KR20180112214A - Apparatus and method of prevention of Ack/Nack collision corresponding DL data channel for processing time reduction - Google Patents

Apparatus and method of prevention of Ack/Nack collision corresponding DL data channel for processing time reduction Download PDF

Info

Publication number
KR20180112214A
KR20180112214A KR1020170042167A KR20170042167A KR20180112214A KR 20180112214 A KR20180112214 A KR 20180112214A KR 1020170042167 A KR1020170042167 A KR 1020170042167A KR 20170042167 A KR20170042167 A KR 20170042167A KR 20180112214 A KR20180112214 A KR 20180112214A
Authority
KR
South Korea
Prior art keywords
processing time
pucch
ack
transmission
nack
Prior art date
Application number
KR1020170042167A
Other languages
Korean (ko)
Inventor
김기태
최우진
Original Assignee
주식회사 케이티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이티 filed Critical 주식회사 케이티
Priority to KR1020170042167A priority Critical patent/KR20180112214A/en
Publication of KR20180112214A publication Critical patent/KR20180112214A/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention provides a solving method for an ack/nack collision problem which occurs in n+3, n+4 PDSCH scheduling discussed in a processing time reduction field based on a TTI of 1 ms. In addition, provided are an ack/nack linkage setting method and a specific operating method of a PUCCH to prevent a multi-terminal from simultaneously colliding with uplink ack/nack for n+3, n+4 PDSCHs.

Description

sTTI를 위한 하향 데이터 채널 Ack/Nack 충돌 방지 방법 및 그 장치{Apparatus and method of prevention of Ack/Nack collision corresponding DL data channel for processing time reduction}[0001] The present invention relates to a method and a device for preventing downlink data channel Ack / Nack collision for a sTTI,

본 발명에서는 3GPP LTE/LTE-A 시스템에서 processing time 감소 서비스를 수행할 경우 PDSCH 전송 시에 발생하는 다중 사용자들 간의 Ack/Nack 충돌 방지 방법을 제안한다.The present invention proposes a method for preventing Ack / Nack collision between multiple users that occurs when a PDSCH is transmitted when a processing time reduction service is performed in a 3GPP LTE / LTE-A system.

일 실시예는, sTTI를 위한 하향 데이터 채널 Ack/Nack 충돌 방지 방법에 있어서, (N+4) 처리 시간을 갖는 단말을 위한 PUCCH 자원을 할당하는 단계와, (N+4) 처리 시간을 갖는 단말을 위한 PUCCH 자원과 다른 PUCCH 자원을 (N+3) 처리 시간을 갖는 단말을 위해 할당하는 단계와, (N+3) 처리 시간을 갖는 단말을 위한 PUCCH 자원 설정을 위해 특정 shift 값을 RRC 시그널링으로 설정하는 단계를 포함하는 방법을 제공한다.One embodiment provides a method for preventing downlink data channel Ack / Nack collision for a sTTI, comprising: allocating a PUCCH resource for a terminal having an (N + 4) processing time; Allocating a PUCCH resource for a UE having a (N + 3) processing time to a PUCCH resource for a terminal having a (N + 3) processing time; and assigning a specific shift value to RNC signaling The method comprising the steps of:

도 1은 eNB and UE processing delays and HARQ RTT를 도시한다.
도 2는 resource mapping per PRB in one subframe를 도시한다.
도 3은 PHICH processing(Normal CP case in LTE/LTE-A)를 도시한다.
도 4는 Legacy PUCCH uplink structure를 도시한다.
도 5는 Legacy PUCCH 구성 개념도이다.
도 6은 서로 다른 처리 시간을 단말들 간의 PDSCH와 PUCCH linkage 설정의 예를 도시한다.
도 7은 또 다른 실시예에 의한 기지국의 구성을 보여주는 도면이다.
도 8은 또 다른 실시예에 의한 사용자 단말의 구성을 보여주는 도면이다.
Figure 1 illustrates eNB and UE processing delays and HARQ RTT.
FIG. 2 shows a resource mapping per PRB in one subframe.
FIG. 3 shows PHICH processing (Normal CP case in LTE / LTE-A).
4 shows a legacy PUCCH uplink structure.
5 is a conceptual diagram of the configuration of a Legacy PUCCH.
6 shows an example of PDSCH and PUCCH linkage setting between terminals with different processing time.
7 is a diagram illustrating a configuration of a base station according to another embodiment of the present invention.
FIG. 8 is a diagram illustrating a configuration of a user terminal according to another embodiment of the present invention.

이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments of the present invention will be described in detail with reference to exemplary drawings. It should be noted that, in adding reference numerals to the constituent elements of the drawings, the same constituent elements are denoted by the same reference symbols as possible even if they are shown in different drawings. In the following description of the present invention, a detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear.

본 명세서에서 MTC 단말은 low cost(또는 low complexity)를 지원하는 단말 또는 coverage enhancement를 지원하는 단말 등을 의미할 수 있다. 본 명세서에서 MTC 단말은 low cost(또는 low complexity) 및 coverage enhancement를 지원하는 단말 등을 의미할 수 있다. 또는 본 명세서에서 MTC 단말은 low cost(또는 low complexity) 및/또는 coverage enhancement를 지원하기 위한 특정 카테고리로 정의된 단말을 의미할 수 있다.Herein, the MTC terminal may mean a terminal supporting low cost (or low complexity) or a terminal supporting coverage enhancement. In this specification, the MTC terminal may mean a terminal supporting low cost (or low complexity) and coverage enhancement. Alternatively, the MTC terminal may refer to a terminal defined in a specific category for supporting low cost (or low complexity) and / or coverage enhancement.

다시 말해 본 명세서에서 MTC 단말은 LTE 기반의 MTC 관련 동작을 수행하는 새롭게 정의된 3GPP Release-13 low cost(또는 low complexity) UE category/type을 의미할 수 있다. 또는 본 명세서에서 MTC 단말은 기존의 LTE coverage 대비 향상된 coverage를 지원하거나, 혹은 저전력 소모를 지원하는 기존의 3GPP Release-12 이하에서 정의된 UE category/type, 혹은 새롭게 정의된 Release-13 low cost(또는 low complexity) UE category/type을 의미할 수 있다.In other words, the MTC terminal in this specification may mean a newly defined 3GPP Release-13 low cost (or low complexity) UE category / type for performing LTE-based MTC-related operations. Alternatively, the MTC terminal may support enhanced coverage over the existing LTE coverage or a UE category / type defined in the existing 3GPP Release-12 or lower that supports low power consumption, or a newly defined Release-13 low cost low complexity UE category / type.

본 발명에서의 무선통신시스템은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치된다. 무선통신시스템은 사용자 단말(User Equipment, UE) 및 기지국(Base Station, BS, 또는 eNB)을 포함한다. 본 명세서에서의 사용자 단말은 무선 통신에서의 단말을 의미하는 포괄적 개념으로서, WCDMA 및 LTE, HSPA 등에서의 UE(User Equipment)는 물론, GSM에서의 MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), 무선기기(wireless device) 등을 모두 포함하는 개념으로 해석되어야 할 것이다.The wireless communication system in the present invention is widely deployed to provide various communication services such as voice, packet data and the like. A wireless communication system includes a user equipment (UE) and a base station (BS, or eNB). The user terminal in this specification is a comprehensive concept of a terminal in wireless communication. It is a comprehensive concept which means a mobile station (MS), a user terminal (UT), an SS (User Equipment) (Subscriber Station), a wireless device, and the like.

기지국 또는 셀(cell)은 일반적으로 사용자 단말과 통신하는 지점(station)을 말하며, 노드-B(Node-B), eNB(evolved Node-B), 섹터(Sector), 싸이트(Site), BTS(Base Transceiver System), 액세스 포인트(Access Point), 릴레이 노드(Relay Node), RRH(Remote Radio Head), RU(Radio Unit), small cell 등 다른 용어로 불릴 수 있다.A base station or a cell generally refers to a station that communicates with a user terminal and includes a Node-B, an evolved Node-B (eNB), a sector, a Site, a BTS A base transceiver system, an access point, a relay node, a remote radio head (RRH), a radio unit (RU), and a small cell.

즉, 본 명세서에서 기지국 또는 셀(cell)은 CDMA에서의 BSC(Base Station Controller), WCDMA의 NodeB, LTE에서의 eNB 또는 섹터(싸이트) 등이 커버하는 일부 영역 또는 기능을 나타내는 포괄적인 의미로 해석되어야 하며, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀 및 릴레이 노드(relay node), RRH, RU, small cell 통신범위 등 다양한 커버리지 영역을 모두 포괄하는 의미이다. That is, the base station or the cell in this specification is interpreted as a comprehensive meaning indicating a partial region or function covered by BSC (Base Station Controller) in CDMA, NodeB in WCDMA, eNB in LTE or sector (site) And covers various coverage areas such as megacell, macrocell, microcell, picocell, femtocell and relay node, RRH, RU, and small cell communication range.

상기 나열된 다양한 셀은 각 셀을 제어하는 기지국이 존재하므로 기지국은 두 가지 의미로 해석될 수 있다. i) 무선 영역과 관련하여 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀, 스몰 셀을 제공하는 장치 그 자체이거나, ii) 상기 무선영역 그 자체를 지시할 수 있다. i)에서 소정의 무선 영역을 제공하는 장치들이 동일한 개체에 의해 제어되거나 상기 무선 영역을 협업으로 구성하도록 상호작용하는 모든 장치들을 모두 기지국으로 지시한다. 무선 영역의 구성 방식에 따라 eNB, RRH, 안테나, RU, LPN, 포인트, 송수신포인트, 송신 포인트, 수신 포인트 등은 기지국의 일 실시예가 된다. ii)에서 사용자 단말의 관점 또는 이웃하는 기지국의 입장에서 신호를 수신하거나 송신하게 되는 무선 영역 그 자체를 기지국으로 지시할 수 있다.Since the various cells listed above exist in the base station controlling each cell, the base station can be interpreted into two meanings. i) the device itself providing a megacell, macrocell, microcell, picocell, femtocell, small cell in relation to the wireless region, or ii) indicating the wireless region itself. i indicate to the base station all devices that are controlled by the same entity or that interact to configure the wireless region as a collaboration. An eNB, an RRH, an antenna, an RU, an LPN, a point, a transmission / reception point, a transmission point, a reception point, and the like are exemplary embodiments of a base station according to a configuration method of a radio area. ii) may indicate to the base station the wireless region itself that is to receive or transmit signals from the perspective of the user terminal or from a neighboring base station.

따라서, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀, 스몰 셀, RRH, 안테나, RU, LPN(Low Power Node), 포인트, eNB, 송수신포인트, 송신 포인트, 수신 포인트를 통칭하여 기지국으로 지칭한다.Therefore, a base station is collectively referred to as a base station, collectively referred to as a megacell, macrocell, microcell, picocell, femtocell, small cell, RRH, antenna, RU, low power node do.

본 명세서에서 사용자 단말과 기지국은 본 명세서에서 기술되는 기술 또는 기술적 사상을 구현하는데 사용되는 두 가지 송수신 주체로 포괄적인 의미로 사용되며 특정하게 지칭되는 용어 또는 단어에 의해 한정되지 않는다. 사용자 단말과 기지국은, 본 발명에서 기술되는 기술 또는 기술적 사상을 구현하는데 사용되는 두 가지(Uplink 또는 Downlink) 송수신 주체로 포괄적인 의미로 사용되며 특정하게 지칭되는 용어 또는 단어에 의해 한정되지 않는다. 여기서, 상향링크(Uplink, UL, 또는 업링크)는 사용자 단말에 의해 기지국으로 데이터를 송수신하는 방식을 의미하며, 하향링크(Downlink, DL, 또는 다운링크)는 기지국에 의해 사용자 단말로 데이터를 송수신하는 방식을 의미한다.Herein, the user terminal and the base station are used in a broad sense as the two transmitting and receiving subjects used to implement the technical or technical idea described in this specification, and are not limited by a specific term or word. The user terminal and the base station are used in a broad sense as two (uplink or downlink) transmitting and receiving subjects used to implement the technology or technical idea described in the present invention, and are not limited by a specific term or word. Here, an uplink (UL, or uplink) means a method of transmitting / receiving data to / from a base station by a user terminal, and a downlink (DL or downlink) .

무선통신시스템에 적용되는 다중 접속 기법에는 제한이 없다. CDMA(Code Division Multiple Access), TDMA(Time Division Multiple Access), FDMA(Frequency Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA와 같은 다양한 다중 접속 기법을 사용할 수 있다. 본 발명의 일 실시예는 GSM, WCDMA, HSPA를 거쳐 LTE 및 LTE-advanced로 진화하는 비동기 무선통신과, CDMA, CDMA-2000 및 UMB로 진화하는 동기식 무선 통신 분야 등의 자원할당에 적용될 수 있다. 본 발명은 특정한 무선통신 분야에 한정되거나 제한되어 해석되어서는 아니 되며, 본 발명의 사상이 적용될 수 있는 모든 기술분야를 포함하는 것으로 해석되어야 할 것이다.There are no restrictions on multiple access schemes applied to wireless communication systems. Various multiple access schemes such as Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Orthogonal Frequency Division Multiple Access (OFDMA), OFDM-FDMA, OFDM- Can be used. An embodiment of the present invention can be applied to asynchronous wireless communication that evolves into LTE and LTE-advanced via GSM, WCDMA, and HSPA, and synchronous wireless communication that evolves into CDMA, CDMA-2000, and UMB. The present invention should not be construed as limited to or limited to a specific wireless communication field and should be construed as including all technical fields to which the idea of the present invention can be applied.

상향링크 전송 및 하향링크 전송은 서로 다른 시간을 사용하여 전송되는 TDD(Time Division Duplex) 방식이 사용될 수 있고, 또는 서로 다른 주파수를 사용하여 전송되는 FDD(Frequency Division Duplex) 방식이 사용될 수 있다.A TDD (Time Division Duplex) scheme in which uplink and downlink transmissions are transmitted using different time periods, or an FDD (Frequency Division Duplex) scheme in which they are transmitted using different frequencies can be used.

또한, LTE, LTE-advanced와 같은 시스템에서는 하나의 반송파 또는 반송파 쌍을 기준으로 상향링크와 하향링크를 구성하여 규격을 구성한다. 상향링크와 하향링크는, PDCCH(Physical Downlink Control CHannel), PCFICH(Physical Control Format Indicator CHannel), PHICH(Physical Hybrid ARQ Indicator CHannel), PUCCH(Physical Uplink Control CHannel), EPDCCH(Enhanced Physical Downlink Control CHannel) 등과 같은 제어채널을 통하여 제어정보를 전송하고, PDSCH(Physical Downlink Shared CHannel), PUSCH(Physical Uplink Shared CHannel) 등과 같은 데이터채널로 구성되어 데이터를 전송한다. In systems such as LTE and LTE-advanced, a standard is constructed by configuring uplink and downlink based on a single carrier or carrier pair. The uplink and the downlink are divided into a Physical Downlink Control Channel (PDCCH), a Physical Control Format Indicator CHannel (PCFICH), a Physical Hybrid ARQ Indicator CHannel, a Physical Uplink Control CHannel (PUCCH), an Enhanced Physical Downlink Control Channel (EPDCCH) Transmits control information through the same control channel, and is configured with data channels such as PDSCH (Physical Downlink Shared CHannel) and PUSCH (Physical Uplink Shared CHannel), and transmits data.

한편 EPDCCH(enhanced PDCCH 또는 extended PDCCH)를 이용해서도 제어 정보를 전송할 수 있다.On the other hand, control information can also be transmitted using EPDCCH (enhanced PDCCH or extended PDCCH).

본 명세서에서 셀(cell)은 송수신 포인트로부터 전송되는 신호의 커버리지 또는 송수신 포인트(transmission point 또는 transmission/reception point)로부터 전송되는 신호의 커버리지를 가지는 요소 반송파(component carrier), 그 송수신 포인트 자체를 의미할 수 있다. In this specification, a cell refers to a component carrier having a coverage of a signal transmitted from a transmission point or a transmission point or transmission / reception point of a signal transmitted from a transmission / reception point, and a transmission / reception point itself .

실시예들이 적용되는 무선통신 시스템은 둘 이상의 송수신 포인트들이 협력하여 신호를 전송하는 다중 포인트 협력형 송수신 시스템(coordinated multi-point transmission/reception System; CoMP 시스템) 또는 협력형 다중 안테나 전송방식(coordinated multi-antenna transmission system), 협력형 다중 셀 통신시스템일 수 있다. CoMP 시스템은 적어도 두 개의 다중 송수신 포인트와 단말들을 포함할 수 있다. The wireless communication system to which the embodiments are applied may be a coordinated multi-point transmission / reception system (CoMP system) or a coordinated multi-point transmission / reception system in which two or more transmission / reception points cooperatively transmit signals. antenna transmission system, or a cooperative multi-cell communication system. A CoMP system may include at least two multipoint transmit and receive points and terminals.

다중 송수신 포인트는 기지국 또는 매크로 셀(macro cell, 이하 'eNB'라 함)과, eNB에 광케이블 또는 광섬유로 연결되어 유선 제어되는, 높은 전송파워를 갖거나 매크로 셀영역 내의 낮은 전송파워를 갖는 적어도 하나의 RRH일 수도 있다.The multi-point transmission / reception point includes a base station or a macro cell (hereinafter referred to as 'eNB'), and at least one mobile station having a high transmission power or a low transmission power in a macro cell area, Lt; / RTI >

이하에서 하향링크(downlink)는 다중 송수신 포인트에서 단말로의 통신 또는 통신 경로를 의미하며, 상향링크(uplink)는 단말에서 다중 송수신 포인트로의 통신 또는 통신 경로를 의미한다. 하향링크에서 송신기는 다중 송수신 포인트의 일부분일 수 있고, 수신기는 단말의 일부분일 수 있다. 상향링크에서 송신기는 단말의 일부분일 수 있고, 수신기는 다중 송수신 포인트의 일부분일 수 있다. Hereinafter, a downlink refers to a communication or communication path from a multipoint transmission / reception point to a terminal, and an uplink refers to a communication or communication path from a terminal to a multiple transmission / reception point. In the downlink, a transmitter may be a part of a multipoint transmission / reception point, and a receiver may be a part of a terminal. In the uplink, the transmitter may be a part of the terminal, and the receiver may be a part of multiple transmission / reception points.

이하에서는 PUCCH, PUSCH, PDCCH, EPDCCH 및 PDSCH 등과 같은 채널을 통해 신호가 송수신되는 상황을 'PUCCH, PUSCH, PDCCH, EPDCCH 및 PDSCH를 전송, 수신한다'는 형태로 표기하기도 한다.Hereinafter, a situation in which a signal is transmitted / received through a channel such as PUCCH, PUSCH, PDCCH, EPDCCH, and PDSCH is expressed as 'PUCCH, PUSCH, PDCCH, EPDCCH and PDSCH are transmitted and received'.

또한 이하에서는 PDCCH를 전송 또는 수신하거나 PDCCH를 통해서 신호를 전송 또는 수신한다는 기재는 EPDCCH를 전송 또는 수신하거나 EPDCCH를 통해서 신호를 전송 또는 수신하는 것을 포함하는 의미로 사용될 수 있다.In the following description, an indication that a PDCCH is transmitted or received or a signal is transmitted or received via a PDCCH may be used to mean transmitting or receiving an EPDCCH or transmitting or receiving a signal through an EPDCCH.

즉, 이하에서 기재하는 물리 하향링크 제어채널은 PDCCH를 의미하거나, EPDCCH를 의미할 수 있으며, PDCCH 및 EPDCCH 모두를 포함하는 의미로도 사용된다.That is, the physical downlink control channel described below may mean a PDCCH, an EPDCCH, or a PDCCH and an EPDCCH.

또한, 설명의 편의를 위하여 PDCCH로 설명한 부분에도 본 발명의 일 실시예인 EPDCCH를 적용할 수 있으며, EPDCCH로 설명한 부분에도 본 발명의 일 실시예로 PDCCH를 적용할 수 있다.Also, for convenience of description, the PDCCH, which is an embodiment of the present invention, may be applied to the PDCCH, and the PDCCH may be applied to the portion described with the EPDCCH.

한편, 이하에서 기재하는 상위계층 시그널링(High Layer Signaling)은 RRC 파라미터를 포함하는 RRC 정보를 전송하는 RRC시그널링을 포함한다.Meanwhile, the High Layer Signaling described below includes RRC signaling for transmitting RRC information including RRC parameters.

eNB은 단말들로 하향링크 전송을 수행한다. eNB은 유니캐스트 전송(unicast transmission)을 위한 주 물리 채널인 물리 하향링크 공유채널(Physical Downlink Shared Channel, PDSCH), 그리고 PDSCH의 수신에 필요한 스케줄링 등의 하향링크 제어 정보 및 상향링크 데이터 채널(예를 들면 물리 상향링크 공유채널(Physical Uplink Shared Channel, PUSCH))에서의 전송을 위한 스케줄링 승인 정보를 전송하기 위한 물리 하향링크 제어채널(Physical Downlink Control Channel, PDCCH)을 전송할 수 있다. 이하에서는, 각 채널을 통해 신호가 송수신 되는 것을 해당 채널이 송수신되는 형태로 기재하기로 한다.The eNB performs downlink transmission to the UEs. The eNB includes a physical downlink shared channel (PDSCH) as a main physical channel for unicast transmission, downlink control information such as scheduling required for reception of a PDSCH, A physical downlink control channel (PDCCH) for transmitting scheduling grant information for transmission in a Physical Uplink Shared Channel (PUSCH). Hereinafter, the transmission / reception of a signal through each channel will be described in a form in which the corresponding channel is transmitted / received.

[Latency reduction in [Latency reduction in RAN1RAN1 ]]

Latency reduction Study Item은 RAN plenary #69 회의에서 승인되었다[1]. Latency reduction의 주요 목적은 TCP throughput을 행상시키기 위해서 보다 짧은 TTI 운영을 규격화하는 것이다[2]. 이를 위해 RAN2에서는 이미 short TTI에 대한 성능 검증을 수행하였다[2].The Latency reduction Study Item was approved at RAN plenary # 69 meeting [1]. The main purpose of latency reduction is to standardize shorter TTI operations to foster TCP throughput [2]. For this, performance verification for short TTI has already been performed in RAN2 [2].

아래와 같은 범위에서 RAN1에 관계된 potential impact들과 study를 수행한다[1]:Potential impacts and studies related to RAN1 are performed in the following ranges [1]:

o Assess specification impact and study feasibility and performance of TTI lengths between 0.5ms and one OFDM symbol, taking into account impact on reference signals and physical layer control signaling o Assessment of impact and performance of TTI lengths between 0.5ms and one OFDM symbols, taking into account the impact of reference signals and physical layer control signaling

o backwards compatibility shall be preserved (thus allowing normal operation of pre- Rel 13 UEs on the same carrier); o backwards compatibility shall be preserved (thus allowing normal operation of pre- Rel 13 UEs on the same carrier);

Latency reduction can be achieved by the following physical layer techniques:Latency reduction can be achieved by the following physical layer techniques:

- short TTI- short TTI

- reduced processing time in implementation- reduced processing time in implementation

- new frame structure of TDD- new frame structure of TDD

3GPP RAN WG1#84회의에서 추가적으로 합의된 사항은 아래와 같다.Additional agreements at the 3GPP RAN WG1 # 84 meeting are as follows.

Agreements:Agreements:

● Following design assumptions are considered:● Following design assumptions are considered:

o No shortened TTI spans over subframe boundary     o No shortened TTI spans over subframe boundary

o At least for SIBs and paging, PDCCH and legacy PDSCH are used for scheduling    o At least for SIBs and paging, PDCCH and legacy PDSCH are used for scheduling

● The potential specific impacts for the followings are studied ● The potential specific impacts for the followings are studied

o UE is expected to receive a sPDSCH at least for downlink unicast      o UE is expected to receive an SDSCH at least for downlink unicast

■ sPDSCH refers PDSCH carrying data in a short TTI           ■ sPDSCH refers PDSCH carrying data in a short TTI

o UE is expected to receive PDSCH for downlink unicast     o UE is expected to receive PDSCH for downlink unicast

■ FFS whether a UE is expected to receive both sPDSCH and PDSCH for downlink unicast simultaneously           ■ FFS whether a UE is expected to receive both PDSCH and PDSCH for downlink unicast simultaneously

o FFS: The number of supported short TTIs     o FFS: The number of supported short TTIs

o If the number of supported short TTIs is more than one,     o If the number of supported short TTIs is more than one,

Agreements:Agreements:

● Following design assumptions are used for the study● Following design assumptions are used for the study

o From eNB perspective, existing non-sTTI and sTTI can be FDMed in the same subframe in the same carrier     o From eNB perspective, existing non-sTTI and sTTI can be FDMed in the same subframe in the same carrier

■ FFS: Other multiplexing method(s) with existing non-sTTI for UE supporting latency reduction features           ■ FFS: Other multiplexing method (s) with existing non-sTTI for UE supporting latency reduction features

Agreements:Agreements:

● In this study, following aspects are assumed in RAN1.● In this study, the following aspects are assumed in RAN1.

o PSS/SSS, PBCH, PCFICH and PRACH, Random access, SIB and Paging procedures are not modified.     o PSS / SSS, PBCH, PCFICH and PRACH, Random access, SIB and Paging procedures are not modified.

● Following aspects are further studied in the next RAN1 meeting● Following aspects are further studied in the next RAN1 meeting

o Note: But the study is not limited to them.     o Note: The study is not limited to them.

o Design of sPUSCH DM-RS     o Design of sPUSCH DM-RS

■ Alt.1: DM-RS symbol shared by multiple short-TTIs within the same subframe           ■ Alt.1: DM-RS symbol shared by multiple short-TTIs within the same subframe

■ Alt.2: DM-RS contained in each sPUSCH           ■ Alt.2: DM-RS contained in each sPUSCH

o HARQ for sPUSCH     o HARQ for SPUSCH

■ Whether/how to realize asynchronous and/or synchronous HARQ           ■ Whether / how to realize asynchronous and / or synchronous HARQ

o sTTI operation for Pcell and/or SCells by (e)CA in addition to non-(e)CA case     o The sTTI operation for Pcell and / or SCells by (e) CA in addition to non- (e) CA case

기본적으로 Average down-link latency calculation에서는 아래의 절차를 따라 latency를 계산하게 된다[3].Basically, in the average down-link latency calculation, the latency is calculated according to the following procedure [3].

Following the same approach as in section B.2.1 in 3GPP TR 36.912, the LTE U-plane one-way latency for a scheduled UE consists of the fixed node processing delays and 1 TTI duration for transmission, as shown in Figure 1 below. Assuming the processing times can be scaled by the same factor of TTI reduction keeping the same number of HARQ processes, the one way latency can be calculated asThe following is the same approach as in section B.2.1 in 3GPP TR 36.912, the LTE U-plane one-way latency for a scheduled UE consisting of fixed node processing delays and 1 TTI duration for transmission as shown in Figure 1 below. Assuming the processing times can be scaled by the same factor of TTI reduction keeping the same number of HARQ processes, the one way latency can be calculated as

D = 1.5 TTI (eNB processing and scheduling) + 1 TTI (transmission) + 1.5 TTI (UE processing) + n*8 TTI (HARQ retransmissions)D = 1.5 TTI + 1 TTI + 1.5 TTI UE + n * 8 TTI (HARQ retransmissions)

= (4 + n*8) TTI.    = (4 + n * 8) TTI.

Considering a typical case where there would be 0 or 1 retransmission, and assuming error probability of the first transmission to be p, the delay is given byConsidering a typical case where there would be 0 or 1 retransmission, and assuming error probability of the first transmission to be p, the delay is given by

D = (4 + p*8) TTI.D = (4 + p * 8) TTI.

So, for 0% BLER, D = 4 * TTI,So, for 0% BLER, D = 4 * TTI,

And for 10% BLER, D = 4.8 * TTI.And for 10% BLER, D = 4.8 * TTI.

Average Average UEUE initiated UL transmission latency calculation initiated UL transmission latency calculation

Assume UE is in connected/synchronized mode and wants to do UL transmission, e.g., to send TCP ACK. Following table shows the steps and their corresponding contribution to the UL transmission latency. To be consistent in comparison of DL and UL, we add the eNB processing delay in the UL after the UL data is received by the eNB (step 7). Assume UE is in connected / synchronized mode and wants to do UL transmission, e.g., send to TCP ACK. The following table shows the steps and their corresponding contribution to the UL transmission latency. To be consistent in comparison of DL and UL, we add the eNB processing delay in the UL after the UL data is received by the eNB (step 7).

Figure pat00001
Figure pat00001

In the table above, steps 1-4 and half delay of step 5 is assumed to be due to SR, and rest is assumed for UL data transmission in values shown in Table 4.In the table above, steps 1 and 4 and half of the step 5 are assumed to be due to SR, and the rest is assumed to be shown in Table 4.

Resource mapping of short Resource mapping of short TTITTI [3] [3]

In Figure 2 the resource map above is the legacy resource mapping per PRB in one subframe, considering 2 Antenna ports and 2 OFDM symbols control field. In Figure 2 the resource map below is the short TTI resource mapping, considering 2 OFDM symbols used for the control field in order to ensure the backward compatibility. The loss rates (Llegacy, e.g. 5% - 50%) of the PHY layer in short TTI duration are assumed.In Figure 2 the resource map above is the legacy resource mapping per PRB in one subframe, considering 2 Antenna ports and 2 OFDM symbols control field. In Figure 2 the resource map below is the short TTI resource mapping, considering 2 OFDM symbols used for the control field in order to ensure the backward compatibility. The loss rates (L legacy , eg 5% - 50%) of the PHY layer are short TTI duration are assumed.

TBS Calculation of short TBS Calculation of short TTITTI

According to the resource mapping and the TBS calculation formula given above, the loss rate of PHY layer for legacy PDSCH is calculated as follows:According to the present invention, the PDSCH is calculated as follows:

Figure pat00002
Figure pat00002

For different short TTI duration, The TBS of short TTI PDSCH is calculated as the following table:For different short TTI duration, The TBS of short TTI PDSCH is calculated as the following table:

Figure pat00003
Figure pat00003

[Existing [Existing PHICHPHICH ]]

PUSCH 수신에 대한 응답을 단말에게 보내는 DL control channel이 PHICH이다. eNB는 상향 데이터 채널에 대한 Ack/Nack을 해당 UE에게 전달해야 하기 위한 목적으로 PHICH를 운용하고 있다. 도 3과 같은 절차에 따라 Ack 또는 Nack을 나타내는 bit 정보 '1' 또는 '-1'이 orthogonal code로 spreading 되어 Physical 12 RE들에 mapping된다.The DL control channel that sends a response to the PUSCH reception to the terminal is the PHICH. The eNB is operating the PHICH for the purpose of transmitting Ack / Nack for the uplink data channel to the corresponding UE. Bit information '1' or '-1' indicating Ack or Nack is spread in an orthogonal code according to the procedure of FIG. 3 and is mapped to Physical 12 REs.

여기에서 단말들에게는 할당되는 PHICH resource는

Figure pat00004
로 표현되는데, 그룹 내에 orthogonal 시퀀스를
Figure pat00005
라 하고, 시퀀스들이 multiplexing되는 RE set을
Figure pat00006
라 한다. 여기에서 PHICH는 PUSCH의 Lowest PRB index(
Figure pat00007
)와 UL DMRS(
Figure pat00008
)의 cyclic shift value를 기준으로 implicit하게 결정된다. 이하 구체적인 설명은 아래를 참조한다.Here, the PHICH resource allocated to the UEs is
Figure pat00004
, Where an orthogonal sequence in the group
Figure pat00005
And the RE set in which the sequences are multiplexed
Figure pat00006
. Here, PHICH is the Lowest PRB index of the PUSCH (
Figure pat00007
) And UL DMRS (
Figure pat00008
) Is cyclically determined based on the cyclic shift value. See below for a detailed description.

The PHICH resource is identified by the index pair

Figure pat00009
where
Figure pat00010
is the PHICH group number and
Figure pat00011
is the orthogonal sequence index within the group as defined by:The PHICH resource is identified by the index pair
Figure pat00009
where
Figure pat00010
is the PHICH group number and
Figure pat00011
is the orthogonal sequence index within the group as defined by:

Figure pat00012
Figure pat00012

where where

Figure pat00013
Figure pat00014
is mapped from the cyclic shift for DMRS field (according to Table 9.1.2-2) in the most recent PDCCH/EPDCCH with uplink DCI format [4] for the transport block(s) associated with the corresponding PUSCH transmission.
Figure pat00015
shall be set to zero, if there is no PDCCH/EPDCCH with uplink DCI format for the same transport block, and
Figure pat00013
Figure pat00014
The PDCCH / EPDCCH with uplink DCI format [4] for the transport block (s) associated with the corresponding PUSCH transmission is shown in Table 9.1.2-2.
Figure pat00015
PDCCH / EPDCCH with uplink DCI format for the same transport block, and

Figure pat00016
if the initial PUSCH for the same transport block is semi-persistently scheduled, or
Figure pat00016
if the initial PUSCH for the same transport block is semi-persistently scheduled, or

Figure pat00017
if the initial PUSCH for the same transport block is scheduled by the random access response grant .
Figure pat00017
if the initial PUSCH for the same transport block is scheduled by the random access response grant.

Figure pat00018
Figure pat00019
is the spreading factor size used for PHICH modulation as described in subclause 6.9.1 in [3].
Figure pat00018
Figure pat00019
The spreading factor is used for PHICH modulation as described in subclause 6.9.1 in [3].

Figure pat00020
Figure pat00021
where
Figure pat00022
is the lowest PRB index in the first slot of the corresponding PUSCH transmission
Figure pat00020
Figure pat00021
where
Figure pat00022
is the lowest PRB index in the first slot of the corresponding PUSCH transmission

Figure pat00023
Figure pat00024
is the number of PHICH groups configured by higher layers as described in subclause 6.9 of [3],
Figure pat00023
Figure pat00024
 is the number of PHICH groups configured as higher layers as described in subclause 6.9 of [3],

Figure pat00025
Figure pat00026
Figure pat00025
Figure pat00026

Figure pat00027
Figure pat00027

[Existing [Existing PUCCHPUCCH ]]

단말이 PDSCH 수신에 대한 응답을 단말에게 보내는 DL control channel이 PUCCH다. 단말은 하향 데이터 채널에 대한 Ack/Nack 및 CQI정보 등을 eNB 에게 전달하기 위해서 다양한 포맷의 PUCCH format을 사용한다. The DL control channel through which the UE sends a response to the PDSCH reception is the PUCCH. The UE uses various formats of PUCCH format to transmit Ack / Nack and CQI information for the downlink data channel to the eNB.

기존의 LTE/LTE-A프레임 구조(TTI=1ms=14 OFDM symbols) 도 4와 같이 slot 기반의 PUCCH hopping을 수행하게 된다. 이러한 PUSCH hopping은 PUCCH의 주파수 다이버시티를 증가시킴으로써 결과적으로 PUCCH의 coverage를 증가시키게 된다. 이것은 기본적으로 동일 신호 또는 하나의 정보 시퀀스가 서로 다른 주파수 대역을 거쳐 전송됨으로써 다이버시티를 얻을 수 있는 이득이 존재하기 때문이다.The conventional LTE / LTE-A frame structure (TTI = 1 ms = 14 OFDM symbols) performs slot based PUCCH hopping as shown in FIG. This PUSCH hopping increases the frequency diversity of the PUCCH and consequently increases the coverage of the PUCCH. This is because basically the same signal or one information sequence is transmitted through different frequency bands, so that there is a gain to obtain diversity.

기존의 PUCCH에서 A/N을 전송함에 있어서는 format 1a,1b 기준으로 OCC(spreading) + CS(cyclic shift)로 그 자원 할당을 적용하였다. 도 5에서와 같이 slot 기준으로 기존 PUCCH는 3 심볼 RS와 4 심볼 A/N으로 설정되어 있다. In transmitting an A / N from an existing PUCCH, resource allocation is applied by OCC (spreading) + CS (cyclic shift) on the basis of format 1a and 1b. As shown in FIG. 5, the existing PUCCH is set to 3 symbols RS and 4 symbols A / N on a slot basis.

본 제안에서는 sPUCCH의 심볼 수가 작아짐을 고려하여 기존의 OCC를 제외한 Zadoff-Chu(ZC) 시퀀스의 CS 기반 A/N multiplexing 자원 할당을 제안한다. 이때에는 기존 구조와 달리 OCC spreading은 사용하지 않는다.In this proposal, CS-based A / N multiplexing resource allocation of the Zadoff-Chu (ZC) sequence excluding the existing OCC is proposed considering that the number of symbols of the sPUCCH is reduced. Unlike the existing structure, OCC spreading is not used at this time.

ZC시퀀스는 기본적으로 아래의 RS

Figure pat00028
에서 정의되는 cyclic shift
Figure pat00029
값으로 정의된다. (TS 36.211참조)The ZC sequence is basically the RS
Figure pat00028
Cyclic shift
Figure pat00029
Value. (See TS 36.211)

Figure pat00030
Figure pat00030

본 제안에서는 OCC가 배제된 sPUCCH A/N 구성을 위해서 아래와 같은 기본 구조를 가정한다.In this proposal, the following basic structure is assumed for the sPUCCH A / N configuration excluding OCC.

여기에서 PUCCH format 1a/b는 dynamic resource allocation을 수행하게 되는데, 기본적으로 스케줄링된 PDCCH의 CCE index를 기반으로 아래와 같은 dynamic allocation을 수행하게 된다.Here, PUCCH format 1a / b performs dynamic resource allocation. Basically, the following dynamic allocation is performed based on the CCE index of the scheduled PDCCH.

Figure pat00031
Figure pat00031

여기에서 Ack/Nack을 위한 PUCCH 자원 인덱스

Figure pat00032
은 하향 자원 할당에 사용된 DCI 전송에 사용된 PDCCH의 lowest CCE index
Figure pat00033
와 상위 레이어서 전송되는
Figure pat00034
에 의해서 결정된다. 여기에서
Figure pat00035
은 결국 PUCCH format 1a/1b가 다른 PUCCH format 2/3/4 등과 분리될 수 있도록 설정된 일종의 shift 값을 위미한다.Here, the PUCCH resource index for Ack / Nack
Figure pat00032
The lowest CCE index of the PDCCH used for the DCI transmission used for the downlink resource allocation
Figure pat00033
And the upper layer
Figure pat00034
. From here
Figure pat00035
The PUCCH format 1a / 1b is set as a kind of shift value set so that it can be separated from other PUCCH format 2/3/4 and so on.

최근 shortened TTI Work item 관련 Work scope및 3GPP RAN WG1#86회의에서 추가적으로 합의된 사항은 아래와 같다.The work scope of the recently shortened TTI Work item and the 3GPP RAN WG1 # 86 meeting were further agreed upon as follows.

For Frame structure type 1: [RAN1, RAN2, RAN4]For Frame structure type 1: [RAN1, RAN2, RAN4]

Figure pat00036
Specify support for a transmission duration based on 2-symbol sTTI and 1-slot sTTI for sPDSCH/sPDCCH
Figure pat00036
Specify support for a transmission duration based on 2-symbol sTTI and 1-slot sTTI for sPDSCH / sPDCCH

Figure pat00037
Specify support for a transmission duration based on 2-symbol sTTI, 4-symbol sTTI, and 1-slot sTTI for sPUCCH/sPUSCH
Figure pat00037
2-symbol sTTI, 4-symbol sTTI, and 1-slot sTTI for sPTICH / sPTCH

o Down-selection is not precluded      o Down-selection is not precluded

Figure pat00038
Study any impact on CSI feedback and processing time, and if needed, specify necessary modifications (not before RAN1 #86bis)
Figure pat00038
Study any impact on CSI feedback and processing time, and if necessary, specify necessary modifications (not before RAN1 # 86bis)

Agreement:Agreement:

Figure pat00039
For FS1,2&3, a minimum timing n+3 is supported for UL grant to UL data and for DL data to DL HARQ for UEs capable of operating with reduced processing time with only the following conditions:
Figure pat00039
For FS1, 2 & 3, a minimum timing n + 3 is supported for UL grant to UL data and DL data to DL HARQ for UEs capable of operating with reduced processing time with only the following conditions:

Figure pat00040
A maximum TA is reduced to x ms, where x <= 0.33ms (exact value FFS);
Figure pat00040
A maximum TA is reduced to x ms, where x < = 0.33ms (exact value FFS);

Figure pat00041
At least when scheduled by PDCCH
Figure pat00041
At least when scheduled by PDCCH

Figure pat00042
For FS2, new DL HARQ and UL scheduling timing relations will be defined
Figure pat00042
For FS2, new DL HARQ and UL scheduling timing relations will be defined

Figure pat00043
Details FFS
Figure pat00043
Details FFS

Figure pat00044
FFS:
Figure pat00044
FFS:

Figure pat00045
Possible minimum timing of n+2 TTI
Figure pat00045
Possible minimum timing of n + 2 TTI

Figure pat00046
FFS max TA in this case
Figure pat00046
FFS max TA in this case

Figure pat00047
FFS what other restrictions (if any) on when reduced processing times of n+2 could be applied
Figure pat00047
FFS what other restrictions (if any) on when reduced processing times of n + 2 could be applied

Figure pat00048
Possibility of scheduling by EPDCCH.
Figure pat00048
Possibility of scheduling by EPDCCH.

Agreement:Agreement:

Figure pat00049
Reduced processing time(s) are RRC configured for the UE
Figure pat00049
Reduced processing time (s) are RRC configured for the UE

Figure pat00050
Working assumption: A mechanism for dynamic fallback to legacy processing timings (n+4) is supported
Figure pat00050
Working assumption: A mechanism for dynamic fallback to legacy processing timings (n + 4) is supported

- Details FFS - Details FFS

Working assumption can be revisited if it is not found to be feasibleWorking assumption can be revised if it is not found to be feasible

RAN1 #88bis meeting에서 추가로 결정된 사항은 아래와 같다.Additional decisions at RAN1 # 88bis meeting are as follows.

Agreement:Agreement:

Adopt the following behaviour for handling the collision of conflicting UL grants with n+3 and n+4 timing Adopt the following behaviors for the collision of UL grants with n + 3 and n + 4 timing

Figure pat00051
The UE is not expected to receive conflicting UL grants with N+3 and N+4 timing scheduling PUSCH for the same UL subframe of a carrier
Figure pat00051
The UE is not expected to receive conflicting UL grants with N + 3 and N + 4 timing scheduling PUSCH for the same UL subframe of a carrier

- Note: If the UE receives conflicting UL grants with N+3 and N+4 timing scheduling PUSCH for the same UL subframe of a carrier, the UE behavior is left up to UE implementation.   - Note: If the UE receives conflicting UL grants with N + 3 and N + 4 timing scheduling PUSCH for the same UL subframe of a carrier, the UE behavior is left up to UE implementation.

Agreement:Agreement:

Figure pat00052
For FS1, the UE is not expected to be able to receive UL grants with N+3 and N+4 timing in the same subframe and carrier
Figure pat00052
For FS1, the UE is not expected to receive UL grants with N + 3 and N + 4 timing in the same subframe and carrier

- Note: This might not imply specification changes- Note: This might not imply specification changes

상기와 같이 short TTI and processing time reduction 아이템 중 현재 processing time reduction 분야에서는 단일 단말 기준으로 n+3, n+4 TTI 스케줄링에 대한 문제를 구현 이슈로 처리하였다. 그러나 아직 남아있는 것은 다중 단말간에 n+3, n+4 TTI가 동시에 스케줄링 되었을 경우에 대한 문제는 다루어지지 않고 있다.In the current processing time reduction field among the short TTI and processing time reduction items, the problem of n + 3 and n + 4 TTI scheduling on a single terminal basis is handled as an implementation issue. However, the remaining problem is not addressed when n + 3 and n + 4 TTIs are simultaneously scheduled among multiple terminals.

본 발명에서는 1ms TTI 기반의 processing time reduction 분야에서 논의되고 있는 n+3, n+4 PDSCH 스케줄링 시 발생하는 Ack/Nack 충돌 문제에 대한 해결 방법을 제안한다. 다중 단말이 동시에 N+3, n+4 PDSCH에 대한 상향 Ack/Nack이 충돌하지 않도록 PUCCH의 Ack/Nack linkage 설정 방법과 구체적인 운용 방법을 제시한다.The present invention proposes a solution to the Ack / Nack collision problem occurring in n + 3, n + 4 PDSCH scheduling, which is discussed in the processing time reduction based on 1 ms TTI. Ack / Nack linkage establishment method and specific operation method of PUCCH are proposed so that multiple UEs do not collide upstream Ack / Nack for N + 3 and n + 4 PDSCH at the same time.

기존의 LTE/LTE-A프레임 구조(TTI=1ms=14 OFDM symbols)로 정의되고, sTTI and processing time reduction 분야에서는 동일한 서브프레임 길이로 처리 시간만을 감소하도록 하였다. 이에 따라 기존 n+4 기반의 스케줄링 단위를 n+3으로 감소시키는 방안에 대해서 도입을 결정하였다.It is defined as the existing LTE / LTE-A frame structure (TTI = 1ms = 14 OFDM symbols), and in the field of sTTI and processing time reduction, only the processing time is reduced to the same subframe length. Therefore, we decided to reduce the existing n + 4 based scheduling unit to n + 3.

결국 n+3, n+4의 스케줄링 단위를 갖는 여러 단말들이 혼재되어 있을 경우에 도 6과 같은 linkage collision이 발생할 수 있다.As a result, linkage collision as shown in FIG. 6 may occur when a plurality of UEs having n + 3 and n + 4 scheduling units are mixed.

이와 같이 다중 단말들이 서로 상이한 스케줄링 단위를 갖을 경우, PDSCH의 여러 A/N 자원들이 하나의 PUCCH 에 중첩되는 상황이 발생함을 알 수 있다. A/N 전송을 하는 legacy PUCCH의 자원 할당 원리를 최대한 reuse하는 구조로 processing time reduction PUCCH가 설계된다면, 아래 PUCCH assignment rule을 활용해야 한다.In this way, when multiple UEs have different scheduling units, it can be seen that a plurality of A / N resources of the PDSCH are overlapped on one PUCCH. If the processing time reduction PUCCH is designed to maximize the resource allocation principle of the legacy PUCCH that performs A / N transmission, the following PUCCH assignment rule should be utilized.

Figure pat00053
Figure pat00053

-

Figure pat00054
: 하향 자원 할당에 사용된 DCI 전송에 사용된 PDCCH의 lowest CCE index -
Figure pat00054
: Lowest CCE index of PDCCH used for DCI transmission used for downlink resource allocation

-

Figure pat00055
: 상위 레이어서 전송되는 shift value -
Figure pat00055
: Shift value transmitted from upper layer

기본적으로 PDCCH는 각 TTI(=1ms) 마다 전송될 수 있음을 가정하고 있다. 이때 서로 다른PDCCH 수신 구간을 갖는 단말들이 동일한 자원 할당 인덱스를 사용할 수 있게 되어 PUCCH 자원의 충돌이 발생할 수 있다. 즉 상황에 따라서 PDCCH의 lowest CCE index

Figure pat00056
가 같아질 수 있는 상황이 발생할 수 있다.Basically, it is assumed that the PDCCH can be transmitted for each TTI (= 1 ms). At this time, UEs having different PDCCH reception intervals can use the same resource allocation index, so that collision of PUCCH resources can occur. That is, the lowest CCE index
Figure pat00056
Can be the same.

여기에서

Figure pat00057
과 같은 shift 값은 cell-specific한 값이기 때문에 셀내 모든 단말이 동일한 값을 가지게 된다 (RRC message). 따라서 sPUCCH의 자원 할당에 있어 충돌이 발생하지 않기 위해서는
Figure pat00058
이 외에 추가적인 shift 값을 설정해주어야 한다.From here
Figure pat00057
Is a cell-specific value, all terminals in the cell have the same value (RRC message). Therefore, in order not to cause a conflict in resource allocation of the sPUCCH
Figure pat00058
Additional shift values should be set.

방안 1. N+3 처리 시간을 갖는 단말들은 기존 n+4 단말들과는 다른 In this paper, we propose a new N + PUCCHPUCCH 자원을 할당한다. Allocate resources.

본 제안에서는 기존의 PUCCH 자원 할당 방법의 재사용을 전제로 하지만, 다른 방법에서도 동일한 원리를 적용할 수 있다. 우선 앞서 언급한 PUCCH 자원 할당 함수를 기반으로 제안하는 방법은 아래와 같이 변경된 함수를 적용할 수 있다.In this proposal, the reuse of the existing PUCCH resource allocation method is presupposed, but the same principle can be applied to other methods. First, based on the above-mentioned PUCCH resource allocation function, the following modified function can be applied.

Figure pat00059
Figure pat00059

여기에서 X offset 은 n+3 단말들이 공통적으로 기존의 PUCCH 영역과 충돌하는 문제를 해결하기 위한 offset 또는 shift 값이다. 즉 각 단말이 검출한 PDCCH의 lowest CCE 인덱스

Figure pat00060
가 동일하더라도 제안되는 n+3 단말들을 위한 shift 값에 의해서 각 PDSCH의 A/N 전송시 PUCCH 자원은 충돌하지 않게 된다.Here, X offset is an offset or shift value for solving the problem that n + 3 terminals commonly collide with an existing PUCCH region. That is, the lowest CCE index of the PDCCH detected by each UE
Figure pat00060
The PUCCH resources do not collide with each other in the A / N transmission of each PDSCH by the shift value for the proposed n + 3 terminals.

방안 1-1. N+3 처리 시간을 갖는 단말들의 Solution 1-1. N + 3 processing time PUCCHPUCCH 자원 설정을 위해서 특정 shift 값은 RRC  For a resource setting, a specific shift value is RRC 시그널링으로With signaling 설정한다. Setting.

본 제안에서는 결과적으로 n+3 스케줄링 단위를 갖는 단말에게 특정 shift 값을 RRC 시그널링으로 직접 설정하는 방법을 제안한다. 즉 n+3 처리 시간을 갖는 단말들은 공통적으로 RRC 시그널링을 통해서 모두 X offset 의 특정 값을 전달 받고 해당 정보를 이용해서 PUCCH 자원을 할당받게 되는 것이다. In this proposal, we propose a method of directly setting a specific shift value to the UE with n + 3 scheduling unit by RRC signaling. That is, terminals having n + 3 processing time commonly receive a specific value of X offset through RRC signaling and receive PUCCH resources using the corresponding information.

예를 들어 n+4 처리시간을 갖는 UE#0, n+3 처리 시간을 갖는 UE#1이 도 6과 같이 각각 suframe#0, subframe#1에서 PDSCH를 전송 되었다고 가정한다. 이때 각PDCCH 검출 시 확인할 수 있는 lowest CCE index 의 검출

Figure pat00061
=0 이라고 가정한다.For example, it is assumed that the UE # 0 having the n + 4 processing time and the UE # 1 having the processing time of the (n + 3) are transmitted the PDSCH in the suframe # 0 and the subframe # 1, respectively, as shown in FIG. At this time, detection of the lowest CCE index that can be confirmed when each PDCCH is detected
Figure pat00061
= 0 is assumed.

제안한 방법을 통해서 각 자원은 아래와 같은 sPUCCH 자원 할당이 이루어진다. 결과적으로 UE#0와 UE#1이 사용하는 sPUCCH 자원 인덱스가 달라져 충돌이 발생하지 않는다. (X offset =10)Through the proposed method, the following sPUCCH resource allocation is performed for each resource. As a result, the sPUCCH resource indexes used by the UE # 0 and the UE # 1 are different and no collision occurs. ( X offset = 10)

Figure pat00062
Figure pat00062

방안 1-2. N+3 처리 시간을 갖는 단말들의 Plan 1-2. N + 3 processing time PUCCHPUCCH 자원 설정을 위해서 특정 shift 값은 RRC  For a resource setting, a specific shift value is RRC 시그널링으로With signaling 설정하고, triggering은 dynamic  And triggering is dynamic 시그널링으로With signaling 설정한다. Setting.

본 제안에의 원리는 앞서 언급한 RRC 시그널링을 통해서 특정 shift 값을 설정하는 것은 동일하고, 해당 shift 값에 대한 실제 적용 여부 또는 사용 여부를 DL grant를 통해서 triggering하는 것을 의미한다.The principle of this proposal is to set a specific shift value through the RRC signaling mentioned above, and means to trigger or not use the corresponding shift value through DL grant.

이를 통해서 n+3 단말의 스케줄링 환경 요소 등을 고려해서 eNB가 선택적으로 PUCCH 자원 shift 값을 선택적으로 적용할 수 있다.Accordingly, the eNB can selectively apply the PUCCH resource shift value selectively considering the scheduling environment factor of the n + 3 terminal.

예를 들어 triggering으로 1 bit information field가 특정 DL grant에 포함될 수 있다. 해당 field 값이 '1'이면 단말은 RRC를 통해서 받은 X offset 을 이용해서 PUCCH 자원 할당을 수행하고, '0'이면, 기존과 동일한 PUCCH 자원 할당 procedure를 사용하게 된다.For example, triggering can include a 1-bit information field in a specific DL grant. If the corresponding field value is '1', the UE performs PUCCH resource allocation using the X offset received from the RRC, and if it is '0', uses the same PUCCH resource allocation procedure.

방안 1-3. N+3 처리 시간을 갖는 단말들의 Methods 1-3. N + 3 processing time PUCCHPUCCH 자원 설정을 위해서  For resource configuration DCIDCI information내에 특정 필드 이용 방법을 RRC  How to use specific fields in information 시그널링으로With signaling 설정하고, triggering은 dynamic  And triggering is dynamic 시그널링으로With signaling 설정한다. Setting.

본 제안에의 원리는 앞서 언급한 '방안 1-1', '방안 1-2'와 달리 DCI information 내에 어떤 정보를 shift value로 이용할 것 인가를 RRC 시그널링으로 설정하는 것을 말한다. 여기에는 antenna port, HARQ process number, MCS, Redundancy version, 자원 할당 정보, 단말의 고유 RNTI 등이 포함될 수 있으며, RRC 시그널링을 통해서 해당 정보 중 어떤 field를 이용할 것인지를 n+3 단말들에게 RRC 시그널링으로 설정하는 것을 말한다. 이후 해당 정보를 이용한 PUCCH 자원 할당에 대한 triggering은 1bit 정도의 DL/UL grant 내 DCI information 필드를 이용해서 on/off 할 수 있다.The principle of this proposal is to set RRC signaling as to which information is used as a shift value in DCI information, unlike 'Plan 1-1' and 'Plan 1-2' mentioned above. Here, the RRC signaling may include an antenna port, an HARQ process number, an MCS, a redundancy version, resource allocation information, and a unique RNTI of the UE. Setting. Thereafter, triggering for PUCCH resource allocation using the information can be turned on / off using the DCI information field in the DL / UL grant of about 1 bit.

방안 1-4. N+3 처리 시간을 갖는 단말들의 Methods 1-4. N + 3 processing time PUCCHPUCCH 자원 설정을 위해서  For resource configuration DCIDCI information내에  within information PUCCHPUCCH 자원 필드를 추가로 설정한다. Set additional resource fields.

본 제안에서는 sPUCCH 자원 할당 shift value X offset 의 정보를 dynamic 시그널링을 통해서 전달하는 방법을 제시한다. 일반적으로 dynamic 시그널링에는 DL grant가 활용된다. 따라서 PDSCH 자원 할당 정보를 전달하는 DCI format에 해당 정보의 필드가 포함이 되어야 한다. 해당 정보는 그 사이즈가 클 수 있기 때문에, DCI format 내에 추가 필드를 추가할 경우 bit 수가 제약되거나 추가적인 overhead를 유발할 수 있다.In this proposal, we propose a method to transmit information of sPUCCH resource allocation shift value X offset through dynamic signaling. Generally, DL grant is used for dynamic signaling. Therefore, the field of the corresponding information should be included in the DCI format for transmitting the PDSCH resource allocation information. Since the information may be large in size, the addition of additional fields in the DCI format may cause a bit limitation or additional overhead.

구체적으로는 PUCCH 가 기존 DCI format에 포함된다면 아래와 같은 수정이 필요하게 된다.Specifically, if the PUCCH is included in the existing DCI format, the following modifications are necessary.

DCI format 1As: 기존 필드 + shift value 필드 DCI format 1As: existing field + shift value field

DCI format 1Bs: 기존 필드 + shift value 필드 DCI format 1Bs: Existing field + shift value field

DCI format 2As: 기존 필드 + shift value 필드 DCI format 2As: existing field + shift value field

…. ... .

추가되는 shift 필드가 'N'비트로 설정될 수 있으며, 그 값은 2, 3, 4 … 등의 다양한 길이로 설정될 수 있다.The added shift field can be set to 'N' bits, the values are 2, 3, 4 ... And the like.

본 발명에서는 3GPP LTE/LTE-A 시스템에서 processing time 감소 서비스를 수행할 경우 PDSCH 전송 시에 발생하는 다중 사용자들간의 Ack/Nack 충돌 방지 방법을 제안하였으며, 해당 방법은 유사 시그널 및 채널에 그 원리가 그대로 적용할 수 있으며, new frame 구조에만 그 적용이 제한되지 않는다.The present invention proposes a method of preventing Ack / Nack collision between multiple users that occurs when a PDSCH is transmitted in a case where a processing time reduction service is performed in a 3GPP LTE / LTE-A system, and the method is applied to similar signals and channels But it is not limited to the new frame structure.

도 7은 또 다른 실시예에 의한 기지국의 구성을 보여주는 도면이다. 7 is a diagram illustrating a configuration of a base station according to another embodiment of the present invention.

도 7을 참조하면, 또 다른 실시예에 의한 기지국(1000)은 제어부(1010)과 송신부(1020), 수신부(1030)을 포함한다.Referring to FIG. 7, a base station 1000 according to another embodiment includes a control unit 1010, a transmission unit 1020, and a reception unit 1030.

제어부(1010)는 전술한 본 발명에 따라 sTTI를 위한 하향 데이터 채널 Ack/Nack 충돌 방지 방법을 수행함에 따른 전반적인 기지국(1000)의 동작을 제어한다.The controller 1010 controls the overall operation of the base station 1000 according to the downlink data channel Ack / Nack collision avoidance method for the sTTI according to the present invention described above.

송신부(1020)와 수신부(1030)는 전술한 본 발명을 수행하기에 필요한 신호나 메시지, 데이터를 단말과 송수신하는데 사용된다. The transmitting unit 1020 and the receiving unit 1030 are used to transmit and receive signals, messages, and data necessary for carrying out the present invention to and from the terminal.

도 8은 또 다른 실시예에 의한 사용자 단말의 구성을 보여주는 도면이다.FIG. 8 is a diagram illustrating a configuration of a user terminal according to another embodiment of the present invention.

도 8을 참조하면, 또 다른 실시예에 의한 사용자 단말(1100)은 수신부(1110) 및 제어부(1120), 송신부(1130)을 포함한다.Referring to FIG. 8, a user terminal 1100 according to another embodiment includes a receiving unit 1110, a control unit 1120, and a transmitting unit 1130.

수신부(1110)는 기지국으로부터 하향링크 제어정보 및 데이터, 메시지를 해당 채널을 통해 수신한다.The receiving unit 1110 receives downlink control information, data, and messages from the base station through the corresponding channel.

또한 제어부(1120)는 전술한 본 발명에 따라 sTTI를 위한 하향 데이터 채널 Ack/Nack 충돌 방지 방법을 수행함에 따른 전반적인 사용자 단말(1100)의 동작을 제어한다.In addition, the controller 1120 controls the overall operation of the user terminal 1100 according to the above-described method of preventing downlink data channel Ack / Nack collision for the sTTI according to the present invention.

송신부(1130)는 기지국에 상향링크 제어정보 및 데이터, 메시지를 해당 채널을 통해 전송한다.The transmitter 1130 transmits uplink control information, data, and a message to the base station through the corresponding channel.

전술한 실시예에서 언급한 표준내용 또는 표준문서들은 명세서의 설명을 간략하게 하기 위해 생략한 것으로 본 명세서의 일부를 구성한다. 따라서, 위 표준내용 및 표준문서들의 일부의 내용을 본 명세서에 추가하거나 청구범위에 기재하는 것은 본 발명의 범위에 해당하는 것으로 해석되어야 한다.The standard content or standard documents referred to in the above-mentioned embodiments constitute a part of this specification, for the sake of simplicity of description of the specification. Therefore, it is to be understood that the content of the above standard content and portions of the standard documents are added to or contained in the scope of the present invention.

AppendixAppendix

[1] Ericsson, Huawei, "New SI proposal Study on Latency reduction techniques for LTE", RP-150465, Shanghai, China, March 9-12, 2015.[1] Ericsson, Huawei, "New SI proposal Study on Latency Reduction Techniques for LTE", RP-150465, Shanghai, China, March 9-12, 2015.

[2] R2-155008, "TR 36.881 v0.4.0 on Study on Latency reduction techniques for LTE" , Ericsson (Rapporteur)[2] R2-155008, "TR 36.881 v0.4.0 on Study Latency reduction techniques for LTE", Ericsson (Rapporteur)

[3] R1-160927, "TR 36.881-v0.5.0 on Study on Latency reduction techniques for LTE" , Ericsson (Rapporteur)[3] R1-160927, "TR 36.881-v0.5.0 on Study Latency Reduction Techniques for LTE", Ericsson (Rapporteur)

이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The foregoing description is merely illustrative of the technical idea of the present invention, and various changes and modifications may be made by those skilled in the art without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are intended to illustrate rather than limit the scope of the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The scope of protection of the present invention should be construed according to the following claims, and all technical ideas within the scope of equivalents should be construed as falling within the scope of the present invention.

Claims (1)

sTTI를 위한 하향 데이터 채널 Ack/Nack 충돌 방지 방법에 있어서,
(N+4) 처리 시간을 갖는 단말을 위한 PUCCH 자원을 할당하는 단계;
상기 (N=4) 처리 시간을 갖는 단말을 위한 PUCCH 자원과 다른 PUCCH 자원을 (N+3) 처리 시간을 갖는 단말을 위해 할당하는 단계; 및
상기 (N+3) 처리 시간을 갖는 단말을 위한 PUCCH 자원 설정을 위해 특정 shift 값을 RRC 시그널링으로 설정하는 단계를 포함하는 방법.
A method for preventing downlink data channel Ack / Nack collision for a sTTI,
Allocating a PUCCH resource for a terminal having a (N + 4) processing time;
Allocating a PUCCH resource different from the PUCCH resource for the UE having the (N = 4) processing time for the UE having the (N + 3) processing time; And
And setting a specific shift value to RRC signaling for PUCCH resource setting for the terminal having the (N + 3) processing time.
KR1020170042167A 2017-03-31 2017-03-31 Apparatus and method of prevention of Ack/Nack collision corresponding DL data channel for processing time reduction KR20180112214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170042167A KR20180112214A (en) 2017-03-31 2017-03-31 Apparatus and method of prevention of Ack/Nack collision corresponding DL data channel for processing time reduction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170042167A KR20180112214A (en) 2017-03-31 2017-03-31 Apparatus and method of prevention of Ack/Nack collision corresponding DL data channel for processing time reduction

Publications (1)

Publication Number Publication Date
KR20180112214A true KR20180112214A (en) 2018-10-12

Family

ID=63876506

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170042167A KR20180112214A (en) 2017-03-31 2017-03-31 Apparatus and method of prevention of Ack/Nack collision corresponding DL data channel for processing time reduction

Country Status (1)

Country Link
KR (1) KR20180112214A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210315013A1 (en) * 2018-12-21 2021-10-07 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Bidirectional Scheduling in Low-Power Wide-Area Networks

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210315013A1 (en) * 2018-12-21 2021-10-07 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Bidirectional Scheduling in Low-Power Wide-Area Networks
US11792853B2 (en) * 2018-12-21 2023-10-17 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Bidirectional scheduling in low-power wide-area networks

Similar Documents

Publication Publication Date Title
JP6921181B2 (en) How a terminal transmits data to another terminal in a wireless communication system
US20210410139A1 (en) Special subframe configuration for latency reduction
KR101852825B1 (en) Method and apparatus for transmitting scheduling request using contention-based resources in wireless communication system
EP3223451B1 (en) Harq feedback using carrier aggregation
US10616916B2 (en) Methods for multiplexing scheduling request information and HARQ ACK/NACK information while transmitting and receiving PUCCH and apparatuses thereof
KR20170091038A (en) Method and apparatus for transmitting signal in unlicensed band communication system, method and apparatus for uplink scheduling, and method and apparatus for transmitting information about channel status measurement period
KR102120856B1 (en) Methods for transmitting and receiving uplink control channel in a short tti frame structure and apparatuses
KR20180046358A (en) Apparatus and method of scheduling for NR(New Radio)
KR20170114243A (en) Methods of uplink data channel configuration by a shared demodulation reference signal and apparatuses thereof
KR20170107372A (en) Methods of frame structure configuration and information transmission for short tti and apparatuses thereof
KR102156670B1 (en) Methods for multiplexing scheduling request and HARQ ACK/NACK while transmitting and receiving PUCCH and Apparatuses thereof
KR20180112214A (en) Apparatus and method of prevention of Ack/Nack collision corresponding DL data channel for processing time reduction
KR102120976B1 (en) Method and apparatus for transmitting uplink channel in a short tti frame structure
KR20180029180A (en) Apparatus and method of Ack/Nack linkage configuration considering sPDSCH processing time in a short TTI frame structure
KR20180088568A (en) Apparatus and method of PUSCH scheduling considering PUSCH processing time in a short TTI frame structure
US20180270797A1 (en) Method of transmitting and receiving downlink channel in short tti frame structure and apparatus thereof
KR20170114071A (en) Apparatus and method of Ack/Nack linkage configuration corresponding sPUSCH in a short TTI frame structure
KR20190086310A (en) Apparatus and method of legacy data channel multiplexing in URLLC for LTE
KR20180016688A (en) Apparatus and method of short PUCCH design based on the partially overlapped DMRS in a short TTI frame structure
KR20190086314A (en) Apparatus and method of multi-level CQI reporting in URLLC for LTE
JP7194245B2 (en) Apparatus, method and integrated circuit
KR20170108202A (en) Apparatus and method of resource allocation based on short TTI frame structure
KR20170131807A (en) Apparatus and method of scheduling legacy PUSCH and short PUSCH in a short TTI frame structure
KR20180046445A (en) Apparatus and method of DCI detection considering legacy PDCCH in a short TTI frame structure
KR20180107386A (en) Apparatus and method of UL control channel and data channel frequency hopping in a short TTI frame structure