KR20180016688A - Apparatus and method of short PUCCH design based on the partially overlapped DMRS in a short TTI frame structure - Google Patents

Apparatus and method of short PUCCH design based on the partially overlapped DMRS in a short TTI frame structure Download PDF

Info

Publication number
KR20180016688A
KR20180016688A KR1020160099697A KR20160099697A KR20180016688A KR 20180016688 A KR20180016688 A KR 20180016688A KR 1020160099697 A KR1020160099697 A KR 1020160099697A KR 20160099697 A KR20160099697 A KR 20160099697A KR 20180016688 A KR20180016688 A KR 20180016688A
Authority
KR
South Korea
Prior art keywords
spucch
short
transmission
tti
stti
Prior art date
Application number
KR1020160099697A
Other languages
Korean (ko)
Inventor
김기태
최우진
Original Assignee
주식회사 케이티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이티 filed Critical 주식회사 케이티
Priority to KR1020160099697A priority Critical patent/KR20180016688A/en
Publication of KR20180016688A publication Critical patent/KR20180016688A/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Abstract

Embodiments of the present invention suggest a novel short transmit time interval (sTTI) based physical uplink control channel (sPUCCH) design method having a structure that the existing physical channel defined in a TTI is partially overlapped between reference signals among adjacent sTTIs. The method of the present invention can be directly applied to an sPUCCH design based on an sTTI structure having the number of symbols of three or four, and provides a benefit that an sPUCCH is unnecessary to define a new reference signal and a data channel region by intactly reusing the existing legacy PUCCH structure in an sTTI structure with four symbols.

Description

Short TTI 프레임에서 부분 중첩 참조 신호 기반 short PUCCH 설계 방법 및 그 장치{Apparatus and method of short PUCCH design based on the partially overlapped DMRS in a short TTI frame structure}TECHNICAL FIELD [0001] The present invention relates to a short PUCCH design method based on a partial overlapping reference signal in a short TTI frame, and to a short TUC frame structure based on the PUCCH design based on a short PUCCH design.

본 실시예들은 3GPP LTE/LTE-A 시스템에서 short TTI 기반 short PUCCH를 전송하는 구체적인 방법에 관한 것이다.
The embodiments relate to a specific method for transmitting a short TTI-based short PUCCH in a 3GPP LTE / LTE-A system.

일 실시예는, Short TTI 프레임에서 부분 중첩 참조 신호 기반 short PUCCH 설계 방법에 있어서, (2N+1)개의 OFDM 심볼로 구성된 슬롯에서 제1 OFDM 심볼부터 제(N+1) OFDM 심볼까지 제1 sPUCCH를 구성하는 단계와, 제(N+1) OFDM 심볼이 중첩되는 구조로 하여 제(N+1) OFDM 심볼부터 제(2N+1) OFDM 심볼까지 제2 sPUCCH를 구성하는 단계를 포함하는 방법을 제공한다.
In one embodiment, a short PUCCH design method based on a partial overlapping reference signal in a Short TTI frame comprises the steps of: allocating a first sPUCCH (N + 1) OFDM symbol from a first OFDM symbol to a (N + And constructing a second sPUCCH from the (N + 1) th OFDM symbol to the (2N + 1) th OFDM symbol with the structure that the (N + 1) th OFDM symbol is superimposed, to provide.

도 1은 eNB and UE processing delays and HARQ RTT 를 나타낸 도면이다.
도 2는 resource mapping per PRB in one subframe 을 나타낸 도면이다.
도 3은 Legacy PUCCH uplink structure 를 나타낸 도면이다.
도 4는 Overlapping RS 기반의 sPUCCH 설정의 예를 나타낸 도면이다.
도 5는 실시예 1-1의 sPUCCH design concept 을 나타낸 도면이다.
도 6은 Overlapping RS 기반의 sPUCCH 설정의 예(3 DMRS symbol)를 나타낸 도면이다.
도 7은 실시예 1-2의 sPUCCH design concept 을 나타낸 도면이다.
도 8은 또 다른 실시예에 의한 기지국의 구성을 보여주는 도면이다.
도 9는 또 다른 실시예에 의한 사용자 단말의 구성을 보여주는 도면이다.
1 is a diagram illustrating eNB and UE processing delays and HARQ RTT.
2 shows a resource mapping per PRB in one subframe.
3 shows a legacy PUCCH uplink structure.
FIG. 4 is a diagram illustrating an example of sPUCCH setting based on Overlapping RS.
5 is a view showing the sPUCCH design concept of the embodiment 1-1.
FIG. 6 is a diagram illustrating an example of the sPUCCH setting (3 DMRS symbols) based on Overlapping RS.
7 is a view showing the sPUCCH design concept of the embodiment 1-2.
8 is a diagram illustrating a configuration of a base station according to another embodiment of the present invention.
9 is a diagram illustrating a configuration of a user terminal according to another embodiment of the present invention.

이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments of the present invention will be described in detail with reference to exemplary drawings. It should be noted that, in adding reference numerals to the constituent elements of the drawings, the same constituent elements are denoted by the same reference symbols as possible even if they are shown in different drawings. In the following description of the present invention, a detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear.

본 명세서에서 MTC 단말은 low cost(또는 low complexity)를 지원하는 단말 또는 coverage enhancement를 지원하는 단말 등을 의미할 수 있다. 본 명세서에서 MTC 단말은 low cost(또는 low complexity) 및 coverage enhancement를 지원하는 단말 등을 의미할 수 있다. 또는 본 명세서에서 MTC 단말은 low cost(또는 low complexity) 및/또는 coverage enhancement를 지원하기 위한 특정 카테고리로 정의된 단말을 의미할 수 있다.Herein, the MTC terminal may mean a terminal supporting low cost (or low complexity) or a terminal supporting coverage enhancement. In this specification, the MTC terminal may mean a terminal supporting low cost (or low complexity) and coverage enhancement. Alternatively, the MTC terminal may refer to a terminal defined in a specific category for supporting low cost (or low complexity) and / or coverage enhancement.

다시 말해 본 명세서에서 MTC 단말은 LTE 기반의 MTC 관련 동작을 수행하는 새롭게 정의된 3GPP Release-13 low cost(또는 low complexity) UE category/type을 의미할 수 있다. 또는 본 명세서에서 MTC 단말은 기존의 LTE coverage 대비 향상된 coverage를 지원하거나, 혹은 저전력 소모를 지원하는 기존의 3GPP Release-12 이하에서 정의된 UE category/type, 혹은 새롭게 정의된 Release-13 low cost(또는 low complexity) UE category/type을 의미할 수 있다.In other words, the MTC terminal in this specification may mean a newly defined 3GPP Release-13 low cost (or low complexity) UE category / type for performing LTE-based MTC-related operations. Alternatively, the MTC terminal may support enhanced coverage over the existing LTE coverage or a UE category / type defined in the existing 3GPP Release-12 or lower that supports low power consumption, or a newly defined Release-13 low cost low complexity UE category / type.

