KR101216020B1 - Surface Treatment Method of Activated Carbon - Google Patents

Surface Treatment Method of Activated Carbon Download PDF

Info

Publication number
KR101216020B1
KR101216020B1 KR1020100095910A KR20100095910A KR101216020B1 KR 101216020 B1 KR101216020 B1 KR 101216020B1 KR 1020100095910 A KR1020100095910 A KR 1020100095910A KR 20100095910 A KR20100095910 A KR 20100095910A KR 101216020 B1 KR101216020 B1 KR 101216020B1
Authority
KR
South Korea
Prior art keywords
activated carbon
carbon
amine functional
carbon dioxide
functional group
Prior art date
Application number
KR1020100095910A
Other languages
Korean (ko)
Other versions
KR20120034382A (en
Inventor
박수진
장동일
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020100095910A priority Critical patent/KR101216020B1/en
Publication of KR20120034382A publication Critical patent/KR20120034382A/en
Application granted granted Critical
Publication of KR101216020B1 publication Critical patent/KR101216020B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/342Preparation characterised by non-gaseous activating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment
    • C01B32/36Reactivation or regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above

Abstract

본 발명은 활성탄소의 표면처리 방법에 관한 것으로서, 보다 구체적으로는 활성탄소 표면에 아민 관능기를 도입하는 단계를 포함하는 활성탄소 표면처리 방법 및 상기 방법에 의해 표면처리된 활성탄소에 관한 것이다.
본 발명의 제조방법에 따르면, 그래프트 중합반응을 통해 활성탄소 표면에 도입되는 아민 관능기의 양을 조절할 수 있으며, 아민 관능기가 이산화탄소에 대한 상호작용을 유도하고, 최종적으로 고온 조건에서 이산화탄소에 대한 흡착량이 향상된 활성탄소 및 이산화탄소 흡착제를 제조할 수 있다.
The present invention relates to a surface treatment method of activated carbon, and more particularly, to an activated carbon surface treatment method comprising the step of introducing an amine functional group on the surface of the activated carbon and activated carbon surface treated by the method.
According to the production method of the present invention, it is possible to control the amount of amine functional groups introduced to the surface of the activated carbon through the graft polymerization reaction, the amine functional group induces interaction with the carbon dioxide, and finally the amount of adsorption to the carbon dioxide under high temperature conditions Improved activated carbon and carbon dioxide sorbents can be prepared.

Description

활성탄소의 표면처리 방법{Surface Treatment Method of Activated Carbon}Surface Treatment Method of Activated Carbon

본 발명은 활성탄소의 표면처리 방법에 관한 것으로서, 보다 구체적으로는 활성탄소 표면에 아민 관능기를 도입하는 단계를 포함하는 활성탄소 표면처리 방법 및 상기 방법에 의해 표면처리 된 활성탄소에 관한 것이다. The present invention relates to a surface treatment method of activated carbon, and more particularly, to an activated carbon surface treatment method comprising the step of introducing an amine functional group on the surface of the activated carbon and activated carbon surface-treated by the method.

또한 본 발명은 상기 아민 관능기가 도입된 활성탄소를 포함하며 고온에서 이산화탄소 흡착능이 향상된 이산화탄소 흡착제에 관한 것이다. The present invention also relates to a carbon dioxide adsorbent including activated carbon into which the amine functional group is introduced and improved carbon dioxide adsorption capacity at a high temperature.

최근 화석연료의 과도한 사용과 산업화로 인한 환경문제가 심각한 문제로 대두되고 있는 가운데, 특히 대기 중의 이산화탄소는 그 양이 해마다 늘어나면서 심각한 기후변화를 야기하고 있다. 이에 복합 배가스로부터 이산화탄소를 저장 및 분리하는 방법에 관한 연구가 다양하게 진행되고 있는데, 그 방법에는 흡수법, 흡착법, 막분리법 등이 있다. Recently, environmental problems caused by excessive use of fossil fuels and industrialization have emerged as serious problems. Especially, the amount of carbon dioxide in the atmosphere is increasing year by year, causing severe climate change. Accordingly, various studies on the method of storing and separating carbon dioxide from the composite flue gas have been conducted. The methods include absorption, adsorption, and membrane separation.

