a frame structure with a short transmission time interval,
Receiving downlink data from a base station through a downlink data channel having a short transmission time interval;
Transmitting the Ack/Nack for the downlink data to the base station through an uplink control channel with a short transmission time interval; And
And transmitting the uplink data and the sounding reference signal to the base station through a short transmission time interval uplink data channel,
Transmitting at least one of the uplink data and the sounding reference signal through at least one of the uplink data channels of the short transmission time interval included in one subframe,
When the uplink data and the sounding reference signal overlap the same symbol of the uplink data channel of the short transmission time interval, the method of transmitting the uplink data by bundling with the uplink data channel of the adjacent short transmission time interval.
삭제delete 삭제delete 삭제delete 제1항에 있어서,
하나의 서브프레임에서 상기 사운딩 참조 신호가 전송되는 심볼을 제외한 심볼들을 이용하여 상기 짧은 전송 시간 간격의 상향링크 데이터 채널을 구성하는 방법.
According to claim 1,
A method of configuring an uplink data channel of the short transmission time interval using symbols except for a symbol on which the sounding reference signal is transmitted in one subframe.
제1항에 있어서,
상기 Ack/Nack에 서로 상이한 순환 시프트 값을 할당하고 상기 순환 시프트 값을 기반으로 상기 Ack/Nack을 포함하는 상기 짧은 전송 시간 간격의 상향링크 제어 채널을 구성하는 방법.
According to claim 1,
A method of allocating different cyclic shift values to the Ack/Nack and configuring the uplink control channel of the short transmission time interval including the Ack/Nack based on the cyclic shift value.
제6항에 있어서,
상기 짧은 전송 시간 간격의 상향링크 제어 채널에 포함된 모든 심볼이 상기 Ack/Nack을 위해 할당되는 방법.
The method of claim 6,
A method in which all symbols included in the uplink control channel of the short transmission time interval are allocated for the Ack/Nack.
기지국이 짧은 전송 시간 간격의 프레임 구조에서 상향링크 채널을 수신하는 방법에 있어서,
단말로 짧은 전송 시간 간격의 하향링크 데이터 채널을 통해 하향링크 데이터를 전송하는 단계;
상기 하향링크 데이터에 대한 Ack/Nack을 짧은 전송 시간 간격의 상향링크 제어 채널을 통해 수신하는 단계; 및
상기 단말로부터 짧은 전송 시간 간격의 상향링크 데이터 채널을 통해 상향링크 데이터와 사운딩 참조 신호를 수신하는 단계를 포함하고,
하나의 서브프레임에 포함된 상기 짧은 전송 시간 간격의 상향링크 데이터 채널 중 적어도 하나를 통해 상기 상향링크 데이터 및 상기 사운딩 참조 신호 중 적어도 하나를 수신하되,
상기 상향링크 데이터와 상기 사운딩 참조 신호가 상기 짧은 전송 시간 간격의 상향링크 데이터 채널의 동일한 심볼에 중첩되면 인접한 상기 짧은 전송 시간 간격의 상향링크 데이터 채널과 번들링되어 전송되는 상기 상향링크 데이터를 수신하는 방법.
In a method for a base station to receive an uplink channel in a frame structure of a short transmission time interval,
Transmitting downlink data to a terminal through a downlink data channel having a short transmission time interval;
Receiving the Ack/Nack for the downlink data through an uplink control channel having a short transmission time interval; And
And receiving uplink data and a sounding reference signal through the uplink data channel having a short transmission time interval from the terminal,
Receiving at least one of the uplink data and the sounding reference signal through at least one of the uplink data channels of the short transmission time interval included in one subframe,
When the uplink data and the sounding reference signal overlap the same symbol of the uplink data channel of the short transmission time interval, the uplink data transmitted by bundling with the uplink data channel of the adjacent short transmission time interval is received. Way.
삭제delete 삭제delete 삭제delete 제8항에 있어서,
하나의 서브프레임에서 상기 사운딩 참조 신호가 전송되는 심볼을 제외한 심볼들을 이용하여 상기 짧은 전송 시간 간격의 상향링크 데이터 채널을 구성하는 방법.
The method of claim 8,
A method of configuring an uplink data channel of the short transmission time interval using symbols except for a symbol in which the sounding reference signal is transmitted in one subframe.
제8항에 있어서,
상기 Ack/Nack에 서로 상이한 순환 시프트 값을 할당하고 상기 순환 시프트 값을 기반으로 구성된 상기 짧은 전송 시간 간격의 상향링크 제어 채널을 통해 상기 Ack/Nack을 수신하는 방법.
The method of claim 8,