본 발명에서의 무선통신시스템은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치된다. 무선통신시스템은 사용자 단말(User Equipment, UE) 및 기지국(Base Station, BS, 또는 eNB)을 포함한다. 본 명세서에서의 사용자 단말은 무선 통신에서의 단말을 의미하는 포괄적 개념으로서, WCDMA 및 LTE, HSPA 등에서의 UE(User Equipment)는 물론, GSM에서의 MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), 무선기기(wireless device) 등을 모두 포함하는 개념으로 해석되어야 할 것이다.The wireless communication system in the present invention is widely deployed to provide various communication services such as voice, packet data and the like. A wireless communication system includes a user equipment (UE) and a base station (BS, or eNB). The user terminal in this specification is a comprehensive concept of a terminal in wireless communication. It is a comprehensive concept which means a mobile station (MS), a user terminal (UT), an SS (User Equipment) (Subscriber Station), a wireless device, and the like.

기지국 또는 셀(cell)은 일반적으로 사용자 단말과 통신하는 지점(station)을 말하며, 노드-B(Node-B), eNB(evolved Node-B), 섹터(Sector), 싸이트(Site), BTS(Base Transceiver System), 액세스 포인트(Access Point), 릴레이 노드(Relay Node), RRH(Remote Radio Head), RU(Radio Unit), small cell 등 다른 용어로 불릴 수 있다.A base station or a cell generally refers to a station that communicates with a user terminal and includes a Node-B, an evolved Node-B (eNB), a sector, a Site, a BTS A base transceiver system, an access point, a relay node, a remote radio head (RRH), a radio unit (RU), and a small cell.

즉, 본 명세서에서 기지국 또는 셀(cell)은 CDMA에서의 BSC(Base Station Controller), WCDMA의 NodeB, LTE에서의 eNB 또는 섹터(싸이트) 등이 커버하는 일부 영역 또는 기능을 나타내는 포괄적인 의미로 해석되어야 하며, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀 및 릴레이 노드(relay node), RRH, RU, small cell 통신범위 등 다양한 커버리지 영역을 모두 포괄하는 의미이다.That is, the base station or the cell in this specification is interpreted as a comprehensive meaning indicating a partial region or function covered by BSC (Base Station Controller) in CDMA, NodeB in WCDMA, eNB in LTE or sector (site) And covers various coverage areas such as megacell, macrocell, microcell, picocell, femtocell and relay node, RRH, RU, and small cell communication range.

상기 나열된 다양한 셀은 각 셀을 제어하는 기지국이 존재하므로 기지국은 두 가지 의미로 해석될 수 있다. i) 무선 영역과 관련하여 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀, 스몰 셀을 제공하는 장치 그 자체이거나, ii) 상기 무선영역 그 자체를 지시할 수 있다. i)에서 소정의 무선 영역을 제공하는 장치들이 동일한 개체에 의해 제어되거나 상기 무선 영역을 협업으로 구성하도록 상호작용하는 모든 장치들을 모두 기지국으로 지시한다. 무선 영역의 구성 방식에 따라 eNB, RRH, 안테나, RU, LPN, 포인트, 송수신포인트, 송신 포인트, 수신 포인트 등은 기지국의 일 실시예가 된다. ii)에서 사용자 단말의 관점 또는 이웃하는 기지국의 입장에서 신호를 수신하거나 송신하게 되는 무선 영역 그 자체를 기지국으로 지시할 수 있다.Since the various cells listed above exist in the base station controlling each cell, the base station can be interpreted into two meanings. i) the device itself providing a megacell, macrocell, microcell, picocell, femtocell, small cell in relation to the wireless region, or ii) indicating the wireless region itself. i indicate to the base station all devices that are controlled by the same entity or that interact to configure the wireless region as a collaboration. An eNB, an RRH, an antenna, an RU, an LPN, a point, a transmission / reception point, a transmission point, a reception point, and the like are exemplary embodiments of a base station according to a configuration method of a radio area. ii) may indicate to the base station the wireless region itself that is to receive or transmit signals from the perspective of the user terminal or from a neighboring base station.

따라서, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀, 스몰 셀, RRH, 안테나, RU, LPN(Low Power Node), 포인트, eNB, 송수신포인트, 송신 포인트, 수신 포인트를 통칭하여 기지국으로 지칭한다.Therefore, a base station is collectively referred to as a base station, collectively referred to as a megacell, macrocell, microcell, picocell, femtocell, small cell, RRH, antenna, RU, low power node do.

본 명세서에서 사용자 단말과 기지국은 본 명세서에서 기술되는 기술 또는 기술적 사상을 구현하는데 사용되는 두 가지 송수신 주체로 포괄적인 의미로 사용되며 특정하게 지칭되는 용어 또는 단어에 의해 한정되지 않는다. 사용자 단말과 기지국은, 본 발명에서 기술되는 기술 또는 기술적 사상을 구현하는데 사용되는 두 가지(Uplink 또는 Downlink) 송수신 주체로 포괄적인 의미로 사용되며 특정하게 지칭되는 용어 또는 단어에 의해 한정되지 않는다. 여기서, 상향링크(Uplink, UL, 또는 업링크)는 사용자 단말에 의해 기지국으로 데이터를 송수신하는 방식을 의미하며, 하향링크(Downlink, DL, 또는 다운링크)는 기지국에 의해 사용자 단말로 데이터를 송수신하는 방식을 의미한다.Herein, the user terminal and the base station are used in a broad sense as the two transmitting and receiving subjects used to implement the technical or technical idea described in this specification, and are not limited by a specific term or word. The user terminal and the base station are used in a broad sense as two (uplink or downlink) transmitting and receiving subjects used to implement the technology or technical idea described in the present invention, and are not limited by a specific term or word. Here, an uplink (UL, or uplink) means a method of transmitting / receiving data to / from a base station by a user terminal, and a downlink (DL or downlink) .

무선통신시스템에 적용되는 다중 접속 기법에는 제한이 없다. CDMA(Code Division Multiple Access), TDMA(Time Division Multiple Access), FDMA(Frequency Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA와 같은 다양한 다중 접속 기법을 사용할 수 있다. 본 발명의 일 실시예는 GSM, WCDMA, HSPA를 거쳐 LTE 및 LTE-advanced로 진화하는 비동기 무선통신과, CDMA, CDMA-2000 및 UMB로 진화하는 동기식 무선 통신 분야 등의 자원할당에 적용될 수 있다. 본 발명은 특정한 무선통신 분야에 한정되거나 제한되어 해석되어서는 아니 되며, 본 발명의 사상이 적용될 수 있는 모든 기술분야를 포함하는 것으로 해석되어야 할 것이다.There are no restrictions on multiple access schemes applied to wireless communication systems. Various multiple access schemes such as Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Orthogonal Frequency Division Multiple Access (OFDMA), OFDM-FDMA, OFDM- Can be used. An embodiment of the present invention can be applied to asynchronous wireless communication that evolves into LTE and LTE-advanced via GSM, WCDMA, and HSPA, and synchronous wireless communication that evolves into CDMA, CDMA-2000, and UMB. The present invention should not be construed as limited to or limited to a specific wireless communication field and should be construed as including all technical fields to which the idea of the present invention can be applied.

상향링크 전송 및 하향링크 전송은 서로 다른 시간을 사용하여 전송되는 TDD(Time Division Duplex) 방식이 사용될 수 있고, 또는 서로 다른 주파수를 사용하여 전송되는 FDD(Frequency Division Duplex) 방식이 사용될 수 있다.A TDD (Time Division Duplex) scheme in which uplink and downlink transmissions are transmitted using different time periods, or an FDD (Frequency Division Duplex) scheme in which they are transmitted using different frequencies can be used.

또한, LTE, LTE-advanced와 같은 시스템에서는 하나의 반송파 또는 반송파 쌍을 기준으로 상향링크와 하향링크를 구성하여 규격을 구성한다. 상향링크와 하향링크는, PDCCH(Physical Downlink Control CHannel), PCFICH(Physical Control Format Indicator CHannel), PHICH(Physical Hybrid ARQ Indicator CHannel), PUCCH(Physical Uplink Control CHannel), EPDCCH(Enhanced Physical Downlink Control CHannel) 등과 같은 제어채널을 통하여 제어정보를 전송하고, PDSCH(Physical Downlink Shared CHannel), PUSCH(Physical Uplink Shared CHannel) 등과 같은 데이터채널로 구성되어 데이터를 전송한다.In systems such as LTE and LTE-advanced, a standard is constructed by configuring uplink and downlink based on a single carrier or carrier pair. The uplink and the downlink are divided into a Physical Downlink Control Channel (PDCCH), a Physical Control Format Indicator CHannel (PCFICH), a Physical Hybrid ARQ Indicator CHannel, a Physical Uplink Control CHannel (PUCCH), an Enhanced Physical Downlink Control Channel (EPDCCH) Transmits control information through the same control channel, and is configured with data channels such as PDSCH (Physical Downlink Shared CHannel) and PUSCH (Physical Uplink Shared CHannel), and transmits data.

한편 EPDCCH(enhanced PDCCH 또는 extended PDCCH)를 이용해서도 제어 정보를 전송할 수 있다.On the other hand, control information can also be transmitted using EPDCCH (enhanced PDCCH or extended PDCCH).

본 명세서에서 셀(cell)은 송수신 포인트로부터 전송되는 신호의 커버리지 또는 송수신 포인트(transmission point 또는 transmission/reception point)로부터 전송되는 신호의 커버리지를 가지는 요소 반송파(component carrier), 그 송수신 포인트 자체를 의미할 수 있다.In this specification, a cell refers to a component carrier having a coverage of a signal transmitted from a transmission point or a transmission point or transmission / reception point of a signal transmitted from a transmission / reception point, and a transmission / reception point itself .

실시예들이 적용되는 무선통신 시스템은 둘 이상의 송수신 포인트들이 협력하여 신호를 전송하는 다중 포인트 협력형 송수신 시스템(coordinated multi-point transmission/reception System; CoMP 시스템) 또는 협력형 다중 안테나 전송방식(coordinated multi-antenna transmission system), 협력형 다중 셀 통신시스템일 수 있다. CoMP 시스템은 적어도 두 개의 다중 송수신 포인트와 단말들을 포함할 수 있다.The wireless communication system to which the embodiments are applied may be a coordinated multi-point transmission / reception system (CoMP system) or a coordinated multi-point transmission / reception system in which two or more transmission / reception points cooperatively transmit signals. antenna transmission system, or a cooperative multi-cell communication system. A CoMP system may include at least two multipoint transmit and receive points and terminals.

다중 송수신 포인트는 기지국 또는 매크로 셀(macro cell, 이하 'eNB'라 함)과, eNB에 광케이블 또는 광섬유로 연결되어 유선 제어되는, 높은 전송파워를 갖거나 매크로 셀영역 내의 낮은 전송파워를 갖는 적어도 하나의 RRH일 수도 있다.The multi-point transmission / reception point includes a base station or a macro cell (hereinafter referred to as 'eNB'), and at least one mobile station having a high transmission power or a low transmission power in a macro cell area, Lt; / RTI >

이하에서 하향링크(downlink)는 다중 송수신 포인트에서 단말로의 통신 또는 통신 경로를 의미하며, 상향링크(uplink)는 단말에서 다중 송수신 포인트로의 통신 또는 통신 경로를 의미한다. 하향링크에서 송신기는 다중 송수신 포인트의 일부분일 수 있고, 수신기는 단말의 일부분일 수 있다. 상향링크에서 송신기는 단말의 일부분일 수 있고, 수신기는 다중 송수신 포인트의 일부분일 수 있다.Hereinafter, a downlink refers to a communication or communication path from a multipoint transmission / reception point to a terminal, and an uplink refers to a communication or communication path from a terminal to a multiple transmission / reception point. In the downlink, a transmitter may be a part of a multipoint transmission / reception point, and a receiver may be a part of a terminal. In the uplink, the transmitter may be a part of the terminal, and the receiver may be a part of multiple transmission / reception points.

이하에서는 PUCCH, PUSCH, PDCCH, EPDCCH 및 PDSCH 등과 같은 채널을 통해 신호가 송수신되는 상황을 'PUCCH, PUSCH, PDCCH, EPDCCH 및 PDSCH를 전송, 수신한다'는 형태로 표기하기도 한다.Hereinafter, a situation in which a signal is transmitted / received through a channel such as PUCCH, PUSCH, PDCCH, EPDCCH, and PDSCH is expressed as 'PUCCH, PUSCH, PDCCH, EPDCCH and PDSCH are transmitted and received'.

또한 이하에서는 PDCCH를 전송 또는 수신하거나 PDCCH를 통해서 신호를 전송 또는 수신한다는 기재는 EPDCCH를 전송 또는 수신하거나 EPDCCH를 통해서 신호를 전송 또는 수신하는 것을 포함하는 의미로 사용될 수 있다.In the following description, an indication that a PDCCH is transmitted or received or a signal is transmitted or received via a PDCCH may be used to mean transmitting or receiving an EPDCCH or transmitting or receiving a signal through an EPDCCH.

즉, 이하에서 기재하는 물리 하향링크 제어채널은 PDCCH를 의미하거나, EPDCCH를 의미할 수 있으며, PDCCH 및 EPDCCH 모두를 포함하는 의미로도 사용된다.That is, the physical downlink control channel described below may mean a PDCCH, an EPDCCH, or a PDCCH and an EPDCCH.

또한, 설명의 편의를 위하여 PDCCH로 설명한 부분에도 본 발명의 일 실시예인 EPDCCH를 적용할 수 있으며, EPDCCH로 설명한 부분에도 본 발명의 일 실시예로 PDCCH를 적용할 수 있다.Also, for convenience of description, the PDCCH, which is an embodiment of the present invention, may be applied to the PDCCH, and the PDCCH may be applied to the portion described with the EPDCCH.

한편, 이하에서 기재하는 상위계층 시그널링(High Layer Signaling)은 RRC 파라미터를 포함하는 RRC 정보를 전송하는 RRC 시그널링을 포함한다.Meanwhile, the High Layer Signaling described below includes RRC signaling for transmitting RRC information including RRC parameters.

eNB은 단말들로 하향링크 전송을 수행한다. eNB은 유니캐스트 전송(unicast transmission)을 위한 주 물리 채널인 물리 하향링크 공유채널(Physical Downlink Shared Channel, PDSCH), 그리고 PDSCH의 수신에 필요한 스케줄링 등의 하향링크 제어 정보 및 상향링크 데이터 채널(예를 들면 물리 상향링크 공유채널(Physical Uplink Shared Channel, PUSCH))에서의 전송을 위한 스케줄링 승인 정보를 전송하기 위한 물리 하향링크 제어채널(Physical Downlink Control Channel, PDCCH)을 전송할 수 있다. 이하에서는, 각 채널을 통해 신호가 송수신 되는 것을 해당 채널이 송수신되는 형태로 기재하기로 한다.
The eNB performs downlink transmission to the UEs. The eNB includes a physical downlink shared channel (PDSCH) as a main physical channel for unicast transmission, downlink control information such as scheduling required for reception of a PDSCH, A physical downlink control channel (PDCCH) for transmitting scheduling grant information for transmission in a Physical Uplink Shared Channel (PUSCH). Hereinafter, the transmission / reception of a signal through each channel will be described in a form in which the corresponding channel is transmitted / received.

[Latency reduction in RAN1][Latency reduction in RAN1]

Latency reduction Study Item은 RAN plenary #69 회의에서 승인되었다[1]. Latency reduction의 주요 목적은 TCP throughput을 행상시키기 위해서 보다 짧은 TTI 운영을 규격화하는 것이다[2]. 이를 위해 RAN2에서는 이미 short TTI에 대한 성능 검증을 수행하였다[2].The Latency reduction Study Item was approved at RAN plenary # 69 meeting [1]. The main purpose of latency reduction is to standardize shorter TTI operations to foster TCP throughput [2]. For this, performance verification for short TTI has already been performed in RAN2 [2].

아래와 같은 범위에서 RAN1에 관계된 potential impact들과 study를 수행한다[1]:Potential impacts and studies related to RAN1 are performed in the following ranges [1]:

o Assess specification impact and study feasibility and performance of TTI lengths between 0.5ms and one OFDM symbol, taking into account impact on reference signals and physical layer control signalingo Assessment of impact and performance of TTI lengths between 0.5ms and one OFDM symbols, taking into account the impact of reference signals and physical layer control signaling

o backwards compatibility shall be preserved (thus allowing normal operation of pre-Rel 13 UEs on the same carrier);o backwards compatibility shall be preserved (thus allowing normal operation of pre-Rel 13 UEs on the same carrier);

Latency reduction can be achieved by the following physical layer techniques:Latency reduction can be achieved by the following physical layer techniques:

- short TTI- short TTI

- reduced processing time in implementation- reduced processing time in implementation

- new frame structure of TDD
- new frame structure of TDD

3GPP RAN WG1#84회의에서 추가적으로 합의된 사항은 아래와 같다.
Additional agreements at the 3GPP RAN WG1 # 84 meeting are as follows.

Agreements:Agreements:

● Following design assumptions are considered:● Following design assumptions are considered:

o No shortened TTI spans over subframe boundary    o No shortened TTI spans over subframe boundary

o At least for SIBs and paging, PDCCH and legacy PDSCH are used for scheduling    o At least for SIBs and paging, PDCCH and legacy PDSCH are used for scheduling

● The potential specific impacts for the followings are studied ● The potential specific impacts for the followings are studied

o UE is expected to receive a sPDSCH at least for downlink unicast    o UE is expected to receive an SDSCH at least for downlink unicast

■ sPDSCH refers PDSCH carrying data in a short TTI         ■ sPDSCH refers PDSCH carrying data in a short TTI

o UE is expected to receive PDSCH for downlink unicasto UE is expected to receive PDSCH for downlink unicast

■ FFS whether a UE is expected to receive both sPDSCH and PDSCH for downlink unicast simultaneously        ■ FFS whether a UE is expected to receive both sPDSCH and PDSCH for downlink unicast simultaneously

o FFS: The number of supported short TTIso FFS: The number of supported short TTIs

o If the number of supported short TTIs is more than one,
o If the number of supported short TTIs is more than one,

Agreements:Agreements:

● Following design assumptions are used for the study● Following design assumptions are used for the study

o From eNB perspective, existing non-sTTI and sTTI can be FDMed in the same subframe in the same carrier   o From eNB perspective, existing non-sTTI and sTTI can be FDMed in the same subframe in the same carrier

■ FFS: Other multiplexing method(s) with existing non-sTTI for UE supporting latency reduction features
■ FFS: Other multiplexing method (s) with existing non-sTTI for UE supporting latency reduction features

Agreements:Agreements:

● In this study, following aspects are assumed in RAN1.● In this study, the following aspects are assumed in RAN1.

o PSS/SSS, PBCH, PCFICH and PRACH, Random access, SIB and Paging procedures are not modified.   o PSS / SSS, PBCH, PCFICH and PRACH, Random access, SIB and Paging procedures are not modified.

● Following aspects are further studied in the next RAN1 meeting● Following aspects are further studied in the next RAN1 meeting

o Note: But the study is not limited to them.  o Note: The study is not limited to them.

o Design of sPUSCH DM-RS  o Design of sPUSCH DM-RS

■ Alt.1: DM-RS symbol shared by multiple short-TTIs within the same subframe     ■ Alt.1: DM-RS symbol shared by multiple short-TTIs within the same subframe

■ Alt.2: DM-RS contained in each sPUSCH      ■ Alt.2: DM-RS contained in each sPUSCH

o HARQ for sPUSCH   o HARQ for SPUSCH

■ Whether/how to realize asynchronous and/or synchronous HARQ      ■ Whether / how to realize asynchronous and / or synchronous HARQ

o sTTI operation for Pcell and/or SCells by (e)CA in addition to non-(e)CA case
o The sTTI operation for Pcell and / or SCells by (e) CA in addition to non- (e) CA case

기본적으로 Average down-link latency calculation에서는 아래의 절차를 따라 latency를 계산하게 된다[3].Basically, in the average down-link latency calculation, the latency is calculated according to the following procedure [3].

