KR20180043936A - Amine-functionalized MOF-based CO2 adsorbents - Google Patents

Amine-functionalized MOF-based CO2 adsorbents Download PDF

Info

Publication number
KR20180043936A
KR20180043936A KR1020160137375A KR20160137375A KR20180043936A KR 20180043936 A KR20180043936 A KR 20180043936A KR 1020160137375 A KR1020160137375 A KR 1020160137375A KR 20160137375 A KR20160137375 A KR 20160137375A KR 20180043936 A KR20180043936 A KR 20180043936A
Authority
KR
South Korea
Prior art keywords
amine
dobpdc
carbon dioxide
adsorption
present
Prior art date
Application number
KR1020160137375A
Other languages
Korean (ko)
Other versions
KR102028613B1 (en
Inventor
홍창섭
조현아
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020160137375A priority Critical patent/KR102028613B1/en
Publication of KR20180043936A publication Critical patent/KR20180043936A/en
Application granted granted Critical
Publication of KR102028613B1 publication Critical patent/KR102028613B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultraviolet light
    • B01J19/124Ultraviolet light generated by microwave irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/204Metal organic frameworks (MOF's)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • Y02C10/08
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The present invention provides a method for manufacturing a carbon dioxide adsorbent in which amine is introduced at a high density into a metal-organic frame. The carbon dioxide adsorbent manufactured according to the manufacturing method of the present invention is excellent in adsorptivity and stability since high-density amine groups are introduced into the porous metal-organic frame. Moreover, the carbon dioxide adsorbent manufactured according to the manufacturing method of the present invention is suitable for capturing low concentration of CO_2 contained in actual exhaust gas, and is easy to be reused even in an environment where high concentration of CO_2 exists. The method of the present invention comprises: a step for activating the metal-organic frame; a step for forming a suspension; a step for sonicating the suspension; and a step for treating the sonicated suspension with microwaves.

Description

아민 기능화 MOF 기반 이산화탄소 흡착제{Amine-functionalized MOF-based CO2 adsorbents}[0002] Amine-functionalized MOF-based CO2 adsorbents [0003]

본 명세서에 개시된 기술은 이산화탄소 흡착제 제조방법에 관한 것으로, 더욱 상세하게는 실제 유동층에서도 효과적으로 이산화탄소를 포집할 수 있는 아민 기능화 MOF 기반 이산화탄소 흡착제의 제조방법에 관한 것이다.The present disclosure relates to a method for producing carbon dioxide adsorbent, and more particularly, to a method for producing an amine-functionalized MOF-based carbon dioxide adsorbent capable of effectively capturing carbon dioxide even in an actual fluidized bed.

지구 온난화의 주범인 CO2 배출량의 30-40%는 화력발전소에서 발생하며, 배가스에서의 CO2 농도는 150 mbar이다. 가스와 고체 흡착제의 사이에서의 효과적인 흡착을 위한 유동층에서는 층의 바닥에서부터 흡착과정이 진행되고, 층의 윗부분에 도달하면 약 30 mbar까지 CO2의 농도가 감소하게 된다. 따라서 유동층에서 사용되는 고체 흡착제는 넓은 범위의 CO2 농도에서 흡착이 가능해야 한다.30-40% of CO 2 emissions, which are the main cause of global warming, are generated in thermal power plants and the CO 2 concentration in the flue gas is 150 mbar. In the fluidized bed for efficient adsorption between the gas and the solid adsorbent, the adsorption process proceeds from the bottom of the bed, and the CO 2 concentration decreases to about 30 mbar when it reaches the top of the bed. Therefore, the solid adsorbent used in the fluidized bed should be able to adsorb at a wide range of CO 2 concentrations.

또한, 흡착 과정 후, 흡착제는 재생기로 옮겨져 재활성화 되는데 기존의 흡착제들은 고농도 CO2 및 저온 환경에서 탈착과정이 잘 이뤄지지 않아 재사용에 문제가 있었다. 따라서, 저농도에서의 높은 흡착능 뿐만 아니라 고농도에서 탈착이 잘 이루어지는 흡착제에 대한 연구가 활발히 이루어지고 있다.In addition, after the adsorption process, the adsorbent is transferred to the regenerator and reactivated. However, the conventional adsorbents have problems in the reuse because the desorption process is not performed well in the high concentration CO 2 and low temperature environment. Therefore, researches have been made actively on adsorbents capable of high desorption at high concentration as well as high adsorption ability at low concentration.

고체 흡착제 중 금속-유기 골격체(MOF, metal-organic framework)는 큰 표면적을 갖고 있고, 기공을 조절할 수 있다는 이점이 있어, CO2 포집을 위한 효과적인 흡착제로 사용하기 위한 연구가 진행 중에 있다. 기존 연구에서는 루이스산으로 작용하는 열린 금속 자리(open metal sites)를 이용했으며, 이것은 CO2 분자와의 강한 상호작용을 유발해 높은 CO2 포집능을 보여 주었다. 하지만 수분이 있는 환경에서 열린 금속 자리와 상호작용한 물분자는 제거하기가 힘들고, 이에 따라 CO2 포집능까지 감소하는 문제점이 존재한다. 후-합성 변형(post-synthetic modification)을 통한 아민 기능화는 위의 문제를 해결할 수 있으며 유동층에서 저농도 CO2를 선택적으로 흡착할 뿐만 아니라 재활용이 가능하다는 장점이 있다. 따라서, 금속-유기 골격체에 고밀도의 아민을 도입시킬 수 있는 기술이 적용된 흡착제의 개발이 필요하다. 동시에, 배가스에는 H2O, SO2, O2 등과 같은 가스가 포함되어 있기 때문에 이 성분들에 대해 안정한 흡착제 개발이 요구된다.The metal-organic framework (MOF) of the solid adsorbent has a large surface area and has the advantage of controlling the pore, and studies are underway to use it as an effective adsorbent for CO 2 capture. Previous studies have used open metal sites that function as Lewis acids, leading to strong interactions with CO 2 molecules and high CO 2 capture capacity. However, there is a problem that water molecules interacting with the open metal sites in a watery environment are difficult to remove, and thus the ability to capture CO 2 is reduced. Amine functionalization through post-synthetic modification can solve the above problems and has the advantage of being capable of selectively adsorbing low-concentration CO 2 in the fluidized bed as well as being able to be recycled. Therefore, it is necessary to develop an adsorbent to which a technique capable of introducing a high-density amine into a metal-organic skeleton is applied. At the same time, since the exhaust gas contains gases such as H 2 O, SO 2 , O 2 and the like, it is required to develop a stable adsorbent for these components.

대한민국 공개특허 제10-2015-0007484호Korean Patent Publication No. 10-2015-0007484

본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 금속-유기 골격체에 아민이 고밀도로 도입된 이산화탄소 흡착제의 제조방법을 제공하는 것이다.SUMMARY OF THE INVENTION The present invention has been made in order to solve the above problems, and it is an object of the present invention to provide a method for producing carbon dioxide adsorbent in which amine is introduced at a high density into a metal-organic skeleton.

본 발명의 다른 목적은 배가스의 CO2를 포집하기 위해서 저농도에서 흡착능이 우수하며, 고농도의 CO2가 존재하는 환경에서 탈착이 우수한 이산화탄소 흡착제의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing a carbon dioxide adsorbent excellent in desorption at low concentration and excellent in desorption in the presence of high concentration of CO 2 in order to capture CO 2 of exhaust gas.

상기한 바와 같은 목적을 달성하기 위하여, 본 발명은 다공성 금속-유기 골격체를 가열하여 활성화시키는 단계, 유기 용매에 용해된 다가 아민에 상기 활성화된 다공성 금속-유기 골격체를 침지시켜 현탁액을 형성하는 단계, 형성된 현탁액을 초음파(sonication) 처리하는 단계 및 초음파 처리된 현탁액을 마이크로파(microwave) 처리하는 단계들을 포함하는 아민 기능화 이산화 탄소 흡착제의 제조방법을 제공한다.In order to accomplish the above object, the present invention provides a method for producing a suspension, comprising heating and activating a porous metal-organic skeleton, immersing the activated porous metal-organic skeleton in a polyvalent amine dissolved in an organic solvent to form a suspension The present invention provides a method for preparing an amine-functionalized carbon dioxide adsorbent comprising the steps of: subjecting the suspension to sonication, and microwave treating the ultrasonically treated suspension.

본 발명의 제조방법에 따라 제조된 이산화탄소 흡착제는 고밀도의 아민기가 다공성 금속-유기 골격체 내에 도입되어 흡착능과 안정성이 우수하다.The carbon dioxide adsorbent produced according to the production method of the present invention has high adsorption capacity and stability because high density amine groups are introduced into the porous metal-organic skeleton.

또한, 본 발명의 제조방법에 따라 제조된 이산화탄소 흡착제는 실제 배가스에 포함된 저농도의 CO2를 포집하는데 적합하며, 고농도의 CO2가 존재하는 환경에서도 탈착이 우수하여 재사용이 용이하다. In addition, the carbon dioxide adsorbent produced according to the production method of the present invention is suitable for capturing low concentration of CO 2 contained in the actual exhaust gas, and is excellent in desorption even in the presence of high concentration of CO 2 , and is easy to be reused.

도 1은 여러 아민 기능화 방법에 따라 제조된 en-Mg2(dobpdc)의 이산화탄소 흡착능을 비교한 그래프이다.
도 2는 15% CO2, 40℃ 조건 하에서 en-Mg2(dobpdc)의 흡착 TGA 곡선을 나타낸 그림이다.
도 3은 아민-Mg2(dobpdc)의 흡착 등온선을 나타낸 그림이다 ((a) en-Mg2(dobpdc), (b) men-Mg2(dobpdc), (c) den-Mg2(dobpdc))(사각형:25 ℃, 원형: 40 ℃, 삼각형: 60 ℃, 역삼각형: 75 ℃, 다이아몬드형: 80 ℃, 별형: 100 ℃, 오각형: 120 ℃).
도 4는 en-Mg2(dobpdc), men-Mg2(dobpdc) 및 den-Mg2(dobpdc) 각각에 대한 40 ℃부터 200 ℃까지의 TGA 곡선을 나타낸 그래프이다 ((a) en-Mg2(dobpdc)의 3% CO2 흡착 곡선, (b) en-Mg2(dobpdc)의 100% CO2 흡착 곡선, (c) men-Mg2(dobpdc)의 3% CO2 흡착 곡선 (d) men-Mg2(dobpdc)의 100% CO2 흡착 곡선, (e) den-Mg2(dobpdc)의 3% CO2 흡착 곡선, (f) den-Mg2(dobpdc)의 100% CO2 흡착 곡선).
도 5는 men-Mg2(dobpdc)(왼쪽)와 den-Mg2(dobpdc)(오른쪽)의 흡탈착 싸이클을 나타낸 그래프이다 (흡착조건: 40 ℃, 150 mbar CO2, 탈착조건: 200 ℃, 1 bar CO2(men), 120 ℃, 1 bar CO2(den)).
도 6은 den-Mg2(dobpdc)의 흡착(15% CO2, 5% O2, 75% N2),탈착 싸이클을 나타낸 그래프이다.
도 7은 SO2 가스에 노출 후 상대적인 CO2 흡착성능을 나타낸 그래프이다.
도 8은 100% 상대습도에 시간별로 노출 후 상대적인 CO2 흡착량(왼쪽) 및 den-Mg2(dobpdc)의 수분이 있는 상태와 건조 상태에서 CO2 흡착량(오른쪽)을 나타낸 그래프이다.
FIG. 1 is a graph comparing carbon dioxide adsorption capacities of en-Mg 2 (dobpdc) prepared according to various amine functionalization methods.
FIG. 2 is a graph showing adsorption TGA curves of en-Mg 2 (dobpdc) under conditions of 15% CO 2 and 40 ° C.
Figure 3 is a diagram showing the adsorption isotherm of the amine -Mg 2 (dobpdc) ((a ) en-Mg 2 (dobpdc), (b) men-Mg 2 (dobpdc), (c) den-Mg 2 (dobpdc) (Square: 25 占 폚, round: 40 占 폚, triangle: 60 占 폚, inverted triangle: 75 占 폚, diamond shape: 80 占 폚, star shape: 100 占 폚, pentagonal shape: 120 占 폚).
Figure 4 is a graph showing the en-Mg 2 (dobpdc), men-Mg 2 (dobpdc) and den-Mg 2 (dobpdc) TGA curve of from 40 ℃ for each of up to 200 ℃ ((a) en- Mg 2 3% CO 2 adsorption curve of the (dobpdc), (b) en -Mg 2 (dobpdc) 100% CO 2 adsorption curve, (c) men-Mg 3 % of the 2 (dobpdc) CO 2 adsorption curve (d) men of -Mg 2 (dobpdc) 100% CO 2 adsorption curve, (e) den-Mg 2 (dobpdc) 3% CO 2 adsorption curve, (f) den-Mg 100 % CO 2 absorption curve of the 2 (dobpdc) of a) .
FIG. 5 is a graph showing the adsorption / desorption cycles of men-Mg 2 (dobpdc) (left) and den-Mg 2 (dobpdc) (right: adsorption conditions: 40 ° C., 150 mbar CO 2 , desorption conditions: 1 bar CO 2 (men), 120 ° C, 1 bar CO 2 (den)).
6 is a graph showing adsorption (15% CO 2 , 5% O 2 , 75% N 2 ) and desorption cycles of den-Mg 2 (dobpdc).
7 is a graph showing relative CO 2 adsorption performance after exposure to SO 2 gas.
Figure 8 is a graph showing the CO 2 adsorption amount (on the right) at the time after exposure to 100% relative humidity with a relative moisture in the CO 2 adsorption amount (left) and den-2 Mg (dobpdc) state and a dry state.

이하에서, 본 발명의 아민 기능화 이산화탄소 흡착제의 제조방법에 대하여 상세하게 설명하기로 한다.Hereinafter, a method for producing the amine-functionalized carbon dioxide adsorbent of the present invention will be described in detail.

본 발명의 일 구현예에서는 하기의 단계들을 포함하는 아민 기능화 이산화 탄소 흡착제의 제조방법을 제공한다:In one embodiment of the present invention, there is provided a process for preparing an amine-functionalized carbon dioxide adsorbent comprising the steps of:

다공성 금속-유기 골격체를 가열하여 활성화시키는 단계;Heating and activating the porous metal-organic skeleton;

유기 용매에 용해된 다가 아민에 상기 활성화된 다공성 금속-유기 골격체를 침지시켜 현탁액을 형성하는 단계;Immersing the activated porous metal-organic skeleton in a polyvalent amine dissolved in an organic solvent to form a suspension;

형성된 현탁액을 초음파(sonication) 처리하는 단계; 및 Sonicating the formed suspension; And

초음파 처리된 현탁액을 마이크로파(microwave) 처리하는 단계.Microwave treatment of the ultrasonic treated suspension.

본 발명에 따른 이산화탄소 흡착제 제조방법은, 상기 다공성 금속-유기 골격체를 활성화시키는 단계 이전에, H4dobpdc와 금속할라이드를 유기 용매 중에서 반응시켜 용매화된 금속-dobpdc 복합체로 구성된 다공성 금속-유기 골격체를 형성하는 단계를 포함할 수 있다.The method for preparing a carbon dioxide adsorbent according to the present invention is characterized in that before the step of activating the porous metal-organic skeleton, H 4 dobpdc and a metal halide are reacted in an organic solvent to form a porous metal-organic skeleton composed of a solvated metal-dobpdc complex Forming a sieve.

본 발명의 일 구현예에서, 상기 다공성 금속-유기 골격체를 가열하여 활성화시키는 경우에 금속-유기 골격체의 기공 속에 있는 분자들이 제거될 수 있다. 이러한 금속-유기 골격체는 결정성 고체로서 다공성을 지니므로 기체 흡착에 유리하다. 바람직하게는, 본 발명의 다공성 금속-유기 골격체는 공동 쪽으로 고밀도의 열린 금속자리(open metal sites)를 포함할 수 있다.In one embodiment of the invention, molecules in the pores of the metal-organic skeleton can be removed when the porous metal-organic skeleton is heated to activate. Such a metal-organic skeleton is a crystalline solid and has porosity, which is advantageous for gas adsorption. Preferably, the porous metal-organic skeleton of the present invention may include high density open metal sites into the cavity.

본 발명의 일 구현예에서, 상기 다공성 금속-유기 골격체는 M2(dobpdc)로 구성될 수 있다. 이 경우, 금속 M은 Zn, Mg, Co, Fe, Ni 또는 Mn일 수 있으며, 바람직하게는, Ni 또는 Mn이다. 또한, dobpdc는 4,4'-디옥시도-3,3'-비페닐디카복실레이트이다.In one embodiment of the present invention, the porous metal-organic skeleton may be composed of M 2 (dobpdc). In this case, the metal M may be Zn, Mg, Co, Fe, Ni or Mn, preferably Ni or Mn. Also, dobpdc is 4,4'-dioxido-3,3'-biphenyldicarboxylate.

본 발명의 아민 기능화 이산화탄소 제조방법은, 유기 용매에 용해된 다가 아민에 상기 활성화된 다공성 금속-유기 골격체를 침지시켜 현탁액을 형성하는 단계를 포함할 수 있다. 상기 다공성 금속-유기 골격체에 아민기를 도입함으로써 이산화탄소 흡착제가 낮은 농도의 이산화탄소를 포집할 수 있다. 특히, 공기 중 이산화탄소 포집을 위해서는 다공성 금속-유기 골격체의 공동 안에 고밀도의 아민기를 도입하는 것이 바람직하다. 고밀도의 아민기 도입을 통해 아민기와 CO2의 탄소 원자 간의 상호작용에 의한 흡착엔탈피를 획기적으로 향상시킬 수 있다. 이러한 아민 기능화는 상기 다공성 금속-유기 골격체의 열린 금속자리에 아민기가 그래프트됨으로써 달성되며, 열린 금속자리는 루이스 산(Lewis acid)으로 작용한다. 이 경우, 일차 아민기는 2개의 수소기를 포함함으로써 열린 금속자리에 잘 배위결합될 수 있다. 또한, 남아있는 자유 아민기는 공동으로 들어오는 CO2를 효과적으로 포집할 수 있다.The method for producing amine-functionalized carbon dioxide of the present invention may include the step of immersing the activated porous metal-organic skeleton in a polyvalent amine dissolved in an organic solvent to form a suspension. By introducing an amine group into the porous metal-organic skeleton, the carbon dioxide adsorbent can capture a low concentration of carbon dioxide. In particular, for capturing carbon dioxide in the air, it is desirable to introduce a high density of amine groups in the cavities of the porous metal-organic skeleton. The enthalpy of adsorption due to the interaction between the amine group and the carbon atom of CO 2 can be remarkably improved through the introduction of a high-density amine group. This amine functionalization is accomplished by grafting amine groups to the open metal sites of the porous metal-organic skeleton and the open metal sites serve as Lewis acids. In this case, the primary amine group can be well coordinated to open metal sites by containing two hydrogen groups. In addition, the remaining free amine groups can effectively trap the incoming CO 2 .

본 발명에 따른 다가 아민은 2개, 3개, 또는 그 이상의 개수의 아민기 말단을 가질 수 있다. 보다 상세하세는, 상기 다가 아민은 양쪽 말단 각각에 1차 아민기를 포함할 수 있다. 양쪽 말단에 일차 아민기가 존재하는 다가 아민의 경우, 곁가지에 다양한 치환기의 도입이 가능하며, 저압 조건에서 이산화탄소 흡착은 1차 아민기를 통해, 이산화탄소 탈착은 곁가지를 통해 용이하게 조절할 수 있다. 특히, 다가 아민에 존재하는 곁가지는, 다공성 금속-유기 골격체와 아민 간의 결합이 분해되는 것을 방해함으로써 흡착제의 구조적 안정성을 향상시키는데 중요한 역할을 수행할 수 있다. 한편, 상기 다가 아민의 자유 아민기는 일차 아민일 수 있다. The polyamines according to the present invention may have two, three, or more amine-terminated ends. More specifically, the polyhydric amines may include primary amine groups at each of the two ends. In the case of polyamines having primary amine groups at both ends, it is possible to introduce various substituents into the side branches. At low pressure, the carbon dioxide adsorption can be easily controlled through the primary amine group and the carbon dioxide desorption can be easily controlled through the side branches. In particular, the side chain present in the polyvalent amine can play an important role in improving the structural stability of the adsorbent by interfering with the decomposition of the bond between the porous metal-organic skeleton and the amine. On the other hand, the free amine group of the polyvalent amine may be a primary amine.

구체적으로, 본 발명의 다가 아민은 하기 일반식 1로 표현될 수 있다.Specifically, the polyvalent amine of the present invention can be represented by the following general formula (1).

[일반식 1][Formula 1]

Figure pat00001
Figure pat00001

여기서, 상기 R1 및 R2는 각각 독립적으로 수소 또는 CH3일 수 있고, 상기 n은 0 내지 10의 정수일 수 있으며, 상기 m은 0 내지 10의 정수일 수 있다.Herein, R 1 and R 2 may each independently be hydrogen or CH 3 , n may be an integer of 0 to 10, and m may be an integer of 0 to 10.

보다 상세하게는, 본 발명에 따른 다가 아민으로는 에틸렌디아민, 1-메틸에틸렌디아민 또는 1,1-디메틸에틸렌디아민이 사용될 수 있다,More specifically, ethylenediamine, 1-methylethylenediamine or 1,1-dimethylethylenediamine may be used as the polyvalent amine according to the present invention.

본 발명의 아민 기능화 이산화탄소 흡착제의 제조방법은 초음파 처리하는 단계 및 마이크로파 처리하는 단계를 포함하며, 이러한 초음파 처리 단계와 마이크로파 처리 단계가 연속하여 수행될 수 있다. 다공성 금속-유기 골격체에 아민기를 도입하는 방법으로는, 교반 처리 방법, 환류 처리 방법, 초음파 처리 방법, 마이크로파 처리 방법 등이 사용될 수 있으며, 초음파 처리 및 마이크로파 처리를 하는 것이 바람직하다. 구체적으로는, 초음파 처리를 진행한 후에, 이어서 마이크로파 처리를 수행하는 것이 바람직하다. 이는, 초음파 처리 및 마이크로파 처리 두 가지를 진행하는 경우에 금속 골격체의 기공 속으로 아민의 확산이 더욱 용이하기 때문이며, 이를 통해 다공성 금속-유기 골격체 내의 아민의 높은 점유율을 확보할 수 있다.The method for producing the amine-functionalized carbon dioxide adsorbent of the present invention includes an ultrasonic treatment step and a microwave treatment step, and the ultrasonic treatment step and the microwave treatment step may be successively performed. As a method of introducing an amine group into the porous metal-organic skeleton, an agitation treatment method, a reflux treatment method, an ultrasonic treatment method, a microwave treatment method and the like can be used, and it is preferable to perform ultrasonic treatment and microwave treatment. Concretely, it is preferable to conduct the microwave treatment after the ultrasonic treatment. This is because the diffusion of amine into the pores of the metal skeleton is more facilitated when both the ultrasonic treatment and the microwave treatment are performed, thereby securing a high occupancy rate of the amine in the porous metal-organic skeleton.

본 발명의 일 구현예에서, 상기 초음파 처리하는 단계는 50 ℃ 내지 70 ℃에서 2시간 내지 4시간 동안 수행될 수 있으며, 60 ℃에서 3시간 동안 처리하는 것이 바람직하다. 또한, 상기 마이크로파 처리하는 단계는 초음파 처리하는 단계에 이어서 수행하는 것이 바람직하며, 구체적으로는, 80 ℃ 내지 100 ℃에서 4시간 내지 6시간 동안 수행될 수 있고, 90 ℃에서 5시간 동안 수행되는 것이 바람직하다.In one embodiment of the present invention, the step of ultrasonication may be performed at 50 ° C to 70 ° C for 2 hours to 4 hours, preferably at 60 ° C for 3 hours. The microwave treatment may be performed after the ultrasonic treatment. More specifically, the microwave treatment may be performed at 80 to 100 캜 for 4 to 6 hours and at 90 캜 for 5 hours desirable.

본 발명의 일 구현예에서, 본 발명의 제조방법에 따라 제조된 이산화탄소 흡착제는 아민-Mg2(dobpdc)일 수 있으며, 바람직하게는 en-Mg2(dobpdc), men-Mg2(dobpdc) 또는 den-Mg2(dobpdc)일 수 있다.In one embodiment of the invention, may be a carbon dioxide adsorbent is an amine -Mg 2 (dobpdc) produced according to the production method of the present invention, preferably en-Mg 2 (dobpdc), men-Mg 2 (dobpdc) or den-Mg 2 (dobpdc).

이하 본 발명을 구체적인 실시예를 들어 더욱 상세하게 설명하고자 하나 본 발명의 기술적 사상이 하기 실시예에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to specific examples, but the technical idea of the present invention is not limited by the following examples.

실시예Example

[[ 아민Amine -- MgMg 22 (( dobpdcdobpdc )]의 제조)]

H4dobpdc (24 mg, 0.088 mmol)와 MgBr2·6H2O (60 mg, 0.21 mmol)을 DMF:EtOH (1:1)의 혼합 용액 4 mL에 용해시킨 후 마이크로파 반응장치에서 130 ℃, 150 psi, 50 W의 조건으로 15분 동안 반응시켰다. 반응이 종결된 후, 생성된 흰색 파우더를 60 ℃에서 DMF, EtOH, MeOH 순으로 여러 번 반복하여 세정한 후 MeOH에 3일 동안 담궈두었다. 390 ℃ 및 진공 조건 하에서 10시간 동안 기공 속의 용매 분자를 제거하였으며, 공기 중에 노출되지 않도록 글로브 박스(glove box)에서 250 mL 쉬링크 플라스크(Schlenk flask)에 전처리된 시료 (100 mg, 0.31 mmol)를 옮겼다. 다른 쉬링크 플라스크에 정제된 톨루엔을 담고, 20 당량의 아민(에틸렌디아민(en), 1-메틸에틸렌디아민(men), 1,1-디메틸에틸렌디아민(den) 각각에 대해 별로도 수행)을 용해시켰다. 이 용액을 캐뉼라(cannula)를 이용해서 전처리된 시료에 옮겨 담았다. 용액과 시료가 있는 쉬링크 플라스크를 60 ℃에서 3시간 동안 초음파 처리한 후, 마이크로파 반응기에 넣고 90 ℃의 조건에서 5시간 동안 반응시켰다. 반응이 끝난 후, 시료를 정제된 톨루엔으로 여러 번 씻고 끓는 점이 높은 톨루엔을 제거하기 위해 헥세인에 하루동안 담궈두었다.H 4 dobpdc (24 mg, 0.088 mmol) and MgBr 2 .6H 2 O (60 mg, 0.21 mmol) were dissolved in 4 mL of a mixed solution of DMF: EtOH (1: 1) psi, 50 W for 15 minutes. After the reaction was completed, the resulting white powder was repeatedly washed with DMF, EtOH, and MeOH in the order of 60 ° C, and then immersed in MeOH for 3 days. The solvent molecules in the pores were removed for 10 hours under the condition of 390 ° C and vacuum, and a sample (100 mg, 0.31 mmol) pre-treated in a 250 mL Schlenk flask in a glove box to prevent exposure to air I moved. The other shrink flask was charged with refined toluene and dissolved in 20 equivalents of amine (ethylenediamine, 1-methylethylenediamine, 1,1-dimethylethylenediamine (den) . The solution was transferred to a pretreated sample using a cannula. The shrink flask containing the solution and the sample was ultrasonicated at 60 ° C for 3 hours and then placed in a microwave reactor and reacted at 90 ° C for 5 hours. After the reaction, the sample was washed several times with refined toluene and immersed in hexane for one day to remove the boiling high toluene.

이산화탄소 흡착 평가Carbon dioxide adsorption evaluation

상기 방법을 통해 제조된 아민-Mg2(dobpdc)의 이산화탄소 흡착능력을 평가하기 위해 아민의 기능화 방법 및 CO2의 분압에 따른 이산화탄소 흡착량을 분석하였다. 도 1은 동일한 조건 하에서 교반 처리(stirring), 환류 처리(reflux), 초음파 처리(sonication), 마이크로파 조사(microwave irradiation) 및 초음파 처리-마이크로파 조사 방법만을 달리 적용하여 제조한 en-Mg2(dobpdc)의 이산화탄소 흡착능을 비교한 그래프이다. 도 1에 나타낸 바와 같이, 단독의 방법으로 처리한 경우에 비해, 초음파 처리 방법과 마이크로파 처리 방법을 함께 사용했을 때 대략 19 wt%로 가장 높은 흡착량을 보여주었다. In order to evaluate the carbon dioxide adsorption capacity of the amine-Mg 2 (dobpdc) prepared by the above method, the amine functionalization method and the adsorption amount of carbon dioxide according to the partial pressure of CO 2 were analyzed. FIG. 1 is a graph showing the results of a comparison of en-Mg 2 (dobpdc) prepared by different application of stirring, reflux, sonication, microwave irradiation and ultrasonic- Of the present invention. As shown in Fig. 1, when the ultrasonic treatment method and the microwave treatment method were used together, the highest adsorption amount was shown to be about 19 wt%, compared with the case of the single treatment method.

이러한 우수한 이산화탄소 흡착능은 도 2의 TGA 그래프를 통해서도 확인할 수 있었다. 60 ℃, 5시간 마이크로파 처리하는 경우에 가장 좋은 흡착능을 보여주었다. 또한, 원소분석 결과, 열린 금속 자리에 97.5%가 점유되는 것을 확인하여 고밀도로 아민 기능화가 된 것을 확인할 수 있었다. 이러한 점유율 수치는 기존에 널리 사용된 교반 처리 방법으로 제조한 흡착제 (아민 점유율 80%)보다 훨씬 높은 값임을 알 수 있었다. 이와 같은 초음파 처리-마이크로파 처리 방법으로 men과 den을 아민 기능화시킨 경우에, 각각의 아민 점유율은 85%, 75%를 나타내었으며, 이는 아민의 곁가지 그룹의 존재로 인한 것임을 알 수 있었다.This excellent carbon dioxide adsorption ability can be confirmed also by the TGA graph of FIG. And showed the best adsorption capacity when microwave treatment was performed at 60 ° C for 5 hours. As a result of the elemental analysis, it was confirmed that 97.5% was occupied in the open metal sites, and it was confirmed that the amine functionalization was performed at a high density. These values are much higher than those of conventional adsorbents (amine occupancy 80%). When the amine and den were amine-functionalized by the ultrasonic treatment-microwave treatment method, the respective amine occupancy rates were 85% and 75%, respectively, which were due to the presence of side groups of amines.

도 3은 en, men, den-Mg2(dobpdc) 각각의 아민을 기능화시킨 흡착제에 대하여 나타낸 흡착 등온선으로, 1 bar에서 각각의 이산화탄소 흡착량은 4.61 mmol/g, 4.5 mmol/g, 3.15 mmol/g으로 아민의 곁가지 메틸 그룹에 의한 효과로 흡착량이 점점 감소하는 것을 확인할 수 있었다. 또한, 배가스의 CO2를 포집 조건과 유사한 30 mbar 내지 150 mbar CO2 농도의 흡착량을 통해 본 발명의 흡착제가 배가스에 대해서도 우수한 성능을 나타낼 수 있음을 알 수 있다. 흡착 등온선에서의 단계별 압력 변화를 통해 상-전이 흡착이 일어나는 것을 확인할 수 있었으며, 그 중 den-Mg2(dobpdc)는 온도에 따른 그래프의 변화를 확실히 볼 수 있었다. en, men-Mg2(dobbdc)과 비교했을 때, den은 120 ℃, 1 bar CO2에서 흡착이 일어나지 않았으며, 작동 능력(working capacity)을 계산을 통해 den이 실제 배가스 흡착에서 가장 적합하게 사용될 수 있음을 알 수 있었다. en, men-Mg2(dobpdc) 각각의 작동 능력은 < 0 wt%, 1.7 wt%로 den-Mg2(dobpdc)가 가장 우수한 흡착제임을 알 수 있었다(11 wt%).Figure 3 shows adsorption isotherms for adsorbents functionalized with en, men, and den-Mg 2 (dobpdc), respectively. Adsorption amounts of carbon dioxide were 4.61 mmol / g, 4.5 mmol / g, 3.15 mmol / g, indicating that the adsorption amount was gradually decreased due to the effect of the side chain methyl group of the amine. In addition, the number of the CO 2 present in the exhaust gas through the adsorption amount of 30 mbar to 150 mbar CO 2 concentration is similar to the collecting condition is seen that the invention adsorbent can exhibit excellent performance even in the off-gas. The adsorption isotherm showed phase-to-transition adsorption due to the stepwise pressure change. Among them, den-Mg 2 (dobpdc) showed a change in the graph depending on the temperature. Compared to en, men-Mg 2 (dobbdc), den was not adsorbed at 120 ° C and 1 bar CO 2 and den is calculated to be most suitable for actual adsorption of exhaust gas . It was found that den-Mg 2 (dobpdc) is the most excellent adsorbent (11 wt%) with <0 wt% and 1.7 wt%, respectively, of the en and men-Mg 2 (dobpdc).

작동 능력 평가Assessing Operability

연소 후 CO2 포집을 위한 흡착제로 사용되기 위해서는 절대적인 흡착량보다 작동 능력이 우수해야 하며, 이러한 작동 능력을 평가하기 위해 TGA 방법을 이용해 온도를 높이면서 CO2 조성을 달리하여(3%, 15%, 100%) 흡착의 패턴을 확인하였다. 도 3의 TGA 곡선으로부터 en, men-Mg2(dobpdc)는 넓은 범위의 CO2 압력에서 뛰어난 흡착능을 보이지만, 1 bar CO2 조건에서 200℃까지 도달해야만 흡착된 CO2가 제거되며 무게 감소가 일어나는 것을 알 수 있었다. 반면에, den-Mg2(dobpdc)는 넓은 범위의 CO2 압력에서 흡착도 우수할 뿐만 아니라 1 bar CO2, 120 ℃ 조건 하에서도 흡착된 CO2가 제거되는 것을 알 수 있었다. 앞서 흡착 등온선 실험과 동일하게 TGA 곡선을 이용한 평가에서도 den-Mg2(dobpdc)이 가장 우수한 작동 능력을 보여주었다.In order to be used as an adsorbent for CO 2 capture after combustion, the operating capacity should be better than the absolute adsorption amount. To evaluate the operating performance, the TGA method was used to increase the CO 2 composition (3%, 15% 100%) adsorption pattern. From the TGA curve in FIG. 3, en, men-Mg 2 (dobpdc) exhibits excellent adsorbability at a wide range of CO 2 pressures, but only at 200 ° C under 1 bar CO 2 conditions, adsorbed CO 2 is removed and weight loss occurs . On the other hand, was found to be 2 to remove adsorbed CO under not only adsorption is also excellent in the CO 2 pressure in the broad range of 1 bar CO 2, 120 ℃ condition den-Mg 2 (dobpdc). As in the previous adsorption isotherm experiment, den-Mg 2 (dobpdc) showed the best operating performance even in the TGA curve evaluation.

도 5는 CO2가 제거되는 탈착 온도에서 흡탈착 과정을 나타낸 것으로, men-Mg2(dobpdc)는 첫 싸이클에서 높은 작동 능력(17.2 wt%)을 보여 주지만 높은 탈착 온도(200 ℃) 때문에 아민의 증발 현상이 나타날 수 있다. den-Mg2(dobpdc)는 120 ℃의 탈착 온도에서 20 사이클 후에도 아민의 손실이 없다는 것을 알 수 있으며 12.2 wt%라는 높은 값을 보여 주었다. 기존에 보고된 흡착제 중 높은 흡착량을 보이는 HKUST-1 (11.6 wt%, 20 ℃), Mg-MOF-74 (20.6 wt%, 40 ℃), mmen-CuBTTri (9.5 wt%, 25 ℃). en-Mg2(dobpdc) (14.6 wt%, 40 ℃) 등은 7 wt% 이하의 낮은 작동 능력를 갖는다는 점을 미루어 볼 때, den-Mg2(dobpdc)는 이들에 비해 상당히 높은 수준의 작동 능력 값을 보인다는 것을 알 수 있다.Figure 5 shows the adsorption / desorption process at the desorption temperature at which CO 2 is removed. Men-Mg 2 (dobpdc) shows high operating capacity (17.2 wt%) in the first cycle, Evaporation may occur. den-Mg 2 (dobpdc) showed no loss of amine even after 20 cycles at a desorption temperature of 120 ° C and showed a high value of 12.2 wt%. (11.6 wt%, 20 ° C), Mg-MOF-74 (20.6 wt%, 40 ° C) and mmen-CuBTTri (9.5 wt%, 25 ° C), which exhibit high adsorption amounts of the previously reported adsorbents. en-Mg 2 (dobpdc) ( 14.6 wt%, 40 ℃) and the like have neungryeokreul low operating below 7 wt% is judging that, den-Mg 2 (dobpdc) is significantly higher level of working capacity compared to those Value. &Lt; / RTI &gt;

안정성 평가Stability evaluation

실제 배가스 조건에서 물질의 안정성을 평가하기 위해 den-Mg2(dobpdc)을 대상으로 15% CO2, 5% O2, 75% N2 혼합가스에서 30 분 동안 흡착과정을 진행한 후 120 ℃, 100% CO2에서 탈착과정을 반복했다. 도 6에 나타낸 바와 같이, 첫 싸이클 후 12.2 wt%에 가까운 작동 전압을 보였으며 20 싸이클 이후에도 흡착 성능에 있어 아주 적은 수준의 감소만 있었다. In order to evaluate the stability of the material under actual flue gas conditions, the adsorption process was carried out for 15 minutes in a mixed gas of 15% CO 2 , 5% O 2 , and 75% N 2 in den-Mg 2 (dobpdc) The desorption process was repeated at 100% CO 2 . As shown in Figure 6, the operating voltage was close to 12.2 wt% after the first cycle and there was only a small decrease in adsorption performance after 20 cycles.

또한, 배가스는 산성 가스를 포함하고 있기 때문에 SO2에 대한 안정성에 대해서도 평가하였다. 도 7에 나타낸 바와 같이, 500 ppm SO2 가스에 0분 내지 120분의 시간만큼 노출 후 15% CO2에서 흡착과정을 평가하였다. men, den-Mg2(dobpdc)는 노출되는 시간이 길어져도 약간의 흡착성능 감소만 있는 것을 확인할 수 있었지만, en-Mg2(dobpdc)는 SO2 가스에 10분만 노출해도 원래 흡착량의 92%에만 도달하는 것을 확인할 수 있었다. 이 또한, 아민의 곁가지 그룹이 구조적 안정성을 향상시키는 데 중요한 역할을 한다고 해석할 수 있다.Since the flue gas contains an acidic gas, the stability against SO 2 was also evaluated. As shown in FIG. 7, the adsorption process was evaluated at 15% CO 2 after exposure to 500 ppm SO 2 gas for a time of from 0 minutes to 120 minutes. men, den-Mg 2 (dobpdc ) is, but also longer the time exposed to be confirmed that only a slight decrease in the adsorption capacity, en-Mg 2 (dobpdc) is even 10-minute exposure to the SO 2 gas to 92% of the original amount of adsorption , Respectively. It can also be interpreted that the side groups of the amine play an important role in improving the structural stability.

CO2 흡착과정 중 수분은 유기-금속 골격체의 구조적 불안정성을 유발한다. 흡착제 후보물질로 되기 위해서는 수분에 노출되어 있어도 흡착능이 유지되어야 한다. 도 8의 왼쪽 그래프는 상대습도 100%에소 시료를 시간별로 노출 시킨 후 130℃에서 4시간 동안 Ar 환경에서 전처리하여 상대적인 흡착량을 나타낸 것이다. en-Mg2(dobpdc)는 6시간만 노출해도 원래 흡착량의 67%에만 도달하는 것을 알 수 있었지만 men, den-Mg2(dobpdc)는 12시간 노출 후에는 원래 흡착량의 7%만 감소하고 그 이후에는 유지되는 것을 확인할 수 있었다. 메틸 그룹의 존재는 Mg과 아민 사이 결합을 분해하는 것을 방지한다고 예측할 수 있다. 또한, 도 8의 오른쪽 그래프에 나타난 바와 같이, den-Mg2(dobpdc)에 수분이 포함된 CO2 가스를 흘려주며 흡착 곡선을 나타냈을 때 21.1 wt%라는 높은 값에 도달할 수 있었으며 이는 건조 상태에서 보여주는 성능(14.8 wt%)보다 훨씬 뛰어나다는 것을 알 수 있다. Water during the CO 2 adsorption process causes structural instability of the organo-metallic skeleton. In order to become an adsorbent candidate, the adsorbent should be maintained even when exposed to moisture. The graph on the left side of FIG. 8 shows the relative adsorption amount after pretreatment in an Ar environment at 130 ° C for 4 hours after exposure of 100% relative humidity samples. It was found that en-Mg 2 (dobpdc) reached only 67% of the original adsorption even after 6 hours of exposure, but men, den-Mg 2 (dobpdc) decreased only 7% After that, I could confirm that it was maintained. It can be predicted that the presence of the methyl group prevents the decomposition of the bond between Mg and the amine. In addition, as shown in the right graph of FIG. 8, CO 2 gas containing moisture was flowed into den-Mg 2 (dobpdc), and when the adsorption curve was shown, it reached 21.1 wt% (14.8 wt%), as shown in Fig.

Claims (9)

다공성 금속-유기 골격체를 가열하여 활성화시키는 단계;
유기 용매에 용해된 다가 아민에 상기 활성화된 다공성 금속-유기 골격체를 침지시켜 현탁액을 형성하는 단계;
형성된 현탁액을 초음파(sonication) 처리하는 단계; 및
초음파 처리된 현탁액을 마이크로파(microwave) 처리하는 단계를 포함하는, 이산화탄소 흡착제 제조방법.
Heating and activating the porous metal-organic skeleton;
Immersing the activated porous metal-organic skeleton in a polyvalent amine dissolved in an organic solvent to form a suspension;
Sonicating the formed suspension; And
A method of making a carbon dioxide sorbent, the method comprising microwave treating the ultrasonically treated suspension.
제 1항에 있어서,
상기 초음파 처리하는 단계 및 마이크로파 처리하는 단계가 연속하여 수행되는, 이산화탄소 흡착제 제조방법.
The method according to claim 1,
Wherein the ultrasonic treatment step and the microwave treatment step are performed successively.
제 1항에 있어서,
상기 다가 아민은 양쪽 말단 각각에 1차 아민기를 포함하는, 이산화탄소 흡착제 제조방법.
The method according to claim 1,
Wherein said polyvalent amine comprises primary amine groups at each of its two ends.
제 3항에 있어서,
상기 다가 아민은 하기 일반식으로 표현되는, 이산화탄소 흡착제 제조방법:
Figure pat00002

상기 일반식에서,
상기 R1 및 R2는 각각 독립적으로 수소 또는 CH3이고,
상기 n은 0 내지 10의 정수이고,
상기 m은 0 내지 10의 정수이다.
The method of claim 3,
Wherein the polyvalent amine is represented by the following general formula:
Figure pat00002

In the above general formula,
Wherein R 1 and R 2 are each independently hydrogen or CH 3 ,
N is an integer of 0 to 10,
M is an integer of 0 to 10;
제 4항에 있어서,
상기 다가 아민은 에틸렌디아민, 1-메틸에틸렌디아민 또는 1,1-디메틸에틸렌디아민인, 이산화탄소 흡착제 제조방법.
5. The method of claim 4,
Wherein the polyvalent amine is ethylenediamine, 1-methylethylenediamine or 1,1-dimethylethylenediamine.
제 1항에 있어서,
상기 다공성 금속-유기 골격체는 M2(dobpdc)로 구성되며, 여기서, 금속 M은 Zn, Mg, Co, Fe, Ni 또는 Mn이고, dobpdc는 4,4'-디옥시도-3,3'-비페닐디카복실레이트인, 이산화탄소 흡착제 제조방법.
The method according to claim 1,
The porous metal-organic skeleton is composed of M 2 (dobpdc), wherein the metal M is Zn, Mg, Co, Fe, Ni or Mn and dobpdc is 4,4'-dioxido- - &lt; / RTI &gt; biphenyldicarboxylate.
제 1항에 있어서,
상기 초음파 처리하는 단계가 60℃에서 3시간 동안 수행되는, 이산화탄소 흡착제 제조방법.
The method according to claim 1,
Wherein the ultrasonic treatment is carried out at 60 DEG C for 3 hours.
제 1항에 있어서,
상기 마이크로파 처리하는 단계가 90℃에서 5시간 동안 수행되는, 이산화탄소 흡착제 제조방법.
The method according to claim 1,
Wherein the microwave treatment step is carried out at 90 DEG C for 5 hours.
제 1항 내지 제 8항 중 어느 한 항의 제조방법에 따라 제조된 이산화탄소 흡착제.A carbon dioxide adsorbent produced according to the production method of any one of claims 1 to 8.
KR1020160137375A 2016-10-21 2016-10-21 Amine-functionalized MOF-based CO2 adsorbents KR102028613B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160137375A KR102028613B1 (en) 2016-10-21 2016-10-21 Amine-functionalized MOF-based CO2 adsorbents

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160137375A KR102028613B1 (en) 2016-10-21 2016-10-21 Amine-functionalized MOF-based CO2 adsorbents

Publications (2)

Publication Number Publication Date
KR20180043936A true KR20180043936A (en) 2018-05-02
KR102028613B1 KR102028613B1 (en) 2019-10-04

Family

ID=62183713

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160137375A KR102028613B1 (en) 2016-10-21 2016-10-21 Amine-functionalized MOF-based CO2 adsorbents

Country Status (1)

Country Link
KR (1) KR102028613B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110394159A (en) * 2019-08-09 2019-11-01 盐城工学院 The method and its application of one-step method preparation ion exchange ZIF-8 adsorbent
WO2020256450A1 (en) 2019-06-19 2020-12-24 한국과학기술원 Structured metal-organic framework fiber adsorbent for capturing carbon dioxide and manufacturing method therefor
KR20210036013A (en) 2019-09-25 2021-04-02 연세대학교 산학협력단 A functionalized metal-organic framework, a method for producing the same, and a method for selectively separating carbon dioxide using the same
CN116603513A (en) * 2023-06-12 2023-08-18 深碳科技(深圳)有限公司 Solid amine adsorbent and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140110645A (en) * 2013-03-08 2014-09-17 고려대학교 산학협력단 Carbon dioxide absorbent
KR20150007484A (en) 2013-07-11 2015-01-21 서울과학기술대학교 산학협력단 Novel Zn-MOF compounds, and carbon dioxide sorption and heterogeneous catalysts for transesterification comprising the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140110645A (en) * 2013-03-08 2014-09-17 고려대학교 산학협력단 Carbon dioxide absorbent
KR20150007484A (en) 2013-07-11 2015-01-21 서울과학기술대학교 산학협력단 Novel Zn-MOF compounds, and carbon dioxide sorption and heterogeneous catalysts for transesterification comprising the same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
- Green Chem., 2008, 10, 1131-1141 *
- Green Chem., 2008, 10, 1131-1141* *
Yichao Lin외 3인, Scientific reports 3:1859 (2013) *
Yichao Lin외 3인, Scientific reports 3:1859 (2013)* *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020256450A1 (en) 2019-06-19 2020-12-24 한국과학기술원 Structured metal-organic framework fiber adsorbent for capturing carbon dioxide and manufacturing method therefor
CN110394159A (en) * 2019-08-09 2019-11-01 盐城工学院 The method and its application of one-step method preparation ion exchange ZIF-8 adsorbent
KR20210036013A (en) 2019-09-25 2021-04-02 연세대학교 산학협력단 A functionalized metal-organic framework, a method for producing the same, and a method for selectively separating carbon dioxide using the same
CN116603513A (en) * 2023-06-12 2023-08-18 深碳科技(深圳)有限公司 Solid amine adsorbent and preparation method thereof
CN116603513B (en) * 2023-06-12 2024-02-20 深碳科技(深圳)有限公司 Solid amine adsorbent and preparation method thereof

Also Published As

Publication number Publication date
KR102028613B1 (en) 2019-10-04

Similar Documents

Publication Publication Date Title
Liu et al. Advances in post‐combustion CO2 capture by physical adsorption: from materials innovation to separation practice
KR101468292B1 (en) Carbon dioxide absorbent
Su et al. Postsynthetic functionalization of Mg-MOF-74 with tetraethylenepentamine: structural characterization and enhanced CO2 adsorption
Sun et al. Highly selective capture of the greenhouse gas CO2 in polymers
KR102217979B1 (en) Amine-functionalized MOF based carbon dioxide adsorbents comprising binders
Piscopo et al. Strategies to Enhance Carbon Dioxide Capture in Metal‐Organic Frameworks
US8227375B2 (en) Gas adsorption on metal-organic frameworks
CN106457120B (en) Synergistic chemisorption of acid gases in functionalized metal-organic frameworks
Petrovic et al. Impact of surface functional groups and their introduction methods on the mechanisms of CO2 adsorption on porous carbonaceous adsorbents
KR102028613B1 (en) Amine-functionalized MOF-based CO2 adsorbents
KR20230042044A (en) Amino adsorbent for CO2 capture from gas streams
Je et al. Direct utilization of elemental sulfur in the synthesis of microporous polymers for natural gas sweetening
Sihn et al. Rapid extraction of uranium ions from seawater using novel porous polymeric adsorbents
JP2016516677A (en) Metal organic framework, its manufacture and use
WO2012134415A1 (en) Low cost immobilized amine regenerable solid sorbents
Vo et al. Ethylenediamine-incorporated MIL-101 (Cr)-NH 2 metal-organic frameworks for enhanced CO 2 adsorption
KR20190076891A (en) Polymer-coated amine-grafted MOF adsorbents for carbon dioxide capture and their preparation
CN113083257A (en) Preparation method and application of multiple-interlocking functional organic polymer material
KR20170034637A (en) Absorbents for removing acid gases and preparing method thereof
KR20130040273A (en) Absorbent for purifying air, filter comprising the absorbent and method for preparing the filter
Maruccia et al. Revealing the competitive effect of N2 and H2O towards CO2 adsorption in N-rich ordered mesoporous carbons
Liu et al. One-pot synthesis of sulfonic acid functionalized Zr-MOFs for rapid and specific removal of radioactive Ba 2+
KR101216020B1 (en) Surface Treatment Method of Activated Carbon
KR102276693B1 (en) Hydrophobic silane-coated amine-grafted MOF/alumina composites for carbon dioxide capture
CN115672056A (en) NH (hydrogen sulfide) 2 -MIL/biochar composite membrane and preparation method and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)