흡수법은 아민계 흡수제를 이용하여 이산화탄소를 흡수하고 열을 가하여 이산화탄소를 고농도로 분리하는 것이다. 흡수법은 부식 문제 이외에도 이산화탄소의 분리과정에서 많은 양의 에너지가 필요하며, 사용된 아민의 정제가 필수적으로 요구된다. 최근 부식 문제를 해결하기 위해 암모니아수를 활용한 공정도 많이 연구되고 있지만, 암모니아 가스의 유출에 따른 2차 오염 문제 및 염 석출 문제가 있다.Absorption method absorbs carbon dioxide using an amine-based absorbent and separates carbon dioxide at a high concentration by applying heat. Absorption requires a large amount of energy in addition to corrosion problems and the purification of the amines used is essential. Recently, many processes using ammonia water to solve corrosion problems have been studied, but there are secondary pollution problems and salt precipitation problems due to the outflow of ammonia gas.

현재 이러한 흡수법의 문제를 해결하기 위해 흡착법을 이용한 이산화탄소의 저장 및 분리에 대한 연구가 진행 중이다. 이산화탄소 흡착 방법은 크게 물리적 흡착과 화학적 흡착으로 나눌 수 있으며, 일반적으로 활성탄소, 제올라이트, 메소포러스 실리카 등의 표면을 개질하여 수행되고 있다. Currently, researches on the storage and separation of carbon dioxide using the adsorption method are in progress to solve the problem of the absorption method. Carbon dioxide adsorption methods can be largely divided into physical adsorption and chemical adsorption, and is generally performed by modifying surfaces such as activated carbon, zeolite, and mesoporous silica.

이산화탄소 흡착제 중 하나인 활성탄소는 기공 구조가 주로 미세기공으로 이루어져 있으며, 그 흡착 표면적이 넓어 흡착 용량이 크고, 가격이 저렴할 뿐만 아니라 사용이 간편하여 흡착제로서 유용한 소재로 사용되고 있다. 그러나 이산화탄소에 대한 선택도가 낮고, 온도가 증가함에 따라 물리적 흡착력이 감소하는 문제가 있을 뿐 아니라, 표면처리가 많이 진행 될수록 기공폐쇄 현상이 발생한다는 단점이 있다.Activated carbon, which is one of carbon dioxide adsorbents, has a pore structure mainly composed of fine pores, and its adsorption surface area is large, so that its adsorption capacity is large, its price is low, and its use is easy. However, the selectivity to carbon dioxide is low, there is a problem that the physical adsorption force decreases as the temperature increases, and as the surface treatment proceeds, pore closure occurs.

본 발명은 상기의 문제점을 해결하고 상기의 필요성에 의하여 안출된 것으로서, 본 발명이 이루고자 하는 기술적 과제는 고온 조건에서 이산화탄소 흡착능이 향상되도록 활성탄소 표면을 처리하는 방법을 제공하는 데 있다.The present invention has been made to solve the above problems and by the necessity of the above, the technical problem to be achieved by the present invention is to provide a method for treating the surface of the activated carbon to improve the carbon dioxide adsorption capacity at high temperature conditions.

상기의 목적을 달성하기 위하여, 본 발명은 활성탄소의 표면처리 방법을 제공한다.In order to achieve the above object, the present invention provides a surface treatment method of activated carbon.

구체적으로 본 발명의 활성탄소 표면처리 방법은 (1) 활성탄소 표면에 라디칼을 생성시키기 위해 퍼옥사이드(peroxide)를 첨가하여 열분해 하는 단계; (2) 상기 (1) 단계에서 생성된 라디칼을 반응 개시점으로 하여 활성탄소에 반응성 단량체를 도입하는 그래프트 중합반응 단계; 및 (3) 상기 그래프트 중합반응을 거친 활성탄소에 아민 관능기를 도입하는 단계를 포함한다.Specifically, the activated carbon surface treatment method of the present invention comprises the steps of (1) pyrolysis by adding peroxide to generate radicals on the surface of activated carbon; (2) a graft polymerization step of introducing a reactive monomer into activated carbon using the radical generated in step (1) as a reaction starting point; And (3) introducing an amine functional group into the activated carbon that has undergone the graft polymerization.

또한, 본 발명은 상기 방법으로 표면처리 되어 아민 관능기가 도입된 활성탄소 및 상기 활성탄소를 포함하며 고온에서 이산화탄소 흡착능이 향상된 이산화탄소 흡착제를 제공한다.In addition, the present invention provides a carbon dioxide adsorbent that is surface-treated by the above method and includes an activated carbon having an amine functional group introduced therein and the activated carbon and the carbon dioxide adsorption capacity is improved at a high temperature.

본 발명의 제조방법에 따르면, 그래프트 중합반응을 통해 활성탄소 표면에 도입되는 아민 관능기의 양을 조절할 수 있으며, 아민 관능기가 이산화탄소에 대한 상호작용을 유도하고, 최종적으로 고온 조건에서 이산화탄소에 대한 흡착량이 향상된 활성탄소 및 이산화탄소 흡착제를 제조할 수 있다.According to the production method of the present invention, it is possible to control the amount of amine functional groups introduced to the surface of the activated carbon through the graft polymerization reaction, the amine functional group induces interaction with the carbon dioxide, and finally the amount of adsorption to the carbon dioxide under high temperature conditions Improved activated carbon and carbon dioxide sorbents can be prepared.

도 1은 본 발명에 따라 활성탄소 표면에 아민 관능기를 도입하는 과정을 나타내는 도면이다.
도 2는 본 발명의 일실시예에 따라 아민 관능기가 도입된 활성탄소와 표면처리 하지 않은 활성탄소의 표면을 나타낸 SEM 사진이다.
도 3은 본 발명의 실시예에 따른 활성탄소의 이산화탄소 흡착능 실험 결과를 나타낸 그래프이다.
1 is a view showing a process for introducing an amine functional group on the surface of the activated carbon according to the present invention.
Figure 2 is a SEM photograph showing the surface of the activated carbon with the amine functional group introduced and the surface-treated activated carbon according to an embodiment of the present invention.
3 is a graph showing the carbon dioxide adsorption capacity test results of activated carbon according to an embodiment of the present invention.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 활성탄소의 표면처리 방법을 제공한다.The present invention provides a surface treatment method of activated carbon.

구체적으로 본 발명의 활성탄소 표면처리 방법은 (1) 활성탄소 표면에 라디칼을 생성시키기 위해 퍼옥사이드(peroxide)를 첨가하여 열분해 하는 단계; (2) 상기 (1) 단계에서 생성된 라디칼을 반응 개시점으로 하여 활성탄소에 반응성 단량체를 도입하는 그래프트 중합반응 단계; 및 (3) 상기 그래프트 중합반응을 거친 활성탄소에 아민 관능기를 도입하는 단계를 포함한다.Specifically, the activated carbon surface treatment method of the present invention comprises the steps of (1) pyrolysis by adding peroxide to generate radicals on the surface of activated carbon; (2) a graft polymerization step of introducing a reactive monomer into activated carbon using the radical generated in step (1) as a reaction starting point; And (3) introducing an amine functional group into the activated carbon that has undergone the graft polymerization.

본 발명에 있어서, 상기 (1) 단계는 활성탄소에 퍼옥사이드(peroxide)를 첨가하고 370 ~ 380 K에서 1 ~ 30분 동안 열분해함으로써 활성탄소 표면에 라디칼을 생성시키는 단계로서, 상기 퍼옥사이드는 활성탄소 1 g 당 1 ~ 2 ㎖ 첨가하는 것을 특징으로 한다.In the present invention, the step (1) is a step of generating a radical on the surface of the activated carbon by adding a peroxide to the activated carbon and pyrolysis at 370 ~ 380 K for 1 to 30 minutes, the peroxide is active It is characterized by adding 1-2 ml per 1 g of carbon.

또한, 본 발명에서 상기 (2) 단계는 활성탄소와 반응성 단량체를 유기용매 중에서 20 ~ 60℃로 6 ~ 48시간 동안 반응시키는 것을 특징으로 하는 그래프트 중합반응 단계로서, 상기 반응성 단량체는 글리시딜 메타크릴레이트(glycidyl methacrylate, GMA)를 3 ~ 9 ㎖ 첨가하여 반응시키는 것이 바람직하다.In the present invention, the step (2) is a graft polymerization step, characterized in that for 6 to 48 hours to react the activated carbon and the reactive monomer at 20 ~ 60 ℃ in an organic solvent, the reactive monomer is glycidyl meta It is preferable to react by adding 3-9 ml of acrylate (glycidyl methacrylate, GMA).

본 발명의 (3) 단계는 상기 그래프트 중합반응을 마친 활성탄소에 유기용매에 녹인 아민 관능기를 첨가하여 60 ~ 100 ℃에서 6 ~ 48시간 동안 반응시킴으로써 아민 관능기를 도입하는 단계로서, 상기 유기용매는 1,4-다이옥산(1,4-dioxane)이고, 아민 관능기는 다이에틸렌 트라이아민(diethylene triamine, DETA)인 것을 특징으로 한다.Step (3) of the present invention is a step of introducing an amine functional group by adding an amine functional group dissolved in an organic solvent to the activated carbon after the graft polymerization reaction for 6 to 48 hours at 60 ~ 100 ℃, the organic solvent is 1,4-dioxane (1,4-dioxane), and the amine functional group is characterized in that the diethylene triamine (DETA).

또한 본 발명은 상기 표면처리 방법으로 처리되어 표면에 아민 관능기가 도입된 활성탄소 및 상기 활성탄소를 포함하며 고온에서 이산화탄소 흡착능이 향상된 이산화탄소 흡착제를 제공한다.
In another aspect, the present invention provides a carbon dioxide adsorbent which is treated by the surface treatment method and includes an activated carbon introduced with an amine functional group on the surface and the activated carbon, the carbon dioxide adsorption capacity is improved at high temperatures.

이하, 실시예에 의하여 본 발명을 더욱 상세히 설명하고자 한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
However, the following examples are only for illustrating the present invention, and the contents of the present invention are not limited to the following examples.

본 발명에서는 이산화탄소 흡착제로 활성탄소(charcoal activated, TCI Co.)를 사용하였으며, 하기 실시예 및 비교예에서 설명한 바와 같이 아민관능기가 도입된 활성탄소를 제조한 후 이를 이산화탄소 흡착제로 사용하여 고온에서의 이산화탄소 흡착량을 평가하였다.
In the present invention, activated carbon (charcoal activated, TCI Co.) was used as a carbon dioxide adsorbent, and as described in the following Examples and Comparative Examples, an activated carbon having an amine functional group introduced therein was used as a carbon dioxide adsorbent at high temperature. The amount of carbon dioxide adsorption was evaluated.

실시예 1.Example 1.

본 실험에서는 비표면적이 806 m2/g인 활성탄소(charcoal activated, TCI Co.)를 사용하였다. 활성탄소를 증류수로 세척한 후 353 K의 진공오븐에서 24 시간 동안 건조시켜 수분 및 잔류 용매를 제거하였다. 세척한 활성탄소를 0.5 M 질산(HNO3)의 333 K 초음파 수조(ultrasonic bath)에서 30분 정도 처리한 후 증류수로 세척하고 건조하였다. 산 처리된 활성탄소는 과량의 SOCl2로 338 K에서 24시간 동안 처리하였다. In this experiment, activated carbon (charcoal activated, TCI Co.) with a specific surface area of 806 m 2 / g was used. The activated carbon was washed with distilled water and dried in a vacuum oven at 353 K for 24 hours to remove moisture and residual solvent. The washed activated carbon was treated for 30 minutes in a 333 K ultrasonic bath of 0.5 M nitric acid (HNO 3 ), washed with distilled water, and dried. Acid treated activated carbon was treated with excess SOCl 2 at 338 K for 24 hours.

위와 같이 전처리 과정을 거친 활성탄소에 1.5 ㎖의 퍼옥사이드(peroxide)를 첨가하고 373 K로 가열하여 열분해함으로써 활성탄소 표면에 라디칼을 생성시켰다. 생성된 라디칼을 반응 개시점으로 이용하여 반응성 단량체를 활성탄소에 도입하기 위하여, 반응성이 좋은 단량체인 글리시딜 메타크릴레이트(glycidyl methacrylate, GMA) 2 ㎖를 메탄올 용액 하에서 40℃로 24시간 동안 그래프트 중합 반응시켰다. As described above, 1.5 ml of peroxide was added to the activated carbon, which was pretreated, and heated to 373 K to pyrolyze to generate radicals on the surface of the activated carbon. In order to introduce the reactive monomer into the activated carbon by using the generated radical as the reaction starting point, 2 ml of glycidyl methacrylate (GMA), a highly reactive monomer, was grafted at 40 ° C. under methanol solution for 24 hours. The polymerization reaction was carried out.

이어 상기 활성탄소에 아민 관능기인 다이에틸렌 트라이아민(diethylene triamine, DETA)을 도입하기 위하여, 메타크릴레이트(GMA) 그래프트 된 활성탄소를 다이에틸렌 트라이아민이 용해된 1,4-다이옥산(1,4-dioxane) 용액에 첨가하고 100℃에서 24시간 동안 리플럭스(reflux)하였다. 반응이 끝난 활성탄소를 에탄올로 세척하고 에탄올과 증류수를 1 : 1 부피비로 혼합한 용액으로 2차 세척한 후, 마지막으로 증류수로 3차 세척하였고, 진공 조건에서 실온으로 건조하여 최종적으로 아민 관능기가 도입된 활성탄소를 얻었다.
Subsequently, in order to introduce diethylene triamine (DETA), an amine functional group, to the activated carbon, methacrylate (GMA) grafted activated carbon was dissolved in diethylene triamine (1,4-dioxane (1,4). -dioxane) solution and reflux at 100 ° C. for 24 hours. After the reaction, the activated carbon was washed with ethanol, washed twice with a mixture of ethanol and distilled water in a volume ratio of 1: 1, and finally washed three times with distilled water, and dried at room temperature under vacuum to finally obtain an amine functional group. Introduced activated carbon was obtained.

실시예 2.Example 2.

상기 실시예 1에서와 동일한 공정으로 활성탄소의 표면처리를 수행하되, 메타크릴레이트(GMA)를 4 ㎖ 첨가하여 아민 관능기가 도입된 활성탄소를 얻었다. The surface treatment of the activated carbon was performed in the same manner as in Example 1, but 4 ml of methacrylate (GMA) was added to obtain an activated carbon into which an amine functional group was introduced.

실시예 3.Example 3.

상기 실시예 1에서와 동일한 공정으로 활성탄소의 표면처리를 수행하되, 메타크릴레이트(GMA)를 6 ㎖ 첨가하여 아민 관능기가 도입된 활성탄소를 얻었다.
The surface treatment of activated carbon was carried out in the same manner as in Example 1, but 6 ml of methacrylate (GMA) was added to obtain activated carbon into which an amine functional group was introduced.

실시예 4.Example 4.

상기 실시예 1에서와 동일한 공정으로 활성탄소의 표면처리를 수행하되, 메타크릴레이트(GMA)를 8 ㎖ 첨가하여 아민 관능기가 도입된 활성탄소를 얻었다.
The surface treatment of activated carbon was carried out in the same manner as in Example 1, but 8 ml of methacrylate (GMA) was added to obtain activated carbon into which an amine functional group was introduced.

실시예 5.Example 5.

상기 실시예 1에서와 동일한 공정으로 활성탄소의 표면처리를 수행하되, 메타크릴레이트(GMA)를 10 ㎖ 첨가하여 아민 관능기가 도입된 활성탄소를 얻었다.
The surface treatment of activated carbon was carried out in the same manner as in Example 1, but 10 ml of methacrylate (GMA) was added to obtain activated carbon into which an amine functional group was introduced.

또한, 그래프트 중합반응 및 아민 처리를 하지 않은 활성탄소의 특성 변화를 알아보기 위하여 다음과 같은 비교예를 준비하였다.In addition, the following comparative examples were prepared in order to examine the characteristics change of the activated carbon without graft polymerization and amine treatment.

비교예 1. Comparative Example 1

표면에 아무런 처리도 하지 않은 활성탄소를 이용하여 본 발명의 실시예와 비교하기 위하여, 활성탄소를 증류수로 세척한 후 353 K의 진공오븐에서 24시간 동안 건조시켜 수분 및 잔류 용매를 제거하는 세척만 실시하였다.
In order to compare with the embodiment of the present invention using the activated carbon that has not been treated on the surface, only washing to remove the water and residual solvent by washing the activated carbon with distilled water and then dried in a vacuum oven of 353 K for 24 hours Was carried out.

비교예 2. Comparative Example 2

상기 실시예 1과 동일한 공정을 수행하되, 아민 처리되지 않은 활성탄소를 수득하였다. 구체적인 제조공정은 다음과 같다.The same process as in Example 1 was carried out, but an amine-treated activated carbon was obtained. The specific manufacturing process is as follows.

활성탄소를 증류수로 세척한 후 353 K의 진공오븐에서 24시간 동안 건조시켜 수분 및 잔류 용매를 제거하였다. 세척한 활성탄소를 0.5 M 질산(HNO3)으로 처리한 후 증류수로 세척하고 건조하였다. 산 처리된 활성탄소는 과량의 SOCl2로 338 K에서 24시간 동안 처리하였다. The activated carbon was washed with distilled water and dried in a vacuum oven at 353 K for 24 hours to remove moisture and residual solvent. The washed activated carbon was treated with 0.5 M nitric acid (HNO 3 ), washed with distilled water and dried. Acid treated activated carbon was treated with excess SOCl 2 at 338 K for 24 hours.

위와 같이 전처리 과정을 거친 활성탄소에 1.5 ㎖의 퍼옥사이드(peroxide)를 첨가하고 373 K로 가열하여 열분해함으로써 활성탄소 표면에 라디칼을 생성시켰다. 생성된 라디칼을 반응 개시점으로 이용하여 반응성 단량체를 활성탄소에 도입하기 위하여, 반응성이 좋은 단량체인 글리시딜 메타크릴레이트(glycidyl methacrylate, GMA) 2 ㎖를 메탄올 용액 하에서 40℃로 24시간 동안 그래프트 중합 반응시켰다.
As described above, 1.5 ml of peroxide was added to the activated carbon, which was pretreated, and heated to 373 K to pyrolyze to generate radicals on the surface of the activated carbon. In order to introduce the reactive monomer into the activated carbon using the generated radical as a reaction starting point, 2 ml of glycidyl methacrylate (GMA), a highly reactive monomer, was grafted at 40 ° C. under methanol solution for 24 hours. The polymerization reaction was carried out.

본 발명에 있어서 상기 실시예 및 비교예에 의해 제조된 활성탄소 각각의 특성 값들은 다음과 같은 방법에 의하여 측정하였다.In the present invention, the characteristic values of each of the activated carbons prepared by Examples and Comparative Examples were measured by the following method.

실험예 1. 표면 개질된 활성탄소의 비표면적 측정Experimental Example 1. Measurement of specific surface area of surface-modified activated carbon

본 발명에 따라 제조된 활성탄소의 표면 구조 특성은 77 K의 액체 질소 분위기 하에서 질소 기체를 흡착질로 하여 흡착량을 측정하였다. 질소 등온 흡착 시험 후, 질소 흡착 등온선을 통해 BET 비표면적을 계산하였다. Surface structure characteristics of the activated carbon prepared according to the present invention was measured by the adsorption of nitrogen gas under a 77 K liquid nitrogen atmosphere. After the nitrogen isotherm adsorption test, the BET specific surface area was calculated via nitrogen adsorption isotherms.

아래 표 1에서는 아민관능기가 도입된 활성탄소 등의 비표면적 측정 결과 및 표면 화학적 조성 분석 결과를 나타내었다.Table 1 below shows the specific surface area measurement results and surface chemical composition analysis results of activated carbon including an amine functional group.

표 1에 나타난 바와 같이, 본 발명의 방법으로 표면처리한 활성탄소는 처리 하지 않은 활성탄소에 비해 BET 비표면적이 감소하였으며, 이는 글리시딜 메타크릴레이트(GMA)가 활성탄소의 기공을 막는 현상으로 설명할 수 있다. As shown in Table 1, the activated carbon surface-treated by the method of the present invention has a reduced BET specific surface area compared to the activated carbon, which is a phenomenon in which glycidyl methacrylate (GMA) blocks the pores of activated carbon. It can be explained.

또한 본 발명의 실시예에 따라 표면처리한 활성탄소는 처리하지 않은 활성탄소에 비해 질소함량이 증가하였으며, 이는 그래프트 중합을 위한 글리시딜 메타크릴레이트(GMA)의 양이 증가할수록 도입된 다이에틸렌 트라이아민(DETA)의 함량이 증가함에 따른 결과로 해석할 수 있다. 이러한 질소 성분은 탄소표면의 염기적 특성을 증가시켜, 산성 가스와의 흡착에 대한 선택성을 증가시켜 줄 것으로 판단되며, 도 3에 나타난 바와 같이 고온 조건에서 이산화탄소에 대한 흡착량을 증가시켜 주는 것을 알 수 있다.In addition, the activated carbon surface-treated according to an embodiment of the present invention increased the nitrogen content compared to the untreated activated carbon, which is introduced as the amount of glycidyl methacrylate (GMA) for graft polymerization increases This can be interpreted as a result of increasing triamine (DETA) content. This nitrogen component is believed to increase the basic properties of the carbon surface, thereby increasing the selectivity for adsorption with acidic gas, as shown in Figure 3 increases the adsorption amount for carbon dioxide at high temperature conditions Can be.

[표 1][Table 1]

Figure 112010063625894-pat00001

Figure 112010063625894-pat00001

실험예Experimental Example 2. 표면  2. Surface 개질된Reformed 활성탄소의Activated carbon 표면 관찰 Surface observation

본 발명에 따라 제조된 개질되기 전과 후의 활성탄소 표면을 주사전자현미경 (Scanning Electron microscope, SEM; S-4200, Hitachi, Japan)을 통해 관찰하였다. 본 발명의 실시예 2 및 비교예 1의 SEM 관찰 결과를 도 2에서 나타내었다.The activated carbon surfaces prepared before and after the modifications according to the present invention were observed through a scanning electron microscope (SEM; S-4200, Hitachi, Japan). SEM observation results of Example 2 and Comparative Example 1 of the present invention are shown in FIG.

도 2에서 알 수 있듯이, 본 발명의 실시예 2는 활성탄소 표면에 생성된 라디칼에 대하여 글리시딜 메타크릴레이트(GMA)가 그래프트 중합반응을 함으로써 탄소표면으로부터 성장하였으며, 표 1에 나타낸 바와 같이 활성탄소 표면의 기공이 일부 막히는 현상을 보여주고 있다.
As can be seen in Figure 2, Example 2 of the present invention was grown from the carbon surface by glycidyl methacrylate (GMA) graft polymerization of the radicals generated on the surface of the activated carbon, as shown in Table 1 The pores on the surface of activated carbon are partially blocked.

실험예 3. 표면 개질된 활성탄소에 따른 이산화탄소 흡착량의 측정Experimental Example 3 Measurement of Carbon Dioxide Adsorption According to Surface-Modified Activated Carbon

본 발명에 따라 각각 제조된 활성탄소의 온도에 따른 이산화탄소 흡착량을 확인하고자, 298 K에서 50 cm3/min의 이산화탄소 가스를 가하면서 578 K까지 0.5 K/min의 속도로 온도를 높이면서 이산화탄소의 화학적 탈착량을 측정하였다. 그 결과를 도 3에서 나타내었다.In order to confirm the carbon dioxide adsorption amount according to the temperature of the activated carbon prepared according to the present invention, while increasing the temperature at a rate of 0.5 K / min to 578 K while adding a carbon dioxide gas of 50 cm 3 / min at 298 K Desorption amount was measured. The results are shown in FIG.

도 3에 있어 본 발명의 방법으로 표면처리 한 활성탄소는 표면개질을 통하여 온도 증가에 따른 이산화탄소의 흡착량을 증가시킬 수 있다는 것을 확인하였으며, 이러한 이산화탄소 흡착량의 변화에 있어서 표면처리 한 활성탄소의 경우 그렇지 않은 활성탄소에 비해 고온 조건에서 이산화탄소 흡착량을 유지할 수 있었다. 또한, 글리시딜 메타크릴레이트(GMA)의 처리량이 증가함에 따라 글리시딜 메타크릴레이트(GMA)의 에폭시기에 도입되는 다이에틸렌 트라이아민(DETA)의 양이 증가하여 산성가스인 이산화탄소에 대해 잠재적 염기자리로 작용하며, 고온 조건에서 이산화탄소에 대한 흡착량이 향상됨을 확인하였다.
In Figure 3 it was confirmed that the activated carbon surface-treated by the method of the present invention can increase the adsorption amount of carbon dioxide according to the temperature increase through the surface modification, in the case of the activated carbon surface-treated in the change of the carbon dioxide adsorption amount Compared with activated carbon, carbon dioxide adsorption was maintained at high temperature. In addition, as the throughput of glycidyl methacrylate (GMA) increases, the amount of diethylene triamine (DETA) introduced into the epoxy group of glycidyl methacrylate (GMA) increases, thus increasing the potential for acidic carbon dioxide. Acting as a base site, it was confirmed that the adsorption amount for carbon dioxide is improved at high temperature conditions.

Claims (11)

(1) 활성탄소 표면에 라디칼을 생성시키기 위해 퍼옥사이드(peroxide)를 활성탄소 1 g당 1 ~ 2 ㎖ 첨가하여 370 ~ 380 K에서 1 ~ 30분 동안 열분해 하는 단계;
(2) 상기 (1) 단계에서 생성된 라디칼을 반응 개시점으로 하여 활성탄소와 글리시딜 메타크릴레이트(glycidyl methacrylate, GMA)를 유기 용매 중에서 20 ~ 60℃, 6 ~ 48시간 동안 반응시켜 활성탄소에 반응성 단량체를 도입하는 그래프트 중합반응 단계; 및
(3) 상기 그래프트 중합반응을 거친 활성탄소에 유기용매 1,4-다이옥산(1,4-dioxane)에 녹인 다이에틸렌트라이아민(diethylene triamine, DETA)을 첨가하여 60 ~ 100℃에서 6 ~ 48시간 동안 반응시켜 아민 관능기를 도입하는 단계;를 포함하는 활성탄소의 표면처리 방법.
(1) adding 1 to 2 ml of peroxide per g of activated carbon to generate radicals on the surface of the activated carbon, and pyrolyzing at 370 to 380 K for 1 to 30 minutes;
(2) Activated by reacting activated carbon and glycidyl methacrylate (GMA) in an organic solvent for 20 to 60 ° C. for 6 to 48 hours using the radicals generated in step (1) as a reaction starting point. A graft polymerization step of introducing a reactive monomer into carbon; And
(3) 6 to 48 hours at 60 to 100 ° C. by adding diethylene triamine (DETA) dissolved in organic solvent 1,4-dioxane to the activated carbon after the graft polymerization reaction. Reacting during the step of introducing an amine functional group; the surface treatment method of the activated carbon comprising a.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 제1항의 표면처리 방법으로 처리되어 아민 관능기가 도입된 활성탄소.Activated carbon treated with the surface treatment method of claim 1 introduced with an amine functional group. 제10항의 활성탄소를 포함하며 100 ~ 400℃의 고온에서 이산화탄소 흡착능이 향상된 이산화탄소 흡착제.Carbon dioxide adsorbent containing activated carbon of claim 10 and improved carbon dioxide adsorption capacity at a high temperature of 100 ~ 400 ℃.
KR1020100095910A 2010-10-01 2010-10-01 Surface Treatment Method of Activated Carbon KR101216020B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100095910A KR101216020B1 (en) 2010-10-01 2010-10-01 Surface Treatment Method of Activated Carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100095910A KR101216020B1 (en) 2010-10-01 2010-10-01 Surface Treatment Method of Activated Carbon

Publications (2)

Publication Number Publication Date
KR20120034382A KR20120034382A (en) 2012-04-12
KR101216020B1 true KR101216020B1 (en) 2012-12-27

Family

ID=46136774

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100095910A KR101216020B1 (en) 2010-10-01 2010-10-01 Surface Treatment Method of Activated Carbon

Country Status (1)

Country Link
KR (1) KR101216020B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103894148B (en) * 2014-03-19 2015-10-21 同济大学 A kind of modifying method of activated carbon effectively removing trace acidic gas in air
US11682759B2 (en) 2019-04-17 2023-06-20 Samsung Sdi Co., Ltd. Anode active material, anode including the same, and lithium secondary battery including the anode
CN115888649B (en) * 2022-11-16 2024-03-19 江苏大学 Method and device for adsorbing VOCs (volatile organic compounds) by using active component modified biochar based on high-energy radiation induction

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. Korean Ind. Eng. Chem. Vol.12, 2001, pages 730-737*

Also Published As

Publication number Publication date
KR20120034382A (en) 2012-04-12

Similar Documents

Publication Publication Date Title
Wang et al. Highly efficient CO2 adsorption by nitrogen-doped porous carbons synthesized with low-temperature sodium amide activation
Hao et al. Rapid synthesis of nitrogen‐doped porous carbon monolith for CO2 capture
Travis et al. Superior CO 2 adsorption from waste coffee ground derived carbons
Sivadas et al. Nitrogen-enriched microporous carbon derived from sucrose and urea with superior CO2 capture performance
Drage et al. Preparation of carbon dioxide adsorbents from the chemical activation of urea–formaldehyde and melamine–formaldehyde resins
Sevilla et al. N‐doped polypyrrole‐based porous carbons for CO2 capture
Le et al. Preparation and characterization of PEI-loaded MCM-41 for CO2 capture
CN107661748B (en) Organic amine functionalized large pore volume silica CO2Adsorbent and preparation method thereof
Sihn et al. Rapid extraction of uranium ions from seawater using novel porous polymeric adsorbents
Zhao et al. Effect of chemical modification on carbon dioxide adsorption property of mesoporous silica
CN108816190B (en) Alumina-activated carbon composite material and preparation method thereof
Kang et al. Adsorption of basic dyes using walnut shell-based biochar produced by hydrothermal carbonization
CA3042268A1 (en) Pcstructures including supported polyamines and methods of making the supported polyamines
Luo et al. Preparation of N-doped activated carbons with high CO 2 capture performance from microalgae (Chlorococcum sp.)
Huang et al. From fish scales to highly porous N-doped carbon: a low cost material solution for CO 2 capture
CN102614833B (en) Modified titanium nanotube absorbent for absorbing carbon dioxide and preparation method and application thereof
Huang et al. Adsorption of CO2 on chitosan modified CMK-3 at ambient temperature
Ma et al. Nitrogen‐doping microporous adsorbents prepared from palm kernel with excellent CO2 capture property
KR101216020B1 (en) Surface Treatment Method of Activated Carbon
KR102028613B1 (en) Amine-functionalized MOF-based CO2 adsorbents
Shen et al. A green synthesis of PEI@ nano-SiO 2 adsorbent from coal fly ash: selective and efficient CO 2 adsorption from biogas
Wang et al. Green synthesis of polypyrrole for CO 2 capture from humid flue gases
He et al. Facile synthesis of nitrogen-doped porous carbon for selective CO2 capture
CN116850956A (en) Modified ZIF-8-based nitrogen-doped carbon CO 2 Method for preparing adsorbent
KR20120004580A (en) Carbon dioxide absorbents using mesoporous material and carbon dioxide removal method using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151001

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170829

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180823

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20191219

Year of fee payment: 8