A method of allocating different cyclic shift values to the Ack/Nack and receiving the Ack/Nack through the uplink control channel of the short transmission time interval configured based on the cyclic shift values.
제13항에 있어서,
상기 짧은 전송 시간 간격의 상향링크 제어 채널에 포함된 모든 심볼이 상기 Ack/Nack을 위해 할당되는 방법.
The method of claim 13,
A method in which all symbols included in the uplink control channel of the short transmission time interval are allocated for the Ack/Nack.
단말이 짧은 전송 시간 간격의 프레임 구조에서 상향링크 채널을 전송하는 방법에 있어서,
기지국으로부터 짧은 전송 시간 간격의 하향링크 데이터 채널을 통해 하향링크 데이터를 수신하는 단계;
개별적인 순환 시프트 값을 Ack/Nack에 각각 할당하는 방식으로 Ack/Nack을 포함하는 짧은 전송 시간 간격의 상향링크 제어 채널을 구성하는 단계; 및
상기 짧은 전송 시간 간격의 상향링크 제어 채널을 통해 상기 하향링크 데이터에 대한 상기 Ack/Nack을 상기 기지국으로 전송하는 단계를 포함하고,
상기 짧은 전송 시간 간격의 상향링크 제어 채널은 참조 신호를 포함하지 않고, 상기 짧은 전송 시간 간격의 상향링크 제어 채널에 포함된 모든 심볼을 통해 상기 Ack/Nack을 전송하는 방법.
In a method for a terminal to transmit an uplink channel in a frame structure with a short transmission time interval,
Receiving downlink data from a base station through a downlink data channel having a short transmission time interval;
Configuring an uplink control channel of a short transmission time interval including Ack/Nack by assigning individual cyclic shift values to Ack/Nack, respectively; And
And transmitting the Ack/Nack for the downlink data to the base station through the uplink control channel of the short transmission time interval,
The method for transmitting the Ack/Nack through all symbols included in the uplink control channel in the short transmission time interval, the reference signal does not include the uplink control channel in the short transmission time interval.
제15항에 있어서,
상기 Ack/Nack에 각각 할당되는 상기 순환 시프트 값은 서로 상이한 값을 갖는 방법.
The method of claim 15,
The cyclic shift values respectively assigned to the Ack/Nack have different values from each other.
삭제delete 기지국이 짧은 전송 시간 간격의 프레임 구조에서 상향링크 채널을 수신하는 방법에 있어서,
단말로 짧은 전송 시간 간격의 하향링크 데이터 채널을 통해 하향링크 데이터를 전송하는 단계; 및
상기 단말로부터 짧은 전송 시간 간격의 상향링크 제어 채널을 통해 상기 하향링크 데이터에 대한 Ack/Nack을 수신하는 단계를 포함하고,
상기 짧은 전송 시간 간격의 상향링크 제어 채널은 개별적인 순환 시프트 값을 상기 Ack/Nack에 각각 할당하는 방식으로 구성되고,
상기 짧은 전송 시간 간격의 상향링크 제어 채널은 참조 신호를 포함하지 않고, 상기 짧은 전송 시간 간격의 상향링크 제어 채널에 포함된 모든 심볼을 통해 상기 Ack/Nack을 수신하는 방법.
In a method for a base station to receive an uplink channel in a frame structure of a short transmission time interval,
Transmitting downlink data to a terminal through a downlink data channel having a short transmission time interval; And
And receiving the Ack/Nack for the downlink data through the uplink control channel having a short transmission time interval from the terminal,
The uplink control channel of the short transmission time interval is configured in such a way that individual cyclic shift values are allocated to the Ack/Nack, respectively.
The method for receiving the Ack/Nack through all symbols included in the uplink control channel in the short transmission time interval, the reference channel does not include a reference signal.
제18항에 있어서,
상기 Ack/Nack에 각각 할당되는 상기 순환 시프트 값은 서로 상이한 값을 갖는 방법.
The method of claim 18,
The cyclic shift values respectively assigned to the Ack/Nack have different values from each other.
삭제delete
KR1020170056206A 2016-05-04 2017-05-02 Method and apparatus for transmitting uplink channel in a short tti frame structure KR102120976B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/098,812 US11431460B2 (en) 2016-05-04 2017-05-02 Method and apparatus for transmitting and receiving control information and data in frame structure of short transmission time interval
PCT/KR2017/004702 WO2017192014A2 (en) 2016-05-04 2017-05-02 Method and apparatus for transmitting and receiving control information and data in frame structure of short transmission time interval
US16/179,863 US11431461B2 (en) 2016-05-04 2018-11-02 Method and apparatus for transmitting and receiving control information and data in frame structure of short transmission time interval

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160055676 2016-05-04
KR20160055676 2016-05-04

Publications (2)

Publication Number Publication Date
KR20170126100A KR20170126100A (en) 2017-11-16
KR102120976B1 true KR102120976B1 (en) 2020-06-11

Family

ID=60806755

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170056206A KR102120976B1 (en) 2016-05-04 2017-05-02 Method and apparatus for transmitting uplink channel in a short tti frame structure

Country Status (1)

Country Link
KR (1) KR102120976B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102244906B1 (en) 2017-09-28 2021-04-26 주식회사 엘지화학 A titania-carbon nanotube-surfur complex and manufacturing method thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
3GPP R1-156461*
3GPP R1-163320
3GPP TS 36.211 V10.0.0*
3GPP TS 36.213 V10.0.0*

Also Published As

Publication number Publication date
KR20170126100A (en) 2017-11-16

Similar Documents

Publication Publication Date Title
US11431461B2 (en) Method and apparatus for transmitting and receiving control information and data in frame structure of short transmission time interval
US11115157B2 (en) Method and device for scheduling uplink control channel in next generation wireless network
KR102161473B1 (en) Method for multi sTTI based scheduling for transmitting and receiving data channel in LTE and Apparatuses thereof
KR102120856B1 (en) Methods for transmitting and receiving uplink control channel in a short tti frame structure and apparatuses
EP3534561A1 (en) Method and device for allocating data channel resource for next-generation wireless access network
KR102237525B1 (en) Methods of frame structure configuration and information transmission for short tti and apparatuses thereof
US10892867B2 (en) Method for establishing uplink data channel on basis of shared demodulation reference signal, and device therefor
KR102156670B1 (en) Methods for multiplexing scheduling request and HARQ ACK/NACK while transmitting and receiving PUCCH and Apparatuses thereof
KR102120976B1 (en) Method and apparatus for transmitting uplink channel in a short tti frame structure
US20180270797A1 (en) Method of transmitting and receiving downlink channel in short tti frame structure and apparatus thereof
KR102121009B1 (en) Method and apparatus for detecting downlink control information in a short tti frame structure
KR20190086310A (en) Apparatus and method of legacy data channel multiplexing in URLLC for LTE
US12101189B2 (en) Method and device for scheduling uplink control channel in next generation wireless network
KR20180088568A (en) Apparatus and method of PUSCH scheduling considering PUSCH processing time in a short TTI frame structure
KR20180036909A (en) Methods for transmitting and receiving pusch for coverage enhancement and apparatuses thereof
KR20180029180A (en) Apparatus and method of Ack/Nack linkage configuration considering sPDSCH processing time in a short TTI frame structure
CN108781154B (en) Method and apparatus for frame structure configuration and information transmission for short TTI
KR20180016688A (en) Apparatus and method of short PUCCH design based on the partially overlapped DMRS in a short TTI frame structure
KR20170131807A (en) Apparatus and method of scheduling legacy PUSCH and short PUSCH in a short TTI frame structure
KR20170114071A (en) Apparatus and method of Ack/Nack linkage configuration corresponding sPUSCH in a short TTI frame structure
KR20170108202A (en) Apparatus and method of resource allocation based on short TTI frame structure
KR20180004392A (en) Methods for configuring pucch in a short tti frame structure and apparatuses thereof
KR20180105053A (en) Methods for transmitting and receiving downlink channel in s short TTI frame structure and Apparatuses thereof
KR20180046444A (en) Apparatus and method of slow DCI configuration in a short TTI frame structure
KR20180107386A (en) Apparatus and method of UL control channel and data channel frequency hopping in a short TTI frame structure

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant