KR102217979B1 - Amine-functionalized MOF based carbon dioxide adsorbents comprising binders - Google Patents

Amine-functionalized MOF based carbon dioxide adsorbents comprising binders Download PDF

Info

Publication number
KR102217979B1
KR102217979B1 KR1020170163658A KR20170163658A KR102217979B1 KR 102217979 B1 KR102217979 B1 KR 102217979B1 KR 1020170163658 A KR1020170163658 A KR 1020170163658A KR 20170163658 A KR20170163658 A KR 20170163658A KR 102217979 B1 KR102217979 B1 KR 102217979B1
Authority
KR
South Korea
Prior art keywords
carbon dioxide
dobpdc
binder
een
dioxide adsorbent
Prior art date
Application number
KR1020170163658A
Other languages
Korean (ko)
Other versions
KR20180117023A (en
Inventor
홍창섭
이화영
강민정
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of KR20180117023A publication Critical patent/KR20180117023A/en
Application granted granted Critical
Publication of KR102217979B1 publication Critical patent/KR102217979B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28019Spherical, ellipsoidal or cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3042Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Abstract

본 발명은 결합제를 포함하는 아민 기능화 MOF 기반의 이산화탄소 흡착제에 관한 것으로, 더욱 상세하게는 결합제를 이용함으로써 실제 유동층에서도 효과적으로 이산화탄소를 포집할 수 있을 뿐만 아니라 기계적 강도가 향상되어 재사용시 흡착 능력을 유지할 수 있는, 결합제를 포함하는 아민 기능화 MOF 기반의 이산화탄소 흡착제에 관한 것이다.
본 발명에 따르면, 아민 기능화된 다공성 금속-유기 골격체(MOF)에 존재하는 금속 이온과 결합제의 결합으로 인하여 기계적 강도를 향상시킬 수 있으며, 결합제의 함량에 따라 기계적 강도를 조절할 수 있는 이산화탄소 흡착제 및 그 제조방법을 제공할 수 있다.
The present invention relates to an amine-functionalized MOF-based carbon dioxide adsorbent containing a binder, and more particularly, by using a binder, it is possible to effectively capture carbon dioxide in an actual fluidized bed as well as improve mechanical strength to maintain adsorption capacity during reuse. It relates to an amine functionalized MOF based carbon dioxide adsorbent comprising a binder.
According to the present invention, a carbon dioxide adsorbent capable of improving mechanical strength due to the combination of metal ions present in the amine-functionalized porous metal-organic framework (MOF) and a binder, and controlling the mechanical strength according to the content of the binder, and The manufacturing method can be provided.

Description

결합제를 포함하는 아민 기능화 MOF 기반의 이산화탄소 흡착제{Amine-functionalized MOF based carbon dioxide adsorbents comprising binders}Amine-functionalized MOF based carbon dioxide adsorbents comprising binders

본 발명은 결합제를 포함하는 아민 기능화 MOF 기반의 이산화탄소 흡착제에 관한 것으로, 더욱 상세하게는 결합제를 이용함으로써 실제 유동층에서도 효과적으로 이산화탄소를 포집할 수 있을 뿐만 아니라 기계적 강도가 향상되어 재사용시 흡착 능력을 유지할 수 있는 결합제를 포함하는 아민 기능화 MOF 기반의 이산화탄소 흡착제에 관한 것이다.The present invention relates to an amine-functionalized MOF-based carbon dioxide adsorbent containing a binder, and more particularly, by using a binder, it is possible to effectively capture carbon dioxide in an actual fluidized bed as well as improve mechanical strength to maintain adsorption capacity during reuse. It relates to an amine functionalized MOF-based carbon dioxide adsorbent comprising a binder.

지구 온난화의 주범인 CO2 배출량의 30-40%는 화력발전소에서 발생하며, 배가스에서의 CO2 농도는 150 mbar이다. 가스와 고체 흡착제의 사이에서의 효과적인 흡착을 위한 유동층에서는 층의 바닥에서부터 흡착과정이 진행되고, 층의 윗부분에 도달하면 약 30 mbar까지 CO2의 농도가 감소하게 된다. 따라서 유동층에서 사용되는 고체 흡착제는 넓은 범위의 CO2 농도에서 흡착이 가능해야 한다.30 to 40% of the main cause of global warming, emission of CO 2 is caused in the thermal power plant, a CO 2 concentration in the exhaust gas is 150 mbar. In a fluidized bed for effective adsorption between gas and solid adsorbent, the adsorption process proceeds from the bottom of the bed, and when reaching the upper part of the bed, the concentration of CO 2 decreases to about 30 mbar. Therefore, the solid adsorbent used in the fluidized bed must be capable of adsorbing in a wide range of CO 2 concentrations.

또한, 흡착 과정 후, 흡착제는 재생기로 옮겨져 재활성화 되는데 기존의 흡착제들은 고농도 CO2 및 저온 환경에서 탈착과정이 잘 이뤄지지 않아 재사용에 문제가 있었다. 따라서, 저농도에서의 높은 흡착능 뿐만 아니라 고농도에서 탈착이 잘 이루어지는 흡착제에 대한 연구가 활발히 이루어지고 있다.In addition, after the adsorption process, the adsorbent is transferred to the regenerator and reactivated. Existing adsorbents have problems in reuse because the desorption process is not well performed in a high concentration CO 2 and low temperature environment. Accordingly, studies on adsorbents that perform well desorption at high concentrations as well as high adsorption capacity at low concentrations have been actively conducted.

고체 흡착제 중 금속-유기 골격체(MOF, metal-organic framework)는 큰 표면적을 갖고 있고, 기공을 조절할 수 있다는 이점이 있어, CO2 포집을 위한 효과적인 흡착제로 사용하기 위한 연구가 진행 중에 있다. 기존 연구에서는 루이스산으로 작용하는 열린 금속 자리(open metal sites)를 이용했으며, 이것은 CO2 분자와의 강한 상호작용을 유발해 높은 CO2 포집능을 보여 주었다. 하지만, 수분이 있는 환경에서 열린 금속 자리와 상호작용한 물분자는 제거하기가 힘들고, 이에 따라 CO2 포집능까지 감소하는 문제점이 존재한다. Among the solid adsorbents, the metal-organic framework (MOF) has a large surface area and has the advantage of being able to control pores, and thus studies are underway to use it as an effective adsorbent for CO 2 capture. In previous studies, open metal sites that act as Lewis acids were used, which induces strong interactions with CO 2 molecules, showing high CO 2 capture capacity. However, it is difficult to remove water molecules that interact with open metal sites in an environment with moisture, and thus there is a problem in that the CO 2 capture capacity is reduced.

이에, 후-합성 변형(post-synthetic modification)을 통한 아민 기능화된 금속-유기 골격체(MOF)가 보고되었으며, 상기 MOF는 유동층에서 저농도 CO2를 선택적으로 흡착할 뿐만 아니라 재활용이 가능하다는 장점이 있는 것으로 알려졌다. 그러나, 상기 MOF의 기반의 이산화탄소 흡착제의 경우에는 실제 공정에서 재사용할 경우 기계적인 마모로 인하여 흡착 능력이 급격히 감소하게 된다는 문제점이 존재한다.Accordingly, an amine functionalized metal-organic framework (MOF) through post-synthetic modification has been reported, and the MOF has the advantage of being able to recycle as well as selectively adsorb low concentration CO 2 in a fluidized bed. It is known that there is. However, in the case of the MOF-based carbon dioxide adsorbent, when reused in an actual process, there is a problem that the adsorption capacity rapidly decreases due to mechanical wear.

따라서, MOF의 기계적 강도 향상을 통해 실제 공정에서 재사용시 기계적인 마모를 줄임으로써 흡착 능력을 유지할 수 있는 흡착제의 개발이 요구되는 실정이다.Therefore, there is a need to develop an adsorbent capable of maintaining adsorption capacity by reducing mechanical wear when reused in an actual process by improving the mechanical strength of MOF.

대한민국 공개특허 제10-2015-0007484호Republic of Korea Patent Publication No. 10-2015-0007484

본 발명은 전술한 문제점을 해결하기 위해 안출된 것으로, 본 발명의 목적은 기계적 강도가 향상되어 실제 공정에서 재사용시 기계적인 마모로 인한 이산화탄소 흡착능 감소를 방지할 수 있는 이산화탄소 흡착제 및 이의 제조방법을 제공하는 것이다.The present invention has been conceived to solve the above-described problems, and an object of the present invention is to provide a carbon dioxide adsorbent and a method of manufacturing the same, which can prevent a decrease in carbon dioxide adsorption capacity due to mechanical wear during reuse in an actual process by improving mechanical strength. Is to do.

본 발명은 상기 과제를 해결하기 위하여, 결합제; 및 일차 아민기를 함유한 다가 아민이 도입된 다공성 금속-유기 골격체;를 포함하는 이산화탄소 흡착제를 제공한다.The present invention to solve the above problems, the binder; It provides a carbon dioxide adsorbent comprising; and a porous metal-organic skeleton into which a polyvalent amine containing a primary amine group is introduced.

또한, 본 발명은 일차 아민기를 함유한 다가 아민이 도입된 다공성 금속-유기 골격체 분말을 결합제와 혼합하는 단계; 상기 혼합물에 물을 첨가 및 반죽하여 성형하는 단계; 및 상기 성형된 혼합물을 건조시키는 단계;를 포함하는 이산화탄소 흡착제의 제조방법을 제공한다.In addition, the present invention comprises the steps of mixing a porous metal-organic framework powder into which a polyvalent amine containing a primary amine group is introduced with a binder; Adding water to the mixture and kneading to form the mixture; And it provides a method for producing a carbon dioxide adsorbent comprising; and drying the molded mixture.

본 발명에 따르면, 상기 결합제는 산화알루미늄(Al2O3), 하이드로탈사이트(hydrotalcite), 수크로오스(sucrose), 셀룰로오스(cellulose), 건식 실리카(fumed silica), 실리카 졸(Silica sol) 및 알루미나 졸(Alumina sol)로 이루어진 군에서 선택될 수 있다.According to the present invention, the binder is aluminum oxide (Al 2 O 3 ), hydrotalcite, sucrose, cellulose, fumed silica, silica sol, and alumina sol. It may be selected from the group consisting of (Alumina sol).

본 발명에 따르면, 상기 다공성 금속-유기 골격체와 상기 결합제는 80:20 내지 97:3의 중량비로 혼합될 수 있다.According to the present invention, the porous metal-organic framework and the binder may be mixed in a weight ratio of 80:20 to 97:3.

본 발명에 따르면, 상기 혼합물과 상기 물은 1:0.5-5의 중량비로 혼합될 수 있다. According to the present invention, the mixture and the water may be mixed in a weight ratio of 1:0.5-5.

본 발명에 따르면, 상기 혼합물을 구형 펠릿(pellet) 형태로 성형할 수 있다.According to the present invention, the mixture can be molded into spherical pellets.

본 발명에 따르면, 상기 다가 아민은 하기 화학식 1 내지 15로 표시되는 화합물 중에서 선택될 수 있다.According to the present invention, the polyvalent amine may be selected from compounds represented by Formulas 1 to 15 below.

[화학식 1 내지 15][Chemical Formulas 1 to 15]

Figure 112017119991248-pat00001
Figure 112017119991248-pat00001

본 발명에 따르면, 상기 다공성 금속-유기 골격체는 M2(dobpdc), M2(dobdc), M2(dondc) 및 M2(dotpdc)로 이루어진 군에서 선택될 수 있고, 여기서, 금속 M은 Mg, Ti, V, Cr, Mn, Co, Ni, Cu 또는 Zn이고, dobpdc는 4,4'-디옥시도-3,3'-비페닐디카복실레이트이며, dobdc는 2,5-디옥시도-1,4-벤젠디카복실레이트이고, dondc는 1,5-디옥사이드-2,6-나프탈렌디카복실레이트이고, dotpdc는 4,4'-디옥시도-3,3'-트리페닐디카복실레이트일 수 있다.According to the present invention, the porous metal-organic framework may be selected from the group consisting of M 2 (dobpdc), M 2 (dobdc), M 2 (dondc) and M 2 (dotpdc), wherein the metal M is Mg, Ti, V, Cr, Mn, Co, Ni, Cu or Zn, dobpdc is 4,4'-dioxido-3,3'-biphenyldicarboxylate, and dobdc is 2,5-dioxy Figure-1,4-benzenedicarboxylate, dondc is 1,5-dioxide-2,6-naphthalenedicarboxylate, dotpdc is 4,4'-dioxido-3,3'-triphenyldicarboxyl It can be a rate.

본 발명에 따르면, 아민 기능화된 다공성 금속-유기 골격체(MOF)에 존재하는 금속 이온과 결합제의 결합으로 인하여 기계적 강도를 향상시킬 수 있으며, 결합제의 함량에 따라 기계적 강도를 조절할 수 있는 이산화탄소 흡착제 및 그 제조방법을 제공할 수 있다.According to the present invention, a carbon dioxide adsorbent capable of improving mechanical strength due to the combination of metal ions present in the amine-functionalized porous metal-organic framework (MOF) and a binder, and controlling the mechanical strength according to the content of the binder, and The manufacturing method can be provided.

따라서, 본 발명에 따른 이산화탄소 흡착제는 실제 공정 적용시에 기계적 마모 현상을 방지함으로써 재사용시에도 이산화탄소 흡착능력을 우수하게 유지할 수 있다.Accordingly, the carbon dioxide adsorbent according to the present invention can maintain excellent carbon dioxide adsorption capacity even when reused by preventing mechanical abrasion during actual process application.

도 1은 실시예 1 내지 7에 따라 제조된 이산화탄소 흡착제의 PXRD 패턴이다.
도 2는 본 발명에 사용된 아민 기능화된 다공성 금속-유기 골격체(een-Mg2(dobpdc))의 열무게분석(TGA) 곡선을 나타낸 그래프이다.
도 3은 본 발명에 사용된 een-Mg2(dobpdc)과 실시예 1 내지 7에 따라 제조된 이산화탄소 흡착제의 N-H 신축모드 IR 스펙트럼이다.
도 4는 실시예 1 내지 7에 따라 제조된 이산화탄소 흡착제의 SEM 이미지이다.
도 5는 15% CO2 조건하에서, 실시예 1 내지 7에 따라 제조된 이산화탄소 흡착제의 TGA 곡선을 나타낸 그래프이다.
도 6은 15% CO2 조건하에서, 실시예 1에 따라 제조된 이산화탄소 흡착제의 결합제와 een-Mg2(dobpdc)의 혼합 비율에 따른 TGA 곡선을 나타낸 그래프이다.
도 7은 15% CO2 조건하에서, 실시예 3에 따라 제조된 이산화탄소 흡착제의 결합제와 een-Mg2(dobpdc)의 혼합 비율에 따른 TGA 곡선을 나타낸 그래프이다.
도 8은 15% CO2 조건하에서, 실시예 5에 따라 제조된 이산화탄소 흡착제의 결합제와 een-Mg2(dobpdc)의 혼합 비율에 따른 TGA 곡선을 나타낸 그래프이다.
도 9는 15% CO2 조건하에서, 실시예 7에 따라 제조된 이산화탄소 흡착제의 결합제와 een-Mg2(dobpdc)의 혼합 비율에 따른 TGA 곡선을 나타낸 그래프이다.
도 10은 실시예 1에 따라 제조된 이산화탄소 흡착제의 결합제와 een-Mg2(dobpdc)의 혼합 비율에 따른 N2 흡착 등온선을 나타낸 그래프이다.
도 11은 실시예 6에 따라 제조된 이산화탄소 흡착제의 결합제와 een-Mg2(dobpdc)의 혼합 비율에 따른 N2 흡착 등온선을 나타낸 그래프이다.
도 12는 실시예 7에 따라 제조된 이산화탄소 흡착제의 결합제와 een-Mg2(dobpdc)의 혼합 비율에 따른 N2 흡착 등온선을 나타낸 그래프이다.
도 13은 실시예 1에 따라 제조된 이산화탄소 흡착제의 결합제와 een-Mg2(dobpdc)의 혼합 비율에 따른 흡착 및 탈착 사이클을 나타낸 그래프이다.
도 14는 실시예 5에 따라 제조된 이산화탄소 흡착제의 흡착 및 탈착 사이클을 나타낸 그래프이다.
1 is a PXRD pattern of carbon dioxide adsorbents prepared according to Examples 1 to 7.
2 is a graph showing a thermal weight analysis (TGA) curve of an amine-functionalized porous metal-organic framework (een-Mg 2 (dobpdc)) used in the present invention.
3 is a NH stretch mode IR spectrum of een-Mg 2 (dobpdc) used in the present invention and carbon dioxide adsorbents prepared according to Examples 1 to 7.
4 is an SEM image of a carbon dioxide adsorbent prepared according to Examples 1 to 7.
5 is a graph showing a TGA curve of carbon dioxide adsorbents prepared according to Examples 1 to 7 under 15% CO 2 conditions.
6 is a graph showing the TGA curve according to the mixing ratio of the binder of the carbon dioxide adsorbent prepared according to Example 1 and een-Mg 2 (dobpdc) under 15% CO 2 conditions.
7 is a graph showing the TGA curve according to the mixing ratio of the binder of the carbon dioxide adsorbent prepared according to Example 3 and een-Mg 2 (dobpdc) under 15% CO 2 conditions.
8 is a graph showing a TGA curve according to the mixing ratio of the binder of the carbon dioxide adsorbent prepared according to Example 5 and een-Mg 2 (dobpdc) under 15% CO 2 conditions.
9 is a graph showing the TGA curve according to the mixing ratio of the binder of the carbon dioxide adsorbent prepared according to Example 7 and een-Mg 2 (dobpdc) under 15% CO 2 conditions.
10 is a graph showing the N 2 adsorption isotherm according to the mixing ratio of the binder of the carbon dioxide adsorbent prepared according to Example 1 and een-Mg 2 (dobpdc).
11 is a graph showing the N 2 adsorption isotherm according to the mixing ratio of the binder of the carbon dioxide adsorbent prepared according to Example 6 and een-Mg 2 (dobpdc).
12 is a graph showing the N 2 adsorption isotherm according to the mixing ratio of the binder of the carbon dioxide adsorbent prepared according to Example 7 and een-Mg 2 (dobpdc).
13 is a graph showing the adsorption and desorption cycle according to the mixing ratio of the binder of the carbon dioxide adsorbent prepared according to Example 1 and een-Mg 2 (dobpdc).
14 is a graph showing the cycle of adsorption and desorption of the carbon dioxide adsorbent prepared according to Example 5.

이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에서는 다공성 금속-유기 골격체의 기계적 강도 향상을 통해 실제 공정에서 재사용시 기계적 마모로 인한 이산화탄소 흡착능 감소를 방지할 수 있는 이산화탄소 흡착제 및 이의 제조방법을 제공하고자 한다.An object of the present invention is to provide a carbon dioxide adsorbent capable of preventing a decrease in carbon dioxide adsorption capacity due to mechanical wear when reused in an actual process by improving the mechanical strength of a porous metal-organic framework, and a method of manufacturing the same.

이에, 본 발명은 결합제; 및 일차 아민기를 함유한 다가 아민이 도입된 다공성 금속-유기 골격체;를 포함하는 이산화탄소 흡착제를 제공한다.Thus, the present invention is a binder; It provides a carbon dioxide adsorbent comprising; and a porous metal-organic skeleton into which a polyvalent amine containing a primary amine group is introduced.

이때, 상기 결합제는 산화알루미늄(Al2O3), 하이드로탈사이트(hydrotalcite), 수크로오스(sucrose), 셀룰로오스(cellulose), 건식 실리카(fumed silica), 실리카 졸(Silica sol) 및 알루미나 졸(Alumina sol)로 이루어진 군에서 선택될 수 있다.At this time, the binder is aluminum oxide (Al 2 O 3 ), hydrotalcite, sucrose, cellulose, fumed silica, silica sol, and alumina sol. ) May be selected from the group consisting of.

본 발명은 상기 결합제의 도입을 통해 다공성 금속-유기 골격체의 기계적 강도 향상을 통해 재사용시에도 이산화탄소 흡착능을 우수하게 유지할 수 있는바, 하기 실시예의 결과로부터 알 수 있는 바와 같이 상기 다공성 금속-유기 골격체와 상기 결합제는 80:20 내지 97:3의 중량비로 혼합되는 것이 바람직하다.The present invention is capable of maintaining excellent carbon dioxide adsorption capacity even when reused by improving the mechanical strength of the porous metal-organic framework through the introduction of the binder. As can be seen from the results of the following examples, the porous metal-organic framework The sieve and the binder are preferably mixed in a weight ratio of 80:20 to 97:3.

한편, 상기 다공성 금속-유기 골격체는 결정성 고체로서 다공성을 지니므로 기체 흡착에 유리하다. 바람직하게는 본 발명의 다공성 금속-유기 골격체는 공동 쪽으로 고밀도의 열린 금속자리(open metal sites)를 포함할 수 있다.On the other hand, the porous metal-organic framework is a crystalline solid and has porosity, which is advantageous for gas adsorption. Preferably, the porous metal-organic framework of the present invention may contain high-density open metal sites toward the cavity.

본 발명에 따르면, 상기 다공성 금속-유기 골격체는 M2(dobpdc), M2(dobdc), M2(dondc) 및 M2(dotpdc)로 이루어진 군에서 선택될 수 있다. 이 경우, 금속 M은 Mg, Ti, V, Cr, Mn, Co, Ni, Cu 또는 Zn일 수 있으며, 바람직하게는 Mg이다. 또한, 상기 dobpdc는 4,4'-디옥시도-3,3'-비페닐디카복실레이트이며, dobdc는 2,5-디옥시도-1,4-벤젠디카복실레이트이고, dondc는 1,5-디옥사이드-2,6-나프탈렌디카복실레이트이고, dotpdc는 4,4'-디옥시도-3,3'-트리페닐디카복실레이트이다.According to the present invention, the porous metal-organic framework may be selected from the group consisting of M 2 (dobpdc), M 2 (dobdc), M 2 (dondc) and M 2 (dotpdc). In this case, the metal M may be Mg, Ti, V, Cr, Mn, Co, Ni, Cu or Zn, preferably Mg. In addition, the dobpdc is 4,4'-dioxido-3,3'-biphenyldicarboxylate, dobdc is 2,5-dioxido-1,4-benzenedicarboxylate, dondc is 1, 5-dioxide-2,6-naphthalenedicarboxylate and dotpdc is 4,4'-dioxido-3,3'-triphenyldicarboxylate.

또한, 상기 다공성 금속-유기 골격체는 일차 아민기를 함유한 다가 아민이 도입된 것을 사용하는 것이 바람직하다. 이러한 다공성 금속-유기 골격체의 아민기능화를 통해 이산화탄소 흡착제가 낮은 농도의 이산화탄소를 포집할 수 있다. 특히, 공기 중 이산화탄소 포집을 위해서는 다공성 금속-유기 골격체의 공동 안에 고밀도의 아민기가 도입된 것을 사용하는 것이 바람직하다. 상기 고밀도의 아민기 도입을 통해 아민기와 CO2의 탄소 원자 간의 상호작용에 의한 흡착엔탈피를 획기적으로 향상시킬 수 있다. 이러한 아민 기능화는 상기 다공성 금속-유기 골격체의 열린 금속자리에 아민기가 그래프트됨으로써 달성되며, 열린 금속자리는 루이스 산(Lewis acid)으로 작용한다. 이 경우, 일차 아민기는 2개의 수소기를 포함함으로써 열린 금속자리에 잘 배위 결합될 수 있다. 또한, 남아있는 자유 아민기는 공동으로 들어오는 CO2를 효과적으로 포집할 수 있다.In addition, it is preferable to use the porous metal-organic framework in which a polyvalent amine containing a primary amine group is introduced. Through the amine functionalization of the porous metal-organic framework, the carbon dioxide adsorbent can capture low concentration of carbon dioxide. In particular, it is preferable to use a porous metal-organic framework cavity in which a high-density amine group is introduced to capture carbon dioxide in the air. Through the introduction of the high-density amine group, the enthalpy of adsorption due to the interaction between the amine group and the carbon atom of CO 2 can be dramatically improved. This amine functionalization is achieved by grafting an amine group to the open metal site of the porous metal-organic framework, and the open metal site acts as Lewis acid. In this case, the primary amine group can be well coordinated to the open metal site by including two hydrogen groups. In addition, the remaining free amine groups can effectively trap CO 2 entering the cavity.

본 발명에 따른 다가 아민은 2개, 3개, 또는 그 이상의 개수의 아민기 말단을 가질 수 있다. 보다 상세하세는, 상기 다가 아민은 양쪽 말단 각각에 1차 아민기를 포함할 수 있다. 양쪽 말단에 일차 아민기가 존재하는 다가 아민의 경우, 곁가지에 다양한 치환기의 도입이 가능하며, 저압 조건에서 이산화탄소 흡착은 1차 아민기를 통해, 이산화탄소 탈착은 곁가지를 통해 용이하게 조절할 수 있다. 특히, 다가 아민에 존재하는 곁가지는, 다공성 금속-유기 골격체와 아민 간의 결합이 분해되는 것을 방해함으로써 흡착제의 구조적 안정성을 향상시키는데 중요한 역할을 수행할 수 있다. 한편, 상기 다가 아민의 자유 아민기는 일차 아민일 수있다.The polyvalent amine according to the present invention may have two, three, or more amine group ends. In more detail, the polyvalent amine may include a primary amine group at each of both ends. In the case of a polyvalent amine having primary amine groups at both ends, various substituents can be introduced into the side branch, and carbon dioxide adsorption through the primary amine group under low pressure conditions and carbon dioxide desorption through the side branch can be easily controlled. In particular, a side branch present in the polyvalent amine may play an important role in improving the structural stability of the adsorbent by preventing the bond between the porous metal-organic framework and the amine from being decomposed. Meanwhile, the free amine group of the polyvalent amine may be a primary amine.

구체적으로, 본 발명의 다가 아민은 하기 화학식 1 내지 15로 표시되는 화합물 중에서 선택될 수 있다.Specifically, the polyvalent amine of the present invention may be selected from compounds represented by the following Chemical Formulas 1 to 15.

[화학식 1 내지 15][Chemical Formulas 1 to 15]

Figure 112017119991248-pat00002
Figure 112017119991248-pat00002

한편, 본 발명에서는 다공성 금속-유기 골격체의 기계적 강도 향상을 통해 실제 공정에서 재사용시 기계적 마모로 인한 이산화탄소 흡착능 감소를 방지할 수 있는 이산화탄소 흡착제의 제조방법을 제공하는바, 본 발명에 따른 이산화탄소 흡착제의 제조방법은 하기의 단계를 포함한다.Meanwhile, the present invention provides a method of manufacturing a carbon dioxide adsorbent capable of preventing a decrease in carbon dioxide adsorption capacity due to mechanical wear when reused in an actual process by improving the mechanical strength of a porous metal-organic framework. The carbon dioxide adsorbent according to the present invention The manufacturing method includes the following steps.

(a) 일차 아민기를 함유한 다가 아민이 도입된 다공성 금속-유기 골격체 분말을 결합제와 혼합하는 단계;(a) mixing a porous metal-organic framework powder into which a polyvalent amine containing a primary amine group is introduced with a binder;

(b) 상기 혼합물에 물을 첨가 및 반죽하여 성형하는 단계; 및(b) adding water to the mixture and kneading to form the mixture; And

(c) 상기 성형된 혼합물을 건조시키는 단계.(c) drying the molded mixture.

이때, 상기 결합제의 종류, 다공성 금속-유기 골격체 분말과 상기 결합제의 혼합 비율, 다가 아민과 다공성 금속-유기 골격체의 종류에 대한 내용은 상기 이산화탄소 흡착제에서 설명한 것과 동일하다.At this time, the type of the binder, the mixing ratio of the porous metal-organic framework powder and the binder, and the types of the polyvalent amine and the porous metal-organic framework are the same as those described in the carbon dioxide adsorbent.

또한, 상기 (b) 단계에서 상기 일차 아민기를 함유한 다가 아민이 도입된 다공성 금속-유기 골격체 분말을 결합제의 혼합물과 상기 물은 1:0.5-5의 중량비로 혼합되는 것이 바람직하며, 상기 혼합물을 반죽하여 성형 시 구형 펠릿(pellet) 형태로 성형하는 것이 바람직하다.In addition, the porous metal-organic framework powder into which the polyvalent amine containing the primary amine group is introduced in the step (b) is preferably mixed with a mixture of a binder and the water in a weight ratio of 1:0.5-5, and the mixture It is preferable to knead and mold it into a spherical pellet shape.

이하에서는 바람직한 실시예 등을 들어 본 발명을 더욱 상세하게 설명한다. 그러나 이들 실시예 등은 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이에 의하여 제한되지 않는다는 것은 당업계의 통상의 지식을 가진 자에게 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to preferred embodiments and the like. However, these examples and the like are intended to describe the present invention in more detail, and it will be apparent to those of ordinary skill in the art that the scope of the present invention is not limited thereto.

실시예Example

결합제와 With binder 아민기능화된Amine functionalized 다공성 금속-유기 Porous metal-organic 골격체를Skeleton 이용한 이산화탄소 흡착제의 제조 Preparation of carbon dioxide adsorbent using

아민 기능화 MOF로는 een-Mg2(dobpdc)(Ethylethylenediamine, een; 4,4’-Dihydroxy-[1,1’-byphenyl-3,3’-dicarboxylic acid, dobpdc)를 사용하였다. 먼저 상기 een-Mg2(dobpdc)를 molecular sieve 에 거르는 과정을 거쳐 100 μm 이하의 een-Mg2(dobpdc)을 얻은 뒤, 그라인더로 갈아 분말화된 een-Mg2(dobpdc) 흡착제를 수득하였다. 다음으로, 상기 분말화된 een-Mg2(dobpdc)를 결합제인 산화알루미늄(Al2O3), 하이드로탈사이트(hydrotalcite), 수크로오스(sucrose), 셀룰로오스(cellulose), 건식 실리카(fumed silica), 실리카 졸(Silica sol) 및 알루미나 졸(Alumina sol)과 각각 80:20~95:5의 중량비로 균일하게 혼합하였다. 상기 균일하게 혼합된 혼합물에 물을 1:1의 중량비로 첨가하고, 혼합물을 반죽하여 구형의 펠릿(pellet) 형태로 성형하였다. 상기 뭉쳐진 구형 펠릿을 랩으로 밀폐하여 12시간 동안 건조시킨 후, 상기 랩을 개폐하여 12시간 동안 건조시켜 본 발명에 따른 이산화탄소 흡착제를 제조하였다(실시예 1: een-Mg2(dobpdc)@Al2O3, 실시예 2: een-Mg2(dobpdc)@hydrotalcite, 실시예 3: een-Mg2(dobpdc)@sucrose, 실시예 4: een-Mg2(dobpdc)@cellulose, 실시예 5: een-Mg2(dobpdc)@fumed silica, 실시예 6: een-Mg2(dobpdc)@Silica sol, 실시예 7: een-Mg2(dobpdc)@Alumina sol).As the amine functionalized MOF, een-Mg 2 (dobpdc) (Ethylethylenediamine, een; 4,4'-Dihydroxy-[1,1'-byphenyl-3,3'-dicarboxylic acid, dobpdc) was used. First, to obtain the een-Mg 2 (dobpdc) the rear obtained een-Mg 2 (dobpdc) of less than 100 μm, and transfer to grinding powdered een-Mg 2 (dobpdc) adsorbent through a process of filtering the molecular sieve. Next, using the powdered een-Mg 2 (dobpdc) as a binder, aluminum oxide (Al 2 O 3 ), hydrotalcite, sucrose, cellulose, fumed silica, Silica sol and alumina sol were uniformly mixed in a weight ratio of 80:20 to 95:5, respectively. Water was added to the homogeneously mixed mixture in a weight ratio of 1:1, and the mixture was kneaded to form a spherical pellet. The agglomerated spherical pellets were sealed with a wrap and dried for 12 hours, and then the wrap was opened and dried for 12 hours to prepare a carbon dioxide adsorbent according to the present invention (Example 1: een-Mg 2 (dobpdc)@Al 2 O 3 , Example 2: een-Mg 2 (dobpdc)@hydrotalcite, Example 3: een-Mg 2 (dobpdc)@sucrose, Example 4: een-Mg 2 (dobpdc)@cellulose, Example 5: een -Mg 2 (dobpdc)@fumed silica, Example 6: een-Mg 2 (dobpdc)@Silica sol, Example 7: een-Mg 2 (dobpdc)@Alumina sol).

도 1은 실시예 1 내지 7에 따라 제조된 이산화탄소 흡착제의 PXRD 패턴이다(PXRD 데이터 (빨강), een-Mg2(dobpdc) 성형체 (파랑), 결합제 (검정), (a) een-Mg2(dobpdc)@Al2O3, (b) een-Mg2(dobpdc)@Hydrotalcite, (c) een-Mg2(dobpdc)@Sucrose, (d) een-Mg2(dobpdc)@Cellulose, (e) een-Mg2(dobpdc)@fumed silica, (f) een-Mg2(dobpdc)@Silica sol, (g) een-Mg2(dobpdc)@Alumina sol).1 is a PXRD pattern of carbon dioxide adsorbents prepared according to Examples 1 to 7 (PXRD data (red), een-Mg 2 (dobpdc) molded body (blue), binder (black), (a) een-Mg 2 ( dobpdc)@Al 2 O 3 , (b) een-Mg 2 (dobpdc)@Hydrotalcite, (c) een-Mg 2 (dobpdc)@Sucrose, (d) een-Mg 2 (dobpdc)@Cellulose, (e) een-Mg 2 (dobpdc)@fumed silica, (f) een-Mg 2 (dobpdc)@Silica sol, (g) een-Mg 2 (dobpdc)@Alumina sol).

이를 통해 본 발명에 따라 제조된 이산화탄소 흡착제는 기존의 Mg2(dobpdc) 골격체가 가지는 구조적 특징을 결합제를 이용해 합성한 후에도 유지하고 있다는 것을 확인하였다.Through this, it was confirmed that the carbon dioxide adsorbent prepared according to the present invention maintains the structural characteristics of the existing Mg 2 (dobpdc) skeleton even after synthesis using a binder.

amine 기능화 MOF 안정성 실험Amine functionalized MOF stability experiment

본 발명에 사용된 een-Mg2(dobpdc)의 실제 공정에 필요한 펠릿 형태로 만드는 온도 조건하에서 안정성을 평가하였다. een-Mg2(dobpdc) 흡수제를 pellet 형태로 만들기 위하여 spray drier 장비를 이용하게 되는데, 상기 장비는 주입구와 배출구가 200 ℃ 이상의 고온에서 진행되기 때문에 고온에서 een이 MOF의 열린 금속자리에 결합되어 있는 것과, MOF 자체의 안정함을 유지하지 여부를 확인하였다. 구체적으로 상기 een-Mg2(dobpdc) 흡착제의 열적 안정성을 조사하기 위해 TGA 장비를 이용하여 온도를 증가시키며 열 무게를 분석하였다. The stability of een-Mg 2 (dobpdc) used in the present invention was evaluated under temperature conditions to form a pellet required for the actual process. A spray drier equipment is used to make the een-Mg 2 (dobpdc) absorbent into a pellet shape. This equipment is used in which the inlet and outlet are operated at a high temperature of 200 ℃ or higher, so that the een is bonded to the open metal seat of the MOF. And, it was confirmed whether or not the stability of the MOF itself was maintained. Specifically, in order to investigate the thermal stability of the een-Mg 2 (dobpdc) adsorbent, heat weight was analyzed while increasing the temperature using a TGA equipment.

도 2는 본 발명에 사용된 아민 기능화된 다공성 금속-유기 골격체(een-Mg2(dobpdc))의 열무게분석(TGA) 곡선을 나타낸 그래프이다((a) N2 상태 (b) 공기 상태 (c) N2 상태, 흡착제에 물 첨가).Figure 2 is a graph showing the thermal weight analysis (TGA) curve of the amine-functionalized porous metal-organic framework (een-Mg 2 (dobpdc)) used in the present invention ((a) N 2 state (b) air state (c) N 2 state, water added to the adsorbent).

측정 결과, N2 상태에서 een-Mg2(dobpdc)은 288 ℃에서 een 이 손실되는 것으로 보여지고, 445 ℃에서는 MOF 자체가 무너지는 것으로 확인되었다. 또한, 기존 공기 상태에서 een-Mg2(dobpdc) 은 247 ℃에서 een이 손실되는 것으로 보여지고, 332 ℃에서 MOF가 무너지는 것으로 확인되었다. 마지막으로, 질소 분위기에서 성형하지 않은 흡착제에 물을 첨가한 후 열 무게 분석을 실험한 결과 een은 256 ℃에서 손실되는 것으로 보이고, MOF는 448 ℃에서 무너지는 것으로 확인되었다. 이를 통해 본 발명에 사용된 een-Mg2(dobpdc)은 고온에서 열적으로 안정함을 확인하였다.As a result of the measurement, een-Mg 2 (dobpdc) in the N 2 state was found to lose een at 288 °C, and it was confirmed that the MOF itself collapsed at 445 °C. In addition, een-Mg 2 (dobpdc) in the existing air condition was found to lose een at 247 °C, and it was confirmed that MOF collapsed at 332 °C. Finally, after adding water to the unmolded adsorbent in a nitrogen atmosphere, thermogravimetric analysis showed that een was lost at 256°C and MOF collapsed at 448°C. Through this, it was confirmed that een-Mg 2 (dobpdc) used in the present invention is thermally stable at high temperatures.

적외선 스펙트럼과 Infrared spectrum and SEMSEM 연구 Research

도 3은 본 발명에 사용된 een-Mg2(dobpdc)과 실시예 1 내지 7에 따라 제조된 이산화탄소 흡착제의 N-H 신축모드 IR 스펙트럼이다.3 is a NH stretch mode IR spectrum of een-Mg 2 (dobpdc) used in the present invention and carbon dioxide adsorbents prepared according to Examples 1 to 7.

이를 통해 결합제를 도입한 후에도 N-H 결합이 유지됨을 확인하였다.Through this, it was confirmed that the N-H bond was maintained even after introducing the binder.

도 4는 실시예 1 내지 7에 따라 제조된 이산화탄소 흡착제의 SEM 이미지이다((a) een-Mg2(dobpdc)@Al2O3, (b) een-Mg2(dobpdc)@Hydrotalcite, (c) een-Mg2(dobpdc)@Sucrose, (d) een-Mg2(dobpdc)@Cellulose, (e) een-Mg2(dobpdc)@fumed silica, (f) een-Mg2(dobpdc)@Silica sol, (g) een-Mg2(dobpdc)@Alumina sol)).4 is an SEM image of the carbon dioxide adsorbent prepared according to Examples 1 to 7 ((a) een-Mg 2 (dobpdc)@Al 2 O 3 , (b) een-Mg 2 (dobpdc)@Hydrotalcite, (c ) een-Mg 2 (dobpdc)@Sucrose, (d) een-Mg 2 (dobpdc)@Cellulose, (e) een-Mg 2 (dobpdc)@fumed silica, (f) een-Mg 2 (dobpdc)@Silica sol, (g) een-Mg 2 (dobpdc)@Alumina sol)).

이를 통해 본 발명의 실시예 1 내지 7에 따라 제조된 이산화탄소 흡착제는 모두 een-Mg2(dobpdc)이 결합제 표면에 결합되어 있는 형상임을 확인하였다.Through this, it was confirmed that all the carbon dioxide adsorbents prepared according to Examples 1 to 7 of the present invention had een-Mg 2 (dobpdc) bound to the surface of the binder.

이산화탄소 흡착 평가Carbon dioxide adsorption evaluation

본 발명의 실시예 1 내지 7에 따라 제조된 이산화탄소 흡착제(아민기능화 MOF와 결합제의 혼합 중량비는 80:20)의 흡착 성능을 평가하기 위해, 실시예 1 내지 5에 따른 이산화탄소 흡착제를 15% 이산화탄소 85% 질소분위기에서 130 ℃로 전처리 후, 40 ℃ 흡착, 130 ℃ 탈착 조건에서 TG를 측정하였다. In order to evaluate the adsorption performance of the carbon dioxide adsorbent prepared according to Examples 1 to 7 (the mixed weight ratio of the amine functionalized MOF and the binder is 80:20), the carbon dioxide adsorbent according to Examples 1 to 5 was used as 15% carbon dioxide 85 After pretreatment at 130 °C in% nitrogen atmosphere, TG was measured under 40 °C adsorption and 130 °C desorption conditions.

도 5는 15% CO2 조건하에서, 실시예 1 내지 7에 따라 제조된 이산화탄소 흡착제의 TGA 곡선을 나타낸 그래프이다((a) een-Mg2(dobpdc)@Al2O3, (b) een-Mg2(dobpdc)@Hydrotalcite, (c) een-Mg2(dobpdc)@Sucrose, (d) een-Mg2(dobpdc)@Cellulose, (e) een-Mg2(dobpdc)@fumed silica, (f) een-Mg2(dobpdc)@Silica sol, (g) een-Mg2(dobpdc)@Alumina sol)).5 is a graph showing the TGA curve of carbon dioxide adsorbents prepared according to Examples 1 to 7 under 15% CO 2 conditions ((a) een-Mg 2 (dobpdc)@Al 2 O 3 , (b) een- Mg 2 (dobpdc)@Hydrotalcite, (c) een-Mg 2 (dobpdc)@Sucrose, (d) een-Mg 2 (dobpdc)@Cellulose, (e) een-Mg 2 (dobpdc)@fumed silica, (f ) een-Mg 2 (dobpdc)@Silica sol, (g) een-Mg 2 (dobpdc)@Alumina sol)).

측정 결과, 실시예 1에 따른 이산화탄소 흡착제(een-Mg2(dobpdc)@Al2O3)의 경우 7.33 wt%, 실시예 2에 따른 이산화탄소 흡착제(een-Mg2(dobpdc)@Hydrotalcite)는 6.11 wt%, 실시예 3에 따른 이산화탄소 흡착제(een-Mg2(dobpdc)@Sucrose)는 6.48 wt%, 실시예 4에 따른 이산화탄소 흡착제(een-Mg2(dobpdc)@Cellulose)는 4.94 wt%, 실시예 5에 따른 이산화탄소 흡착제(een-Mg2(dobpdc)@Fumed Silica)는 9.84 wt%, 실시예 6에 따른 이산화탄소 흡착제(een-Mg2(dobpdc)@Silica sol)는 8.57 wt%, 실시예 7에 따른 이산화탄소 흡착제(een-Mg2(dobpdc)@Alumina sol)는 11.45 wt%의 흡착량을 보여주었다. As a result of the measurement, the carbon dioxide adsorbent according to Example 1 (een-Mg 2 (dobpdc)@Al 2 O 3 ) was 7.33 wt%, and the carbon dioxide adsorbent according to Example 2 (een-Mg 2 (dobpdc)@Hydrotalcite) was 6.11 wt%, the carbon dioxide adsorbent according to Example 3 (een-Mg 2 (dobpdc)@Sucrose) was 6.48 wt%, and the carbon dioxide adsorbent according to Example 4 (een-Mg 2 (dobpdc)@Cellulose) was 4.94 wt%, performed The carbon dioxide adsorbent according to Example 5 (een-Mg 2 (dobpdc)@Fumed Silica) was 9.84 wt%, and the carbon dioxide adsorbent according to Example 6 (een-Mg 2 (dobpdc)@Silica sol) was 8.57 wt%, Example 7 According to the carbon dioxide adsorbent (een-Mg 2 (dobpdc)@Alumina sol) showed an adsorption amount of 11.45 wt%.

결합제 비율에 따른 이산화탄소 흡착 평가Carbon dioxide adsorption evaluation according to binder ratio

상기 이산화탄소 흡착 평가를 통해 흡착량이 우수한 실시예 1, 3, 5, 7에 따른 이산화탄소 흡착제에 대하여 결합제의 비율에 따른 이산화탄소 흡착능력을 평가하였다. Through the carbon dioxide adsorption evaluation, the carbon dioxide adsorption capacity according to the ratio of the binder was evaluated for the carbon dioxide adsorbents according to Examples 1, 3, 5, and 7 having excellent adsorption amounts.

구체적으로, 실시예 1, 3, 5, 7에 따른 이산화탄소 흡착제 제조시 결합제와 아민기능화 MOF의 비율을 각각 20:80, 15:85, 10:90, 5:95로 조절하여 흡착제를 제조하였으며, 상기 제조된 이산화탄소 흡착제를 15% 이산화탄소 85% 질소분위기에서 130 ℃로 전처리 후, 40 ℃ 흡착, 130 ℃ 탈착 조건에서 TG를 측정하였다. Specifically, when preparing the carbon dioxide adsorbent according to Examples 1, 3, 5, and 7, the ratio of the binder and the amine functionalized MOF was adjusted to 20:80, 15:85, 10:90, 5:95, respectively, to prepare an adsorbent. The prepared carbon dioxide adsorbent was pretreated at 130° C. in a 15% carbon dioxide 85% nitrogen atmosphere, and then TG was measured under 40° C. adsorption and 130° C. desorption conditions.

도 6 내지 도 9는 15% CO2 조건하에서, 실시예 1(도 6), 실시예 3(도 7), 실시예 5(도 8), 실시예 7(도 9)에 따라 제조된 이산화탄소 흡착제의 결합제와 een-Mg2(dobpdc)의 혼합 비율에 따른 TGA 곡선을 나타낸 그래프이다.6 to 9 are carbon dioxide adsorbents prepared according to Example 1 (FIG. 6), Example 3 (FIG. 7), Example 5 (FIG. 8), and Example 7 (FIG. 9) under 15% CO 2 conditions. It is a graph showing the TGA curve according to the mixing ratio of the binder and een-Mg 2 (dobpdc).

측정 결과, 실시예 1에 따른 이산화탄소 흡착제(een-Mg2(dobpdc)@Al2O3)의 경우 20:80의 비율은 7.33 wt%, 15:85의 비율은 11.11 wt%, 10:90의 비율은 12.44 wt%, 5:95의 비율은 13.27 wt%의 이산화탄소 흡착량을 보여주었다(een-Mg2(dobpdc)의 흡착량은 15.09 wt%). 이를 통해 결합제의 비율이 높을수록 이산화탄소 흡착 성능이 떨어짐을 확인하였으며, 다만 결합제와 아민기능화 MOF의 비율이 15:85-5:95인 경우에는 흡착제의 성능 감소가 크지 않음을 확인하였다(도 6, 결합제와 een-Mg2(dobpdc)의 혼합 비율은 (a) 5:95, (b) 10:90, (c) 15:85, (d) 20:80).As a result of the measurement, in the case of the carbon dioxide adsorbent (een-Mg 2 (dobpdc)@Al 2 O 3 ) according to Example 1, the ratio of 20:80 was 7.33 wt%, the ratio of 15:85 was 11.11 wt%, and 10:90 The ratio was 12.44 wt% and the ratio of 5:95 showed 13.27 wt% of carbon dioxide adsorption (the adsorption amount of een-Mg 2 (dobpdc) was 15.09 wt%). Through this, it was confirmed that the higher the ratio of the binder, the lower the carbon dioxide adsorption performance. However, when the ratio of the binder and the amine functionalized MOF is 15:85-5:95, it was confirmed that the decrease in the performance of the adsorbent was not significant (Fig. 6, The mixing ratio of the binder and een-Mg 2 (dobpdc) was (a) 5:95, (b) 10:90, (c) 15:85, (d) 20:80).

또한, 실시예 3에 따른 이산화탄소 흡착제(een-Mg2(dobpdc)@Sucrose)의 경우, 20:80의 비율은 6.47 wt%, 15:85의 비율은 6.22 wt%, 10:90의 비율은 8.69 wt%, 5:95의 비율은 10.34 wt%의 이산화탄소 흡착량을 보여주었다(een-Mg2(dobpdc)의 흡착량은 15.09 wt%). 이를 통해 결합제의 비율이 높을수록 이산화탄소 흡착 성능이 떨어짐을 확인하였으며, 다만 결합제와 아민기능화 MOF의 비율이 10:90-5:95인 경우에는 흡착제의 성능 감소가 크지 않음을 확인하였다(도 7, 결합제와 een-Mg2(dobpdc)의 혼합 비율은 (a) 5:95, (b) 10:90, (c) 15:85, (d) 20:80).In addition, in the case of the carbon dioxide adsorbent (een-Mg 2 (dobpdc)@Sucrose) according to Example 3, the ratio of 20:80 was 6.47 wt%, the ratio of 15:85 was 6.22 wt%, and the ratio of 10:90 was 8.69 The ratio of wt% and 5:95 showed a carbon dioxide adsorption amount of 10.34 wt% (the adsorption amount of een-Mg 2 (dobpdc) was 15.09 wt%). Through this, it was confirmed that the higher the ratio of the binder, the lower the carbon dioxide adsorption performance was. The mixing ratio of the binder and een-Mg 2 (dobpdc) was (a) 5:95, (b) 10:90, (c) 15:85, (d) 20:80).

또한, 실시예 5에 따른 이산화탄소 흡착제(een-Mg2(dobpdc)@Fumed Silica)의 경우, 15:85의 비율은 11.42 wt%, 10:90의 비율은 13.05 wt%, 5:95의 비율은 13.10 wt%, 그리고 3:97의 비율은 13.41 wt%의 이산화탄소 흡착량을 보여주었다(een-Mg2(dobpdc)의 흡착량은 15.09 wt%). 이를 통해 결합제의 비율이 높을수록 이산화탄소 흡착 성능이 떨어짐을 확인하였으며, 다만, 결합제와 아민기능화 MOF의 비율이 10:90-3:97인 경우에는 흡착제의 성능 감소가 크지 않음을 확인하였다(도 8, 결합제와 een-Mg2(dobpdc)의 혼합 비율은 (a) 3:97, (b) 5:95, (c) 10:90, (d) 15:85).In addition, in the case of the carbon dioxide adsorbent (een-Mg 2 (dobpdc)@Fumed Silica) according to Example 5, the ratio of 15:85 is 11.42 wt%, the ratio of 10:90 is 13.05 wt%, and the ratio of 5:95 is 13.10 wt%, and the ratio of 3:97 showed 13.41 wt% of carbon dioxide adsorption (the adsorption amount of een-Mg 2 (dobpdc) was 15.09 wt%). Through this, it was confirmed that the higher the ratio of the binder, the lower the carbon dioxide adsorption performance. However, when the ratio of the binder and the amine functionalized MOF is 10:90-3:97, it was confirmed that the performance of the adsorbent was not significantly reduced (Fig. 8 , The mixing ratio of the binder and een-Mg 2 (dobpdc) was (a) 3:97, (b) 5:95, (c) 10:90, (d) 15:85).

또한, 실시예 7에 따른 이산화탄소 흡착제(een-Mg2(dobpdc)@Alumina sol)의 경우, 15:85의 비율은 10.15 wt%, 10:90의 비율은 11.45 wt%, 5:95의 비율은 12.38 wt%의 이산화탄소 흡착량을 보여주었다(een-Mg2(dobpdc)의 흡착량은 15.09 wt%). 이를 통해 결합제의 비율이 높을수록 이산화탄소 흡착 성능이 떨어짐을 확인하였으며, 다만, 결합제와 아민기능화 MOF의 비율이 10:90-5:95인 경우에는 흡착제의 성능 감소가 크지 않음을 확인하였다(도 6, 결합제와 een-Mg2(dobpdc)의 혼합 비율은 (a) 5:95, (b) 10:90, (c) 15:85, (d) 20:80).In addition, in the case of the carbon dioxide adsorbent according to Example 7 (een-Mg 2 (dobpdc)@Alumina sol), the ratio of 15:85 is 10.15 wt%, the ratio of 10:90 is 11.45 wt%, and the ratio of 5:95 is The adsorption amount of carbon dioxide was 12.38 wt% (the adsorption amount of een-Mg 2 (dobpdc) was 15.09 wt%). Through this, it was confirmed that the higher the ratio of the binder, the lower the carbon dioxide adsorption performance. However, when the ratio of the binder and the amine functionalized MOF is 10:90-5:95, it was confirmed that the performance of the adsorbent was not significantly reduced (Fig. 6). , The mixing ratio of the binder and een-Mg 2 (dobpdc) was (a) 5:95, (b) 10:90, (c) 15:85, (d) 20:80).

기체 흡착 특성 평가Gas adsorption property evaluation

다음으로, 상기 실시예 1, 6, 7에 따른 이산화탄소 흡착제의 기체 흡착 특성을 평가하기 위하여, 결합제의 비율에 따른 N2 흡착 등온선을 측정하였다. Next, in order to evaluate the gas adsorption characteristics of the carbon dioxide adsorbents according to Examples 1, 6, and 7, the N 2 adsorption isotherm according to the ratio of the binder was measured.

도 10은 실시예 1에 따라 제조된 이산화탄소 흡착제의 결합제와 een-Mg2(dobpdc)의 혼합 비율에 따른 N2 흡착 등온선을 나타낸 그래프이다(결합제와 een-Mg2(dobpdc)의 혼합 비율은 (a) 5:95, (b) 10:90, (c) 15:85).10 is a graph showing the N 2 adsorption isotherm according to the mixing ratio of the binder and een-Mg 2 (dobpdc) of the carbon dioxide adsorbent prepared according to Example 1 (the mixing ratio of the binder and een-Mg 2 (dobpdc) is ( a) 5:95, (b) 10:90, (c) 15:85).

도 11은 실시예 6에 따라 제조된 이산화탄소 흡착제의 결합제와 een-Mg2(dobpdc)의 혼합 비율에 따른 N2 흡착 등온선을 나타낸 그래프이다(결합제와 een-Mg2(dobpdc)의 혼합 비율은 (a) 10:90).11 is a graph showing the N 2 adsorption isotherm according to the mixing ratio of the binder of the carbon dioxide adsorbent prepared according to Example 6 and een-Mg 2 (dobpdc) (the mixing ratio of the binder and een-Mg 2 (dobpdc) is ( a) 10:90).

도 12는 실시예 7에 따라 제조된 이산화탄소 흡착제의 결합제와 een-Mg2(dobpdc)의 혼합 비율에 따른 N2 흡착 등온선을 나타낸 그래프이다(결합제와 een-Mg2(dobpdc)의 혼합 비율은 (a) 5:95, (b) 10:90, (c) 15:85).12 is a graph showing the N 2 adsorption isotherm according to the mixing ratio of the binder of the carbon dioxide adsorbent prepared according to Example 7 and een-Mg 2 (dobpdc) (the mixing ratio of the binder and een-Mg 2 (dobpdc) is ( a) 5:95, (b) 10:90, (c) 15:85).

측정 결과, 실시예 1에 따른 이산화탄소 흡착제(een-Mg2(dobpdc)@Al2O3)의 경우 결합제와 아민기능화 MOF의 비율이 5:95인 경우에는 129 m2/g, 10:90은 104 m2/g, 15:95는 234 m2/g로 측정되었는바, 이를 통해 아민기능화 MOF인 een-Mg2(dobpdc)의 BET인 807 m2/g 보다 작은 표면적을 가진다는 것을 확인하였다. 또한, 부수지 않은 펠렛 (빨강), 부순 펠렛 (파랑) 사이의 BET 차이가 크지 않음을 확인하였는바, 본 발명에 따른 이산화탄소 흡착제는 결합제와 아민기능화 MOF가 서로 균일하게 섞여 있음을 확인하였다.As a result of the measurement, in the case of the carbon dioxide adsorbent (een-Mg 2 (dobpdc)@Al 2 O 3 ) according to Example 1, when the ratio of the binder and the amine functionalized MOF is 5:95, 129 m 2 /g, 10:90 is 104 m 2 /g, 15:95 was measured to be 234 m 2 /g, through which it was confirmed that the amine functionalized MOF een-Mg 2 (dobpdc) had a surface area less than 807 m 2 /g, BET . In addition, it was confirmed that the BET difference between the uncrushed pellets (red) and the crushed pellets (blue) was not large, and the carbon dioxide adsorbent according to the present invention confirmed that the binder and the amine functionalized MOF were uniformly mixed with each other.

실시예 6에 따른 이산화탄소 흡착제(een-Mg2(dobpdc)@Silica sol)의 경우 결합제와 아민기능화 MOF의 비율이 10:90인 경우 71 m2/g로, 기존 측정한 een-Mg2(dobpdc) BET인 807 m2/g 보다 작은 표면적을 가진다는 것을 확인하였다. 또한, 부수지 않은 펠렛 (빨강), 부순 펠렛 (파랑) 사이의 BET 차이가 크지 않음을 확인하였는바, 본 발명에 따른 이산화탄소 흡착제는 결합제와 아민기능화 MOF가 서로 균일하게 섞여 있음을 확인하였다.In the case of the carbon dioxide adsorbent (een-Mg 2 (dobpdc)@Silica sol) according to Example 6, 71 m 2 /g when the ratio of the binder and the amine functionalized MOF is 10:90, the previously measured een-Mg 2 (dobpdc ) It was confirmed that it has a surface area smaller than the BET of 807 m 2 /g. In addition, it was confirmed that the BET difference between the uncrushed pellets (red) and the crushed pellets (blue) was not large, and the carbon dioxide adsorbent according to the present invention confirmed that the binder and the amine functionalized MOF were uniformly mixed with each other.

실시예 7에 따른 이산화탄소 흡착제(een-Mg2(dobpdc)@Alumina sol)의 경우 결합제와 아민기능화 MOF의 비율이 5:95인 경우에는 92 m2/g, 10:90은 117 m2/g, 15:95는 108 m2/g로 측정되었는바, 이를 통해 아민기능화 MOF인 een-Mg2(dobpdc)의 BET인 807 m2/g 보다 작은 표면적을 가진다는 것을 확인하였다. 또한, 부수지 않은 펠렛 (빨강), 부순 펠렛 (파랑) 사이의 BET 차이가 크지 않음을 확인하였는바, 본 발명에 따른 이산화탄소 흡착제는 결합제와 아민기능화 MOF가 서로 균일하게 섞여 있음을 확인하였다.In the case of the carbon dioxide adsorbent according to Example 7 (een-Mg 2 (dobpdc)@Alumina sol), when the ratio of the binder and the amine functionalized MOF is 5:95, 92 m 2 /g, 10:90 is 117 m 2 /g , 15:95 was measured to be 108 m 2 /g, through which it was confirmed that the amine functionalized MOF, een-Mg 2 (dobpdc), had a surface area smaller than 807 m 2 /g, which is BET. In addition, it was confirmed that the BET difference between the uncrushed pellets (red) and the crushed pellets (blue) was not large, and the carbon dioxide adsorbent according to the present invention confirmed that the binder and the amine functionalized MOF were uniformly mixed with each other.

온도-스윙 흡착(Temperature-swing adsorption ( TSATSA ) 평가) evaluation

Mg2(dobpdc) 플랫폼의 열린 금속 자리로의 일차 다이아민 기능화는 낮은 이산화탄소 압력에서 질소 대비 높은 이산화탄소 선택성과 흡착량을 제공한다. 그러나 높은 탈착 온도가 요구되는 물질은 재생의 문제를 야기하는바, 본 발명에서는 결합제의 도입에 따른 이산화탄소 흡착과 탈착의 순환력을 평가하는 실험을 진행하였다.Primary diamine functionalization of the Mg 2 (dobpdc) platform to the open metal site provides high carbon dioxide selectivity and adsorption to nitrogen at low carbon dioxide pressure. However, a material requiring a high desorption temperature causes a problem of regeneration, and in the present invention, an experiment was conducted to evaluate the circulation power of carbon dioxide adsorption and desorption according to the introduction of a binder.

구체적으로 상기 실시예 1에 따른 이산화탄소 흡착제(een-Mg2(dobpdc)@Al2O3)를 결합제의 비율별로 제조하고, 상기 제조된 흡착제 시료들을 130 ℃에서 4시간 동안 N2로 전처리하였다. 전처리된 시료들은 40 ℃에서 30분 동안 15% 이산화탄소로 흡착을 하고 130 ℃에서 30분 동안 100% CO2로 탈착하였다. 도 13은 실시예 1에 따라 제조된 이산화탄소 흡착제의 결합제와 een-Mg2(dobpdc)의 혼합 비율에 따른 흡착 및 탈착 사이클을 나타낸 그래프이다(결합제와 een-Mg2(dobpdc)의 혼합 비율은 (a) 5:95, (b) 10:90).Specifically, the carbon dioxide adsorbent (een-Mg 2 (dobpdc)@Al 2 O 3 ) according to Example 1 was prepared by the ratio of the binder, and the prepared adsorbent samples were pretreated with N 2 at 130° C. for 4 hours. The pretreated samples were adsorbed with 15% carbon dioxide at 40° C. for 30 minutes and desorbed with 100% CO 2 at 130° C. for 30 minutes. 13 is a graph showing the adsorption and desorption cycle according to the mixing ratio of the binder and een-Mg 2 (dobpdc) of the carbon dioxide adsorbent prepared according to Example 1 (the mixing ratio of the binder and een-Mg 2 (dobpdc) is ( a) 5:95, (b) 10:90).

측정 결과, 실시예 1에 따른 이산화탄소 흡착제(een-Mg2(dobpdc)@Al2O3)는 결합제와 아민기능화 MOF의 비율이 5:95인 경우에는 10번의 흡·탈착 과정에서 12 wt% 이상, 비율이 10:90인 경우에는 10번의 흡·탈착 과정에서 10 wt% 이상의 흡착량을 유지하는 것을 확인하였다. 이를 통해, 본 발명에 따른 이산화탄소 흡착제는 결합제의 도입을 통해 아민 기능화된 다공성 금속-유기 골격체(MOF)의 기계적 강도가 향상되는바, 재사용시에도 우수한 이산화탄소 흡착성능을 유지한다는 것을 확인하였다.As a result of the measurement, the carbon dioxide adsorbent according to Example 1 (een-Mg 2 (dobpdc)@Al 2 O 3 ) was 12 wt% or more in 10 adsorption and desorption processes when the ratio of the binder and the amine functionalized MOF is 5:95. In the case of the ratio of 10:90, it was confirmed that the adsorption amount of 10 wt% or more was maintained during the 10 adsorption/desorption processes. Through this, it was confirmed that the carbon dioxide adsorbent according to the present invention improves the mechanical strength of the amine-functionalized porous metal-organic framework (MOF) through the introduction of a binder, and maintains excellent carbon dioxide adsorption performance even when reused.

또한, 상기 실시예 5에 따른 이산화탄소 흡착제(een-Mg2(dobpdc)@Fumed Silica)를 결합제와 een-Mg2(dobpdc)의 혼합 비율을 10:90으로 제조하고, 상기 제조된 흡착제 시료를 140 ℃에서 4시간 동안 N2로 전처리하였다. 전처리된 시료들은 40 ℃에서 30분 동안 15% 이산화탄소로 흡착을 하고 140 ℃에서 30분 동안 100% CO2로 탈착하였다. 도 14는 실시예 5에 따라 제조된 이산화탄소 흡착제의 흡착 및 탈착 사이클을 나타낸 그래프이다(결합제와 een-Mg2(dobpdc)의 혼합 비율은 10:90).In addition, the carbon dioxide adsorbent according to Example 5 (een-Mg 2 (dobpdc)@Fumed Silica) was prepared in a mixing ratio of 10:90 with a binder and een-Mg 2 (dobpdc), and the prepared adsorbent sample was 140 It was pretreated with N 2 at °C for 4 hours. The pretreated samples were adsorbed with 15% carbon dioxide at 40° C. for 30 minutes and desorbed with 100% CO 2 at 140° C. for 30 minutes. 14 is a graph showing the adsorption and desorption cycle of the carbon dioxide adsorbent prepared according to Example 5 (the mixing ratio of the binder and een-Mg 2 (dobpdc) is 10:90).

측정 결과, 실시예 1에 따른 이산화탄소 흡착제(een-Mg2(dobpdc)@Fumed Silica)는 42번의 흡·탈착 과정에서 10 wt% 이상의 흡착량을 유지하는 것을 확인하였다. 이를 통해, 본 발명에 따른 이산화탄소 흡착제는 결합제의 도입을 통해 아민 기능화된 다공성 금속-유기 골격체(MOF)의 기계적 강도가 향상되는바, 재사용시에도 우수한 이산화탄소 흡착성능을 유지한다는 것을 확인하였다.As a result of the measurement, it was confirmed that the carbon dioxide adsorbent (een-Mg 2 (dobpdc)@Fumed Silica) according to Example 1 maintained an adsorption amount of 10 wt% or more in the adsorption/desorption process of 42 times. Through this, it was confirmed that the carbon dioxide adsorbent according to the present invention improves the mechanical strength of the amine-functionalized porous metal-organic framework (MOF) through the introduction of a binder, and maintains excellent carbon dioxide adsorption performance even when reused.

Claims (12)

산화알루미늄(Al2O3) 및 건식 실리카(fumed silica)로 이루어진 군에서 선택되는 결합제; 및
일차 아민기를 함유한 다가 아민이 도입된 다공성 금속-유기 골격체;를 포함하고,
상기 다공성 금속-유기 골격체와 상기 결합제는 90:10 내지 97:3의 중량비로 혼합되는 것을 특징으로 하는 이산화탄소 흡착제.
A binder selected from the group consisting of aluminum oxide (Al 2 O 3 ) and fumed silica; And
Including; a porous metal-organic skeleton into which a polyvalent amine containing a primary amine group is introduced,
The porous metal-organic framework and the binder is a carbon dioxide adsorbent, characterized in that mixed in a weight ratio of 90:10 to 97:3.
삭제delete 삭제delete 제1항에 있어서,
상기 다가 아민은 하기 화학식 1 내지 15로 표시되는 화합물 중에서 선택되는 것을 특징으로 하는 이산화탄소 흡착제.
[화학식 1 내지 15]
Figure 112017119991248-pat00003
The method of claim 1,
The polyvalent amine is a carbon dioxide adsorbent, characterized in that selected from the compounds represented by the following formulas 1 to 15.
[Chemical Formulas 1 to 15]
Figure 112017119991248-pat00003
제1항에 있어서,
상기 다공성 금속-유기 골격체는 M2(dobpdc), M2(dobdc), M2(dondc) 및 M2(dotpdc)로 이루어진 군에서 선택되는 것을 특징으로 하는 이산화탄소 흡착제:
여기서, 금속 M은 Mg, Ti, V, Cr, Mn, Co, Ni, Cu 또는 Zn이고, dobpdc는 4,4'-디옥시도-3,3'-비페닐디카복실레이트이며, dobdc는 2,5-디옥시도-1,4-벤젠디카복실레이트이고, dondc는 1,5-디옥사이드-2,6-나프탈렌디카복실레이트이고, dotpdc는 4,4'-디옥시도-3,3'-트리페닐디카복실레이트이다.
The method of claim 1,
The porous metal-organic framework is a carbon dioxide adsorbent, characterized in that selected from the group consisting of M 2 (dobpdc), M 2 (dobdc), M 2 (dondc) and M 2 (dotpdc):
Here, the metal M is Mg, Ti, V, Cr, Mn, Co, Ni, Cu or Zn, dobpdc is 4,4'-dioxido-3,3'-biphenyldicarboxylate, dobdc is 2 ,5-dioxido-1,4-benzenedicarboxylate, dondc is 1,5-dioxide-2,6-naphthalenedicarboxylate, dotpdc is 4,4'-dioxido-3,3' -It is triphenyl dicarboxylate.
일차 아민기를 함유한 다가 아민이 도입된 다공성 금속-유기 골격체 분말을 산화알루미늄(Al2O3) 및 건식 실리카(fumed silica)로 이루어진 군에서 선택되는 결합제와 혼합하는 단계;
상기 혼합물에 물을 첨가 및 반죽하여 성형하는 단계; 및
상기 성형된 혼합물을 건조시키는 단계;를 포함하고,
상기 다공성 금속-유기 골격체 분말과 상기 결합제는 90:10 내지 97:3의 중량비로 혼합되는 것을 특징으로 하는 이산화탄소 흡착제의 제조방법.
Mixing a porous metal-organic framework powder into which a polyvalent amine containing a primary amine group is introduced with a binder selected from the group consisting of aluminum oxide (Al 2 O 3 ) and fumed silica;
Adding water to the mixture and kneading to form the mixture; And
Including; drying the molded mixture;
The method of manufacturing a carbon dioxide adsorbent, characterized in that the porous metal-organic framework powder and the binder are mixed in a weight ratio of 90:10 to 97:3.
삭제delete 삭제delete 제6항에 있어서,
상기 혼합물과 상기 물은 1:0.5-5의 중량비로 혼합되는 것을 특징으로 하는 이산화탄소 흡착제의 제조방법.
The method of claim 6,
The method for producing a carbon dioxide adsorbent, characterized in that the mixture and the water are mixed in a weight ratio of 1:0.5-5.
제6항에 있어서,
상기 혼합물을 구형 펠릿(pellet) 형태로 성형하는 것을 특징으로 하는 이산화탄소 흡착제의 제조방법.
The method of claim 6,
A method for producing a carbon dioxide adsorbent, characterized in that the mixture is molded into spherical pellets.
제6항에 있어서,
상기 다가 아민은 하기 화학식 1 내지 15로 표시되는 화합물 중에서 선택되는 것을 특징으로 하는 이산화탄소 흡착제의 제조방법.
[화학식 1 내지 15]
Figure 112017119991248-pat00004
The method of claim 6,
The polyvalent amine is a method for producing a carbon dioxide adsorbent, characterized in that selected from the compounds represented by the following formulas 1 to 15.
[Chemical Formulas 1 to 15]
Figure 112017119991248-pat00004
제6항에 있어서,
상기 다공성 금속-유기 골격체는 M2(dobpdc), M2(dobdc), M2(dondc) 및 M2(dotpdc)로 이루어진 군에서 선택되는 것을 특징으로 하는 이산화탄소 흡착제의 제조방법:
여기서, 금속 M은 Mg, Ti, V, Cr, Mn, Co, Ni, Cu 또는 Zn이고, dobpdc는 4,4'-디옥시도-3,3'-비페닐디카복실레이트이며, dobdc는 2,5-디옥시도-1,4-벤젠디카복실레이트이고, dondc는 1,5-디옥사이드-2,6-나프탈렌디카복실레이트이고, dotpdc는 4,4'-디옥시도-3,3'-트리페닐디카복실레이트이다.
The method of claim 6,
The porous metal-organic framework is a method of producing a carbon dioxide adsorbent, characterized in that selected from the group consisting of M 2 (dobpdc), M 2 (dobdc), M 2 (dondc) and M 2 (dotpdc):
Here, the metal M is Mg, Ti, V, Cr, Mn, Co, Ni, Cu or Zn, dobpdc is 4,4'-dioxido-3,3'-biphenyldicarboxylate, dobdc is 2 ,5-dioxido-1,4-benzenedicarboxylate, dondc is 1,5-dioxide-2,6-naphthalenedicarboxylate, dotpdc is 4,4'-dioxido-3,3' -It is triphenyl dicarboxylate.
KR1020170163658A 2017-04-18 2017-11-30 Amine-functionalized MOF based carbon dioxide adsorbents comprising binders KR102217979B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20170049641 2017-04-18
KR1020170049641 2017-04-18

Publications (2)

Publication Number Publication Date
KR20180117023A KR20180117023A (en) 2018-10-26
KR102217979B1 true KR102217979B1 (en) 2021-02-19

Family

ID=64099158

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170163658A KR102217979B1 (en) 2017-04-18 2017-11-30 Amine-functionalized MOF based carbon dioxide adsorbents comprising binders

Country Status (1)

Country Link
KR (1) KR102217979B1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2019391604A1 (en) * 2018-12-07 2021-05-20 Commonwealth Scientific And Industrial Research Organisation Adsorption and desorption apparatus
CN109748597B (en) * 2019-03-20 2021-05-28 苏州北美国际高级中学 Method for preparing mullite porous ceramic by precursor mutual gelation
KR102276693B1 (en) * 2019-06-01 2021-07-12 고려대학교 산학협력단 Hydrophobic silane-coated amine-grafted MOF/alumina composites for carbon dioxide capture
KR102275948B1 (en) * 2019-06-19 2021-07-13 한국과학기술원 Structured MOF fiber sorbent for capturing carbon dioxide and method of manufacturing the same
CN110548486A (en) * 2019-08-09 2019-12-10 中国华电科工集团有限公司 CO 2 adsorbent and preparation method thereof
KR102489240B1 (en) * 2020-01-30 2023-01-17 고려대학교 산학협력단 Alkanolamine/amine-grafted metal-organic framework for carbon dioxide capture
WO2021153933A1 (en) * 2020-01-30 2021-08-05 고려대학교 산학협력단 Alkanolamine/amine-grafted metal-organic framework-based carbon dioxide adsorbent
WO2023068651A1 (en) 2021-10-22 2023-04-27 한국과학기술원 Method for manufacturing electrified fiber sorbent, and electrical and electromagnetic swing adsorption process
CN114479103A (en) * 2022-01-24 2022-05-13 华中科技大学 Metal organic framework molding material and preparation method and application thereof
CN115400795B (en) * 2022-04-24 2023-10-03 安徽大学 LDH/MOF composite photocatalyst with low-concentration carbon dioxide conversion capability and preparation method thereof
KR20230171559A (en) 2022-06-14 2023-12-21 한국과학기술원 Fiber adsorbent for adsorption of carbon dioxide and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101468292B1 (en) * 2013-03-08 2014-12-02 고려대학교 산학협력단 Carbon dioxide absorbent
KR101707821B1 (en) 2015-08-13 2017-02-17 고려대학교 산학협력단 Preparation of Mg-MOF and its amine-functionalization

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7524444B2 (en) * 2004-11-09 2009-04-28 Basf Aktiengesellschaft Shaped bodies containing metal-organic frameworks
KR100620546B1 (en) * 2005-01-03 2006-09-13 한국전력공사 highly attrition resistant and dry regenerable sorbents for carbon dioxide capture
JP2012520756A (en) * 2009-03-20 2012-09-10 ビーエーエスエフ ソシエタス・ヨーロピア Separation method of acidic gas using organometallic framework material impregnated with amine
KR20150007484A (en) 2013-07-11 2015-01-21 서울과학기술대학교 산학협력단 Novel Zn-MOF compounds, and carbon dioxide sorption and heterogeneous catalysts for transesterification comprising the same
KR20150056986A (en) * 2013-11-18 2015-05-28 한국화학연구원 Method for manufacturing hybrid nanoporous shaped bodies and the hybrid nanoporous shaped bodies thereby

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101468292B1 (en) * 2013-03-08 2014-12-02 고려대학교 산학협력단 Carbon dioxide absorbent
KR101707821B1 (en) 2015-08-13 2017-02-17 고려대학교 산학협력단 Preparation of Mg-MOF and its amine-functionalization

Also Published As

Publication number Publication date
KR20180117023A (en) 2018-10-26

Similar Documents

Publication Publication Date Title
KR102217979B1 (en) Amine-functionalized MOF based carbon dioxide adsorbents comprising binders
Molavi et al. Enhancing CO2/N2 adsorption selectivity via post-synthetic modification of NH2-UiO-66 (Zr)
Liu et al. Advances in post‐combustion CO2 capture by physical adsorption: from materials innovation to separation practice
US11000830B2 (en) Low cost immobilized amine regenerable solid sorbents
Choi et al. Structural effects of amine polymers on stability and energy efficiency of adsorbents in post-combustion CO2 capture
US9649618B2 (en) Method for preparing solid amine gas adsorption material
Kim et al. Amine-functionalized MIL-53 (Al) for CO2/N2 separation: Effect of textural properties
Montazerolghaem et al. A metal–organic framework MIL-101 doped with metal nanoparticles (Ni & Cu) and its effect on CO 2 adsorption properties
US11794164B2 (en) Pcstructures including supported polyamines and methods of making the supported polyamines
KR102002640B1 (en) Manufacturing method of mesoporous silica materials as CO2 adsorbent with inroduction of Amin functional group
Uehara et al. CO2 adsorption using amino acid ionic liquid-impregnated mesoporous silica sorbents with different textural properties
Park et al. A study on the effect of the amine structure in CO2 dry sorbents on CO2 capture
Vieillard et al. Cocoa shell-deriving hydrochar modified through aminosilane grafting and cobalt particle dispersion as potential carbon dioxide adsorbent
CN106660010A (en) Regenerative adsorbents of modified amines on nano-structured supports
Liu et al. Mesocellular silica foam supported polyamine adsorbents for dry CO2 scrubbing: Performance of single versus blended polyamines for impregnation
KR20190076891A (en) Polymer-coated amine-grafted MOF adsorbents for carbon dioxide capture and their preparation
KR101490202B1 (en) Microporous carbon dioxide adsorbents and method for manufacturing the same
FI111245B (en) A process for separating ammonia from a gas mixture and using an adsorbent composition for this separation
KR102028613B1 (en) Amine-functionalized MOF-based CO2 adsorbents
WO2021223901A1 (en) Adsorbent material on the basis of a metal-organic framework, method for the production and use of the same
Manianglung et al. Synergistic effect of blended primary and secondary amines functionalized onto the silica on CO 2 capture performance
KR20230058414A (en) microporous airgel
KR100733347B1 (en) A removal method of specific hazardous materials by using porous organic inorganic hybrid materials
KR102276693B1 (en) Hydrophobic silane-coated amine-grafted MOF/alumina composites for carbon dioxide capture
KR101696395B1 (en) Diamine-Functionalized Zeolite Composite and Method for Manufacturing Thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant