KR20180045002A - 협대역 무선 통신을 위한 랜덤 액세스 채널 설계 - Google Patents

협대역 무선 통신을 위한 랜덤 액세스 채널 설계 Download PDF

Info

Publication number
KR20180045002A
KR20180045002A KR1020187008866A KR20187008866A KR20180045002A KR 20180045002 A KR20180045002 A KR 20180045002A KR 1020187008866 A KR1020187008866 A KR 1020187008866A KR 20187008866 A KR20187008866 A KR 20187008866A KR 20180045002 A KR20180045002 A KR 20180045002A
Authority
KR
South Korea
Prior art keywords
random access
subcarriers
access message
transmitting
payload
Prior art date
Application number
KR1020187008866A
Other languages
English (en)
Inventor
징 레이
마드하반 스리니바산 바자페얌
완시 첸
알베르토 리코 알바리노
렌퀴우 왕
하오 수
세예드 알리 아크바르 파쿠리안
쉬만 아르빈드 파텔
피터 가알
Original Assignee
퀄컴 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 퀄컴 인코포레이티드 filed Critical 퀄컴 인코포레이티드
Publication of KR20180045002A publication Critical patent/KR20180045002A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/30Special cell shapes, e.g. doughnuts or ring cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

랜덤 액세스 기술들은 협대역 통신에서 랜덤 액세스 요청들에 대해 할당되는 서브캐리어들을 사용할 수 있다. 물리적 자원들은 사용자 장비(UE)의 "커버리지 클래스"에 기초하여 랜덤 액세스 요청의 송신을 위해 선택될 수 있다. 일부 예들에서, 커버리지 클래스들의 세트는 경로손실과 같은 하나 이상의 UE 채널 조건들에 기초하여 식별될 수 있다. 각각의 커버리지 클래스는 협대역 대역폭에서 서브캐리어들의 세트의 하나 이상의 연관된 서브캐리어들을 가질 수 있고, 랜덤 액세스 메시지들은 UE의 커버리지 클래스에 대한 연관된 서브캐리어(들)를 사용하여 송신될 수 있다. 일부 예들에서, 상이한 커버리지 클래스들은 랜덤 액세스 메시지의 상이한 수의 여분의 송신들을 가질 수 있고, 이는 특정 커버리지 클래스와 연관된 채널 조건들에 기초할 수 있다. 측정된 채널 조건에 기초하여, UE는 커버리지 클래스를 결정할 수 있고, 결정된 커버리지 클래스에 기초하여 서브캐리어를 선택할 수 있다.

Description

협대역 무선 통신을 위한 랜덤 액세스 채널 설계
[0001] 본 특허 출원은, Lei 등에 의해 2016년 8월 23일에 출원되고 발명의 명칭이 "Random Access Channel Design for Narrowband Wireless Communication"인 미국 특허 출원 제15/244,385호, 및 Lei 등에 의해 2015년 8월 28일에 출원되고 발명의 명칭이 "Random Access Channel Design for Narrowband Wireless Communication"인 미국 가특허 출원 제62/211,657호를 우선권으로 주장하며, 상기 출원들 각각은 본원의 양수인에게 양도되었다.
[0002] 하기 내용은 일반적으로 무선 통신에 관한 것이고, 더 구체적으로는, 협대역 무선 통신들을 위한 랜덤 액세스 기술들에 관한 것이다.
[0003] 무선 통신 시스템들은, 음성, 비디오, 패킷 데이터, 메시징, 브로드캐스트 등과 같은 다양한 타입들의 통신 콘텐츠를 제공하도록 널리 배치되어 있다. 이러한 시스템들은, 이용가능한 시스템 자원들(예를 들어, 시간, 주파수 및 전력)을 공유함으로써 다수의 사용자들과의 통신을 지원할 수 있다. 이러한 다중 액세스 시스템들의 예들은, 코드 분할 다중 액세스(CDMA) 시스템들, 시분할 다중 액세스(TDMA) 시스템들, 주파수 분할 다중 액세스(FDMA) 시스템들 및 직교 주파수 분할 다중 액세스(OFDMA) 시스템들(예를 들어, 롱 텀 에볼루션(LTE) 시스템)을 포함한다. 무선 다중 액세스 통신 시스템은, 달리 사용자 장비(UE)로 공지될 수 있는 다수의 통신 디바이스들에 대한 통신을 각각 동시에 지원하는 다수의 기지국들을 포함할 수 있다.
[0004] 무선 디바이스들 중 일부 타입들은 자동화된 통신을 제공할 수 있다. 자동화된 무선 디바이스들은 M2M 통신을 구현하는 디바이스들을 포함할 수 있다(이의 MTC(Machine Type Communication)는 본 개시의 목적들을 위한 부분으로 고려될 것이다). M2M 통신은 무선 디바이스들이 인간의 개입 없이 서로 또는 기지국과 통신하도록 허용하는 통신들을 지칭할 수 있다. 예를 들어, M2M 통신은, 정보를 측정 또는 캡처하기 위한 센서들 또는 계측기들을 통합하고 그 정보를, 정보를 사용할 수 있는(또는 정보를 애플리케이션 프로그램과 상호작용하는 인간들에게 제시할 수 있는) 중앙 서버 또는 애플리케이션 프로그램에 중계하는 디바이스들로부터의 통신들을 지칭할 수 있다. M2M 무선 디바이스들에 대한 애플리케이션들의 예들은, 스마트 계측, 재고 모니터링, 수위 모니터링, 장비 모니터링, 헬스케어 모니터링, 야생 동물 모니터링, 기후 및 지질학적 이벤트 모니터링, 함대 관리 및 추적, 원격 보안 감지, 물리적 액세스 제어, 웨어러블 디바이스들 및 거래-기반 비즈니스 과금을 포함한다.
[0005] 협대역 통신에서 랜덤 액세스 요청들에 할당되는 선택된 서브캐리어들을 사용하여 랜덤 액세스 절차를 개시하기 위한 시스템들, 방법들 및 장치들이 설명된다. 일부 예들에서, 시스템들, 방법들 및 장치들은 사용자 장비(UE)의 "커버리지 클래스"에 기초하여 랜덤 액세스 요청의 송신을 위한 물리적 자원들을 선택할 수 있다. 일부 예들에서, 커버리지 클래스들의 세트는 경로손실과 같은 하나 이상의 UE 채널 조건들에 기초하여 식별될 수 있다. 각각의 커버리지 클래스는 협대역 대역폭에서 서브캐리어들의 세트의 하나 이상의 연관된 서브캐리어들을 가질 수 있고, 랜덤 액세스 메시지들은 UE의 커버리지 클래스에 대한 연관된 서브캐리어들을 사용하여 송신될 수 있다. 일부 예들에서, 상이한 커버리지 클래스들은 랜덤 액세스 메시지의 상이한 수의 여분의 송신들을 가질 수 있고, 이는 특정 커버리지 클래스와 연관된 채널 조건들에 기초할 수 있다. 측정된 채널 조건에 기초하여, UE는 커버리지 클래스를 결정할 수 있고, 결정된 커버리지 클래스에 기초하여 서브캐리어를 선택할 수 있다.
[0006] 무선 통신 방법이 설명된다. 방법은, 무선 디바이스와 연관된 통신 링크의 특성에 적어도 부분적으로 기초하여 무선 디바이스에 대한 커버리지 클래스들의 세트를 식별하는 단계, 커버리지 클래스들의 세트의 각각의 커버리지 클래스에 대해, 랜덤 액세스 메시지들을 송신하기 위한 서브캐리어들의 세트 중 하나 이상의 서브캐리어들을 식별하는 단계, 및 서브캐리어들의 세트 중 하나 이상의 서브캐리어들 상에서 통신하는 단계를 포함할 수 있다.
[0007] 무선 통신을 위한 장치가 설명된다. 장치는, 무선 디바이스와 연관된 통신 링크의 특성에 적어도 부분적으로 기초하여 무선 디바이스에 대한 커버리지 클래스들의 세트를 식별하기 위한 수단, 커버리지 클래스들의 세트의 각각의 커버리지 클래스에 대해, 랜덤 액세스 메시지들을 송신하기 위한 서브캐리어들의 세트 중 하나 이상의 서브캐리어들을 식별하기 위한 수단 및 서브캐리어들의 세트 중 하나 이상의 서브캐리어들 상에서 통신하기 위한 수단을 포함할 수 있다.
[0008] 무선 통신을 위한 다른 장치가 설명된다. 장치는, 프로세서, 프로세서와 전자 통신하는 메모리, 및 메모리에 저장된 명령들을 포함할 수 있다. 명령들은, 장치로 하여금 무선 디바이스와 연관된 통신 링크의 특성에 적어도 부분적으로 기초하여 무선 디바이스에 대한 커버리지 클래스들의 세트를 식별하게 하고, 커버리지 클래스들의 세트의 각각의 커버리지 클래스에 대해, 랜덤 액세스 메시지들을 송신하기 위한 서브캐리어들의 세트 중 하나 이상의 서브캐리어들을 식별하게 하고, 서브캐리어들의 세트 중 하나 이상의 서브캐리어들 상에서 통신하게 하도록 프로세서에 의해 동작가능할 수 있다.
[0009] 무선 통신을 위한 비일시적 컴퓨터 판독가능 매체가 설명된다. 비일시적 컴퓨터 판독가능 매체는, 무선 디바이스와 연관된 통신 링크의 특성에 적어도 부분적으로 기초하여 무선 디바이스에 대한 커버리지 클래스들의 세트를 식별하고, 커버리지 클래스들의 세트의 각각의 커버리지 클래스에 대해, 랜덤 액세스 메시지들을 송신하기 위한 서브캐리어들의 세트 중 하나 이상의 서브캐리어들을 식별하고, 서브캐리어들의 세트 중 하나 이상의 서브캐리어들 상에서 통신하도록 동작가능한 명령들을 포함할 수 있다.
[0010] 본원에 설명된 방법들, 장치들 및 비일시적 컴퓨터 판독가능 매체들의 일부 예들은, 무선 디바이스에서 통신 링크의 특성을 측정하는 것을 위한 프로세스들, 특징들, 수단들 또는 명령들을 더 포함할 수 있다. 본원에 설명된 방법들, 장치들 및 비일시적 컴퓨터 판독가능 매체들의 일부 예들은, 통신 링크의 특성에 적어도 부분적으로 기초하여 무선 디바이스가 제1 커버리지 클래스에 있을 수 있다고 결정하는 것을 위한 프로세스들, 특징들, 수단들 또는 명령들을 더 포함할 수 있다. 본원에 설명된 방법들, 장치들 및 비일시적 컴퓨터 판독가능 매체들의 일부 예들은, 제1 커버리지 클래스에 적어도 부분적으로 기초하여 랜덤 액세스 메시지의 송신을 위해 서브캐리어들의 세트 중 제1 서브캐리어를 선택하는 것을 위한 프로세스들, 특징들, 수단들 또는 명령들을 더 포함할 수 있다.
[0011] 본원에 설명된 방법들, 장치들 및 비일시적 컴퓨터 판독가능 매체들의 일부 예들에서, 각각의 커버리지 클래스에 대한 토큰을 식별하고, 랜덤 액세스 메시지의 송신은 랜덤 액세스 메시지와 연관된 랜덤 수를 결정하는 것을 포함한다. 본원에 설명된 방법들, 장치들 및 비일시적 컴퓨터 판독가능 매체들의 일부 예들은, 식별된 토큰에 대응하는 랜덤 수에 대한 응답으로 랜덤 액세스 메시지를 송신하는 것을 위한 프로세스들, 특징들, 수단들 또는 명령들을 더 포함할 수 있다.
[0012] 본원에 설명된 방법들, 장치들 및 비일시적 컴퓨터 판독가능 매체들의 일부 예들은, 각각의 커버리지 클래스에 대한 랜덤 액세스 메시지들을 복수의 무선 디바이스들에 송신하기 위해 식별된 하나 이상의 서브캐리어들을 시그널링하는 것을 위한 프로세스들, 특징들, 수단들 또는 명령들을 더 포함할 수 있다.
[0013] 본원에 설명된 방법들, 장치들 및 비일시적 컴퓨터 판독가능 매체들의 일부 예들에서, 서브캐리어들의 세트는 무선 통신 시스템 대역폭의 협대역 영역 내의 복수의 서브캐리어들을 포함한다.
[0014] 본원에 설명된 방법들, 장치들 및 비일시적 컴퓨터 판독가능 매체들의 일부 예들에서, 서브캐리어들의 세트 중 인접한 서브캐리어들의 서브캐리어 간격은 무선 통신 시스템 대역폭의 협대역 영역 내에서 데이터 통신들에 대해 사용되는 것과 동일한 서브캐리어 간격에 대응한다.
[0015] 본원에 설명된 방법들, 장치들 및 비일시적 컴퓨터 판독가능 매체들의 일부 예들에서, 랜덤 액세스 메시지들은 서브캐리어들의 세트 중 단일 서브캐리어를 사용하여 송신될 수 있다.
[0016] 본원에 설명된 방법들, 장치들 및 비일시적 컴퓨터 판독가능 매체들의 일부 예들에서, 랜덤 액세스 메시지들 및 데이터 통신들은 서브캐리어들 중 하나 이상 상에서 시분할 멀티플렉싱될 수 있다.
[0017] 본원에 설명된 방법들, 장치들 및 비일시적 컴퓨터 판독가능 매체들의 일부 예들은, 커버리지 클래스들의 세트 중 각각의 커버리지 클래스에 대한 랜덤 액세스 메시지의 여분의 버전들을 송신하기 위해 반복 레벨을 식별하는 것을 위한 프로세스들, 특징들, 수단들 또는 명령들을 더 포함할 수 있다.
[0018] 본원에 설명된 방법들, 장치들 및 비일시적 컴퓨터 판독가능 매체들의 일부 예들에서, 랜덤 액세스 메시지들은 비동기식으로 송신될 수 있다. 본원에 설명된 방법들, 장치들 및 비일시적 컴퓨터 판독가능 매체들의 일부 예들에서, 랜덤 액세스 메시지들은 파일럿 신호 및 페이로드를 포함한다.
[0019] 본원에 설명된 방법들, 장치들 및 비일시적 컴퓨터 판독가능 매체들의 일부 예들에서, 페이로드는 랜덤 액세스 타입의 식별, 무선 디바이스 아이덴티티, 액세스 원인 또는 무선 디바이스의 커버리지 클래스 중 하나 이상을 포함한다.
[0020] 본원에 설명된 방법들, 장치들 및 비일시적 컴퓨터 판독가능 매체들의 일부 예들은, 식별된 커버리지 클래스에 적어도 부분적으로 기초하여 서브캐리어를 선택하는 것을 위한 프로세스들, 특징들, 수단들 또는 명령들을 더 포함할 수 있다. 본원에 설명된 방법들, 장치들 및 비일시적 컴퓨터 판독가능 매체들의 일부 예들은, 선택된 서브캐리어를 사용하여 랜덤 액세스 메시지를 송신하는 것을 위한 프로세스들, 특징들, 수단들 또는 명령들을 더 포함할 수 있고, 랜덤 액세스 요청은 랜덤 식별 번호를 포함한다. 본원에 설명된 방법들, 장치들 및 비일시적 컴퓨터 판독가능 매체들의 일부 예들은, 랜덤 액세스 메시지에 적어도 부분적으로 기초하여 업링크 자원 할당을 수신하는 것을 위한 프로세스들, 특징들, 수단들 또는 명령들을 더 포함할 수 있다. 본원에 설명된 방법들, 장치들 및 비일시적 컴퓨터 판독가능 매체들의 일부 예들은, 업링크 자원 할당에 적어도 부분적으로 기초하여 업링크 데이터 패킷을 송신하는 것을 위한 프로세스들, 특징들, 수단들 또는 명령들을 더 포함할 수 있다. 본원에 설명된 방법들, 장치들 및 비일시적 컴퓨터 판독가능 매체들의 일부 예들은, 업링크 데이터 패킷의 성공적인 수신을 확인응답하기 위해 피드백을 수신하는 것을 위한 프로세스들, 특징들, 수단들 또는 명령들을 더 포함할 수 있다.
[0021] 본원에 설명된 방법들, 장치들 및 비일시적 컴퓨터 판독가능 매체들의 일부 예들은, 추가적인 업링크 자원들이 업링크 데이터의 송신을 위해 요구될 수 있다고 결정하는 것을 위한 프로세스들, 특징들, 수단들 또는 명령들을 더 포함할 수 있다. 본원에 설명된 방법들, 장치들 및 비일시적 컴퓨터 판독가능 매체들의 일부 예들은, 결정하는 것에 적어도 부분적으로 기초하여 제2 랜덤 액세스 메시지를 송신하는 것을 위한 프로세스들, 특징들, 수단들 또는 명령들을 더 포함할 수 있고, 제2 랜덤 액세스 메시지는 기지국에 의해 무선 디바이스에 제공되는 식별을 포함한다. 본원에 설명된 방법들, 장치들 및 비일시적 컴퓨터 판독가능 매체들의 일부 예들은, 제2 랜덤 액세스 메시지에 적어도 부분적으로 기초하여 제2 업링크 자원 할당을 수신하는 것을 위한 프로세스들, 특징들, 수단들 또는 명령들을 더 포함할 수 있다. 본원에 설명된 방법들, 장치들 및 비일시적 컴퓨터 판독가능 매체들의 일부 예들은, 제2 업링크 자원 할당에 적어도 부분적으로 기초하여 제2 업링크 데이터 패킷을 송신하는 것을 위한 프로세스들, 특징들, 수단들 또는 명령들을 더 포함할 수 있다.
[0022] 본원에 설명된 방법들, 장치들 및 비일시적 컴퓨터 판독가능 매체들의 일부 예들은, 랜덤 액세스 메시지를 송신하기 위한 무선 통신 시스템 대역폭의 협대역 영역 내에서 서브캐리어들의 세트의 서브캐리어를 식별하는 것을 위한 프로세스들, 특징들, 수단들 또는 명령들을 더 포함할 수 있다. 본원에 설명된 방법들, 장치들 및 비일시적 컴퓨터 판독가능 매체들의 일부 예들은, 랜덤 액세스 메시지에 포함할 페이로드를 식별하는 것을 위한 프로세스들, 특징들, 수단들 또는 명령들을 더 포함할 수 있다. 본원에 설명된 방법들, 장치들 및 비일시적 컴퓨터 판독가능 매체들의 일부 예들은, 식별된 서브캐리어를 사용하여 랜덤 액세스 메시지 및 페이로드를 송신하는 것을 위한 프로세스들, 특징들, 수단들 또는 명령들을 더 포함할 수 있다.
[0023] 본원에 설명된 방법들, 장치들 및 비일시적 컴퓨터 판독가능 매체들의 일부 예들에서, 페이로드는 서브캐리어들의 세트 중 서브캐리어들의 서브세트를 사용하여 송신될 수 있다.
[0024] 본원에 설명된 방법들, 장치들 및 비일시적 컴퓨터 판독가능 매체들의 일부 예들은, 서브캐리어들의 서브세트 중 각각의 서브캐리어 상에서 페이로드를 송신하는 것을 위한 프로세스들, 특징들, 수단들 또는 명령들을 더 포함할 수 있다.
[0025] 본원에 설명된 방법들, 장치들 및 비일시적 컴퓨터 판독가능 매체들의 일부 예들은, 페이로드를 복수의 부분들로 분할하는 것을 위한 프로세스들, 특징들, 수단들 또는 명령들을 더 포함할 수 있다. 본원에 설명된 방법들, 장치들 및 비일시적 컴퓨터 판독가능 매체들의 일부 예들은, 페이로드로부터 리던던시 부분들을 생성하는 것을 위한 프로세스들, 특징들, 수단들 또는 명령들을 더 포함할 수 있다. 본원에 설명된 방법들, 장치들 및 비일시적 컴퓨터 판독가능 매체들의 일부 예들은, 서브캐리어들의 서브세트 중 각각의 서브캐리어 상에서 복수의 부분들의 서브세트 및 리던던시 부분들의 서브세트를 송신하는 것을 위한 프로세스들, 특징들, 수단들 또는 명령들을 더 포함할 수 있다.
[0026] 본원에 설명된 방법들, 장치들 및 비일시적 컴퓨터 판독가능 매체들의 일부 예들에서, 통신 링크의 특성은 통신 링크의 경로손실일 수 있다.
[0027] 본원에 설명된 방법들, 장치들 및 비일시적 컴퓨터 판독가능 매체들의 일부 예들에서, 통신 링크의 특성은 RSRP(reference signal received power), RSRQ(reference signal received quality) 또는 RSSI(received signal strength indicator) 중 하나일 수 있다.
[0028] 본 개시의 성질 및 이점들의 추가적인 이해는 하기 도면들을 참조하여 실현될 수 있다. 첨부된 도면들에서, 유사한 컴포넌트들 또는 특징들은 동일한 참조 라벨을 가질 수 있다. 추가로, 동일한 타입의 다양한 컴포넌트들은, 참조 라벨 다음에 대시기호 및 유사한 컴포넌트들 사이를 구별하는 제2 라벨에 의해 구별될 수 있다. 본 명세서에서 단지 제1 참조 라벨이 사용되면, 그 설명은, 제2 참조 라벨과는 무관하게 동일한 제1 참조 라벨을 갖는 유사한 컴포넌트들 중 임의의 컴포넌트에 적용가능하다.
[0029] 도 1은, 본 개시의 다양한 양상들에 따라 협대역 무선 통신들을 위한 랜덤 액세스 기술들을 지원하는 무선 통신 시스템의 예를 예시한다.
[0030] 도 2는, 본 개시의 다양한 양상들에 따라 협대역 무선 통신들을 위한 랜덤 액세스 기술들을 지원하는 무선 통신 시스템의 예를 예시한다.
[0031] 도 3은, 본 개시의 다양한 양상들에 따라 협대역 무선 통신들을 위한 랜덤 액세스 기술들을 지원하는 광대역 송신의 송신 대역폭 내의 협대역 영역 및 다른 할당된 주파수 대역의 협대역 영역의 예를 예시한다.
[0032] 도 4는, 본 개시의 다양한 양상들에 따라 시스템 대역폭에서 멀티플렉싱되고 수신 디바이스들에서 필터링될 수 있는 협대역 및 광대역 자원 블록들의 예를 예시한다.
[0033] 도 5는, 본 개시의 다양한 양상들에 따라 협대역 무선 통신들을 위한 랜덤 액세스 기술들을 지원하는 예시적인 채널 구조를 예시한다.
[0034] 도 6은 본 개시의 다양한 양상들에 따라 랜덤 액세스 메시지 송신을 위한 랜덤 액세스 메시지 페이로드 및 데이터 프로세싱의 예를 예시한다.
[0035] 도 7은, 본 개시의 다양한 양상들에 따라 협대역 무선 통신들을 위한 랜덤 액세스 기술들을 지원하는 예시적인 송신 체인 프로세싱을 예시한다.
[0036] 도 8은, 본 개시의 다양한 양상들에 따라 협대역 무선 통신들을 위한 랜덤 액세스 기술들을 지원하는 서브캐리어들의 세트에 대한 자원 할당들의 예를 예시한다.
[0037] 도 9 내지 도 11은, 본 개시의 다양한 양상들에 따라 협대역 무선 통신들을 위한 랜덤 액세스 기술들을 지원하는 프로세스 흐름들의 예들을 예시한다.
[0038] 도 12 내지 도 14는 본 개시의 양상들에 따라 협대역 무선 통신을 위한 랜덤 액세스 채널 설계를 지원하는 무선 디바이스의 블록도들을 도시한다.
[0039] 도 15는 본 개시의 양상들에 따라 협대역 무선 통신을 위한 랜덤 액세스 채널 설계를 지원하는 UE를 포함하는 시스템의 블록도를 예시한다.
[0040] 도 16은 본 개시의 양상들에 따라 협대역 무선 통신을 위한 랜덤 액세스 채널 설계를 지원하는 기지국을 포함하는 시스템의 블록도를 예시한다.
[0041] 도 17 내지 도 19는 본 개시의 양상들에 따라 협대역 무선 통신을 위한 랜덤 액세스 채널 설계를 위한 방법들을 예시한다.
[0042] 설명된 방법들 및 장치들의 적용가능성의 추가적인 범위는 하기 상세한 설명, 청구항들 및 도면들로부터 명백해질 것이다. 본 설명의 사상 및 범위 내의 다양한 변화들 및 수정들은 당업자들에게 자명할 것이기 때문에, 상세한 설명 및 특정 예들은 오직 예시의 방식으로 주어진다.
[0043] 일부 무선 통신 시스템들에서, 무선 디바이스들은 이러한 요청들의 송신에 할당된 자원들 또는 채널의 세트를 통해 액세스를 위한 요청의 송신을 통해 시스템 액세스를 획득할 수 있다. 이러한 액세스에 대한 요청은, 예를 들어, 무선 디바이스가 초기에 시스템에 액세스하는 것, 디바이스가 시스템 액세스를 획득해야 함을 표시하는 페이지가 무선 디바이스에서 수신되는 것 또는 무선 통신 시스템을 통해 전송할 데이터가 존재한다고 무선 디바이스가 결정하는 것에 의해 프롬프트될 수 있다. 일부 예들에서, 무선 통신 시스템은, UE가 랜덤 액세스 절차를 개시하고 랜덤 액세스 요청을 송신하기 위해 사용할 수 있는 PRACH(physical random access channel)와 같은 물리적 자원들을 구성할 수 있다. 무선 통신 시스템들의 다양한 배치들에 따르면, 특정 랜덤 액세스 절차들이 제공될 수 있다. 이러한 송신들에 제공되는 채널은 협대역 채널일 수 있고 제한된 자원들을 가질 수 있기 때문에, 채널의 자원들을 할당 및 사용하기 위한 효율적인 기술들이 바람직할 수 있다.
[0044] 시스템 동작 주파수 대역폭의 비교적 협대역 영역을 활용할 수 있는 무선 통신 시스템에서 랜덤 액세스 메시지 통신을 위한 기술들이 설명된다. 이러한 기술들은 예를 들어, M2M(Machine-to-Machine) 통신 또는 MTC(Machine Type Communication)에서 사용될 수 있다. 일부 경우들에서, 서로 또는 하나 이상의 서버들에 통신하는 MTC 디바이스들의 네트워크들은 IoT(Internet of Things)로 지칭될 수 있다. 셀룰러 네트워크를 통해 통신이 수행되는 인스턴스들에서, 이는 CIoT(Cellular IoT)로 지칭될 수 있다. 일부 배치들에서, CIoT 디바이스들은, 협대역 통신으로 지칭될 수 있는 셀룰러 네트워크의 할당된 대역폭의 비교적 작은 부분을 사용하여 통신할 수 있다. 셀룰러 네트워크의 할당된 대역폭 또는 시스템 대역폭의 다른 부분들은, 더 높은 데이터 레이트들을 갖고 본원에서 광대역 통신들로 지칭되는 통신들에 대해 사용될 수 있다. 일부 예들에서, 협대역 통신들은 1.4 MHz 내지 20MHz 시스템 대역폭에 비해, 라디오 주파수 스펙트럼 대역의 200 kHz를 점유할 수 있다.
[0045] 일부 배치들에서, CIoT 디바이스들은 비교적 높은 PSD(power spectral density)를 통해 달성될 수 있는 164 dB MCL(Minimum Coupling Loss)을 가질 수 있다. CIoT 디바이스들은 비교적 높은 전력 효율 요구들을 가질 수 있고, CIoT 네트워크들은 통상적으로 비교적 많은 수의 디바이스들(예를 들어, 주어진 영역에서 비교적 많은 수의 물 계측기들, 가스 계측기들, 전기 계측기들)을 지원할 수 있다. CIoT 디바이스들은 또한 비교적 낮은 비용을 갖도록 설계될 수 있고, 따라서 전력 효율적 방식으로 동작하도록 구체적으로 설계되고 협대역 통신들에 대해 필요한 것을 넘는 상당한 양의 프로세싱 능력들을 갖지 않는 하드웨어 컴포넌트들을 가질 수 있다.
[0046] 앞서 언급된 바와 같이, 일부 배치들에서 이러한 MTC 디바이스들은 200 KHz 채널화로 동작할 수 있다. 일부 배치들에서, CIoT 디바이스들은 정규의 셀룰러 사용자들보다 더 빈번한 네트워크 액세스, 이벤트-구동적 및 주기적이기 쉬운 네트워크 액세스 및 지배적인 업링크 송신들 상의 데이터 트래픽을 수반하는 네트워크 액세스 및 데이터 트래픽 패턴들을 나타낼 수 있다. 그러나, 레거시 랜덤 액세스 설계는 비교적 많은 수의 MTC 디바이스들로부터의 CIoT 액세스에 대해 양호한 피트가 아닐 수 있고, 혼잡, 오버로딩 및 빠른 에너지 공핍을 초래할 수 있다(교체불가능하거나 재충전불가능한 배터리들을 갖는 MTC 디바이스들에 대해 상당할 수 있다). 또한, 특정 레거시 랜덤 액세스 설계들은 채널 용량을 과소-활용할 수 있고, 프리앰블 시퀀스를 반송할 수 있다. 추가적으로, MTC 디바이스들은 비교적 낮은 비용의 UE들일 수 있고, 더 큰 시간 및 주파수 불안정성을 초래할 수 있다. 본 개시의 양상들은 아래에서 더 상세히 논의될 바와 같이 다양한 이러한 고려사항들을 처리하는 시스템들 및 기술들을 제공한다.
[0047] 본 개시의 다양한 양상들은 협대역 통신들에 대한 랜덤 액세스 기술들을 제공한다. 일부 양상들에서, 협대역 MTC 통신들은 광대역 LTE(Long Term Evolution) 통신들에 대해 사용되는 다수의 RB(resource block)들 중 단일 RB를 사용하여 송신될 수 있다. 협대역 영역이 독립형이든 또는 광대역 영역 내에 포함되든 무관하게, 이러한 팩터들은 협대역 LTE에 대한 랜덤 액세스를 위한 설계에 영향을 미칠 수 있다. 추가로, 협대역 랜덤 액세스 설계는 레거시 광대역 영역 내의 독립형 협대역 영역 및 협대역 영역 둘 모두와의 호환가능성을 위해 맞춤화될 수 있다.
[0048] 비교적 낮은 비용의 컴포넌트들을 사용할 수 있는 물리적 자원들의 효율적인 사용 및 MTC 디바이스들의 효율적인 동작을 제공하기 위해, 본 개시의 양상들은 협대역 대역폭의 물리적 자원들의 할당 및 랜덤 액세스를 위한 기술들을 제공한다. 일부 예들에서, 서브캐리어들의 세트는 협대역 대역폭에 할당될 수 있고, 인접 서브캐리어들의 서브캐리어 간격은, MTC 디바이스들의 비교적 낮은 비용의 설계 컴포넌트들에 의해 초래될 수 있는 주파수 에러들에 대한 견고한 동작을 가능하게 하도록 선택될 수 있다. 일부 예들에서, 2.5 kHz 서브캐리어 간격이 협대역 영역에 제공된다. 특정 예들에서, 데이터 통신들에 대해 사용되는 것과 동일한 세트의 물리적 자원들이 랜덤 액세스 메시지들에 대해 사용될 수 있다.
[0049] 기지국은 예를 들어, 랜덤 액세스 메시지들 및 데이터 통신들에 자원들을 할당하기 위해 서브캐리어를 시분할 멀티플렉싱할 수 있다. MTC 디바이스들의 수는 MTC 디바이스의 커버리지 클래스에 기초한 상이한 서브캐리어들을 사용하여 랜덤 액세스 메시지들을 송신하도록 구성될 수 있다. MTC 디바이스의 커버리지 클래스는 MTC 디바이스와 연관된 통신 링크의 특성에 적어도 부분적으로 기초할 수 있다. 이러한 구성들은, 주어진 서브캐리어 상에서 송신할 MTC 디바이스들의 수를 감소시키는 것을 통해 상이한 MTC 디바이스들에 의해 송신되는 랜덤 액세스 메시지들의 잠재적인 충돌들의 수를 감소시킬 수 있다. 추가로, 일부 예들에서, 기지국은 커버리지 클래스와 연관된 토큰을 식별할 수 있고, MTC 디바이스는 랜덤 액세스 요청을 송신하기 전에 랜덤 수를 결정할 수 있다. MTC 디바이스에 의해 생성된 랜덤 수가 커버리지 클래스에 대한 토큰에 대응하면, MTC 디바이스는 랜덤 액세스 메시지를 송신할 수 있고, 그렇지 않으면 랜덤 액세스 메시지는 연기될 것이다. 따라서, 랜덤 액세스 메시지를 송신하려 시도하는 상이한 MTC 디바이스들 사이의 충돌의 수는 추가로 감소될 수 있다.
[0050] 일부 예들에서, 랜덤 액세스 메시지들은 식별된 물리적 자원들을 사용하여 비동기식으로 송신될 수 있어서, 송신 전에 폐쇄-루프 전력 제어 또는 타이밍 어드밴스 정보를 요구하지 않는 메시지 송신을 허용한다. 일부 예들에서, 협대역 대역폭의 송신들은, MTC 디바이스들에 대한 비교적 낮은 비용의 PA(power amplifier) 설계에 적합할 수 있는 서브캐리어 당 일정한 엔벨로프 변조를 가질 수 있다. 일부 예들에서, MTC 디바이스가 랜덤 액세스를 수행하는 경우, MTC 디바이스의 추정된 다운링크 커버리지 클래스는 기지국에 통지하기 위한 랜덤 액세스 메시지에 포함될 수 있다. 추가적으로, MTC 디바이스의 아이덴티티는 랜덤 액세스 메시지의 페이로드 내에서 기지국에 제공될 수 있다. 이러한 아이덴티티는 랜덤 수로서 초기 네트워크 액세스에서 획득될 수 있거나, 또는 기지국에 의해 이전 액세스 절차로부터 MTC 디바이스에 제공되는 C-RNTI(cell-radio network temporary identifier) 값일 수 있다.
[0051] 본 개시의 양상들은 초기에 무선 통신 시스템의 콘텍스트에서 설명된다. 그 다음, 특정 예들은 LTE 시스템에서 협대역 MTC 통신들에 대해 설명된다. 본 개시의 이러한 및 다른 양상들은, 협대역 무선 통신들에 대한 다운링크 및 동기화 기술들에 관한 장치 도면들, 시스템 도면들 및 흐름도들을 참조하여 추가로 예시 및 설명된다.
[0052] 도 1은, 본 개시의 다양한 양상들에 따른 무선 통신 시스템(100)의 예를 예시한다. 무선 통신 시스템(100)은, 기지국들(105), UE들(115) 및 코어 네트워크(130)를 포함한다. 일부 예들에서, 무선 통신 시스템(100)은 LTE(Long Term Evolution)/LTE-A(LTE-Advanced) 네트워크일 수 있다.
[0053] 기지국들(105)은 하나 이상의 기지국 안테나들을 통해 UE들(115)과 무선으로 통신할 수 있다. 기지국(105) 각각은 각각의 지리적 커버리지 영역(110)에 대한 통신 커버리지를 제공할 수 있다. 무선 통신 시스템(100)에 도시된 통신 링크들(125)은 UE(115)로부터 기지국(105)으로의 업링크(UL) 송신들 또는 기지국(105)으로부터 UE(115)로의 다운링크(DL) 송신들을 포함할 수 있다. UE들(115)은 무선 통신 시스템(100) 전역에 산재될 수 있고, 각각의 UE(115)는 고정식일 수도 있고 또는 이동식일 수도 있다. UE(115)는 또한 모바일 스테이션, 가입자 스테이션, 원격 유닛, 무선 디바이스, 액세스 단말, 핸드셋, 사용자 에이전트, 클라이언트 또는 일부 다른 적절한 용어로 지칭될 수 있다. UE(115)는 또한 셀룰러 폰, 무선 모뎀, 핸드헬드 디바이스, 개인용 컴퓨터, 태블릿, 개인용 전자 디바이스, MTC(machine type communication) 디바이스 등일 수 있다.
[0054] 기지국들(105)은 코어 네트워크(130)와 그리고 서로 통신할 수 있다. 예를 들어, 기지국들(105)은 백홀 링크들(132)(예를 들어, S1 등)을 통해 코어 네트워크(130)와 인터페이싱할 수 있다. 기지국들(105)은 백홀 링크들(134)(예를 들어, X2 등)을 통해 서로 직접적으로 또는 간접적으로(예를 들어, 코어 네트워크(130)를 통해) 통신할 수 있다. 기지국들(105)은 UE들(115)과의 통신을 위해 라디오 구성 및 스케줄링을 수행할 수 있거나, 또는 기지국 제어기(미도시)의 제어 하에서 동작할 수 있다. 일부 예들에서, 기지국들(105)은 매크로 셀들, 소형 셀들, 핫스팟들 등일 수 있다. 기지국들(105)은 또한 eNodeB들(eNB들)(105)로 지칭될 수 있다.
[0055] 앞서 언급된 바와 같이, 무선 디바이스들 중 일부 타입들은 자동화된 통신을 제공할 수 있다. 자동화된 무선 디바이스들은 M2M 통신 또는 MTC를 구현하는 것들을 포함할 수 있다. M2M 또는 MTC는 디바이스들이 인간의 개입 없이 서로 또는 기지국(105)과 통신하도록 허용하는 데이터 통신 기술들을 지칭할 수 있다. 예를 들어, M2M 또는 MTC는, 정보를 측정 또는 캡처하기 위한 센서들 또는 계측기들을 통합하고 그 정보를, 정보를 사용하거나 정보를 프로그램 또는 애플리케이션과 상호작용하는 인간들에게 제시할 수 있는 중앙 서버 또는 애플리케이션 프로그램에 중계하는 디바이스들로부터의 통신을 지칭할 수 있다. 일부 UE들(115)은 MTC 디바이스들, 예를 들어, 정보를 수집하거나 머신들의 자동화된 동작을 인에이블하도록 설계된 디바이스들일 수 있다. MTC 디바이스들에 대한 애플리케이션들의 예들은, 단지 몇몇 예들을 들면, 스마트 계측, 스마트 스위치들, 재고 모니터링, 수위 모니터링, 장비 모니터링, 헬스케어 모니터링, 야생 동물 모니터링, 기후 및 지질학적 이벤트 모니터링, 함대 관리 및 추적, 원격 보안 감지, 물리적 액세스 제어, 및 거래-기반 비즈니스 과금을 포함한다. MTC 디바이스들은 감소된 피크 레이트에서 하프-듀플렉스(일방향) 통신들을 사용하여 동작할 수 있다. MTC 디바이스들은 또한 활성 통신들에 관여하지 않는 경우 전력을 절감하는 "깊은 수면" 모드에 진입하도록 구성될 수 있다. 본 개시의 다양한 양상들에 따르면, MTC 디바이스들은 다른 광대역 통신들의 대역폭 내 또는 다른 광대역 통신들의 대역폭 외부에 위치될 수 있는 협대역 통신들을 사용하여 동작할 수 있다.
[0056] 레거시 LTE 시스템들은 DL에서는 OFDMA를 그리고 UL에서는 SC-FDMA(single carrier frequency division multiple access)를 활용할 수 있다. OFDMA 및/또는 SC-FDMA는, 시스템 대역폭을 다수의(K개의) 직교 서브캐리어들로 파티셔닝하고, 서브캐리어들은 또한 통상적으로 톤(tone)들 또는 빈(bin)들로 지칭된다. 각각의 서브캐리어는 데이터와 변조될 수 있다. 인접한 서브캐리어들 사이의 간격은 고정될 수 있고, 서브캐리어들의 총 수(K)는 시스템 대역폭에 의존할 수 있다. 예를 들어, K는, 1.4, 3, 5, 10, 15 또는 20 메가헤르쯔(MHz)의 대응하는 시스템 대역폭(가드 대역을 가짐)에 대해 15 킬로헤르쯔(KHz)의 서브캐리어 간격으로 72, 180, 300, 600, 900 또는 1200와 각각 동일할 수 있다. 시스템 대역폭은 또한 서브-대역들로 파티셔닝될 수 있다. 예를 들어, 서브-대역은 1.08 MHz를 커버할 수 있고, 1, 2, 4, 8 또는 16개의 서브-대역들이 존재할 수 있다. 앞서 언급된 바와 같이, 협대역 자원들을 사용하는 MTC 통신들을 제공하는 예들에서, 대응하는 협대역 대역폭은 서브캐리어들의 180 kHz 및 20 kHz 가드 대역을 포함할 수 있는 200 kHz일 수 있다. 이러한 예들에서, 협대역 통신들은 LTE 시스템 대역폭의 단일 RB를 점유할 수 있고, 12개의 서브-캐리어들이 존재할 수 있다.
[0057] 앞서 언급된 바와 같이, 본 개시의 다양한 양상들은 협대역 대역폭에 할당될 수 있는 서브캐리어들의 세트를 제공한다. 인접 서브캐리어들의 서브캐리어 간격은, MTC 디바이스들의 비교적 낮은 비용의 설계 컴포넌트들에 의해 초래될 수 있는 주파수 에러들에 대한 견고한 동작을 가능하게 하도록 선택될 수 있다. 일부 예들에서, 2.5 kHz 서브캐리어 간격이 협대역 영역에 제공된다. 특정 예들에서, 데이터 통신들에 대해 사용되는 것과 동일한 세트의 물리적 자원들이 랜덤 액세스 메시지들에 대해 사용될 수 있다. 기지국은 예를 들어, 랜덤 액세스 메시지들 및 데이터 통신들에 자원들을 할당하기 위해 서브캐리어를 시분할 멀티플렉싱할 수 있다. MTC 디바이스들의 수는 MTC 디바이스의 커버리지 클래스에 기초한 상이한 서브캐리어들을 사용하여 랜덤 액세스 메시지들을 송신하도록 구성될 수 있다. MTC 디바이스의 커버리지 클래스는 MTC 디바이스와 연관된 통신 링크의 특성에 적어도 부분적으로 기초할 수 있다. 이러한 구성들은, 주어진 서브캐리어 상에서 송신할 MTC 디바이스들의 수를 감소시키는 것을 통해 상이한 MTC 디바이스들에 의해 송신되는 랜덤 액세스 메시지들의 잠재적인 충돌들의 수를 감소시킬 수 있다.
[0058] 추가로, 일부 예들에서, 기지국은 커버리지 클래스와 연관된 토큰을 식별할 수 있고, MTC 디바이스는 랜덤 액세스 요청을 송신하기 전에 랜덤 수를 결정할 수 있다. MTC 디바이스에 의해 생성된 랜덤 수가 커버리지 클래스에 대한 토큰에 대응하면, MTC 디바이스는 랜덤 액세스 메시지를 송신할 수 있고, 그렇지 않으면 랜덤 액세스 메시지는 연기될 것이다. 따라서, 랜덤 액세스 메시지를 송신하려 시도하는 상이한 MTC 디바이스들 사이의 충돌의 수는 추가로 감소될 수 있다.
[0059] 일부 예들에서, 랜덤 액세스 메시지들은 식별된 물리적 자원들을 사용하여 비동기식으로 송신될 수 있어서, 송신 전에 폐쇄-루프 전력 제어 또는 타이밍 어드밴스 정보를 요구하지 않는 메시지 송신을 허용한다. 일부 예들에서, 협대역 대역폭의 송신들은, MTC 디바이스들에 대한 비교적 낮은 비용의 PA(power amplifier) 설계에 적합할 수 있는 서브캐리어 당 일정한 엔벨로프 변조를 가질 수 있다. 일부 예들에서, MTC 디바이스가 랜덤 액세스를 수행하는 경우, MTC 디바이스의 추정된 다운링크 커버리지 클래스는 기지국에 통지하기 위한 랜덤 액세스 메시지에 포함될 수 있다. 추가적으로, MTC 디바이스의 아이덴티티는 랜덤 액세스 메시지의 페이로드 내에서 기지국에 제공될 수 있다. 이러한 아이덴티티는 랜덤 수로서 초기 네트워크 액세스에서 획득될 수 있거나, 또는 기지국에 의해 이전 액세스 절차로부터 MTC 디바이스에 제공되는 C-RNTI(cell-radio network temporary identifier) 값일 수 있다.
[0060] 도 2는, 본 개시의 다양한 양상들에 따라 협대역 무선 통신들을 위한 다운링크 및 동기화 기술들을 위한 무선 통신 시스템(200)의 예를 예시한다. 무선 통신 시스템(200)은 도 1을 참조하여 설명된 UE(115), 기지국(105)의 예들일 수 있는 UE(115-a) 및 기지국(105-a)을 포함할 수 있다.
[0061] 일부 예들에서, UE(115-a)는 협대역 통신 링크(125-a)를 사용하여 기지국(105-a)과 통신할 수 있는 MTC 디바이스, 예를 들어, 스마트 계측기이다. 랜덤 액세스 통신들을 구성하기 위해, 기지국(105-a)은 협대역 대역폭을 위한 서브캐리어들의 세트를 할당할 수 있다. 인접 서브캐리어들의 서브캐리어 간격은, MTC 디바이스들의 비교적 낮은 비용의 설계 컴포넌트들에 의해 초래될 수 있는 주파수 에러들에 대한 견고한 동작을 가능하게 하도록 선택될 수 있다. 일부 예들에서, 2.5 kHz 서브캐리어 간격이 협대역 영역에 제공된다. 특정 예들에서, 데이터 통신들에 대해 사용되는 것과 동일한 세트의 물리적 자원들이 랜덤 액세스 메시지들에 대해 사용될 수 있다. 기지국은 예를 들어, 랜덤 액세스 메시지들 및 데이터 통신들에 자원들을 할당하기 위해 서브캐리어를 시분할 멀티플렉싱할 수 있다. MTC 디바이스들의 수는 MTC 디바이스의 커버리지 클래스에 기초한 상이한 서브캐리어들을 사용하여 랜덤 액세스 메시지들을 송신하도록 구성될 수 있다. MTC 디바이스의 커버리지 클래스는 MTC 디바이스와 연관된 통신 링크의 특성에 적어도 부분적으로 기초할 수 있다. 이러한 구성들은, 주어진 서브캐리어 상에서 송신할 MTC 디바이스들의 수를 감소시키는 것을 통해 상이한 MTC 디바이스들에 의해 송신되는 랜덤 액세스 메시지들의 잠재적인 충돌들의 수를 감소시킬 수 있다. 추가로, 일부 예들에서, 기지국은 커버리지 클래스와 연관된 토큰을 식별할 수 있고, MTC 디바이스는 랜덤 액세스 요청을 송신하기 전에 랜덤 수를 결정할 수 있다. MTC 디바이스에 의해 생성된 랜덤 수가 커버리지 클래스에 대한 토큰에 대응하면, MTC 디바이스는 랜덤 액세스 메시지를 송신할 수 있고, 그렇지 않으면 랜덤 액세스 메시지는 연기될 것이다. 따라서, 랜덤 액세스 메시지를 송신하려 시도하는 상이한 MTC 디바이스들 사이의 충돌의 수는 추가로 감소될 수 있다.
[0062] 일부 예들에서, 랜덤 액세스 메시지들은 식별된 물리적 자원들을 사용하여 비동기식으로 송신될 수 있어서, 송신 전에 폐쇄-루프 전력 제어 또는 타이밍 어드밴스 정보를 요구하지 않는 메시지 송신을 허용한다. 일부 예들에서, 협대역 대역폭의 송신들은, MTC 디바이스들에 대한 비교적 낮은 비용의 PA(power amplifier) 설계에 적합할 수 있는 서브캐리어 당 일정한 엔벨로프 변조를 가질 수 있다. 일부 예들에서, MTC 디바이스가 랜덤 액세스를 수행하는 경우, MTC 디바이스의 추정된 다운링크 커버리지 클래스는 기지국에 통지하기 위한 랜덤 액세스 메시지에 포함될 수 있다. 추가적으로, MTC 디바이스의 아이덴티티는 랜덤 액세스 메시지의 페이로드 내에서 기지국에 제공될 수 있다. 이러한 아이덴티티는 랜덤 수로서 초기 네트워크 액세스에서 획득될 수 있거나, 또는 기지국에 의해 이전 액세스 절차로부터 MTC 디바이스에 제공되는 C-RNTI(cell-radio network temporary identifier) 값일 수 있다.
[0063] 도 3은, 본 개시의 다양한 양상들에 따라 협대역 무선 통신들을 위한 다운링크 및 동기화 기술들을 지원하는 다른 할당된 주파수 대역에서 광대역 송신 및 협대역 영역의 송신 대역폭 내의 협대역 영역의 예(300)를 예시한다. 예(300)는 협대역 통신들을 사용하여 동작할 수 있는 도 1 및 도 2를 참조하여 설명된 UE들(115) 및 기지국들(105)과 같은 무선 네트워크 디바이스들에 의해 사용될 수 있다.
[0064] 도 3의 예에서, LTE 시스템 대역폭(320)은 제어 영역(305), 광대역 데이터 영역(310) 및 제1 협대역 영역(315-a)을 포함할 수 있다. 제2 협대역 영역(315-b)은 독립형 협대역 통신들을 위해 제공될 수 있고, 예를 들어, GSM 통신들에 할당된 대역폭과 같은 일부 다른 대역폭(325)에 위치될 수 있다.
[0065] 일부 예들에서, 제1 협대역 영역(315-a) 및 제2 협대역 영역(315-b)은 광대역 데이터 영역(510)의 단일 RB(예를 들어, 12개의 서브캐리어들)를 점유할 수 있다. 일례에서, (예를 들어, 20 MHz 캐리어에 대해) 광대역 데이터 영역(310)은 100개의 RB들(예를 들어, 1200개의 서브캐리어들)을 포함할 수 있다. 특정 협대역 영역(315-a 또는 315-b)은 다양한 배치 파라미터들에 기초하여 협대역 통신들에 대해 구성될 수 있고, MTC 디바이스들의 커버리지 클래스들에 기초하여 랜덤 액세스 메시지들을 가능하게 할 수 있다. MTC 디바이스들의 커버리지 클래스들은 MTC 디바이스들과 연관된 통신 링크의 특성에 적어도 부분적으로 기초할 수 있다. 예를 들어, 통신 링크의 특성은 통신 링크의 경로손실, 통신 링크의 RSRP(reference signal received power), 통신 링크의 RSRQ(reference signal received quality) 또는 통신 링크의 RSSI(received signal strength indicator)일 수 있다. 일부 예들에서, 기지국은 협대역 영역(315)에 할당될 수 있는 서브캐리어들의 세트의 표시를 UE들에 제공할 수 있다. 일부 예들에서, 2.5 kHz 서브캐리어 간격이 협대역 영역들(315)에 제공된다. 특정 예들에서, 데이터 통신들에 대해 사용되는 것과 동일한 세트의 물리적 자원들이 랜덤 액세스 메시지들에 대해 사용될 수 있다.
[0066] 기지국은 예를 들어, 랜덤 액세스 메시지들 및 데이터 통신들에 자원들을 할당하기 위해 서브캐리어를 시분할 멀티플렉싱할 수 있다. MTC 디바이스들의 수는 MTC 디바이스의 커버리지 클래스에 기초한 상이한 서브캐리어들을 사용하여 랜덤 액세스 메시지들을 송신하도록 구성될 수 있다. MTC 디바이스의 커버리지 클래스는 MTC 디바이스와 연관된 통신 링크의 특성에 적어도 부분적으로 기초할 수 있다. 이러한 구성들은, 주어진 서브캐리어 상에서 송신할 MTC 디바이스들의 수를 감소시키는 것을 통해 상이한 MTC 디바이스들에 의해 송신되는 랜덤 액세스 메시지들의 잠재적인 충돌들의 수를 감소시킬 수 있다. 추가로, 일부 예들에서, 기지국은 커버리지 클래스와 연관된 토큰을 식별할 수 있고, MTC 디바이스는 랜덤 액세스 요청을 송신하기 전에 랜덤 수를 결정할 수 있다. MTC 디바이스에 의해 생성된 랜덤 수가 커버리지 클래스에 대한 토큰에 대응하면, MTC 디바이스는 랜덤 액세스 메시지를 송신할 수 있고, 그렇지 않으면 랜덤 액세스 메시지는 연기될 것이다. 따라서, 랜덤 액세스 메시지를 송신하려 시도하는 상이한 MTC 디바이스들 사이의 충돌의 수는 추가로 감소될 수 있다.
[0067] 일부 예들에서, 랜덤 액세스 메시지들은 식별된 물리적 자원들을 사용하여 비동기식으로 송신될 수 있어서, 송신 전에 폐쇄-루프 전력 제어 또는 타이밍 어드밴스 정보를 요구하지 않는 메시지 송신을 허용한다. 일부 예들에서, 협대역 대역폭의 송신들은, MTC 디바이스들에 대한 비교적 낮은 비용의 PA(power amplifier) 설계에 적합할 수 있는 서브캐리어 당 일정한 엔벨로프 변조를 가질 수 있다. 일부 예들에서, MTC 디바이스가 랜덤 액세스를 수행하는 경우, MTC 디바이스의 추정된 다운링크 커버리지 클래스는 기지국에 통지하기 위한 랜덤 액세스 메시지에 포함될 수 있다. 추가적으로, MTC 디바이스의 아이덴티티는 랜덤 액세스 메시지의 페이로드 내에서 기지국에 제공될 수 있다. 이러한 아이덴티티는 랜덤 수로서 초기 네트워크 액세스에서 획득될 수 있거나, 또는 기지국에 의해 이전 액세스 절차로부터 MTC 디바이스에 제공되는 C-RNTI(cell-radio network temporary identifier) 값일 수 있다.
[0068] 도 4는, 본 개시의 다양한 양상들에 따라 시스템 대역폭에서 멀티플렉싱되고 수신 디바이스들에서 필터링될 수 있는 협대역 및 광대역 자원 블록들의 예(400)를 예시한다. 예(400)는 협대역 통신들을 사용하여 동작할 수 있는 도 1 및 도 2를 참조하여 설명된 UE들(115) 및 기지국들(105)과 같은 무선 네트워크 디바이스들에 의해 사용될 수 있다.
[0069] 도 4의 예에서, LTE 시스템 대역폭(450)은 제어 영역(405), 레거시 LTE RB들의 송신에 대한 광대역 데이터 영역(410) 및 협대역 LTE 영역(415)을 포함할 수 있다. 레거시 LTE RB들(410) 및 NB LTE 영역(415)(즉, NB LTE RB들)은 멀티플렉서(420)에서 멀티플렉싱될 수 있다. 이러한 멀티플렉싱은 NB LTE 영역(415)이 독립형 협대역 채널로서 별개로 효과적으로 처리되도록 허용할 수 있다. 수신 디바이스는 특정 디바이스에 해당하는 RB들을 필터링하기 위한 필터링을 사용할 수 있다. 예를 들어, MTC 디바이스와 같은 협대역 UE는 레거시 LTE RB들(410)을 필터링 아웃하고 NB LTE 영역(415)을 디바이스에 제공하기 위해 대역통과 필터링(425)을 사용할 수 있다. 유사하게, 레거시 LTE 디바이스는 레거시 LTE RB들(410)을 디바이스에 제공하기 위해 대역-저지 필터링(430)을 사용할 수 있다.
[0070] 도 5는, 본 개시의 다양한 양상들에 따라 협대역 무선 통신들을 위한 랜덤 액세스 기술들을 지원하는 예시적인 채널 구조(500)를 예시한다. 채널 구조(500)는 협대역 통신들을 사용하여 동작할 수 있는 도 1 및 도 2를 참조하여 설명된 UE들(115) 및 기지국들(105)과 같은 무선 네트워크 디바이스들에 의해 사용될 수 있다.
[0071] 도 5의 예에서, 물리 채널들(505)은 MAC(Medium Access Control) 계층에서 채널들(510)을 전송하기 위해 맵핑될 수 있는 물리 계층에 존재할 수 있다. 일부 예들에서, PUSCH(physical uplink shared channel)(515)는 RACH(random access channel)(520) 및 UL-SCH(uplink shared channel)(525) 전송 채널들 둘 모두에 맵핑될 수 있다. 레거시 LTE에서, 랜덤 액세스 메시지들은 전용 PRACH(physical random access channel)를 사용하여 통신되는 한편, 본원에 설명된 예들은 PUSCH(515)를 사용하여 랜덤 액세스 통신들을 다른 업링크 통신들과 멀티플렉싱할 수 있다. 다른 물리 채널들은, DL-SCH(downlink shared channel)(535) 및 PCH(paging channel)(540)에 맵핑될 수 있는 PDSCH(physical downlink shared channel)(530)를 포함할 수 있다. PBSCH(physical broadcast shared channel)(545)는 BCH(broadcast channel)(550)에 맵핑될 수 있고, ePBCH(enhanced PBCH)(555)는 향상된 BCH(560)에 맵핑될 수 있다.
[0072] 일부 예들에서, 협대역 자원들은 PUSCH(515)를 사용하여 랜덤 액세스 메시지들에 예비된 자원들을 제공하도록 할당될 수 있다. 다양한 기술들은, LTE의 레거시 PRACH의 기능들을 달성할 수 있고, 저비용 설계를 사용하여 랜덤 액세스들의 혼잡 및 오버로딩을 감소시킬 수 있고, 타이밍 및 사용자-특정 정보를 멀티플렉싱할 수 있고, 레거시 PUCCH(physical uplink control channel)의 기능을 적어도 부분적으로 대체할 수 있는 랜덤 액세스 메시지들에 할당된 자원들을 제공할 수 있다. 앞서 언급된 바와 같이, 일부 예들에서 특정 서브캐리어들은 특정 커버리지 클래스들을 갖는 UE들의 랜덤 액세스 메시지들에 할당될 수 있다. 이러한 할당들은, 일부 예들에서, 동적으로 구성될 수 있고, UE는 DL 브로드캐스트 정보에 기초하여 RACH 자원 선택을 적응시킬 수 있다. 이러한 방식으로, 기지국은 랜덤 액세스 및 데이터 송신을 위한 기회들을 밸런싱할 수 있다.
[0073] 일부 예들에서, 랜덤 액세스 메시지는 단일 서브캐리어를 사용하여 송신될 수 있고, 이는 랜덤 액세스 메시지의 PSD(power spectral density)를 향상시킬 수 있고 기지국에 의한 더 양호한 검출을 용이하게 할 수 있다. 일부 예들에서, 서브-채널당 심볼 레이트는 1800 심볼/초일 수 있고, 단일 RACH 슬롯의 시간 지속기간은, 기지국(또는 다른 네트워크 엔티티 엔티티)이 RACH 슬롯 반복들을 제공하여 커버리지 향상들을 제공하고, 기지국이 다수의 여분의 송신들을 조합하도록 허용하고, 신호대 잡음비를 개선하기 위한 옵션으로, 80 ms로 설정될 수 있다.
[0074] 또한, 앞서 논의된 바와 같이, 일부 예들에서 랜덤 액세스 메시지들은 비동기식으로 송신될 수 있고, 이는, UE가 랜덤 액세스 요청을 송신하기 전에 타이밍 어드밴스 정보를 제공받을 필요가 없는 것을 제공할 수 있다. 기지국에서 이러한 비동기식 송신들의 수신을 용이하게 하기 위해, 파일럿 신호가 생성될 수 있고, 기지국에서의 동기화를 위해 사용될 수 있는 랜덤 액세스 메시지에 포함될 수 있다. 일부 예들에서, 파일럿 신호는 길이-13 바커 코드, 또는 양호한 자동-상관 특성들을 갖는 다른 짧은 2진 시퀀스일 수 있다.
[0075] 또한 앞서 언급된 바와 같이, 일부 예들에서 랜덤 액세스 메시지는 페이로드를 포함할 수 있다. 이러한 페이로드는 일부 예들에서, 8 바이트 페이로드(예를 들어, FEC:
Figure pct00001
에 대해 ½ 코드 레이트를 가정하여 페이로드 크기의 최대 수의 바이트들)일 수 있다.
[0076] 도 6은 본 개시의 다양한 양상들에 따라 랜덤 액세스 메시지 송신을 위한 랜덤 액세스 메시지 페이로드 및 데이터 프로세싱의 예(600)를 예시한다. 예(600)는 협대역 통신들을 사용하여 동작할 수 있는 도 1 및 도 2를 참조하여 설명된 UE들(115) 및 기지국들(105)과 같은 무선 네트워크 디바이스들에 의해 사용될 수 있다.
[0077] 도 6의 예에서, 페이로드는 랜덤 액세스 타입 필드(605), UE 아이덴티티 필드(610), 액세스 원인 필드(615), 커버리지 클래스 필드(620) 및 다른 정보 (625)를 포함하는 다수의 정보 필드들을 포함할 수 있다. 랜덤 액세스 타입 필드는 송신되고 있는 랜덤 액세스 메시지의 타입에 대한 정보를 포함할 수 있고, 이는 기지국이 페이로드에 포함될 수 있는 다른 정보를 디코딩하도록 허용할 수 있다. UE 아이덴티티 필드는 UE의 식별을 포함할 수 있다. 일부 예들에서, 초기 랜덤 액세스 메시지에서 UE는 UE에 대해 RNTI(radio network temporary identifier)가 제공될 때까지 UE 아이덴티티로서 사용되는 랜덤 수를 생성할 수 있고, 이러한 RNTI는 동일한 기지국에 송신되는 후속 랜덤 액세스 메시지들에 대한 UE 아이덴티티 필드(610)에서 사용된다. 액세스 원인(615)은 UE가 랜덤 액세스 메시지를 송신하고 있는 원인에 대한 정보(예를 들어, 이벤트-기반 랜덤 액세스 메시지를 초래할 수 있는 이벤트의 타입)를 포함할 수 있다. 커버리지 클래스 필드(620)는 송신들을 위해 UE에 의해 결정되는 채널 조건들 또는 커버리지 클래스에 관해 UE에 의해 제공되는 정보일 수 있고, 이는 후속 통신들에 대해 사용될 커버리지 향상들을 결정할 때의 팩터(예를 들어, 통신들에서 사용될 전력 부스팅 또는 여분의 송신들의 수)로서 사용될 수 있다. 일부 예들에서, 채널 조건들은 서브캐리어 상의 통신 링크의 경로 손실, 통신 링크의 RSRP(reference signal received power), 통신 링크의 RSRQ(reference signal received quality) 또는 통신 링크의 RSSI(received signal strength indicator)를 사용하여 결정될 수 있다. 다른 정보(625)는 예를 들어, UE에서의 판독과 연관된 데이터 또는 랜덤 액세스 메시지를 프롬프트한 이벤트와 같은, UE와 연관된 다른 정보의 하나 이상의 조각들을 포함할 수 있다.
[0078] 랜덤 액세스 메시지에 대해 페이로드가 결정되면, UE는 FEC(forward error correction) 및 레이트 매칭된 데이터 스트링(630)을 생성할 수 있다. FEC 및 레이트-매칭된 데이터 스트링(630)에는 파일럿 코드(예를 들어, 길이 13 바커 코드) 및 선택적인 CRC(cyclic redundancy check)가 제공될 수 있고, 그 다음, 랜덤 액세스 요청으로 송신될 수 있다.
[0079] 도 7은, 본 개시의 다양한 양상들에 따라 협대역 무선 통신들을 위한 랜덤 액세스 기술들을 지원하는 페이로드 프로세싱의 예(700)를 예시한다. 예(700)는 협대역 통신들을 사용하여 동작할 수 있는 도 1 및 도 2를 참조하여 설명된 UE들(115)과 같은 무선 네트워크 디바이스들에 의해 사용될 수 있다.
[0080] 도 7의 예에서, RACH 페이로드(705)는 FEC 및 레이트 매칭(710)을 위해 및 또한 파일럿 삽입(720)을 위해 제공될 수 있다. FEC 및 레이트 매칭된 데이터는, 삽입된 파일럿 신호를 갖는 출력을 갖는 스크램블링 함수(715)에 제공될 수 있고, 일정한 엔벨로프 변조 프로세스(725)에 제공될 수 있다. 일정한 엔벨로프 변조로부터의 출력은 펄스 형상화 블록(730)에 제공될 수 있고, 그 다음, UE의 커버리지 클래스에 기초하여 송신을 위한 출력 데이터의 다수의 여분의 버전들을 제공할 수 있는 반복 블록(735)에 제공될 수 있다.
[0081] 앞서 논의된 바와 같이, 상이한 서브캐리어들은 상이한 커버리지 클래스들을 갖는 UE들의 랜덤 액세스 메시지들에 할당될 수 있다. 도 8은, 본 개시의 다양한 양상들에 따라 협대역 무선 통신들을 위한 랜덤 액세스 기술들을 지원하는 서브캐리어들의 세트에 대한 자원 할당들(800)의 예를 예시한다. 자원 할당들(800)은 협대역 통신들을 사용하여 동작할 수 있는 도 1 및 도 2를 참조하여 설명된 UE들(115) 및 기지국들(105)과 같은 무선 네트워크 디바이스들에 의해 사용될 수 있다.
[0082] 이러한 예에서, 상이한 커버리지 클래스들, 즉, 서브캐리어 A(880), 서브캐리어 B(870), 서브캐리어 C(860) 및 서브캐리어 D(850)를 가질 수 있는 4개의 서브캐리어들이 예시된다. 각각의 서브캐리어(880, 870, 860, 850)는 서브캐리어를 정의하는 특성들을 포함할 수 있다. 예를 들어, 서브캐리어들의 특성들은 경로손실, RSRP, RSRQ 또는 RSSI를 포함할 수 있다. 서브캐리어 A는, 랜덤 액세스 메시지들이 이러한 서브캐리어를 사용하여 송신되지 않도록, 그리고 서브캐리어 A(880)에 대한 자원들의 전체 양이 데이터 송신들(840)에 전용될 수 있도록 할당될 수 있다. 서브캐리어 B(870)는 UE에서 측정된 바와 같은 비교적 큰 경로손실을 갖는 커버리지 클래스와 연관될 수 있다. 비교적 열악한 채널 조건들을 갖는 이러한 UE들로부터 성공적인 송신들의 향상된 가능성을 제공하기 위해, 랜덤 액세스 메시지들의 4개의 반복들을 갖는 랜덤 액세스 포맷이 제공될 수 있다. 도 8의 예에서, 서브캐리어 B(870)는, 랜덤 액세스 메시지의 랜덤 액세스 메시지 할당들(830-a 내지 830-d)의 4개의 반복들을 포함할 수 있는 랜덤 액세스 메시지 할당들(830)과 시분할 멀티플렉싱된 데이터 송신들(825)에 대한 할당들을 포함할 수 있다. 서브캐리어 C(860)는 서빙되고 있는 다른 UE들에 비해, UE에서 측정된 바와 같은 중간 양의 경로손실을 갖는 커버리지 클래스와 연관될 수 있다. 서브캐리어 C(860)는, 랜덤 액세스 메시지의 랜덤 액세스 메시지 할당들(815-a 및 815-b)의 2개의 반복들을 포함할 수 있는 랜덤 액세스 메시지 할당들(815)과 시분할 멀티플렉싱된 데이터 송신들(820)에 대한 할당들을 포함할 수 있다. 유사하게, 서브캐리어 D(850)는 서빙되고 있는 다른 UE들에 비해, UE에서 측정된 바와 같은 비교적 적은 양의 경로손실을 갖는 커버리지 클래스와 연관될 수 있다. 서브캐리어 D(850)는, 랜덤 액세스 메시지 할당(805)의 단일 송신을 포함할 수 있는 랜덤 액세스 메시지 할당들(805)과 시분할 멀티플렉싱된 데이터 송신들(810)에 대한 할당들을 포함할 수 있다. 도 8의 예에서, 연관된 랜덤 액세스 할당(805-a 및 805-b) 뿐만 아니라 할당들로서 또한 지칭될 수 있는 데이터 송신들(810-a 및 810-b)을 각각 포함할 수 있는 2개의 슬롯들이 제공될 수 있다.
[0083] 따라서, 서브캐리어들(850-880)은 상이한 커버리지 클래스들로 분류될 수 있고, 여기서 타입 B, C 및 D는 각각 4, 2 및 1의 반복들로 랜덤 액세스 메시지들을 송신하도록 허용되고, 여기서 타입 A는 데이터 송신들을 위해 사용된다. 일부 예들에서, 기지국은 기지국에서 및 기지국에 의해 서빙되는 UE들에 의해 경험되는 조건들에 기초하여 자원들을 재할당할 수 있다. 예를 들어, 서브캐리어 A는, 특정 시간 기간에 대해 추가적인 랜덤 액세스 요청들이 필요하면, 하나 이상의 커버리지 클래스들의 UE들에 의한 랜덤 액세스 메시지 송신을 제공하도록 재구성될 수 있다. 일부 예들에서, 기지국은 기지국에 의해 서빙되고 있는 UE들에 자원 할당(800)을 (예를 들어, SIB(system information block)에서) 시그널링할 수 있고, 할당들은 주기적으로 업데이트될 수 있다.
[0084] 일부 예들에서, 기지국은 커버리지 클래스들 중 하나 이상 또는 서브캐리어들 중 하나 이상에 대한 토큰을 제공할 수 있고, UE에서의 토큰이 시그널링된 토큰에 대응하면 UE는 랜덤 액세스 메시지를 송신할 수 있다. 이러한 방식으로, 기지국은 커버리지 클래스 내에서 또는 서브캐리어 내에서 랜덤 액세스 충돌들을 감소시킬 수 있다. 예를 들어, 토큰은 기지국에 의해 제공된 값일 수 있고, UE는 랜덤 액세스 메시지를 송신하기 전에 랜덤 수를 생성할 수 있다. UE에 의해 생성된 랜덤 수가 토큰 값보다 작으면, UE는 랜덤 액세스 메시지를 송신할 수 있고, 그렇지 않으면 UE는 후속 랜덤 액세스 메시지 송신 기회까지 송신을 연기한다. 일부 예들에서, UE에 의해 생성된 랜덤 수는 예를 들어, UE의 액세스 이력 또는 다운링크 타이밍 정보 중 하나 이상에 기초하여 수정될 수 있다.
[0085] 따라서 UE는 예를 들어, 다운링크 RSRP(reference signal received power) 측정으로부터 이의 경로손실을 측정할 수 있고, (선택적으로 액세스 이력 및 DL 타이밍 정보에 기초하여) 이의 랜덤 액세스 수를 계산할 수 있다. 기지국에 의해 제공되는 랜덤 액세스 수 및 토큰 수에 기초하여, 랜덤 액세스를 갖는 UE는, 이의 커버리지 클래스에 매칭하는 서브캐리어들 상에서 송신하도록 허용되는지 여부를 결정할 수 있다. 그러한 경우, UE는 파일럿 및 페이로드를 송신할 수 있고; 그렇지 않으면, UE는 자신의 랜덤 액세스 요청을 보류하고 다음 랜덤 액세스 메시지 송신 기회를 대기할 수 있다.
[0086] 도 9는, 본 개시의 다양한 양상들에 따라 협대역 무선 통신을 위한 랜덤 액세스 채널 설계에 대한 프로세스 흐름(900)의 예를 예시한다. 프로세스 흐름(900)은, 도 1 및 도 2를 참조하여 설명된 대응하는 디바이스들의 예들일 수 있는 기지국(105-b) 및 UE(115-b)를 포함할 수 있다.
[0087] 블록(905)에서, 기지국(105-b)은 커버리지 클래스들을 식별할 수 있다. 이러한 커버리지 클래스들은 예를 들어, 기지국(105-b)에 의해 서빙되는 UE들(115)에 의해 제공되는 통신 링크들의 특성들의 측정들에 기초하여 식별될 수 있고, 상이한 UE들에 의해 요구될 수 있는 상이한 채널 조건들 및 양의 커버리지 향상들(예를 들어, 전력 부스팅 또는 송신 반복)을 갖는 UE들(115)의 수들에 기초하여 결정될 수 있다. 일부 예들에서, 통신 링크들의 특성들은 경로손실, RSRP, RSRQ 또는 RSSI를 포함할 수 있다. 블록(910)에서, 기지국(105-b)은 각각의 커버리지 클래스에 대한 하나 이상의 서브캐리어들을 식별할 수 있다. 앞서 논의된 바와 같이, 기지국(105-b)은 상이한 커버리지 레벨들에 대한 반복 레벨들과 함께, 특정 액세스 클래스의 UE들에 대한 랜덤 액세스 송신들에 대해 서브캐리어를 할당할 수 있다. 또한, 일부 예들에서, 서브캐리어들의 식별은 또한 앞서 논의된 바와 같이, 랜덤 액세스 메시지가 전송될 수 있는지 여부의, UE에 의한 결정을 위해 또한 사용될 수 있는 토큰을 제공하는 것을 포함할 수 있다.
[0088] 그 다음, 기지국(105-b)은 서브캐리어 및 커버리지 클래스 정보(915)를 송신할 수 있다. 이러한 정보는 예를 들어, 기지국(105-b)에 의해 송신되는 SIB에서 제공될 수 있다. 블록(920)에서 UE(115-b)는 서브캐리어 및 커버리지 클래스 정보(915)에 적어도 부분적으로 기초하여 이용가능한 커버리지 클래스들을 식별할 수 있다. 블록(925)에서, UE(115-b)는 랜덤 액세스 메시지들에 대해 사용될 수 있는 각각의 커버리지 클래스에 대한 서브캐리어(또는 서브캐리어들)를 식별할 수 있다. 기지국(105-b)은, 예를 들어, UE(115-b)에서 수신될 수 있고, 블록(935)에서 표시된 바와 같이 UE에서 경로손실을 측정하기 위해 사용될 수 있는 CRS와 같은 기준 신호(930)를 송신할 수 있다. 측정된 경로손실에 적어도 부분적으로 기초하여, UE(115-b)는 블록(940)에 표시된 바와 같이 자신의 커버리지 클래스를 결정할 수 있다. 블록(945)에서, UE(115-b)는 앞서 논의된 바와 유사한 방식으로, 랜덤 액세스 메시지에 대한 서브캐리어를 선택할 수 있다. 선택적인 블록(950)에서, UE는 (예를 들어, 커버리지 클래스 또는 서브캐리어와 연관된 토큰에 대한 랜덤 수 생성 및 검증을 통해) 토큰을 검증할 수 있다. 그 다음, UE(115-b)는 선택된 서브캐리어를 사용하여 랜덤 액세스 요청(955)을 송신할 수 있다.
[0089] 도 10은, 본 개시의 다양한 양상들에 따라 협대역 무선 통신을 위한 랜덤 액세스 채널 설계에 대한 프로세스 흐름(1000)의 예를 예시한다. 프로세스 흐름(1000)은, 도 1 및 도 2 또는 도 9를 참조하여 설명된 대응하는 디바이스들의 예들일 수 있는 기지국(105-c) 및 UE(115-c)를 포함할 수 있다.
[0090] 블록(1005)에서, UE(115-c)는 랜덤 액세스 자원을 선택할 수 있다. 이러한 랜덤 액세스 자원 선택은 예를 들어, 앞서 논의된 바와 같은 기술들에 따라 행해질 수 있다. UE(115-c)는 앞서 논의된 바와 유사한 방식으로 예를 들어, UE 식별로서 랜덤 수를 포함할 수 있는 랜덤 액세스 요청(1010)을 송신할 수 있다. 기지국(105-c)은 랜덤 액세스 요청(1010)에 대한 응답으로, 업링크 자원 할당(1015)을 UE(115-c)에 송신할 수 있다. 업링크 자원 할당(1015)은 예를 들어, 업링크 자원 할당(1015)이 UE(115-c)에 의도된 것을 확인하기 위해 UE(115-c)에 의해 사용될 수 있는 랜덤 액세스 요청(1010)에서 UE(115-c)에 의해 제공된 랜덤 수 식별을 포함할 수 있다. 업링크 자원 할당(1015)은 또한 업링크 송신들을 위해 UE(115-c)에 의해 사용될 수 있는 업링크 자원들의 할당을 포함할 수 있다. UE(115-c)는 업링크 MAC PDU(1020)를 기지국(105-c)에 송신할 수 있다. 기지국(105-c)은 업링크 MAC PDU(1020)의 성공적인 수신을 확인하기 위해 ACK/NACK(1025)의 형태의 피드백을 UE(115-c)에 송신할 수 있다. 이러한 프로세스 흐름(1000)은, UE(115-c)가 "RRC_IDLE"로부터 "RRC_Connected"로 상태 전이를 경험하는 경우, 예를 들어, 기지국(105-c)에 대한 초기 액세스를 위해 또는 추적 영역 업데이트 절차들 동안 사용될 수 있다.
[0091] 도 11은, 본 개시의 다양한 양상들에 따라 협대역 무선 통신을 위한 랜덤 액세스 채널 설계에 대한 프로세스 흐름(1100)의 예를 예시한다. 프로세스 흐름(1100)은, 도 1 및 도 2 또는 도 9 및 도 10은 참조하여 설명된 대응하는 디바이스들의 예들일 수 있는 기지국(105-d) 및 UE(115-d)를 포함할 수 있다.
[0092] 블록(1105)에서, UE(115-d)는 랜덤 액세스 자원을 선택할 수 있다. 이러한 랜덤 액세스 자원 선택은 예를 들어, 앞서 논의된 바와 같은 기술들에 따라 행해질 수 있다. UE(115-d)는 앞서 논의된 바와 유사한 방식으로 (이전 통신들로부터 제공될 수 있는) UE(115-d)의 C-RNTI를 포함할 수 있는 랜덤 액세스 요청(1110)을 송신할 수 있다. 기지국(105-d)은 랜덤 액세스 요청(1110)에 대한 응답으로, 업링크 자원 할당(1115)을 UE(115-d)에 송신할 수 있다. 업링크 자원 할당(1115)은 예를 들어, 업링크 자원 할당(1115)이 UE(115-d)에 의도된 것을 확인하기 위해 UE(115-d)에 의해 사용될 수 있는 UE(115-d)의 C-RNTI를 포함할 수 있다. 업링크 자원 할당(1115)은 또한 업링크 송신들을 위해 UE(115-d)에 의해 사용될 수 있는 업링크 자원들의 할당을 포함할 수 있다. 그 다음, 데이터 전송(1120)은 UE(115-d)와 기지국(105-d) 사이의 통신들을 위해 설정된 기술들에 따라 완료될 수 있다. 이러한 프로세스 흐름(1100)은, UE(115-d)가 "RRC_Connected" 상태에 있는 경우, 예를 들어 PUSCH 자원들을 요청하기 위해 사용될 수 있다.
[0093] 도 12는 본 개시의 다양한 양상들에 따라 협대역 무선 통신을 위한 랜덤 액세스 채널 설계를 지원하는 무선 디바이스(1200)의 블록도를 도시한다. 무선 디바이스(1200)는, 도 1을 참조하여 설명된 UE(115) 또는 기지국(105)의 양상들의 예일 수 있다. 무선 디바이스(1200)는, 수신기(1205), 협대역 RACH 모듈(1210) 및 송신기(1215)를 포함할 수 있다. 무선 디바이스(1200)는 또한 프로세서를 포함할 수 있다. 이러한 컴포넌트들 각각은 서로 통신할 수 있다.
[0094] 수신기(1205)는, 패킷들, 사용자 데이터, 또는 다양한 정보 채널들(예를 들어, 제어 채널들, 데이터 채널들 및 협대역 무선 통신에 대한 랜덤 액세스 채널 설계와 관련된 정보 등)과 연관된 제어 정보와 같은 정보를 수신할 수 있다. 정보는 디바이스의 다른 컴포넌트에 전달될 수 있다.
[0095] 협대역 RACH 모듈(1210)은, 무선 디바이스와 연관된 통신 링크의 특성들에 기초하여 무선 디바이스에 대한 커버리지 클래스들의 세트를 식별하고, 커버리지 클래스들의 세트의 각각의 커버리지 클래스에 대해, 랜덤 액세스 메시지들을 송신하기 위한 서브캐리어들의 세트 중 하나 이상의 서브캐리어들을 식별한다. 일부 예들에서, 통신 링크들의 특성들은 경로손실, RSRP, RSRQ 또는 RSSI를 포함할 수 있다. 협대역 RACH 모듈(1210)은 또한 랜덤 액세스 메시지를 송신하기 위한 무선 통신 시스템 대역폭의 협대역 영역 내에서 서브캐리어들의 세트의 서브캐리어를 식별하고, 랜덤 액세스 메시지에 포함할 페이로드를 식별하고, 식별된 서브캐리어를 사용하여 랜덤 액세스 메시지 및 페이로드를 송신할 수 있다.
[0096] 송신기(1215)는, 무선 디바이스(1200)의 다른 컴포넌트들로부터 수신된 신호들을 송신할 수 있다. 일부 예들에서, 송신기(1215)는, 트랜시버 모듈의 수신기와 코로케이트될 수 있다. 송신기(1215)는 단일 안테나를 포함할 수 있거나, 복수의 안테나들을 포함할 수 있다.
[0097] 도 13은 본 개시의 다양한 양상들에 따라 협대역 무선 통신을 위한 랜덤 액세스 채널 설계를 지원하는 무선 디바이스(1300)의 블록도를 도시한다. 무선 디바이스(1300)는, 도 1 및 도 2 및 도 9 내지 도 12를 참조하여 설명된 무선 디바이스(1200) 또는 UE(115) 또는 기지국(105)의 양상들의 예일 수 있다. 무선 디바이스(1300)는, 수신기(1305), 협대역 RACH 모듈(1310) 및 송신기(1335)를 포함할 수 있다. 무선 디바이스(1300)는 또한 프로세서를 포함할 수 있다. 이러한 컴포넌트들 각각은 서로 통신할 수 있다.
[0098] 수신기(1305)는, 디바이스의 다른 컴포넌트들에 전달될 수 있는 정보를 수신할 수 있다. 수신기(1305)는 또한 도 12의 수신기(1305)를 참조하여 설명된 기능들을 수행할 수 있다.
[0099] 협대역 RACH 모듈(1310)은, 도 12를 참조하여 설명된 협대역 RACH 모듈(1210)의 양상들의 예일 수 있다. 협대역 RACH 모듈(1310)은 서브캐리어 식별 컴포넌트(1315), 페이로드 식별 컴포넌트(1320), 랜덤 액세스 메시지 컴포넌트(1325) 및 커버리지 클래스 식별 컴포넌트(1330)를 포함할 수 있다.
[0100] 서브캐리어 식별 컴포넌트(1315)는 랜덤 액세스 메시지를 송신하기 위한 무선 통신 시스템 대역폭의 협대역 영역 내에서 서브캐리어들의 세트의 서브캐리어를 식별하고, 커버리지 클래스들의 세트의 각각의 커버리지 클래스에 대해, 랜덤 액세스 메시지들을 송신하기 위한 서브캐리어들의 세트 중 하나 이상의 서브캐리어들을 식별할 수 있다.
[0101] 페이로드 식별 컴포넌트(1320)는 랜덤 액세스 메시지에 포함할 페이로드를 식별할 수 있다. 랜덤 액세스 메시지 컴포넌트(1325)는 랜덤 수가 식별된 토큰에 대응하는 것에 대한 응답으로 랜덤 액세스 메시지를 송신할 수 있고, 식별된 서브캐리어를 사용하여 랜덤 액세스 메시지 및 페이로드를 송신할 수 있다.
[0102] 커버리지 클래스 식별 컴포넌트(1330)는 무선 디바이스와 연관된 경로손실에 기초하여 무선 디바이스에 대한 커버리지 클래스들의 세트를 식별할 수 있다. 일부 경우들에서, 랜덤 액세스 메시지들은 파일럿 신호 및 페이로드를 포함한다. 파일럿 신호는 예를 들어, 길이 13 바커 코드 또는 양호한 상호-상관 특성들을 갖는 다른 2진 스트링일 수 있다. 페이로드는 도 8에 대해 앞서 논의된 바와 같은 하나 이상의 정보 필드들을 포함할 수 있다.
[0103] 송신기(1335)는, 무선 디바이스(1300)의 다른 컴포넌트들로부터 수신된 신호들을 송신할 수 있다. 일부 예들에서, 송신기(1335)는, 트랜시버 모듈의 수신기와 코로케이트될 수 있다. 송신기(1335)는 단일 안테나를 포함할 수 있거나, 복수의 안테나들을 포함할 수 있다.
[0104] 도 14는 무선 디바이스(1200) 또는 무선 디바이스(1300)의 대응하는 컴포넌트의 예일 수 있는 협대역 RACH 모듈(1400)의 블록도를 도시한다. 즉, 협대역 RACH 모듈(1400)은, 도 12 및 도 13을 참조하여 설명된 협대역 RACH 모듈(1210) 또는 협대역 RACH 모듈(1310)의 양상들의 예일 수 있다.
[0105] 협대역 RACH 모듈(1400)은 경로손실 측정 컴포넌트(1405), 서브캐리어 선택 컴포넌트(1410), 토큰 식별 컴포넌트(1415), 랜덤 액세스 메시지 컴포넌트(1420), 서브캐리어 시그널링 컴포넌트(1425), 반복 레벨 식별 컴포넌트(1430), 업링크 자원 할당 컴포넌트(1435), 업링크 데이터 패킷 컴포넌트(1440), 피드백 컴포넌트(1445), 서브캐리어 식별 컴포넌트(1450), 페이로드 식별 컴포넌트(1455) 및 커버리지 클래스 식별 컴포넌트(1460)를 포함할 수 있다. 이러한 모듈들 각각은 서로 직접적으로 또는 간접적으로 (예를 들어, 하나 이상의 버스들을 통해) 통신할 수 있다.
[0106] 경로손실 측정 컴포넌트(1405)는 무선 디바이스에서 경로손실을 측정할 수 있다. 서브캐리어 선택 컴포넌트(1410)는 식별된 커버리지 클래스에 기초하여 서브캐리어를 선택할 수 있고 제1 커버리지 클래스에 기초하여 랜덤 액세스 메시지의 송신을 위해 서브캐리어들의 세트 중 제1 서브캐리어를 선택할 수 있다.
[0107] 토큰 식별 컴포넌트(1415)는 각각의 커버리지 클래스에 대한 토큰을 식별하도록 구성될 수 있고, 랜덤 액세스 메시지의 송신은 랜덤 액세스 메시지와 연관된 랜덤 수를 결정하는 것을 포함할 수 있다. 랜덤 액세스 메시지 컴포넌트(1420)는 랜덤 수가 식별된 토큰에 대응하는 것(예를 들어, 토큰의 범위보다 작은 또는 토큰의 값 범위 내의 값을 갖는 것)에 대한 응답으로 랜덤 액세스 메시지를 송신할 수 있고, 식별된 서브캐리어를 사용하여 랜덤 액세스 메시지 및 페이로드를 송신할 수 있다.
[0108] 서브캐리어 시그널링 컴포넌트(1425)는 각각의 커버리지 클래스에 대한 랜덤 액세스 메시지들을 복수의 무선 디바이스들에 송신하기 위해 식별된 하나 이상의 서브캐리어들을 시그널링할 수 있다. 반복 레벨 식별 컴포넌트(1430)는 커버리지 클래스들의 세트 중 각각의 커버리지 클래스에 대한 랜덤 액세스 메시지의 여분의 버전들을 송신하기 위해 반복 레벨을 식별할 수 있다.
[0109] 업링크 자원 할당 컴포넌트(1435)는 랜덤 액세스 메시지에 기초하여 업링크 자원 할당을 수신할 수 있다. 업링크 데이터 패킷 컴포넌트(1440)는 업링크 자원 할당에 기초하여 업링크 데이터 패킷을 송신할 수 있다. 피드백 컴포넌트(1445)는 업링크 데이터 패킷의 성공적인 수신을 확인응답하기 위해 피드백(예를 들어, ACK/NACK 피드백)을 수신할 수 있다.
[0110] 서브캐리어 식별 컴포넌트(1450)는 랜덤 액세스 메시지를 송신하기 위한 무선 통신 시스템 대역폭의 협대역 영역 내에서 서브캐리어들의 세트의 서브캐리어를 식별하고, 커버리지 클래스들의 세트의 각각의 커버리지 클래스에 대해, 랜덤 액세스 메시지들을 송신하기 위한 서브캐리어들의 세트 중 하나 이상의 서브캐리어들을 식별할 수 있다. 페이로드 식별 컴포넌트(1455)는 랜덤 액세스 메시지에 포함할 페이로드를 식별할 수 있다.
[0111] 커버리지 클래스 식별 컴포넌트(1460)는 무선 디바이스와 연관된 경로손실에 기초하여 무선 디바이스에 대한 커버리지 클래스들의 세트를 식별할 수 있다. 일부 경우들에서, 랜덤 액세스 메시지들은 파일럿 신호 및 페이로드를 포함한다.
[0112] 도 15는 본 개시의 다양한 양상들에 따라 협대역 무선 통신을 위한 랜덤 액세스 채널 설계를 지원하는 디바이스를 포함하는 시스템(1500)의 도면을 도시한다. 예를 들어, 시스템(1500)은 도 1, 도 2 및 도 9 내지 도 14를 참조하여 설명된 바와 같이 무선 디바이스(1200), 무선 디바이스(1300) 또는 UE(115)의 예일 수 있는 UE(115-e)를 포함할 수 있다.
[0113] UE(115-e)는 또한 협대역 RACH 모듈(1505), 프로세서(1510), 메모리(1515), 트랜시버(1525), 안테나(1530) 및 MTC 통신 모듈(1535)을 포함할 수 있다. 이러한 모듈들 각각은 서로 직접적으로 또는 간접적으로 (예를 들어, 하나 이상의 버스들을 통해) 통신할 수 있다.
[0114] 협대역 RACH 모듈(1505)은, 도 12 내지 도 14를 참조하여 설명된 바와 같이 협대역 RACH 모듈의 예일 수 있다. 프로세서(1510)는 지능형 하드웨어 디바이스(예를 들어, 중앙 프로세싱 유닛(CPU), 마이크로제어기, 주문형 집적 회로(ASIC) 등)를 포함할 수 있다.
[0115] 메모리(1515)는 랜덤 액세스 메모리(RAM) 및 판독 전용 메모리(ROM)를 포함할 수 있다. 메모리(1515)는, 명령들을 포함하는 컴퓨터 판독가능 컴퓨터 실행가능 소프트웨어를 저장할 수 있고, 명령들은, 실행되는 경우, 프로세서로 하여금, 본 명세서에 설명된 다양한 기능들(예를 들어, 협대역 무선 통신을 위한 랜덤 액세스 채널 설계 등)을 수행하게 한다. 일부 경우들에서, 소프트웨어(1520)는, 프로세서에 의해 직접 실행가능하지는 않을 수 있지만, (예를 들어, 컴파일 및 실행되는 경우) 컴퓨터로 하여금, 본 명세서에서 설명된 기능들을 수행하게 할 수 있다.
[0116] 트랜시버(1525)는, 앞서 설명된 바와 같이, 하나 이상의 안테나들, 유선 또는 무선 링크들을 통해, 하나 이상의 네트워크들과 양방향으로 통신할 수 있다. 예를 들어, 트랜시버(1525)는, 기지국(105) 또는 UE(115)와 양방향으로 통신할 수 있다. 트랜시버(1525)는 또한, 패킷들을 변조하고, 변조된 패킷들을 송신을 위해 안테나들에 제공하고, 안테나들로부터 수신된 패킷들을 복조하는 모뎀을 포함할 수 있다.
[0117] 일부 경우들에서, 무선 디바이스는 단일 안테나(1530)를 포함할 수 있다. 그러나, 일부 경우들에서, 디바이스는 다수의 무선 송신들을 동시에 송신 또는 수신할 수 있는 하나보다 많은 안테나(1530)를 가질 수 있다.
[0118] MTC 통신 모듈(1535)은 UE(115-e)에 의해 보고될 하나 이상의 이벤트들 또는 측정들에 기초한 통신과 같은 MTC 통신들을 사용한 동작들을 가능하게 할 수 있다.
[0119] 도 16은 본 개시의 다양한 양상들에 따라 협대역 무선 통신을 위한 랜덤 액세스 채널 설계를 지원하는 디바이스를 포함하는 무선 시스템(1600)의 도면을 도시한다. 예를 들어, 시스템(1600)은 도 1, 도 2 및 도 9 내지 도 14를 참조하여 설명된 무선 디바이스(1200), 무선 디바이스(1300) 또는 기지국(105)의 예일 수 있는 기지국(105-f)을 포함할 수 있다. 기지국(105-f)은 또한, 통신들을 송신하기 위한 컴포넌트들 및 통신들을 수신하기 위한 컴포넌트들을 포함하는, 양방향 음성 및 데이터 통신들을 위한 컴포넌트들을 포함할 수 있다. 예를 들어, 기지국(105-f)은 하나 이상의 UE들(115-f 또는 115-g)와 양방향으로 통신할 수 있다.
[0120] 기지국(105-f)은 또한 협대역 RACH 모듈(1605), 프로세서(1610), 메모리(1615), 트랜시버(1625), 안테나(1630), 기지국 통신 모듈(1635) 및 네트워크 통신 모듈(1640)을 포함할 수 있다. 이러한 모듈들 각각은 서로 직접적으로 또는 간접적으로 (예를 들어, 하나 이상의 버스들을 통해) 통신할 수 있다.
[0121] 협대역 RACH 모듈(1605)은, 도 12 내지 도 14를 참조하여 설명된 바와 같이 협대역 RACH 모듈의 예일 수 있다. 프로세서(1610)는 지능형 하드웨어 디바이스(예를 들어, CPU, 마이크로제어기, ASIC 등)를 포함할 수 있다.
[0122] 메모리(1615)는 RAM 및 ROM을 포함할 수 있다. 메모리(1615)는, 명령들을 포함하는 컴퓨터 판독가능 컴퓨터 실행가능 소프트웨어를 저장할 수 있고, 명령들은, 실행되는 경우, 프로세서로 하여금, 본 명세서에 설명된 다양한 기능들(예를 들어, 협대역 무선 통신을 위한 랜덤 액세스 채널 설계 등)을 수행하게 한다. 일부 경우들에서, 소프트웨어(1620)는, 프로세서에 의해 직접 실행가능하지는 않을 수 있지만, (예를 들어, 컴파일 및 실행되는 경우) 컴퓨터로 하여금, 본 명세서에서 설명된 기능들을 수행하게 할 수 있다.
[0123] 트랜시버(1625)는, 앞서 설명된 바와 같이, 하나 이상의 안테나들, 유선 또는 무선 링크들을 통해, 하나 이상의 네트워크들과 양방향으로 통신할 수 있다. 예를 들어, 트랜시버(1625)는, 기지국(105) 또는 UE(115)와 양방향으로 통신할 수 있다. 트랜시버(1625)는 또한, 패킷들을 변조하고, 변조된 패킷들을 송신을 위해 안테나들에 제공하고, 안테나들로부터 수신된 패킷들을 복조하는 모뎀을 포함할 수 있다. 일부 경우들에서, 무선 디바이스는 단일 안테나(1630)를 포함할 수 있다. 그러나, 일부 경우들에서, 디바이스는 다수의 무선 송신들을 동시에 송신 또는 수신할 수 있는 하나보다 많은 안테나(1530)를 가질 수 있다.
[0124] 기지국 통신 모듈(1635)은 다른 기지국들(105), 예를 들어, 기지국(105-g) 또는 기지국(105-h)과의 통신들을 관리할 수 있고, 다른 기지국들(105)과 협력하여 UE들(115)과의 통신들을 제어하기 위한 제어기 또는 스케줄러를 포함할 수 있다. 예를 들어, 기지국 통신 모듈(1635)은, 빔형성 또는 조인트 송신과 같은 다양한 간섭 완화 기술들을 위해 UE들(115)로의 송신들을 위한 스케줄링을 조정할 수 있다. 일부 예들에서, 기지국 통신 모듈(1635)은, 하나 이상의 다른 기지국들(105) 사이의 통신을 제공하기 위해 LTE/LTE-A 무선 통신 네트워크 기술 내에서 X2 인터페이스를 제공할 수 있다.
[0125] 네트워크 통신 모듈(1640)은 (예를 들어, 하나 이상의 유선 백홀 링크들을 통해) 코어 네트워크와의 통신들을 관리할 수 있다. 예를 들어, 네트워크 통신 모듈(1640)은 하나 이상의 UE들(115)과 같은 클라이언트 디바이스들에 대한 데이터 통신들의 전송을 관리할 수 있다.
[0126] 도 17은, 본 개시의 다양한 양상들에 따라 협대역 무선 통신을 위한 랜덤 액세스 채널 설계를 위한 방법(1700)을 예시하는 흐름도를 도시한다. 방법(1700)의 동작들은, 도 1 및 도 2 또는 도 9 내지 도 16을 참조하여 설명된 바와 같이 UE(115) 또는 기지국(105) 또는 그의 컴포넌트들에 의해 구현될 수 있다. 예를 들어, 방법(1700)의 동작들은, 본원에 설명된 바와 같은 협대역 RACH 모듈에 의해 수행될 수 있다. 일부 예들에서, UE(115) 또는 기지국(105)은, 아래에서 설명되는 기능들을 수행하도록 디바이스의 기능 엘리먼트들을 제어하기 위한 코드들의 세트를 실행할 수 있다. 추가적으로 또는 대안적으로, UE(115) 또는 기지국(105)은 특수 목적 하드웨어를 사용하여 아래에서 설명되는 기능들의 양상들을 수행할 수 있다.
[0127] 블록(1705)에서, UE(115) 또는 기지국(105)은 도 2 내지 도 11을 참조하여 앞서 설명된 바와 같이 무선 디바이스와 연관된 통신 링크의 특성에 기초하여 무선 디바이스에 대한 커버리지 클래스들의 세트를 식별할 수 있다. 특정 예들에서, 블록(1705)의 동작들은, 도 14를 참조하여 설명된 바와 같이 커버리지 클래스 식별 컴포넌트에 의해 수행될 수 있다.
[0128] 블록(1710)에서, UE(115) 또는 기지국(105)은 커버리지 클래스들의 세트의 각각의 커버리지 클래스에 대해, 도 2 내지 도 11을 참조하여 앞서 설명된 바와 같이 랜덤 액세스 메시지들을 송신하기 위한 서브캐리어들의 세트 중 하나 이상의 서브캐리어들을 식별할 수 있다. 특정 예들에서, 블록(1710)의 동작들은, 도 14를 참조하여 설명된 바와 같이 서브캐리어 식별 컴포넌트에 의해 수행될 수 있다.
[0129] 블록(1715)에서, UE(115) 또는 기지국(105)은 도 2 내지 도 11을 참조하여 앞서 설명된 바와 같이 서브캐리어들의 세트 중 하나 이상의 서브캐리어들 상에서 통신할 수 있다. 특정 예들에서, 블록(1710)의 동작들은, 도 14를 참조하여 설명된 바와 같이 서브캐리어 식별 컴포넌트에 의해 수행될 수 있다.
[0130] 도 18은, 본 개시의 다양한 양상들에 따라 협대역 무선 통신을 위한 랜덤 액세스 채널 설계를 위한 방법(1800)을 예시하는 흐름도를 도시한다. 방법(1800)의 동작들은, 도 1 및 도 2 또는 도 9 내지 도 16을 참조하여 설명된 바와 같이 UE(115) 또는 그의 컴포넌트들에 의해 구현될 수 있다. 예를 들어, 방법(1800)의 동작들은, 본원에 설명된 바와 같은 협대역 RACH 모듈에 의해 수행될 수 있다. 일부 예들에서, UE(115)는, 아래에서 설명되는 기능들을 수행하도록 디바이스의 기능 엘리먼트들을 제어하기 위한 코드들의 세트를 실행할 수 있다. 추가적으로 또는 대안적으로, UE(115)는 특수 목적 하드웨어를 사용하여 아래에서 설명되는 기능들의 양상들을 수행할 수 있다.
[0131] 블록(1805)에서, UE(115)는 도 2 내지 도 11을 참조하여 앞서 설명된 바와 같이 무선 디바이스와 연관된 통신 링크의 특성에 기초하여 무선 디바이스에 대한 커버리지 클래스들의 세트를 식별할 수 있다. 특정 예들에서, 블록(1805)의 동작들은, 도 14를 참조하여 설명된 바와 같이 커버리지 클래스 식별 컴포넌트에 의해 수행될 수 있다.
[0132] 블록(1810)에서, UE(115)는 커버리지 클래스들의 세트의 각각의 커버리지 클래스에 대해, 도 2 내지 도 11을 참조하여 앞서 설명된 바와 같이 랜덤 액세스 메시지들을 송신하기 위한 서브캐리어들의 세트 중 하나 이상의 서브캐리어들을 식별할 수 있다. 특정 예들에서, 블록(1810)의 동작들은, 도 14를 참조하여 설명된 바와 같이 서브캐리어 식별 컴포넌트에 의해 수행될 수 있다.
[0133] 블록(1815)에서, UE(115)는 도 2 내지 도 11을 참조하여 앞서 설명된 바와 같이 무선 디바이스에서 통신 링크의 특성을 측정할 수 있다. 특정 예들에서, 블록(1815)의 동작들은, 도 14를 참조하여 설명된 바와 같이 경로손실 측정 컴포넌트에 의해 수행될 수 있다.
[0134] 블록(1820)에서, UE(115)는 도 2 내지 도 11을 참조하여 앞서 설명된 바와 같이 통신 링크의 특성에 기초하여 무선 디바이스가 제1 커버리지 클래스에 있다고 결정할 수 있다. 특정 예들에서, 블록(1820)의 동작들은, 도 14를 참조하여 설명된 바와 같이 커버리지 클래스 식별 컴포넌트에 의해 수행될 수 있다.
[0135] 블록(1825)에서, UE(115)는 도 2 내지 도 11을 참조하여 앞서 설명된 바와 같이 제1 커버리지 클래스에 기초하여 랜덤 액세스 메시지의 송신을 위한 서브캐리어들의 세트 중 제1 서브캐리어를 선택할 수 있다. 특정 예들에서, 블록(1825)의 동작들은, 도 14를 참조하여 설명된 바와 같이 서브캐리어 선택 컴포넌트에 의해 수행될 수 있다.
[0136] 블록(1830)에서, UE(115)는 도 2 내지 도 11을 참조하여 앞서 설명된 바와 같이, 각각의 커버리지 클래스에 대한 토큰을 식별할 수 있고 랜덤 액세스 메시지와 연관된 랜덤 수를 결정할 수 있다. 특정 예들에서, 블록(1830)의 동작들은, 도 14를 참조하여 설명된 바와 같이 토큰 식별 컴포넌트에 의해 수행될 수 있다.
[0137] 블록(1835)에서, UE(115)는 도 2 내지 도 11을 참조하여 앞서 설명된 바와 같이, 랜덤 수가 식별된 토큰에 대응하는 것에 대한 응답으로 랜덤 액세스 메시지를 송신할 수 있다. 특정 예들에서, 블록(1835)의 동작들은, 도 14를 참조하여 설명된 바와 같이 랜덤 액세스 메시지 컴포넌트에 의해 수행될 수 있다.
[0138] 도 19는, 본 개시의 다양한 양상들에 따라 협대역 무선 통신을 위한 랜덤 액세스 채널 설계를 위한 방법(1900)을 예시하는 흐름도를 도시한다. 방법(1900)의 동작들은, 도 1 및 도 2 또는 도 9 내지 도 16을 참조하여 설명된 바와 같이 UE(115) 또는 그의 컴포넌트들에 의해 구현될 수 있다. 예를 들어, 방법(1900)의 동작들은, 본원에 설명된 바와 같은 협대역 RACH 모듈에 의해 수행될 수 있다. 일부 예들에서, UE(115)는, 아래에서 설명되는 기능들을 수행하도록 디바이스의 기능 엘리먼트들을 제어하기 위한 코드들의 세트를 실행할 수 있다. 추가적으로 또는 대안적으로, UE(115)는 특수 목적 하드웨어를 사용하여 아래에서 설명되는 기능들의 양상들을 수행할 수 있다.
[0139] 블록(1905)에서, UE(115)는 도 2 내지 도 11을 참조하여 앞서 설명된 바와 같이 랜덤 액세스 메시지를 송신하기 위한 무선 통신 시스템 대역폭의 협대역 영역 내에서 서브캐리어들의 세트의 서브캐리어를 식별할 수 있다. 특정 예들에서, 블록(1905)의 동작들은, 도 14를 참조하여 설명된 바와 같이 서브캐리어 식별 컴포넌트에 의해 수행될 수 있다.
[0140] 블록(1910)에서, UE(115)는 도 2 내지 도 11을 참조하여 앞서 설명된 바와 같이 랜덤 액세스 메시지에 포함할 페이로드를 식별할 수 있다. 특정 예들에서, 블록(1910)의 동작들은, 도 14를 참조하여 설명된 바와 같이 페이로드 식별 컴포넌트에 의해 수행될 수 있다.
[0141] 블록(1915)에서, UE(115)는 도 2 내지 도 11을 참조하여 앞서 설명된 바와 같이, 식별된 서브캐리어를 사용하여 랜덤 액세스 메시지 및 페이로드를 송신할 수 있다. 특정 예들에서, 블록(1915)의 동작들은, 도 14를 참조하여 설명된 바와 같이 랜덤 액세스 메시지 컴포넌트에 의해 수행될 수 있다.
[0142] 일부 예들에서, 페이로드는 서브캐리어들의 세트 중 서브캐리어들의 서브세트를 사용하여 송신될 수 있다. 일부 예들에서, UE(115)는 서브캐리어들의 서브세트의 각각의 서브캐리어 상에서 페이로드를 송신할 수 있다. 일부 예들에서, UE(115)는 페이로드를 복수의 부분들로 분할할 수 있고, 페이로드로부터 리던던시 부분들을 생성할 수 있고, 서브캐리어들의 서브세트의 각각의 서브캐리어 상에서 복수의 부분들의 서브세트 및 리던던시 부분들의 서브세트를 송신할 수 있다.
[0143] 이러한 방법들은 가능한 구현들을 설명하고, 동작들 및 단계들은, 다른 구현들이 가능하도록 재배열되거나 그렇지 않으면 변형될 수 있음을 주목해야 한다. 일부 예들에서, 방법들 중 둘 이상으로부터의 양상들은 결합될 수 있다. 예를 들어, 방법들 각각의 양상들은 다른 방법들의 단계들 또는 양상들 또는 본원에 설명된 다른 단계들 또는 기술들을 포함할 수 있다. 따라서, 본 개시의 양상들은 협대역 무선 통신에 대한 랜덤 액세스 채널 설계를 제공할 수 있다.
[0144] 본원의 설명은 본 기술분야의 당업자가 본 개시를 사용하거나 실시할 수 있게 하도록 제공된다. 본 개시에 대한 다양한 변형들이 해당 기술분야에서 통상의 지식을 가진 자들에게 쉽게 명백할 것이며, 본 명세서에 정의된 일반 원리들은 본 개시의 범위를 벗어나지 않으면서 다른 변형들에 적용될 수 있다. 그러므로 본 개시는 본 명세서에서 설명된 예시들 및 설계들로 한정되는 것이 아니라, 본 명세서에 개시된 원리들 및 신규한 특징들에 부합하는 가장 넓은 범위에 따르는 것이다.
[0145] 본 명세서에서 설명된 기능들은 하드웨어, 프로세서에 의해 실행되는 소프트웨어, 펌웨어, 또는 이들의 임의의 결합으로 구현될 수 있다. 프로세서에 의해 실행되는 소프트웨어로 구현된다면, 이 기능들은 컴퓨터 판독 가능 매체에 하나 이상의 명령 또는 코드로서 저장되거나 이를 통해 전송될 수 있다. 다른 예들 및 구현들이 본 개시 및 첨부된 청구항들의 범위 내에 있다. 예를 들어, 소프트웨어의 본질로 인해, 위에서 설명된 기능들은 프로세서에 의해 실행되는 소프트웨어, 하드웨어, 펌웨어, 하드와이어링, 또는 이들 중 임의의 결합들을 사용하여 구현될 수 있다. 기능들을 구현하는 특징들은 또한 기능들의 부분들이 서로 다른 물리적 위치들에서 구현되도록 분산되는 것을 비롯하여, 물리적으로 다양한 위치들에 위치될 수 있다. 또한, 청구항들을 포함하여 본 명세서에서 사용된 바와 같이, 항목들의 리스트(예를 들어, "~ 중 적어도 하나" 또는 "~ 중 하나 이상"과 같은 어구가 후속하는 항목들의 리스트)에 사용된 "또는"은 예를 들어, "A, B 또는 C 중 적어도 하나"의 리스트가 A 또는 B 또는 C 또는 AB 또는 AC 또는 BC 또는 ABC(즉, A와 B와 C)를 의미하도록 포함적인 리스트를 나타낸다.
[0146] 컴퓨터 판독가능 매체들은 비일시적 컴퓨터 저장 매체들, 및 일 장소에서 다른 장소로 컴퓨터 프로그램의 이전을 용이하게 하는 임의의 매체들을 포함하는 통신 매체 둘 모두를 포함한다. 비일시적 저장 매체는 범용 또는 특수 목적용 컴퓨터에 의해 액세스 가능한 임의의 이용가능한 매체일 수 있다. 한정이 아닌 예시로, 비일시적 컴퓨터 판독가능 매체는 RAM, ROM, EEPROM(electrically erasable programmable read only memory), CD-ROM(compact disk)이나 다른 광 디스크 저장소, 자기 디스크 저장소 또는 다른 자기 저장 디바이스들, 또는 명령들이나 데이터 구조들의 형태로 원하는 프로그램 코드 수단을 전달 또는 저장하는데 사용될 수 있으며 범용 또는 특수 목적용 컴퓨터나 범용 또는 특수 목적용 프로세서에 의해 액세스 가능한 임의의 다른 비일시적 매체를 포함할 수 있다. 또한, 임의의 접속이 컴퓨터 판독 가능 매체로 적절히 지칭된다. 예를 들어, 소프트웨어가 동축 케이블, 광섬유 케이블, 연선, 디지털 가입자 라인(DSL: digital subscriber line), 또는 적외선, 라디오 및 마이크로파와 같은 무선 기술들을 사용하여 웹사이트, 서버 또는 다른 원격 소스로부터 전송된다면, 동축 케이블, 광섬유 케이블, 연선, DSL, 또는 적외선, 라디오 및 마이크로파와 같은 무선 기술들이 매체의 정의에 포함된다. 본 명세서에서 사용된 것과 같은 디스크(disk 및 disc)는 CD, 레이저 디스크(laser disc), 광 디스크(optical disc), 디지털 다기능 디스크(DVD: digital versatile disc), 플로피 디스크(floppy disk) 및 블루레이 디스크(disc)를 포함하며, 여기서 디스크(disk)들은 보통 데이터를 자기적으로 재생하는 한편, 디스크(disc)들은 데이터를 레이저들에 의해 광학적으로 재생한다. 상기의 것들의 결합들이 또한 컴퓨터 판독 가능 매체의 범위 내에 포함된다.
[0147] 본원에서 설명되는 기술들은, 코드 분할 다중 액세스(CDMA), 시분할 다중 액세스(TDMA), 주파수 분할 다중 액세스(FDMA), 직교 주파수 분할 다중 액세스(OFDMA), 싱글 캐리어 주파수 분할 다중 액세스(SC-FDMA) 및 다른 시스템들과 같은 다양한 무선 통신 시스템들에 대해 사용될 수 있다. 용어 "시스템" 및 "네트워크"는 종종 상호교환가능하게 사용된다. CDMA 시스템은, CDMA2000, UTRA(Universal Terrestrial Radio Access) 등과 같은 라디오 기술을 구현할 수 있다. CDMA2000은 IS-2000, IS-95 및 IS-856 표준들을 커버한다. IS-2000 릴리즈(Release) 0 및 릴리즈 A는 보통 CDMA2000 1X, 1X 등으로 지칭된다. IS-856(TIA-856)은 흔히 CDMA2000 1xEV-DO, 고속 패킷 데이터(HRPD: High Rate Packet Data) 등으로 지칭된다. UTRA는 광대역 CDMA(WCDMA: Wideband CDMA) 및 CDMA의 다른 변형들을 포함한다. TDMA 시스템은 GSM(Global System for Mobile communications)과 같은 라디오 기술을 구현할 수 있다. OFDMA 시스템은, UMB(Ultra Mobile Broadband), 이볼브드 UTRA(E-UTRA), IEEE 802.11(Wi-Fi(wireless fidelity)), IEEE 802.16(WiMAX), IEEE 802.20, Flash-OFDM 등과 같은 라디오 기술을 구현할 수 있다. UTRA 및 E-UTRA는 유니버설 모바일 전기통신 시스템(UMTS(Universal Mobile Telecommunications system))의 일부이다. 3GPP LTE 및 LTE-어드밴스드(LTE-A)는, E-UTRA를 사용하는 UMTS의 새로운 릴리즈들이다. UTRA, E-UTRA, UMTS, LTE, LTE-a 및 GSM은 "3세대 파트너쉽 프로젝트"(3GPP: 3rd Generation Partnership Project)로 명명된 조직으로부터의 문서들에 기술되어 있다. CDMA2000 및 UMB는 "3세대 파트너쉽 프로젝트 2"(3GPP2)로 명명된 조직으로부터의 문서들에 기술되어 있다. 본 명세서에서 설명되는 기술들은 위에서 언급된 시스템들 및 라디오 기술들뿐만 아니라, 다른 시스템들 및 라디오 기술들에도 사용될 수 있다. 그러나, 본원의 설명은 예시를 위해 LTE 시스템을 설명하고, 상기 설명 대부분에서 LTE 용어가 사용되지만, 기술들은 LTE 애플리케이션들 이외에도 적용가능하다.
[0148] 본원에 설명된 네트워크들을 포함하는 LTE/LTE-A 네트워크들에서, 용어 eNB(evolved node B)는 일반적으로 기지국들을 설명하기 위해 사용될 수 있다. 본원에 설명된 무선 통신 시스템 또는 시스템들은, 상이한 타입들의 eNB들이 다양한 지리적 영역들에 대한 커버리지를 제공하는 이종(heterogeneous) LTE/LTE-A 네트워크를 포함할 수 있다. 예를 들어, 각각의 eNB 또는 기지국은 매크로 셀, 소형 셀 또는 다른 타입들의 셀에 대한 통신 커버리지를 제공할 수 있다. "셀"이라는 용어는, 문맥에 따라, 기지국, 기지국과 연관된 캐리어 또는 컴포넌트 캐리어(CC), 또는 캐리어 또는 기지국의 커버리지 영역(예를 들어, 섹터 등)을 설명하기 위해 사용될 수 있는 3GPP 용어이다.
[0149] 기지국들은, 베이스 트랜시버 스테이션, 무선 기지국, 액세스 포인트(AP), 라디오 트랜시버, NodeB, eNodeB(eNB), 홈 NodeB, 홈 eNodeB, 또는 다른 어떤 적당한 용어로 당업자들에게 지칭되거나 이들을 포함할 수 있다. 기지국에 대한 지리적 커버리지 영역은 커버리지 영역의 일부를 구성하는 섹터들로 분할될 수 있다. 본원에 설명된 무선 통신 시스템 또는 시스템들은 상이한 타입들의 기지국(예를 들어, 매크로 또는 소형 셀 기지국들)을 포함할 수도 있다. 본원에 설명된 UE는 매크로 eNB들, 소형 셀 eNB들, 중계 기지국들 등을 포함하는 다양한 타입들의 기지국들 및 네트워크 장비와 통신할 수 있다. 상이한 기술들에 대한 중첩하는 지리적 커버리지 영역들이 존재할 수 있다.
[0150] 매크로 셀은, 비교적 넓은 지리적 영역(예를 들어, 반경 수 킬로미터)을 커버할 수 있고, 네트워크 제공자에 서비스 가입들을 한 UE들에 의한 제한없는 액세스를 허용할 수 있다. 소형 셀은, 매크로 셀들과 동일한 또는 상이한(예를 들어, 허가된, 비허가된 등의) 주파수 대역들에서 동작할 수 있는, 매크로 셀에 비해 저전력의 기지국들이다. 소형 셀들은, 다양한 예들에 따라 피코 셀들, 펨토 셀들 및 마이크로 셀들을 포함할 수 있다. 예를 들어, 피코 셀은 작은 지리적 영역을 커버할 수 있고, 네트워크 제공자에 서비스 가입들을 한 UE들에 의한 제한없는 액세스를 허용할 수 있다. 펨토 셀은 또한, 작은 지리적 영역(예를 들어, 집)을 커버할 수 있고, 펨토 셀과의 연관을 갖는 UE들(예를 들어, 폐쇄형 가입자 그룹(CSG: closed subscriber group) 내의 UE들, 집에 있는 사용자들에 대한 UE들 등)에 의한 제한적 액세스를 제공할 수 있다. 매크로 셀에 대한 eNB는 매크로 eNB로 지칭될 수 있다. 소형 셀에 대한 eNB는 소형 셀 eNB, 피코 eNB, 펨토 eNB 또는 홈 eNB로 지칭될 수 있다. eNB는 하나 또는 다수(예를 들어, 2개, 3개, 4개 등)의 셀들(예를 들어, 컴포넌트 캐리어들(CC들))을 지원할 수 있다. UE는 매크로 eNB들, 소형 셀 eNB들, 중계 기지국들 등을 포함하는 다양한 타입들의 기지국들 및 네트워크 장비와 통신할 수 있다.
[0151] 본원에 설명된 무선 통신 시스템 또는 시스템들은 동기식 또는 비동기식 동작을 지원할 수 있다. 동기식 동작의 경우, 기지국들은 유사한 프레임 타이밍을 가질 수 있으며, 상이한 기지국들로부터의 송신들이 대략 시간 정렬될 수 있다. 비동기식 동작의 경우, 기지국들은 상이한 프레임 타이밍을 가질 수 있으며, 상이한 기지국들로부터의 송신들이 시간 정렬되지 않을 수도 있다. 본 명세서에서 설명되는 기술들은 동기식 또는 비동기식 동작들을 위해 사용될 수 있다.
[0152] 본원에 설명된 다운링크(DL) 송신들은 또한 순방향 링크 송신들로 지칭될 수 있는 한편, 업링크(UL) 송신들은 또한 역방향 링크 송신들로 지칭될 수 있다. 예를 들어, 도 1 및 도 2의 무선 통신 시스템(100 및 200)을 포함하는 본원에 설명된 각각의 통신 링크는 하나 이상의 캐리어들을 포함할 수 있고, 여기서 각각의 캐리어는 다수의 서브-캐리어들(예를 들어, 상이한 주파수들의 파형 신호들)로 구성된 신호일 수 있다. 각각의 변조된 신호는 상이한 서브캐리어 상에서 전송될 수 있고, 제어 정보(예를 들어, 기준 신호들, 제어 채널들 등), 오버헤드 정보, 사용자 데이터 등을 반송할 수 있다. 본원에 설명된 통신 링크들(예를 들어, 도 1의 통신 링크들(125))은 주파수 분할 듀플렉스(FDD)(예를 들어, 페어링된 스펙트럼 자원들을 사용함) 또는 시분할 듀플렉스(TDD) 동작(예를 들어, 페어링되지 않은 스펙트럼 자원들을 사용함)을 사용하여 양방향 통신들을 송신할 수 있다. 프레임 구조들은 FDD(예를 들어, 프레임 구조 타입 1) 및 TDD(예를 들어, 프레임 구조 타입 2)에 대해 정의될 수 있다.
[0153] 따라서, 본 개시의 양상들은 협대역 무선 통신에 대한 랜덤 액세스 채널 설계를 제공할 수 있다. 이러한 방법들은 가능한 구현을 설명하고, 동작들 및 단계들은, 다른 구현들이 가능하도록 재배열되거나 그렇지 않으면 변형될 수 있음을 주목해야 한다. 일부 예들에서, 방법들 중 둘 이상으로부터의 양상들은 결합될 수 있다.
[0154] 본 명세서에서의 개시와 관련하여 설명된 다양한 예시적인 블록들과 모듈들은 범용 프로세서, DSP, ASIC, FPGA 또는 다른 프로그래밍 가능한 로직 디바이스, 이산 게이트 또는 트랜지스터 로직, 이산 하드웨어 컴포넌트들, 또는 본 명세서에서 설명된 기능들을 수행하도록 설계된 이들의 임의의 결합으로 구현되거나 이들에 의해 수행될 수 있다. 범용 프로세서는 마이크로프로세서일 수 있지만, 대안으로 프로세서는 임의의 종래 프로세서, 제어기, 마이크로제어기 또는 상태 머신일 수 있다. 프로세서는 또한 컴퓨팅 디바이스들의 결합(예를 들어 DSP(digital signal processor)와 마이크로프로세서의 결합, 다수의 마이크로프로세서들, DSP 코어와 결합된 하나 이상의 마이크로프로세서들, 또는 임의의 다른 이러한 구성)으로서 구현될 수도 있다. 따라서, 본원에 설명된 기능들은 적어도 하나의 IC 상에서 하나 이상의 다른 프로세싱 유닛들(또는 코어들)에 의해 수행될 수 있다. 다양한 예들에서, 상이한 타입들의 집적 회로들(예를 들어, 구조화된/플랫폼 ASIC들, FPGA 또는 다른 반주문 IC)이 사용될 수 있고, 이들은 해당 기술분야에 공지된 임의의 방식으로 프로그래밍될 수 있다. 각각의 유닛의 기능들은 또한 전체적으로 또는 부분적으로, 하나 이상의 범용 또는 주문형 프로세서들에 의해 실행되도록 포맷화되어 메모리에 포함되는 명령들로 구현될 수 있다.
[0155] 본 명세서에서 사용되는 바와 같이, 어구 "~에 기초하는"은 조건들의 폐쇄형 세트에 대한 참조로 해석되지 않아야 한다. 예를 들어, "조건 A에 기초하는" 것으로 설명되는 예시적인 단계는 본 개시의 범위를 벗어남이 없이 조건 A 및 조건 B 둘 모두에 기초할 수 있다. 즉, 본 명세서에서 사용되는 바와 같이, 어구 "~에 기초하는"은 어구 "~에 적어도 부분적으로 기초하는"과 동일한 방식으로 해석될 것이다.

Claims (61)

  1. 무선 통신을 위한 방법으로서,
    무선 디바이스와 연관된 통신 링크의 특성에 적어도 부분적으로 기초하여 상기 무선 디바이스에 대한 커버리지 클래스들의 세트를 식별하는 단계;
    상기 커버리지 클래스들의 세트의 각각의 커버리지 클래스에 대해, 랜덤 액세스 메시지들을 송신하기 위한 서브캐리어들의 세트 중 하나 이상의 서브캐리어들을 식별하는 단계; 및
    상기 서브캐리어들의 세트 중 하나 이상의 서브캐리어들 상에서 통신하는 단계를 포함하는, 무선 통신을 위한 방법.
  2. 제1 항에 있어서,
    상기 무선 디바이스에서 상기 통신 링크의 특성을 측정하는 단계;
    상기 통신 링크의 특성에 적어도 부분적으로 기초하여 상기 무선 디바이스가 제1 커버리지 클래스에 있다고 결정하는 단계; 및
    상기 제1 커버리지 클래스에 적어도 부분적으로 기초하여 랜덤 액세스 메시지의 송신을 위해 상기 서브캐리어들의 세트 중 제1 서브캐리어를 선택하는 단계를 더 포함하는, 무선 통신을 위한 방법.
  3. 제2 항에 있어서,
    각각의 커버리지 클래스에 대한 토큰을 식별하는 단계를 더 포함하고, 상기 랜덤 액세스 메시지를 송신하는 단계는,
    상기 랜덤 액세스 메시지와 연관된 랜덤 수를 결정하는 단계; 및
    상기 랜덤 수가 상기 식별된 토큰에 대응하는 것에 응답으로 상기 랜덤 액세스 메시지를 송신하는 단계를 더 포함하는, 무선 통신을 위한 방법.
  4. 제1 항에 있어서,
    각각의 커버리지 클래스에 대한 랜덤 액세스 메시지들을 복수의 무선 디바이스들에 송신하기 위해 상기 식별된 하나 이상의 서브캐리어들을 시그널링하는 단계를 더 포함하는, 무선 통신을 위한 방법.
  5. 제1 항에 있어서,
    상기 서브캐리어들의 세트는 무선 통신 시스템 대역폭의 협대역 영역 내의 복수의 서브캐리어들을 포함하는, 무선 통신을 위한 방법.
  6. 제5 항에 있어서,
    상기 서브캐리어들의 세트 중 인접한 서브캐리어들의 서브캐리어 간격은 상기 무선 통신 시스템 대역폭의 협대역 영역 내에서 데이터 통신들에 대해 사용되는 것과 동일한 서브캐리어 간격에 대응하는, 무선 통신을 위한 방법.
  7. 제5 항에 있어서,
    랜덤 액세스 메시지들은 상기 서브캐리어들의 세트의 단일 서브캐리어를 사용하여 송신되는, 무선 통신을 위한 방법.
  8. 제1 항에 있어서,
    랜덤 액세스 메시지들 및 데이터 통신들은 상기 서브캐리어들 중 하나 이상 상에서 시분할 멀티플렉싱되는, 무선 통신을 위한 방법.
  9. 제1 항에 있어서,
    상기 커버리지 클래스들의 세트 중 각각의 커버리지 클래스에 대한 랜덤 액세스 메시지의 여분의 버전들을 송신하기 위해 반복 레벨을 식별하는 단계를 더 포함하는, 무선 통신을 위한 방법.
  10. 제1 항에 있어서,
    랜덤 액세스 메시지들은 비동기식으로 송신되는, 무선 통신을 위한 방법.
  11. 제10 항에 있어서,
    상기 랜덤 액세스 메시지들은 파일럿 신호 및 페이로드를 포함하는, 무선 통신을 위한 방법.
  12. 제11 항에 있어서,
    상기 페이로드는 랜덤 액세스 타입의 식별, 무선 디바이스 아이덴티티, 액세스 원인 또는 상기 무선 디바이스의 커버리지 클래스 중 하나 이상을 포함하는, 무선 통신을 위한 방법.
  13. 제1 항에 있어서,
    상기 식별된 커버리지 클래스에 적어도 부분적으로 기초하여 서브캐리어를 선택하는 단계;
    선택된 서브캐리어를 사용하여 랜덤 액세스 메시지를 송신하는 단계 ― 상기 랜덤 액세스 메시지는 랜덤 식별 수를 포함함 ―;
    상기 랜덤 액세스 메시지에 적어도 부분적으로 기초하여 업링크 자원 할당을 수신하는 단계;
    상기 업링크 자원 할당에 적어도 부분적으로 기초하여 업링크 데이터 패킷을 송신하는 단계; 및
    상기 업링크 데이터 패킷의 성공적인 수신을 확인응답하기 위해 피드백을 수신하는 단계를 더 포함하는, 무선 통신을 위한 방법.
  14. 제13 항에 있어서,
    추가적인 업링크 자원들이 업링크 데이터의 송신을 위해 요구된다고 결정하는 단계;
    상기 결정하는 단계에 적어도 부분적으로 기초하여 제2 랜덤 액세스 메시지를 송신하는 단계 ― 상기 제2 랜덤 액세스 메시지는 기지국에 의해 상기 무선 디바이스에 제공되는 식별을 포함함 ―;
    상기 제2 랜덤 액세스 메시지에 적어도 부분적으로 기초하여 제2 업링크 자원 할당을 수신하는 단계; 및
    상기 제2 업링크 자원 할당에 적어도 부분적으로 기초하여 제2 업링크 데이터 패킷을 송신하는 단계를 더 포함하는, 무선 통신을 위한 방법.
  15. 제1 항에 있어서,
    랜덤 액세스 메시지를 송신하기 위한 무선 통신 시스템 대역폭의 협대역 영역 내에서 상기 서브캐리어들의 세트의 서브캐리어를 식별하는 단계;
    상기 랜덤 액세스 메시지에 포함할 페이로드를 식별하는 단계; 및
    식별된 서브캐리어를 사용하여 상기 랜덤 액세스 메시지 및 상기 페이로드를 송신하는 단계를 더 포함하는, 무선 통신을 위한 방법.
  16. 제15 항에 있어서,
    상기 페이로드는 상기 서브캐리어들의 세트 중 서브캐리어들의 서브세트를 사용하여 송신되는, 무선 통신을 위한 방법.
  17. 제16 항에 있어서,
    상기 서브캐리어들의 서브세트 중 각각의 서브캐리어 상에서 상기 페이로드를 송신하는 단계를 더 포함하는, 무선 통신을 위한 방법.
  18. 제16 항에 있어서,
    상기 페이로드를 복수의 부분들로 분할하는 단계;
    상기 페이로드로부터 리던던시 부분들을 생성하는 단계; 및
    상기 서브캐리어들의 서브세트 중 각각의 서브캐리어 상에서 복수의 부분들의 서브세트 및 리던던시 부분들의 서브세트를 송신하는 단계를 더 포함하는, 무선 통신을 위한 방법.
  19. 제1 항에 있어서,
    상기 통신 링크의 특성은 상기 통신 링크의 경로손실인, 무선 통신을 위한 방법.
  20. 제1 항에 있어서,
    상기 통신 링크의 특성은 RSRP(reference signal received power), RSRQ(reference signal received quality) 또는 RSSI(received signal strength indicator) 중 하나인, 무선 통신을 위한 방법.
  21. 무선 통신을 위한 장치로서,
    무선 디바이스와 연관된 통신 링크의 특성에 적어도 부분적으로 기초하여 상기 무선 디바이스에 대한 커버리지 클래스들의 세트를 식별하기 위한 수단;
    상기 커버리지 클래스들의 세트의 각각의 커버리지 클래스에 대해, 랜덤 액세스 메시지들을 송신하기 위한 서브캐리어들의 세트 중 하나 이상의 서브캐리어들을 식별하기 위한 수단; 및
    상기 서브캐리어들의 세트 중 하나 이상의 서브캐리어들 상에서 통신하기 위한 수단을 포함하는, 무선 통신을 위한 장치.
  22. 제21 항에 있어서,
    상기 무선 디바이스에서 상기 통신 링크의 특성을 측정하기 위한 수단;
    상기 통신 링크의 특성에 적어도 부분적으로 기초하여 상기 무선 디바이스가 제1 커버리지 클래스에 있다고 결정하기 위한 수단; 및
    상기 제1 커버리지 클래스에 적어도 부분적으로 기초하여 랜덤 액세스 메시지의 송신을 위해 상기 서브캐리어들의 세트 중 제1 서브캐리어를 선택하기 위한 수단을 더 포함하는, 무선 통신을 위한 장치.
  23. 제22 항에 있어서,
    각각의 커버리지 클래스에 대한 토큰을 식별하기 위한 수단을 더 포함하고,
    상기 랜덤 액세스 메시지와 연관된 랜덤 수를 결정하기 위한 수단; 및
    상기 랜덤 수가 식별된 토큰에 대응하는 것에 응답으로 상기 랜덤 액세스 메시지를 송신하기 위한 수단을 더 포함하는, 무선 통신을 위한 장치.
  24. 제21 항에 있어서,
    각각의 커버리지 클래스에 대한 랜덤 액세스 메시지들을 복수의 무선 디바이스들에 송신하기 위해 하나 이상의 서브캐리어들을 시그널링하기 위한 수단을 더 포함하는, 무선 통신을 위한 장치.
  25. 제21 항에 있어서,
    상기 서브캐리어들의 세트는 무선 통신 시스템 대역폭의 협대역 영역 내의 복수의 서브캐리어들을 포함하는, 무선 통신을 위한 장치.
  26. 제25 항에 있어서,
    상기 서브캐리어들의 세트 중 인접한 서브캐리어들의 서브캐리어 간격은 상기 무선 통신 시스템 대역폭의 협대역 영역 내에서 데이터 통신들에 대해 사용되는 것과 동일한 서브캐리어 간격에 대응하는, 무선 통신을 위한 장치.
  27. 제25 항에 있어서,
    상기 서브캐리어들의 세트의 단일 서브캐리어를 사용하여 상기 랜덤 액세스 메시지들을 송신하기 위한 수단을 더 포함하는, 무선 통신을 위한 장치.
  28. 제21 항에 있어서,
    상기 랜덤 액세스 메시지들 및 데이터 통신들은 상기 서브캐리어들 중 하나 이상 상에서 시분할 멀티플렉싱되는, 무선 통신을 위한 장치.
  29. 제21 항에 있어서,
    상기 커버리지 클래스들의 세트 중 각각의 커버리지 클래스에 대한 랜덤 액세스 메시지의 여분의 버전들을 송신하기 위해 반복 레벨을 식별하기 위한 수단을 더 포함하는, 무선 통신을 위한 장치.
  30. 제21 항에 있어서,
    상기 랜덤 액세스 메시지들을 비동기식으로 송신하기 위한 수단을 더 포함하는, 무선 통신을 위한 장치.
  31. 제30 항에 있어서,
    상기 랜덤 액세스 메시지들은 파일럿 신호 및 페이로드를 포함하는, 무선 통신을 위한 장치.
  32. 제31 항에 있어서,
    상기 페이로드는 랜덤 액세스 타입의 식별, 무선 디바이스 아이덴티티, 액세스 원인 또는 상기 무선 디바이스의 커버리지 클래스 중 하나 이상을 포함하는, 무선 통신을 위한 장치.
  33. 제21 항에 있어서,
    상기 식별된 커버리지 클래스에 적어도 부분적으로 기초하여 서브캐리어를 선택하기 위한 수단;
    선택된 서브캐리어를 사용하여 랜덤 액세스 메시지를 송신하기 위한 수단 ― 상기 랜덤 액세스 메시지는 랜덤 식별 수를 포함함 ―;
    상기 랜덤 액세스 메시지에 적어도 부분적으로 기초하여 업링크 자원 할당을 수신하기 위한 수단;
    상기 업링크 자원 할당에 적어도 부분적으로 기초하여 업링크 데이터 패킷을 송신하기 위한 수단; 및
    상기 업링크 데이터 패킷의 성공적인 수신을 확인응답하기 위해 피드백을 수신하기 위한 수단을 더 포함하는, 무선 통신을 위한 장치.
  34. 제33 항에 있어서,
    추가적인 업링크 자원들이 업링크 데이터의 송신을 위해 요구된다고 결정하기 위한 수단;
    상기 결정하는 단계에 적어도 부분적으로 기초하여 제2 랜덤 액세스 메시지를 송신하기 위한 수단 ― 상기 제2 랜덤 액세스 메시지는 기지국에 의해 상기 무선 디바이스에 제공되는 식별을 포함함 ―;
    상기 제2 랜덤 액세스 메시지에 적어도 부분적으로 기초하여 제2 업링크 자원 할당을 수신하기 위한 수단; 및
    상기 제2 업링크 자원 할당에 적어도 부분적으로 기초하여 제2 업링크 데이터 패킷을 송신하기 위한 수단을 더 포함하는, 무선 통신을 위한 장치.
  35. 제21 항에 있어서,
    랜덤 액세스 메시지를 송신하기 위한 무선 통신 시스템 대역폭의 협대역 영역 내에서 상기 서브캐리어들의 세트의 서브캐리어를 식별하기 위한 수단;
    상기 랜덤 액세스 메시지에 포함할 페이로드를 식별하기 위한 수단; 및
    식별된 서브캐리어를 사용하여 상기 랜덤 액세스 메시지 및 상기 페이로드를 송신하기 위한 수단을 더 포함하는, 무선 통신을 위한 장치.
  36. 제35 항에 있어서,
    상기 랜덤 액세스 메시지를 송신하기 위한 수단은 상기 서브캐리어들의 세트의 서브캐리어들의 서브세트를 사용하도록 동작가능한, 무선 통신을 위한 장치.
  37. 제36 항에 있어서,
    상기 서브캐리어들의 서브세트 중 각각의 서브캐리어 상에서 상기 페이로드를 송신하기 위한 수단을 더 포함하는, 무선 통신을 위한 장치.
  38. 제36 항에 있어서,
    상기 페이로드를 복수의 부분들로 분할하기 위한 수단;
    상기 페이로드로부터 리던던시 부분들을 생성하기 위한 수단; 및
    상기 서브캐리어들의 서브세트 중 각각의 서브캐리어 상에서 복수의 부분들의 서브세트 및 리던던시 부분들의 서브세트를 송신하기 위한 수단을 더 포함하는, 무선 통신을 위한 장치.
  39. 제21 항에 있어서,
    상기 통신 링크의 특성은 상기 통신 링크의 경로손실인, 무선 통신을 위한 장치.
  40. 제21 항에 있어서,
    상기 통신 링크의 특성은 RSRP(reference signal received power), RSRQ(reference signal received quality) 또는 RSSI(received signal strength indicator) 중 하나인, 무선 통신을 위한 장치.
  41. 무선 통신을 위한 장치로서,
    프로세서;
    상기 프로세서와 전자 통신하는 메모리; 및
    상기 메모리에 저장되는 명령들을 포함하고,
    상기 명령들은, 상기 프로세서에 의해 실행되는 경우, 상기 장치로 하여금,
    무선 디바이스와 연관된 통신 링크의 특성에 적어도 부분적으로 기초하여 상기 무선 디바이스에 대한 커버리지 클래스들의 세트를 식별하게 하고;
    상기 커버리지 클래스들의 세트의 각각의 커버리지 클래스에 대해, 랜덤 액세스 메시지들을 송신하기 위한 서브캐리어들의 세트 중 하나 이상의 서브캐리어들을 식별하게 하고;
    상기 서브캐리어들의 세트 중 하나 이상의 서브캐리어들 상에서 통신하게 하도록 동작가능한, 무선 통신을 위한 장치.
  42. 제41 항에 있어서,
    상기 명령들은 상기 장치로 하여금,
    상기 무선 디바이스에서 상기 통신 링크의 특성을 측정하게 하고;
    상기 통신 링크의 특성에 적어도 부분적으로 기초하여 상기 무선 디바이스가 제1 커버리지 클래스에 있다고 결정하게 하고;
    상기 제1 커버리지 클래스에 적어도 부분적으로 기초하여 랜덤 액세스 메시지의 송신을 위해 상기 서브캐리어들의 세트 중 제1 서브캐리어를 선택하게 하도록 상기 프로세서에 의해 실행가능한, 무선 통신을 위한 장치.
  43. 제42 항에 있어서,
    상기 명령들은 상기 장치로 하여금,
    각각의 커버리지 클래스에 대한 토큰을 식별하게 하고;
    상기 랜덤 액세스 메시지와 연관된 랜덤 수를 결정하게 하고;
    상기 랜덤 수가 식별된 토큰에 대응하는 것에 응답으로 상기 랜덤 액세스 메시지를 송신하게 하도록 상기 프로세서에 의해 실행가능한, 무선 통신을 위한 장치.
  44. 제41 항에 있어서,
    상기 명령들은 상기 장치로 하여금,
    각각의 커버리지 클래스에 대한 랜덤 액세스 메시지들을 복수의 무선 디바이스들에 송신하기 위해 하나 이상의 서브캐리어들을 시그널링하게 하도록 상기 프로세서에 의해 실행가능한, 무선 통신을 위한 장치.
  45. 제41 항에 있어서,
    상기 서브캐리어들의 세트는 무선 통신 시스템 대역폭의 협대역 영역 내의 복수의 서브캐리어들을 포함하는, 무선 통신을 위한 장치.
  46. 제45 항에 있어서,
    상기 서브캐리어들의 세트 중 인접한 서브캐리어들의 서브캐리어 간격은 상기 무선 통신 시스템 대역폭의 협대역 영역 내에서 데이터 통신들에 대해 사용되는 것과 동일한 서브캐리어 간격에 대응하는, 무선 통신을 위한 장치.
  47. 제45 항에 있어서,
    상기 명령들은 상기 장치로 하여금,
    상기 서브캐리어들의 세트의 단일 서브캐리어를 사용하여 상기 랜덤 액세스 메시지들을 송신하게 하도록 상기 프로세서에 의해 실행가능한, 무선 통신을 위한 장치.
  48. 제41 항에 있어서,
    상기 랜덤 액세스 메시지들 및 데이터 통신들은 상기 서브캐리어들 중 하나 이상 상에서 시분할 멀티플렉싱되는, 무선 통신을 위한 장치.
  49. 제41 항에 있어서,
    상기 명령들은 상기 장치로 하여금,
    상기 커버리지 클래스들의 세트 중 각각의 커버리지 클래스에 대한 랜덤 액세스 메시지의 여분의 버전들을 송신하기 위해 반복 레벨을 식별하게 하도록 상기 프로세서에 의해 실행가능한, 무선 통신을 위한 장치.
  50. 제41 항에 있어서,
    상기 명령들은 상기 장치로 하여금,
    상기 랜덤 액세스 메시지들을 비동기식으로 송신하게 하도록 상기 프로세서에 의해 실행가능한, 무선 통신을 위한 장치.
  51. 제50 항에 있어서,
    상기 랜덤 액세스 메시지들은 파일럿 신호 및 페이로드를 포함하는, 무선 통신을 위한 장치.
  52. 제51 항에 있어서,
    상기 페이로드는 랜덤 액세스 타입의 식별, 무선 디바이스 아이덴티티, 액세스 원인 또는 상기 무선 디바이스의 커버리지 클래스 중 하나 이상을 포함하는, 무선 통신을 위한 장치.
  53. 제41 항에 있어서,
    상기 명령들은 상기 장치로 하여금,
    상기 식별된 커버리지 클래스에 적어도 부분적으로 기초하여 서브캐리어를 선택하게 하고;
    선택된 서브캐리어를 사용하여 랜덤 액세스 메시지를 송신하게 하고 ― 상기 랜덤 액세스 메시지는 랜덤 식별 수를 포함함 ―;
    상기 랜덤 액세스 메시지에 적어도 부분적으로 기초하여 업링크 자원 할당을 수신하게 하고;
    상기 업링크 자원 할당에 적어도 부분적으로 기초하여 업링크 데이터 패킷을 송신하게 하고;
    상기 업링크 데이터 패킷의 성공적인 수신을 확인응답하기 위해 피드백을 수신하게 하도록 상기 프로세서에 의해 실행가능한, 무선 통신을 위한 장치.
  54. 제53 항에 있어서,
    상기 명령들은 상기 장치로 하여금,
    추가적인 업링크 자원들이 업링크 데이터의 송신을 위해 요구된다고 결정하게 하고;
    상기 결정하는 단계에 적어도 부분적으로 기초하여 제2 랜덤 액세스 메시지를 송신하게 하고 ― 상기 제2 랜덤 액세스 메시지는 기지국에 의해 상기 무선 디바이스에 제공되는 식별을 포함함 ―;
    상기 제2 랜덤 액세스 메시지에 적어도 부분적으로 기초하여 제2 업링크 자원 할당을 수신하게 하고;
    상기 제2 업링크 자원 할당에 적어도 부분적으로 기초하여 제2 업링크 데이터 패킷을 송신하게 하도록 상기 프로세서에 의해 실행가능한, 무선 통신을 위한 장치.
  55. 제41 항에 있어서,
    상기 명령들은 상기 장치로 하여금,
    랜덤 액세스 메시지를 송신하기 위한 무선 통신 시스템 대역폭의 협대역 영역 내에서 상기 서브캐리어들의 세트의 서브캐리어를 식별하게 하고;
    상기 랜덤 액세스 메시지에 포함할 페이로드를 식별하게 하고;
    식별된 서브캐리어를 사용하여 상기 랜덤 액세스 메시지 및 상기 페이로드를 송신하게 하도록 상기 프로세서에 의해 실행가능한, 무선 통신을 위한 장치.
  56. 제55 항에 있어서,
    상기 명령들은 상기 장치로 하여금,
    상기 서브캐리어들의 세트 중 서브캐리어들의 서브세트를 사용하여 상기 페이로드를 송신하게 하도록 상기 프로세서에 의해 실행가능한, 무선 통신을 위한 장치.
  57. 제56 항에 있어서,
    상기 명령들은 상기 장치로 하여금,
    상기 서브캐리어들의 서브세트 중 각각의 서브캐리어 상에서 상기 페이로드를 송신하게 하도록 상기 프로세서에 의해 실행가능한, 무선 통신을 위한 장치.
  58. 제56 항에 있어서,
    상기 명령들은 상기 장치로 하여금,
    상기 페이로드를 복수의 부분들로 분할하게 하고;
    상기 페이로드로부터 리던던시 부분들을 생성하게 하고;
    상기 서브캐리어들의 서브세트 중 각각의 서브캐리어 상에서 복수의 부분들의 서브세트 및 리던던시 부분들의 서브세트를 송신하게 하도록 상기 프로세서에 의해 실행가능한, 무선 통신을 위한 장치.
  59. 제41 항에 있어서,
    상기 통신 링크의 특성은 상기 통신 링크의 경로손실인, 무선 통신을 위한 장치.
  60. 제41 항에 있어서,
    상기 통신 링크의 특성은 RSRP(reference signal received power), RSRQ(reference signal received quality) 또는 RSSI(received signal strength indicator) 중 하나인, 무선 통신을 위한 장치.
  61. 무선 통신을 위한 코드를 저장하는 비일시적 컴퓨터 판독가능 저장 매체로서,
    상기 코드는,
    무선 디바이스와 연관된 통신 링크의 특성에 적어도 부분적으로 기초하여 상기 무선 디바이스에 대한 커버리지 클래스들의 세트를 식별하게 하고;
    상기 커버리지 클래스들의 세트의 각각의 커버리지 클래스에 대해, 랜덤 액세스 메시지들을 송신하기 위한 서브캐리어들의 세트 중 하나 이상의 서브캐리어들을 식별하게 하고;
    서브캐리어들의 세트 중 하나 이상의 서브캐리어들 상에서 통신하게 하도록 프로세서에 의해 실행가능한 명령들을 포함하는, 비일시적 컴퓨터 판독가능 저장 매체.
KR1020187008866A 2015-08-28 2016-08-24 협대역 무선 통신을 위한 랜덤 액세스 채널 설계 KR20180045002A (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201562211657P 2015-08-28 2015-08-28
US62/211,657 2015-08-28
US15/244,385 US10080244B2 (en) 2015-08-28 2016-08-23 Random access channel design for narrowband wireless communication
US15/244,385 2016-08-23
PCT/US2016/048408 WO2017040147A1 (en) 2015-08-28 2016-08-24 Random access channel design for narrowband wireless communication

Publications (1)

Publication Number Publication Date
KR20180045002A true KR20180045002A (ko) 2018-05-03

Family

ID=58097075

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020187008866A KR20180045002A (ko) 2015-08-28 2016-08-24 협대역 무선 통신을 위한 랜덤 액세스 채널 설계

Country Status (10)

Country Link
US (1) US10080244B2 (ko)
EP (1) EP3342225B1 (ko)
JP (1) JP6884759B2 (ko)
KR (1) KR20180045002A (ko)
CN (1) CN107925988B (ko)
AU (1) AU2016315627B2 (ko)
BR (1) BR112018003978A2 (ko)
ES (1) ES2883233T3 (ko)
TW (1) TWI713394B (ko)
WO (1) WO2017040147A1 (ko)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10285163B2 (en) 2014-06-24 2019-05-07 Telefonaktiebolaget Lm Ericsson (Publ) Management of wireless devices in limited radio coverage
US9877141B2 (en) 2014-06-24 2018-01-23 Telefonaktiebolaget Lm Ericsson (Publ) Management of wireless devices in limited radio coverage
US9860870B2 (en) 2015-01-26 2018-01-02 Telefonaktiebolaget Lm Ericsson (Publ) Wireless communications-dynamic coverage class update and aligning coverage class paging groups
US10080244B2 (en) * 2015-08-28 2018-09-18 Qualcomm Incorporated Random access channel design for narrowband wireless communication
EP3376814A4 (en) * 2015-11-12 2018-10-31 Fujitsu Limited Terminal device, base station device, wireless communication system, and wireless communication method
CN108029136B (zh) * 2015-12-29 2021-01-15 华为技术有限公司 用于随机接入的方法和装置
WO2017160221A1 (en) * 2016-03-16 2017-09-21 Telefonaktiebolaget Lm Ericsson (Publ) Narrowband internet of things random access channel configuration design
US11388693B2 (en) 2016-08-17 2022-07-12 Nokia Solutions And Networks Oy Interface enhancements for timing advance-based multilateration for user device positioning measurements
CN115001920A (zh) 2016-11-11 2022-09-02 摩托罗拉移动有限责任公司 确定频域资源块的位置
US10368353B2 (en) * 2017-01-27 2019-07-30 Qualcomm Incorporated Adaptive subcarrier spacing configuration
CN108633092B (zh) * 2017-03-24 2023-04-18 中兴通讯股份有限公司 一种信息发送方法、装置及终端
US10375736B2 (en) * 2017-05-12 2019-08-06 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatuses for random access
CN107347216B (zh) * 2017-06-12 2020-06-19 西安交通大学 一种5g大连接物联网中上下行资源的分配方法
WO2019036846A1 (en) 2017-08-21 2019-02-28 Qualcomm Incorporated NPRACH HAVING IMPROVED RELIABILITY PERFORMANCE
US10779331B2 (en) * 2017-08-21 2020-09-15 Qualcomm Incorporated Random access channel (RACH) transmission with cross-band downlink/uplink (DL/UL) pairing
KR102265526B1 (ko) * 2017-10-12 2021-06-16 에스케이텔레콤 주식회사 기지국장치 및 데이터 및 신호 전송 방법
US10524266B2 (en) 2017-10-20 2019-12-31 Google Llc Switching transmission technologies within a spectrum based on network load
US11006413B2 (en) 2017-12-06 2021-05-11 Google Llc Narrow-band communication
US10608721B2 (en) 2017-12-14 2020-03-31 Google Llc Opportunistic beamforming
EP3676972B1 (en) 2017-12-15 2022-02-09 Google LLC Satellite-based narrow-band communication
US11246143B2 (en) 2017-12-15 2022-02-08 Google Llc Beamforming enhancement via strategic resource utilization
US10375671B2 (en) 2017-12-22 2019-08-06 Google Llc Paging with enhanced beamforming
US10945100B2 (en) 2018-02-02 2021-03-09 Qualcomm Incorporated Carrier capability signaling with regard to multiple carrier numerologies
US11251847B2 (en) 2018-03-28 2022-02-15 Google Llc User device beamforming
US11147102B2 (en) * 2018-04-23 2021-10-12 Qualcomm Incorporated Random access coverage extension in wireless communications
WO2019237329A1 (en) 2018-06-15 2019-12-19 Qualcomm Incorporated Techniques and apparatuses for emtc operation in a non-lte bandwidth
US11233548B2 (en) 2018-09-10 2022-01-25 Google Llc Fast beam tracking
US11265932B2 (en) * 2019-01-30 2022-03-01 Qualcomm Incorporated Narrowband selection for measurement reporting in random access
US11558853B2 (en) * 2019-04-05 2023-01-17 Qualcomm Incorporated Physical uplink shared channel occasion aggregation
CN115066025A (zh) * 2019-10-17 2022-09-16 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
US11502811B2 (en) * 2019-10-18 2022-11-15 Qualcomm Incorporated Automatic adaptation of data subcarrier spacing numerology based on synchronization signal block transmission

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3001058B2 (ja) * 1988-10-17 2000-01-17 株式会社ゼネラルリサーチオブエレクトロニックス 無線通信方式
SE515752C2 (sv) 1995-08-28 2001-10-08 Telia Ab Direktåtkomst i OFDM-system
EP1892972A1 (en) 2006-08-21 2008-02-27 Nokia Siemens Networks Gmbh & Co. Kg Method and system for interference mitigation in a mobile communications system
EP2074857A1 (en) * 2006-09-15 2009-07-01 Interdigital Technology Corporation Method and apparatus for dynamic updates of random access parameters
EP2159939B1 (en) * 2007-06-15 2018-01-31 Sharp Kabushiki Kaisha Base station device, mobile station device, wireless communication system, program, random access response transmitting method, and random access response receiving method
JP2009206855A (ja) * 2008-02-28 2009-09-10 Fujitsu Ltd 無線通信システム
JP2012085011A (ja) * 2010-10-07 2012-04-26 Sony Corp 基地局、無線通信方法、および無線通信システム
GB2487782B (en) * 2011-02-04 2015-05-20 Sca Ipla Holdings Inc Telecommunications method and system
GB2487909B8 (en) * 2011-02-04 2015-01-21 Sca Ipla Holdings Inc Telecommunications method and system
GB2493703C (en) * 2011-08-11 2020-03-04 Sca Ipla Holdings Inc OFDM subcarrier allocations in wireless telecommunications systems
US20130182680A1 (en) 2012-01-18 2013-07-18 Electronics And Telecommunications Research Institute Method for machine type communication user equipment to connect to evolved node-b and apparatus employing the same
TWI695604B (zh) * 2012-01-24 2020-06-01 美商內數位專利控股公司 無線傳輸/接收單元、在無線傳輸/接收單元中實施的方法以及網路節點
US9019924B2 (en) * 2012-04-04 2015-04-28 Samsung Electronics Co., Ltd. High-order multiple-user multiple-input multiple-output operation for wireless communication systems
CN109327822B (zh) * 2012-10-05 2022-10-25 交互数字专利控股公司 增强机器类型通信(mtc)设备覆盖的方法和装置
WO2014069945A1 (ko) * 2012-11-01 2014-05-08 엘지전자 주식회사 무선 통신 시스템에서 참조 신호를 송수신하는 방법 및 장치
US9451639B2 (en) * 2013-07-10 2016-09-20 Samsung Electronics Co., Ltd. Method and apparatus for coverage enhancement for a random access process
US9565573B2 (en) * 2013-08-16 2017-02-07 Blackberry Limited Providing secondary coverage in a mobile communication system
KR102086487B1 (ko) * 2014-01-28 2020-03-09 후아웨이 테크놀러지 컴퍼니 리미티드 정보 처리 방법, 사용자 장비 및 기지국
US9860870B2 (en) * 2015-01-26 2018-01-02 Telefonaktiebolaget Lm Ericsson (Publ) Wireless communications-dynamic coverage class update and aligning coverage class paging groups
US9510134B2 (en) * 2015-04-02 2016-11-29 Hyunyong Song Method for performing machine type communication for the purpose of coverage improvement, apparatuses and systems for performing the same
US10667213B2 (en) * 2015-08-05 2020-05-26 Samsung Electronics Co., Ltd. Apparatus and method for power saving for cellular internet of things devices
US10080244B2 (en) * 2015-08-28 2018-09-18 Qualcomm Incorporated Random access channel design for narrowband wireless communication

Also Published As

Publication number Publication date
EP3342225B1 (en) 2021-07-14
EP3342225A1 (en) 2018-07-04
JP2018529287A (ja) 2018-10-04
ES2883233T3 (es) 2021-12-07
BR112018003978A2 (pt) 2018-09-25
AU2016315627A1 (en) 2018-02-01
US10080244B2 (en) 2018-09-18
TW201713151A (zh) 2017-04-01
AU2016315627B2 (en) 2020-03-12
JP6884759B2 (ja) 2021-06-09
US20170064743A1 (en) 2017-03-02
CN107925988A (zh) 2018-04-17
WO2017040147A1 (en) 2017-03-09
TWI713394B (zh) 2020-12-11
CN107925988B (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
CN107925988B (zh) 用于窄带无线通信的随机接入信道设计
CN109923906B (zh) 重叠tti下的ue发射控制参数自适应
CN107431883B (zh) 用于物理随机接入信道传输的覆盖增强的方法和装置
US20200022125A1 (en) Data transmission method, network device, and terminal
US20180054237A1 (en) Access mechanism for proximity-based service ue-to-network relay service
KR20180114042A (ko) 협대역 디바이스들에 대한 포지셔닝 신호 기술들
KR20180059502A (ko) 협대역 통신들에 대한 공통 동기화 채널 설계
CN116318550A (zh) 终端装置、基站装置以及通信方法
CN112118216A (zh) 无线通信系统中的控制信息传输方法和装置
KR20170139529A (ko) 구성가능 랜덤 액세스 초기 전력 레벨 선택
KR20180028441A (ko) 저비용 머신 타입 통신에 대한 전력 헤드룸 보고
JP2018512017A (ja) Mtcのための狭帯域依存サブフレーム利用可能性
CN110050496B (zh) 终端装置、基站装置、通信方法以及集成电路
US20220377812A1 (en) Method and apparatus for a two-step random access procedure
US20240049292A1 (en) User equipments, base stations, and methods
US20240163012A1 (en) User equipment, base station, and communication method
US20240073876A1 (en) User equipments, base stations, and methods
WO2023212835A1 (en) Method and apparatus for transmitting feedback during wireless communication
US20240048275A1 (en) User equipments, base stations, and methods
WO2023277174A1 (en) User equipment, base station, and communication method
WO2023277175A1 (en) User equipment, base station, and communication method
WO2023210834A1 (en) User equipments, and communication methods

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application