Following the same approach as in section B.2.1 in 3GPP TR 36.912, the LTE U-plane one-way latency for a scheduled UE consists of the fixed node processing delays and 1 TTI duration for transmission, as shown in Figure 1 below. Assuming the processing times can be scaled by the same factor of TTI reduction keeping the same number of HARQ processes, the one way latency can be calculated asThe following is the same approach as in section B.2.1 in 3GPP TR 36.912, the LTE U-plane one-way latency for a scheduled UE consisting of fixed node processing delays and 1 TTI duration for transmission as shown in Figure 1 below. Assuming the processing times can be scaled by the same factor of TTI reduction keeping the same number of HARQ processes, the one way latency can be calculated as

D = 1.5 TTI (eNB processing and scheduling) + 1 TTI (transmission) + 1.5 TTI (UE processing) + n*8 TTI (HARQ retransmissions)D = 1.5 TTI + 1 TTI + 1.5 TTI UE + n * 8 TTI (HARQ retransmissions)

= (4 + n*8) TTI.    = (4 + n * 8) TTI.

Considering a typical case where there would be 0 or 1 retransmission, and assuming error probability of the first transmission to be p, the delay is given byConsidering a typical case where there would be 0 or 1 retransmission, and assuming error probability of the first transmission to be p, the delay is given by

D = (4 + p*8) TTI.D = (4 + p * 8) TTI.

So, for 0% BLER, D = 4 * TTI,So, for 0% BLER, D = 4 * TTI,

And for 10% BLER, D = 4.8 * TTI.
And for 10% BLER, D = 4.8 * TTI.

Average Average UEUE initiated UL transmission latency calculation initiated UL transmission latency calculation

Assume UE is in connected/synchronized mode and wants to do UL transmission, e.g., to send TCP ACK. Following table 1 shows the steps and their corresponding contribution to the UL transmission latency. To be consistent in comparison of DL and UL, we add the eNB processing delay in the UL after the UL data is received by the eNB (step 7).Assume UE is in connected / synchronized mode and wants to do UL transmission, e.g., send to TCP ACK. Following table 1 shows the steps and their corresponding contribution to the UL transmission latency. To be consistent in comparison of DL and UL, we add the eNB processing delay in the UL after the UL data is received by the eNB (step 7).

Figure pat00001
Figure pat00001

In the table 1 above, steps 1-4 and half delay of step 5 is assumed to be due to SR, and rest is assumed for UL data transmission in values shown in Table 4
In the table 1 above, steps 1-4 and half of the step 5 are assumed to be due to SR, and the rest is assumed to be shown in Table 4

Resource mapping of short Resource mapping of short TTITTI [3] [3]

In Figure 2 the resource map above is the legacy resource mapping per PRB in one subframe, considering 2 Antenna ports and 2 OFDM symbols control field. In Figure 2 the resource map below is the short TTI resource mapping, considering 2 OFDM symbols used for the control field in order to ensure the backward compatibility. The loss rates (Llegacy, e.g. 5% - 50%) of the PHY layer in short TTI duration are assumed.
In Figure 2 the resource map above is the legacy resource mapping per PRB in one subframe, considering 2 Antenna ports and 2 OFDM symbols control field. In Figure 2 the resource map below is the short TTI resource mapping, considering 2 OFDM symbols used for the control field in order to ensure the backward compatibility. The loss rates (L legacy , eg 5% - 50%) of the PHY layer are short TTI duration are assumed.

TBS Calculation of short TBS Calculation of short TTITTI

According to the resource mapping and the TBS calculation formula given above, the loss rate of PHY layer for legacy PDSCH is calculated as follows:According to the present invention, the PDSCH is calculated as follows:

Figure pat00002
Figure pat00002

For different short TTI duration, The TBS of short TTI PDSCH is calculated as the following table 2:For different short TTI duration, The TBS of short TTI PDSCH is calculated as following table 2:

Figure pat00003
Figure pat00003

상기와 같이 short TTI에 대한 Physical layer에 대한 연구가 진행 중이며, sPDSCH 수신에 대한 Ack/Nack 피드백을 전달하는 sPUCCH에 대한 구체적인 설정 및 전송 방법이 부재되어 있다.As described above, studies on the physical layer for the short TTI are underway, and there is no specific setting and transmission method for the sPUCCH for transmitting the Ack / Nack feedback for the sPDSCH reception.

본 발명에서는 short TTI 프레임을 위한 4 심볼 기반 sPUCCH(short TTI based PUCCH) 설정 및 구체적인 전송 방법을 제시한다.The present invention proposes a 4-symbol-based short TTI based PUCCH (pUCCH) setting and a concrete transmission method for a short TTI frame.

기존의 LTE/LTE-A프레임 구조(TTI=1ms=14 OFDM symbols)와 달리 short TTI는 1, 4, 7 symbols들의 셋으로 구성될 수 있다. 이때 short TTI 프레임 구조 기반 sPDSCH의 A/N 피드백을 전달하는 sPUCCH에 대한 설정도 기존 legacy PUCCH와 달라져야 한다. 이것은 기존 PUCCH가 14 OFDM 심볼을 기반으로 결정되는 것에 반해, 이보다 적은 수의 심볼로 정의되는 sTTI 기반 sPUCCH에서는 기존의 A/N multiplexing 방안을 그대로 적용할 수 없기 때문이다.Unlike the existing LTE / LTE-A frame structure (TTI = 1ms = 14 OFDM symbols), short TTI can be composed of 1, 4, and 7 symbols. At this time, the setting for the sPUCCH that carries the A / N feedback of the sPDSCH based on the short TTI frame structure must be different from the legacy PUCCH. This is because the existing PUCCH is determined based on 14 OFDM symbols, whereas the existing A / N multiplexing scheme can not be applied to the sTTI based sPUCCH defined with fewer number of symbols.

구체적인 Work Item scope에서는 기존의 LTE/LTE-A프레임 구조(TTI=1ms=14 OFDM symbols)와 달리 short TTI는 상향 링크는 2-symbol, 4-symbol, 또는 1 slot(=7-symbol)으로 구성될 수 있다. Legacy TTI에서는 도 3과 같이 slot 기반의 PUCCH hopping을 수행하게 된다. 이러한 PUSCH hopping은 PUCCH의 주파수 다이버시티를 증가시킴으로써 결과적으로 PUCCH의 coverage를 증가시키게 된다. 이것은 기본적으로 동일 신호 또는 하나의 정보 시퀀스가 서로 다른 주파수 대역을 거쳐 전송됨으로써 다이버시티를 얻을 수 있는 이득이 존재하기 때문이다.In the specific work item scope, unlike the existing LTE / LTE-A frame structure (TTI = 1ms = 14 OFDM symbols), short TTI consists of 2-symbol, 4-symbol or 1 slot (= 7-symbol) . In the legacy TTI, slot-based PUCCH hopping is performed as shown in FIG. This PUSCH hopping increases the frequency diversity of the PUCCH and consequently increases the coverage of the PUCCH. This is because basically the same signal or one information sequence is transmitted through different frequency bands, so that there is a gain to obtain diversity.

그러나 sTTI 기반 sPUCCH에서는 심볼 수의 제한으로 sPUCCH의 반복 전송 수가 제약되고, 결과적으로 coverage 제약 및 송수신 성능(예, BER, BLER) 등이 낮아질 수 있다.However, in the sTTI-based sPUCCH, the number of repeated transmissions of the sPUCCH is limited due to the limitation of the number of symbols. As a result, the coverage constraint and transmission / reception performance (eg, BER, BLER) may be lowered.

특히 본 제안에서는 short TTI 구조에서도 4 심볼 기반 sTTI 기반의 partially overlapping 기반 sPUCCH를 정의하는 방법을 제안한다.
In this proposal, we propose a method to define a partially overlapping based sPUCCH based on a 4-symbol based sTTI even in a short TTI structure.

방안 1. 인접 Method 1. Adjacent sTTIsTTI 간 참조 신호가 부분적으로 Overlapping 되는  The reference signal is partially overlapped sPUCCHsPUCCH 자원을 정의한다. Define resources.

본 제안에서는 기존의 TTI(Transmit Time Interval) 내에 정의되었던 물리 채널을 인접 sTTI간 참조 신호 간에 일부 중첩되는 구조의 새로운 sPUCCH 설계 방법을 제안한다.In this proposal, we propose a new sPUCCH design method with a structure in which the physical channels defined in the existing TTI (Transmit Time Interval) are partially overlapped among the reference signals between adjacent sTTIs.

본 제안에서는 특히 심볼 수가 3 또는 4가 되는 sTTI 구조 기반의 sPUCCH 설계에 직접적인 적용이 가능하다. 특히, 4 심볼 sTTI 구조에서는 기존의 legacy PUCCH 구조를 그대로 재사용이 가능하기 때문에, sPUCCH를 새로운 참조 신호 및 데이터 채널 영역 정의가 필요하지 않다.In this proposal, it is possible to apply directly to the sPTCH structure based on the sTTI structure, in which the number of symbols is 3 or 4. In particular, since the existing legacy PUCCH structure can be reused as it is in the 4-symbol sTTI structure, a new reference signal and a data channel region definition for the sPUCCH are not required.

예를 들어, 도 4와 같이 단위 슬롯 구조에는 Normal CP 기준으로 총 7개의 OFDM 심볼이 존재하게 된다. 따라서 한 개의 참조 신호를 중첩하는 구조를 선택하면 도 4와 같이 4개의 OFDM 심볼이 존재하는 구조로 sPUCCH를 구성할 수 있다. 이를 통해 슬롯 단위로 총 2개의 sTTI 영역이 나누어지고, 각각 sPUCCH가 정의될 수 있다. 본 제안에서는 해당 중첩되는 참조 신호 영역을 조정함으로써 flexible한 sPUCCH 구성이 가능하게 된다. 즉, 부분적으로 중첩되는 sPUCCH의 참조 신호 영역을 정의함으로써 기존의 슬롯 단위별로 Multiple sPUCCH 설정이 가능하게 된다.
For example, as shown in FIG. 4, a total of seven OFDM symbols exist in the unit slot structure based on the Normal CP standard. Therefore, if a structure for overlapping one reference signal is selected, the sPUCCH can be configured with a structure in which four OFDM symbols exist as shown in FIG. Through this, a total of two sTTI regions are divided in units of slots, and sPUCCHs can be defined, respectively. In this proposal, flexible sPUCCH configuration is possible by adjusting the overlapping reference signal region. That is, by defining the reference signal region of the partially overlapped sPUCCH, multiple sPUCCH can be set for each slot unit.

실시예Example 1-1. 3- 1-1. 3- 심볼symbol 데이터(A/N 전송) + 1  Data (A / N transmission) + 1 심볼symbol 참조 신호 ( The reference signal ( sPUCCHsPUCCH 채널 추정) Channel estimation)

도 4와 같은 구조로 sPUCCH가 정의된다. 여기에서 sPUCCH의 A/N capability를 참조 신호의 총 수에 연관되어 있는데, 단일 심볼이기 때문에, 단일 RB(12 subcarriers)를 기준으로 전체 참조 신호의 직교 자원은 ZC 시퀀스를 cyclic shift 수 'nCS=12', Orthogonal code 수 'nOC=1'이 된다(도 5 참조).SPUCCH is defined as shown in FIG. Since the A / N capability of the sPUCCH is related to the total number of reference signals, the orthogonal resource of the entire reference signal based on a single RB (12 subcarriers) is a cyclic shift number 'n CS = 12 ', and the orthogonal code number' n OC = 1 '(see FIG. 5).

따라서 단일 참조 신호 심볼 자원에는 Orthogonal Cover Code sequence (=spreading 코드)가 정의될 수 없기 때문에, 도 5와 같이 기존의 Length=3의 OCC 코드를 사용한 A/N 전송 구간과 단일 심볼 참조 신호가 존재하는 구조가 된다. 결국 여기에서는 두 개의 sPUCCH가 단일 참조 신호를 공유하기 때문에 sPUCCH별 capability는 nCS/2=6이 된다. A/N data 심볼 구간에 사용되는 Orthogonal sequence는 표 3과 같이 기존의 3GPP TS 36.211에 정의된 시퀀스 셋을 그대로 재사용할 수 있으며, 해당 정의된 시퀀스 중 한 개를 사용할 수도 있다. 또는 ZC 시퀀스의 cyclic shift(CS)와 연계하여 표 4, 표 5와 같이 미리 정의한 패턴에 따라 사용할 수 있다. Therefore, since an orthogonal cover code sequence (= spreading code) can not be defined in a single reference signal symbol resource, an A / N transmission interval and a single symbol reference signal using an existing OCC code of Length = 3 exist Structure. As a result, since two sPUCCHs share a single reference signal, the sPUCCH-specific capability is n CS / 2 = 6. The orthogonal sequence used in the A / N data symbol interval can be reused as the sequence set defined in the existing 3GPP TS 36.211 as shown in Table 3, and one of the defined sequences can be used. Or the cyclic shift (CS) of the ZC sequence according to a predefined pattern as shown in Tables 4 and 5.

Figure pat00004
Figure pat00004

Figure pat00005
Figure pat00005

Figure pat00006
Figure pat00006

실시예Example 1-2. 2- 1-2. 2- 심볼symbol 데이터(A/N 전송) + 3  Data (A / N transmission) + 3 심볼symbol 참조 신호 ( The reference signal ( sPUCCH채널sPUCCH channel 추정) calculation)

도 7과 같은 구조로 sPUCCH가 정의된다. 여기에서 sPUCCH의 A/N capability를 참조 신호의 총 수에 연관되어 있는데, 단일 심볼이기 때문에, 단일 RB(12 subcarriers)를 기준으로 전체 참조 신호의 직교 자원은 ZC 시퀀스를 cyclic shift 수 'nCS=12', Orthogonal code 수 'nOC X nCS = 36'이 된다(도 7 참조).SPUCCH is defined as shown in FIG. Since the A / N capability of the sPUCCH is related to the total number of reference signals, the orthogonal resource of the entire reference signal based on a single RB (12 subcarriers) is a cyclic shift number 'n CS = 12 ', and the orthogonal code number' n OC X n CS = 36 '(see FIG. 7).

이것은 3 심볼로 구성된 overlapping DMRS에 Length=3 OCC 코드가 적용되었기 때문이다. 반면 단일 sPUCCH당 A/N 데이터를 전송하는 심볼 수는 2가 되기 때문에 결국 Length=2의 OCC 코드가 사용될 수 있다. 결국 여기에서는 두 개의 sPUCCH가 참조 신호를 공유하기 때문에 sPUCCH별 capability는 nOC X nCS /2=18이 된다. 참조 신호 심볼 구간에는 표 6과 같이, A/N data 심볼 구간에 사용되는 Orthogonal sequence는 표 7과 같이 기존의 3GPP TS 36.211에 정의된 시퀀스 셋의 일부를 그대로 재사용할 수 있다. This is because the Length = 3 OCC code is applied to the overlapping DMRS consisting of 3 symbols. On the other hand, since the number of symbols for transmitting A / N data per single s pUCCH is 2, an OCC code of length = 2 can be used. As a result, since the two sPUCCHs share a reference signal, the sPUCCH-specific capability is n OC X n CS / 2 = 18. As shown in Table 6, the Orthogonal sequence used in the A / N data symbol interval can be reused as part of the sequence set defined in the existing 3GPP TS 36.211 as shown in Table 7. [

Figure pat00007
Figure pat00007

Figure pat00008
Figure pat00008

또는 DMRS와 데이터 직교 자원을 분할하기 위해서 DMRS가 부분적으로 중첩된 sPUCCH간에 균등한 A/N capability를 설정하거나, 특정 sPUCCH에 A/N capability를 가중치를 두어 설정할 수도 있다.Or, to divide the data orthogonal resource with the DMRS, an equal A / N capability may be set between sPUCCHs partially overlapped by the DMRS, or a certain sPUCCH may be set with a weighted A / N capability.

데이터 채널과 DMRS 사이의 Orthogonal sequence와 cyclic shift pairing 관계는 아래와 같이 분류할 수 있다.
The orthogonal sequence and the cyclic shift pairing relationship between the data channel and the DMRS can be classified as follows.

실시 예 1-2-1) 인접 Example 1-2-1) Adjacent sPUCCH간between sPUCCH capability 불균등 분할 경우 If the capability is unevenly divided

해당 경우에서는 특정 sPUCCH에 A/N multiplexing capability가 가중치를 부여된다. 이러한 경우에는 특정 cyclic shift나 OCC를 특정 sPUCCH에 많이 할당함으로써 구현이 가능하다. 예를 들어 OCC set을 특정 sPUCCH에 더 많이 할당함으로써 이러한 구현이 가능하다(표 9).In this case, the A / N multiplexing capability is weighted to a specific sPUCCH. In this case, it is possible to implement a specific cyclic shift or OCC by assigning a lot to a specific sPUCCH. This is possible, for example, by allocating more OCC sets to specific sPUCCHs (Table 9).

Figure pat00009
Figure pat00009

Figure pat00010
Figure pat00010

실시 예 1-2-2) 인접 Example 1-2-2) Adjacent sPUCCH간between sPUCCH capability 균등 분할 경우 In case of capability equalization

해당 경우에서는 인접 sPUCCH간에 A/N multiplexing capability를 균등하게 부여하게 된다. 이러한 경우에는 특정 cyclic shift나 OCC 조합을 통해서 동일한 직교 자원을 할당하는 과정이 필수적이다. 예를 들어 OCC set이나 cyclic shift간 linkage를 미리 정의된 방법에 따라 부여함으로써 이러한 구현이 가능하다(표 10).In this case, the A / N multiplexing capability is uniformly given between adjacent sPUCCHs. In this case, it is necessary to allocate the same orthogonal resource through a specific cyclic shift or OCC combination. This is possible, for example, by assigning a linkage between OCC set and cyclic shift according to a predefined method (Table 10).

Figure pat00011
Figure pat00011

본 발명에서는 sTTI 기반 overlapping sPUCCH 설정 및 전송에 대한 구체적인 전달 방법에 대해 기술하였으며, 해당 방법은 유사 시그널 및 채널에 그 원리가 그대로 적용할 수 있으며, new frame 구조에만 그 적용이 제한되지 않는다.
The present invention describes a concrete transmission method for setting and transmitting a sTTI-based overlapping s pUCCH. The method can be applied to similar signals and channels as it is, and its application is not limited to the new frame structure.

도 9는 또 다른 실시예에 의한 기지국의 구성을 보여주는 도면이다.FIG. 9 is a diagram illustrating a configuration of a base station according to another embodiment.

도 9를 참조하면, 또 다른 실시예에 의한 기지국(1000)은 제어부(1010)과 송신부(1020), 수신부(1030)을 포함한다.9, a base station 1000 according to another embodiment includes a control unit 1010, a transmission unit 1020, and a reception unit 1030.

제어부(1010)는 전술한 본 발명에 따라 short TTI 프레임에서 인접 sTTI 간 참조 신호가 부분적으로 Overlapping되는 sPUCCH 자원을 구성함에 따른 전반적인 기지국의 동작을 제어한다.The controller 1010 controls the overall operation of the base station according to the above-described present invention, in which the reference signal between the adjacent sTTIs in the short TTI frame constitutes the sPUCCH resource partially overlapped.

송신부(1020)와 수신부(1030)는 전술한 본 발명을 수행하기에 필요한 신호나 메시지, 데이터를 단말과 송수신하는데 사용된다.The transmitting unit 1020 and the receiving unit 1030 are used to transmit and receive signals, messages, and data necessary for carrying out the present invention to and from the terminal.

도 10은 또 다른 실시예에 의한 사용자 단말의 구성을 보여주는 도면이다.10 is a diagram illustrating a configuration of a user terminal according to another embodiment of the present invention.

도 10을 참조하면, 또 다른 실시예에 의한 사용자 단말(1100)은 수신부(1110) 및 제어부(1120), 송신부(1130)을 포함한다.10, a user terminal 1100 according to another embodiment includes a receiving unit 1110, a control unit 1120, and a transmitting unit 1130.

수신부(1110)는 기지국으로부터 하향링크 제어정보 및 데이터, 메시지를 해당 채널을 통해 수신한다.The receiving unit 1110 receives downlink control information, data, and messages from the base station through the corresponding channel.

또한 제어부(1120)는 전술한 본 발명에 따라 short TTI 프레임에서 인접 sTTI 간 참조 신호가 부분적으로 Overlapping되는 sPUCCH 자원을 구성함에 따른 전반적인 단말의 동작을 제어한다.In addition, the controller 1120 controls the overall operation of the SS according to the present invention, which constitutes the sPUCCH resource in which the neighboring sTTI reference signals are partially overlapped in the short TTI frame.

송신부(1130)는 기지국에 상향링크 제어정보 및 데이터, 메시지를 해당 채널을 통해 전송한다.The transmitter 1130 transmits uplink control information, data, and a message to the base station through the corresponding channel.

전술한 실시예에서 언급한 표준내용 또는 표준문서들은 명세서의 설명을 간략하게 하기 위해 생략한 것으로 본 명세서의 일부를 구성한다. 따라서, 위 표준내용 및 표준문서들의 일부의 내용을 본 명세서에 추가하거나 청구범위에 기재하는 것은 본 발명의 범위에 해당하는 것으로 해석되어야 한다.The standard content or standard documents referred to in the above-mentioned embodiments constitute a part of this specification, for the sake of simplicity of description of the specification. Therefore, it is to be understood that the content of the above standard content and some of the standard documents is added to or contained in the scope of the present invention, as falling within the scope of the present invention.

AppendixAppendix

[1] Ericsson, Huawei, "New SI proposal Study on Latency reduction techniques for LTE", RP-150465, Shanghai, China, March 9-12, 2015.[1] Ericsson, Huawei, "New SI proposal Study on Latency Reduction Techniques for LTE", RP-150465, Shanghai, China, March 9-12, 2015.

[2] R2-155008, "TR 36.881 v0.4.0 on Study on Latency reduction techniques for LTE" , Ericsson (Rapporteur)[2] R2-155008, "TR 36.881 v0.4.0 on Study Latency reduction techniques for LTE", Ericsson (Rapporteur)

[3] R1-160927, "TR 36.881-v0.5.0 on Study on Latency reduction techniques for LTE" , Ericsson (Rapporteur)[3] R1-160927, "TR 36.881-v0.5.0 on Study Latency Reduction Techniques for LTE", Ericsson (Rapporteur)

이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
The foregoing description is merely illustrative of the technical idea of the present invention and various changes and modifications may be made by those skilled in the art without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are intended to illustrate rather than limit the scope of the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The scope of protection of the present invention should be construed according to the following claims, and all technical ideas within the scope of equivalents should be construed as falling within the scope of the present invention.

Claims (1)

Short TTI 프레임에서 부분 중첩 참조 신호 기반 short PUCCH 설계 방법에 있어서,
(2N+1)개의 OFDM 심볼로 구성된 슬롯에서 제1 OFDM 심볼부터 제(N+1) OFDM 심볼까지 제1 sPUCCH를 구성하는 단계; 및
상기 제(N+1) OFDM 심볼이 중첩되는 구조로 하여 상기 제(N+1) OFDM 심볼부터 제(2N+1) OFDM 심볼까지 제2 sPUCCH를 구성하는 단계를 포함하는 방법.
In a short overlapping reference signal based short PUCCH design method in a short TTI frame,
Constructing a first sPUCCH from a first OFDM symbol to an (N + 1) -th OFDM symbol in a slot composed of (2N + 1) OFDM symbols; And
And configuring a second sPUCCH from the (N + 1) th OFDM symbol to the (2N + 1) th OFDM symbol with the structure that the (N + 1) th OFDM symbol is superposed.
KR1020160099697A 2016-08-04 2016-08-04 Apparatus and method of short PUCCH design based on the partially overlapped DMRS in a short TTI frame structure KR20180016688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160099697A KR20180016688A (en) 2016-08-04 2016-08-04 Apparatus and method of short PUCCH design based on the partially overlapped DMRS in a short TTI frame structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160099697A KR20180016688A (en) 2016-08-04 2016-08-04 Apparatus and method of short PUCCH design based on the partially overlapped DMRS in a short TTI frame structure

Publications (1)

Publication Number Publication Date
KR20180016688A true KR20180016688A (en) 2018-02-19

Family

ID=61387558

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160099697A KR20180016688A (en) 2016-08-04 2016-08-04 Apparatus and method of short PUCCH design based on the partially overlapped DMRS in a short TTI frame structure

Country Status (1)

Country Link
KR (1) KR20180016688A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220046672A1 (en) * 2018-12-14 2022-02-10 Nec Corporation Method, device and computer readable medium for multi-trp transmission

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220046672A1 (en) * 2018-12-14 2022-02-10 Nec Corporation Method, device and computer readable medium for multi-trp transmission

Similar Documents

Publication Publication Date Title
US10616916B2 (en) Methods for multiplexing scheduling request information and HARQ ACK/NACK information while transmitting and receiving PUCCH and apparatuses thereof
KR20180046358A (en) Apparatus and method of scheduling for NR(New Radio)
KR102120856B1 (en) Methods for transmitting and receiving uplink control channel in a short tti frame structure and apparatuses
KR102237525B1 (en) Methods of frame structure configuration and information transmission for short tti and apparatuses thereof
CN108702280B (en) Method for establishing uplink data channel based on shared demodulation reference signal and apparatus thereof
KR102186397B1 (en) Methods for transmitting channel state information in a short TTI frame structure and Apparatuses thereof
KR20150087795A (en) Method for transmitting and receiving downlink channel for mtc terminal and apparatus thereof
KR20180107417A (en) Apparatus and method of DL HARQ operation for new radio
KR102156670B1 (en) Methods for multiplexing scheduling request and HARQ ACK/NACK while transmitting and receiving PUCCH and Apparatuses thereof
KR102120976B1 (en) Method and apparatus for transmitting uplink channel in a short tti frame structure
KR20180016688A (en) Apparatus and method of short PUCCH design based on the partially overlapped DMRS in a short TTI frame structure
US20180270797A1 (en) Method of transmitting and receiving downlink channel in short tti frame structure and apparatus thereof
KR20170114071A (en) Apparatus and method of Ack/Nack linkage configuration corresponding sPUSCH in a short TTI frame structure
KR20180112214A (en) Apparatus and method of prevention of Ack/Nack collision corresponding DL data channel for processing time reduction
KR20190086314A (en) Apparatus and method of multi-level CQI reporting in URLLC for LTE
KR20180088568A (en) Apparatus and method of PUSCH scheduling considering PUSCH processing time in a short TTI frame structure
KR20190097598A (en) Apparatus and method of UL power control in URLLC
KR20180029180A (en) Apparatus and method of Ack/Nack linkage configuration considering sPDSCH processing time in a short TTI frame structure
KR20170131807A (en) Apparatus and method of scheduling legacy PUSCH and short PUSCH in a short TTI frame structure
KR20170108202A (en) Apparatus and method of resource allocation based on short TTI frame structure
KR20190086310A (en) Apparatus and method of legacy data channel multiplexing in URLLC for LTE
KR20180036909A (en) Methods for transmitting and receiving pusch for coverage enhancement and apparatuses thereof
CN108781154B (en) Method and apparatus for frame structure configuration and information transmission for short TTI
KR20180023136A (en) Apparatus and method of transmission and reception of DL control information for NR(New Radio)
KR20180046445A (en) Apparatus and method of DCI detection considering legacy PDCCH in a short TTI frame structure